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Background: Recently, advances have emerged in medicine and pharmacotherapeutics, providing 
novel treatments for tuberculosis (TB). It is noteworthy that long-term drug consumption for TB 
treatment often leads to hepatotoxicity, which can have serious or even fatal side effects. Thus, 
many studies have focused on the assessment of the hepatoprotective effects of betaine, a glycine 
derivative. This study aimed at evaluating the effects of betaine to explore the underlying 
biochemical mechanisms of hepatotoxicity in rats, using combined isoniazid (INH) and rifampicin 
(RMP). 
Methods: We used an animal model to induce hepatotoxicity with combined INH-RMP and to 
determine the protective effects of betaine at three doses of 125, 250 and 500 mg/kg. 
Results: Treatment with INH and RMP led to a significant upregulation of hepatic damage 
markers, along with marked alteration in the histopathological lesions. The results after the use of 
betaine were found to be satisfactory at 500 mg/kg comparable to silymarin (200mg/kg). The 
hepatotoxicity was also found to be associated with generation of reactive oxygen species (ROS) 
and oxidative stress, indicating the deterioration of the antioxidant defense system in the liver. 
However, pretreatment with betaine seemed to ameliorate the INH-RMP-induced hepatotoxicity, 
along with marked down-regulation of oxidative stress and hepatotoxicity markers. 
Conclusion: The study findings indicated that treatment with betaine may help alleviate the INH-
RMP-induced liver pathology. This was evident by the reduced inflammation and oxidative stress 
via mitochondrial GSH regeneration, ROS inhibition, and protection of mitochondria complex II. 
Further studies are warranted to investigate the validity of these outcomes. 
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Introduction 
The toxicity induced by the long-term use of drugs 

is a serious side effect that significantly contributes 
to the high drug development cost [1]. Paracelsus 
stated that all agents are safe at sufficiently low 
doses and can be toxic at inappropriate high doses 
[2]. However, we normally consider adverse events 
when they occur at doses that are relevant to 
patients’ use of medicines and not accidental drug 
overdoses. Almost all anti-tuberculosis drugs are 
associated with hepatotoxicity. Such condition is 
primarily attributed to the oxidative stress induced 
by hepatic CYP2E1 during isoniazid (INH) 
metabolism [3]. Hepatic CYP2E1 is upregulated by 
the clinical use of INH and rifampicin (RMP), which 
often leads to increased levels of inflammatory 
mediators in the liver [4]. This in turn leads to the 
generation of toxic metabolites and free radicals, 
which results in ROS generation, mitochondrial 
injury and glutathione (GSH) down-regulation. 

Betaine is a choline metabolite, a naturally-
occurring glycine derivative, and an important 
component of the methionine-homocysteine cycle 

[5]. Betaine has previously been implicated in GSH 
upregulation in the liver [6], and has shown many 
pharmacological properties, including antioxidant, 
anti-inflammatory, hepatoprotective, anti-
thrombotic, anti-depressants, and neuroprotective 
activities [5]. Betaine ameliorates INH-RMP-
induced hepatotoxicity through two pathways. 
Being a methyl group donor, it is involved in the 
generation of methionine from homocysteine. In 
turn, methionine contributes to cysteine synthesis 
via a trans-sulfuration pathway. It is also involved in 
glycine synthesis. Both cysteine and glycine are the 
key components essential for the GSH synthesis [7]. 
Hence, betaine treatment can promote the 
upregulation of hepatic GSH process, which leads to 
the inhibition of ROS formation and alleviation of 
hepatic injury.  

Aim of the Study: Although studies have 
demonstrated the cytoprotective and 
hepatoprotective effects of betaine [8-10], the 
underlying biochemical mechanisms and the full 
effects of betaine are still unclear. Thus, the current 
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study aimed to assess the hepatoprotective effect of 
betaine and to explore the related mechanisms in a 
rat model of drug-induced toxicity. The toxicity was 
evaluated to determine the protective effects of 
betaine at three different doses: 125, 250 and 500 
mg/kg. 

Materials and Methods 
Chemicals & Drugs: All chemicals and drugs were 

obtained from local suppliers in Mumbai, India. 
Rifampicin was obtained from Lupin 
Pharmaceuticals, Inc. Isoniazid (pyridine-4-
carbohydrazide) and Betaine (2-
[trimethylazaniumyl] acetate) was purchased from 
SRL Chemicals, and TCI Chemicals Pvt. Ltd., 
respectively. Silymarin (3,5,7-trihydroxy-2-[3-(4-
hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-
2,3-dihydro-1,4-benzodioxin-6-yl]-2,3-
dihydrochromen-4-one) was purchased from Yucca 
Enterprises. 

Animals: Forty eight healthy Wistar rats (180-
200g) were obtained from the National Institute of 
Biosciences (Mumbai, India). Food and water were 
provided to the rats ad libitium. Before initiating the 
experiments, the rats underwent one week of 
acclimatization. The study protocol was approved 
by the Institutional Animal Ethics Committee 
(IAEC-Approval #: CPCSEA/IAEC/P-43/2018) and 
registered by the “Committee for the Purpose of 
Control and Supervision of Experiments on 
Laboratory Animals” (CPCSEA), sponsored by the 
Government of India. 

Experimental Design & Protocol: The rats (n=48) 
were randomly divided into six groups of eight each, 
as shown in Figure 1. The animals in group I were 
kept in laboratory environment but did not receive 
any drugs. Rats in group II received only INH and 
RMP intraperitoneally, while those in group III were 
pretreated orally with silymarin (200mg/kg). Rats in 
groups IV, V, and VI were pretreated with betaine 
intraperitoneally for 14 days (125 mg/kg, 250 
mg/kg, and 500 mg/kg). On day 15, blood samples 
were collected from all rats and stored for later 
analyses. At this time, all rats were sacrificed; the 
liver was removed from each animal, and stored in 
10% formalin at pH 7.4 for further evaluations and 
analyses.  

Betaine Administration Schedule: All of the rats 
were subjected to a standardized 14-day treatment 
protocol per group. Betaine was administered to rats 
in groups IV to VI, 4-5 hours before injecting 
combined INH-RMP to determine the 
hepatoprotective activity of betaine for 14 
consecutive days. The rats were treated with three 
doses of betaine at 125, 250, or 500mg/kg, to 
determine its effective dosage [6]. The INH and 
RMP were administered through the intraperitoneal 
route for 14 days at a therapeutic dose of 50 or 
100mg/kg, respectively [11, 12].  

Estimation of Liver Indices and Serum Analyses: 
About 18-20 hours post-treatment, blood samples 
were collected from the rats in all groups. The sera 
were prepared from the blood samples after 
centrifugation at 3,000 rpm for 15 min. On the 15th 
day, the rats’ livers were weighted and their samples 
examined histologically. In addition, the liver 
indices were determined, using the following 
formula: liver weight (g)/body weight (g) x100%. 
The liver samples were further used for the 
determination of serum biochemical parameters 
through liver function tests. These tests quantified 
such parameters as serum glutamic oxaloacetic 
transaminase (SGOT), lactic acid dehydrogenase 
(LDH), alkaline phosphatase (ALP), serum glutamic 
pyruvic transaminase (SGPT), and the total protein 
levels, using commercial kits; all assays were 
performed on a biochemical analyzer (ERBA Chem, 
India) [3, 7]. 

Determination of TNF-α & IL-1β Levels: The 
liver samples were rinsed in phosphate-buffered 
saline (PBS) at pH 7.4, and stored at -80°C before 
homogenization. The tissues were minced and 
homogenized in PBS at pH7.4 in a tissue 
homogenizer (Polytron, India) under ice-cold 
conditions. The homogenate samples were 
centrifuged at 2000-3000 rpm for approximately 20 
min (Eltrec, India) and the supernatants were used 
for the various assays. The subsequent steps were 
conducted as described in the manual of the 
GENLISA™ ELISA kits by Krishgen Biosystems 
(Mumbai, India), using sandwich ELISA technique. 
Monoclonal antibodies were pre-coated onto 
microwells. 100µl of test samples and standards 
were pipetted into each microwell. Further, we 
covered the plates with a sealer and incubated them 
at 37°C for 90 minutes. This step was followed by 
aspiration and washing the plate four times with 
diluted Buffer and blotting the residual buffer by 
firmly tapping the plates upside down on absorbent 
papers.  

We then pipetted 100µl biotinylated IL-1β 
antibody working solution into all wells, covered 
each plate with a sealer, and incubated them at 37°C 
for 60 minutes. The plates were aspirated and 
washed again as discussed above. We then pipetted 
the working solution of  streptavidin and conjugate 
(100µl, v/v) into all wells and mixed them well, and 
covered each plate with a sealer and incubated them 
at 37°C for 30 minutes. Finally, aspiration and 
washing the plates were done as described earlier. 
Next, we pipetted 90µl TMB (3,3′,5,5′-
Tetramethylbenzidine) substrate into all wells and 
checked the color development. Lastly, the plates 
were incubated at 37°C for 10 minutes. Then, we 
pipetted 50µl of stop solution into all wells. The 
solutions turned from blue to yellow, and the 
absorbencies were read at 450nm on a microplate 
reader within 10-15 minutes after adding the stop 
solution to each well [11]. 
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Enzymatic & Nonenzymatic Estimations: In this 
part of the study, we estimated the levels of 
glutathione, catalase, and superoxide dismutase 
activities, and the extent of lipid peroxidation. For 
this purpose, liver samples were homogenized in a 
solution containing 1.15% potassium chloride and 
50mM Tris-HCL buffer at pH 7.4. The homogenates 
were centrifuged at 10,000 rpm at minus 4°C for 20 
min. The supernatants were used to assess the levels 
of reduced glutathione (GSH), the catalase (CAT) 
activities, and superoxide dismutase (SOD), and the 
extent of lipid peroxidation (MDA) [13]. 

Assessment of Reduced Glutathione: The GSH 
level was assessed as described previously by 
Beutler [14] [14]. One ml of the supernatant was 
mixed with 2 ml phosphate buffer and 0.5 ml 
Ellman’s reagent (10 mM). The resultant solution 
developed a yellow color, the absorbance of which 
was read at 412 nm (Shimadzu UV-1800). The GSH 
level of the test samples was evaluated using a series 
of standards, and expressed in μmol/mg protein [13]. 

Assessment of Catalase Activity: The CAT 
activity was assessed as described previously by 
Chance and Oshino [15]. Two μl of the supernatant 
were mixed with 191μl phosphate buffer, the 
absorbance was read, and then 7 μl hydrogen 
peroxide was added to the mixture. The absorbance 
of the mixture was read for a second time at 240 nm 
on a Shimadzu UV-1800 unit. The results were 
expressed as CAT activity per mg protein [13, 15]. 

Assessment of Lipid Peroxidation: The extent of 
lipid peroxidation is measureable based on the 
malondialdehyde (MDA) levels as described 
previously by Ohkawa, et al. [16]. The mixture 

contained 0.5 ml 24% TCA, phosphate buffer (0.1 
M, pH 8.0), and the supernatant. It was incubated at 
room temperature for 10 min and then centrifuged 
for 20 min at 2000 rpm. One ml of the supernatant 
was mixed with 0.25 ml 0.33% TBA in 20% acetic 
acid and was incubated at 95°C for 1hr, and then the 
absorbance was read at 532 nm [12, 16]. 

Assessment of Superoxide Dismutase: The 
activity of superoxide dismutase (SOD) was 
assessed as described previously by Misra and 
Fridovich [17]. A 200µl aliquot of the homogenate 
was mixed with 30 mM EDTA, 300 μl 2 mM 
pyrogallol, and 2.5 ml phosphate buffer. The change 
in the absorbance of the mixture was read on a 
spectrophotometer at 420 nm.  One unit of SOD 
activity is known to inhibit pyrogallol auto-
oxidation rate by 50%, and the activity was 
expressed as μg/mg protein [13, 17]. 

Histopathological Examinations: The rat liver 
samples were extracted, washed, rinsed with 0.9% 
saline, and stored in 10% formalin in the fridge. 
Then, the sectioned slides were stained with 
hematoxylin and eosin (H&E) for further 
histopathological examinations [11, 12]. 

Statistical Analyses: The statistical evaluations of 
the data were performed, using GraphPad Prism 
software designed for 32bit MS Windows. All 
statistical comparisons were made using one-way 
analysis of variance (ANOVA) and Tukey’s post-
hoc tests. The data were represented as the means ± 
the standard deviations. The statistical significance 
was set at P<0.05, P<0.01, and P<0.001, based on 
the various comparisons between the pairs and 
among the entire groups. 

 

 
Graphical Abstract. Benefit of Betaine in Isoniazid-Rifampicin (INH-RMP)-induced hepatotoxicity in rats 
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Figure 1. Experimental protocol for Isoniazid-Rifampicin (INH-RMP)-induced hepatotoxicity. 

 

 
Figure 2. Betaine treatment on the liver index of INH-RMP-intoxicated animals after 14 days of treatment. 

 

 
Figure 3. Betaine treatment on the Protein levels of INH-RMP-intoxicated animals after 14 days of treatment. 
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Figure 4. Betaine treatment on the tumor necrosis factor-α (TNF-α) levels of INH-RMP-intoxicated animals after 14 days of treatment. 
 

 
Figure 5. Betaine treatment on the interleukin-1β (IL-1β) levels of INH-RMP-intoxicated animals after 14 days of treatment. 
 

 
Figure 6. Histopathological studies in Isoniazid-Rifampicin (INH-RMP)-induced toxicity. 
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Table 1. Estimation of SGPT, SGOT, ALP, and LDH levels of INH-RMP-intoxicated animals after 14 days of treatment. 
Serial No. Group (U/L) 

SGPT SGOT ALP LDH 
1. Control 44.38 ±1.793 116.9±4.989 111.3±5.009 301.6±16.45 
2. INH-RMP 105.1± 6.263*** 202.9±8.356*** 401.7±19.28*** 1224±156.2*** 
3. INH-RMP +Silymarin (200mg/kg) 65.18± 1.892### 160.4±4.029### 148.8±7.558### 570.6±38.36### 
4. INH-RMP +Betaine (125 mg/kg) 97.70 ± 2.893^^^ 193.5±5.188^^ 263.9±10.88^^^ ## 921.6±21.30^^# 
5. INH-RMP +Betaine (250 mg/kg) 72.52± 1.215## 159.9±6.088### 202.2±5.406^^ 769.9±28.25### 
6. INH-RMP +Betaine (500 mg/kg) 56.90± 3.275### 149.2±5.962### 151.1±6.010### 518.9±26.25### 
Data are presented as Means ± SEM (n=8).  ***Indicates significantly different when compared with the control group (P<0.001). ### 
Indicates significantly different when compared with INH-RMP group (P<0.001). 
^^^ Indicates significantly different as compared with Silymarin group (P<0.001). 
 
Table 2. Estimation of GSH, MDA, SOD, and CAT levels of INH-RMP-intoxicated animals after 14 days of treatment. 

Serial 
No. 

Group GSH (umol/mg 
protein) 

MDA (nmol/mg 
protein) 

SOD (U/mg 
protein) 

CAT (U/mg 
protein) 

1 Control 26.90±1.424 2.895±0.08136 206.3±5.175 43.40±1.543 
2 INH-RMP 14.34± 0.1939*** 5.451±0.169*** 147±5.471*** 21.32±1.059*** 

3 INH-RMP +Silymarin 
(200mg/kg) 22.04± 0.4757### 3.912±0.2765### 169.7±7.297# 28.17±1.352# 

4 INH-RMP +Betaine 
(125mg/kg) 17.52± 0.3149## 4.730±0.1548^ 151.3±4.566 18.80±1.020^^ 

5 INH-RMP +Betaine 
(250mg/kg) 18.94± 0.6851### 4.238±0.1586### 170±2.978# 25.93±1.485 

6 INH-RMP +Betaine 
(500mg/kg) 22.54± 0.6354### 3.662±0.1927 ### 174.5±3.801## 35.91±2.310^### 

Data are presented as Means ± SEM (n=8).  ***Indicates significantly different when compared with the control group (P<0.001). ### Indicates 
significantly different when compared with INH-RMP group (P<0.001). 
^^^ Indicates significantly different as compared to the Silymarin group (P<0.001). 

 
Results 

Liver Indices and Serum Biochemical Analyses: 
Treatment with INH-RMP enhanced the liver 
indices of the rats in a dose-dependent manner, 
showing that INH-RMP led to hepatic hypertrophy. 
Conversely, the liver indices of the rats treated with 
betaine (500 mg/kg) were significantly reduced 
compared to the INH-RMP group. The animals 
treated with silymarin (200 mg/kg), betaine at 125 
or 250 mg/kg showed a minor reduction in their liver 
indices compared to the group treated with INH-
RMP only (Figure 2). 

The effects of betaine treatment on the SGOT, 
SGPT, LDH, and ALP levels in the rats treated with 
INH-RMP were assessed after 14 days of treatment. 
Compared to the control group, the liver function in 
the INH-RMP-treated group was markedly elevated. 
Animals treated with silymarin exhibited lower liver 
function as compared to those treated with INH-
RMP only. The rat groups treated with either 125 or 
250 mg/kg betaine showed a minor reduction in their 
liver function test compared to the INH-RMP group. 
Animals that received betaine at 500 mg/kg 
exhibited significantly lower liver function 
compared to those treated with INH-RMP only. The 
control group exhibited normal liver function. The 
results are presented in Table 1. 

The protein levels significantly declined in the rat 
group treated with INH-RMP only compared to 
those in the control group. The animals treated with 
silymarin showed increased levels of protein 
compared to those that received INH-RMP only. The 
animals that received betaine at 500 mg/kg showed 
significantly increased levels of protein compared to 
that of the INH-RMP group. The groups that were 

treated with betaine at 125 or 250 mg/kg exhibited 
marked upregulation of the protein levels compared 
to those treated with INH-RMP only. The control 
group exhibited normal levels of total protein 
(Figure 3). 

TNF-α and IL-1β Levels: The levels of pro-
inflammatory mediators were elevated in the INH-
RMP group compared to the controls. The 
silymarin-treated group exhibited a marked 
reduction in the levels of TNF- α and IL-1β. The 
group treated with 500 mg/kg betaine exhibited a 
marked down-regulation of TNF- α and IL-1β 
levels. The group treated with 250 mg/kg betaine 
exhibited a marked down-regulation in the levels of 
these mediators compared to those treated with INH-
RMP only. Group treated with 125 mg/kg betaine 
showed minimal reductions in the TNF-α and IL-1β 
levels compared to those that received INH-RMP 
only (Figures 4 & 5). 

Estimation of Biochemical Parameters: The rats 
treated with INH-RMP exhibited marked reductions 
in the levels of hepatic GSH, MDA, SOD, and CAT 
compared to those in the control group (Table 2). 

Histopathological Examinations: There were no 
marked hepatic abnormalities in the controls, 
whereas in the INH-RMP treated groups, 
lymphocytic infiltration and hepatocytic 
degeneration were observed. Also as observed 
during the microscopic examinations, the betaine 
pretreatment in the INH-RMP group led to a 
significant attenuation of hepatic lesions and 
normalization of the histopathological findings. 
Further, the results indicated that betaine at 125, 250 
or 500 mg/kg protected the liver tissue dose-
dependently (Figure 6). 
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Discussion 
Despite the high risk of hepatic injury and toxicity, 

INH and RMP remain the first-line of treatment in 
patients with tuberculosis (TB) [18]. In the current 
study, we assessed the protective effects of betaine 
against the hepatotoxic effects of INH-RMP in rats. 
The upregulation of ALT, AST, LDH, and ALP were 
associated with signs of liver injury. Hence, these 
enzymes are utilized as the biomarkers of 
hepatotoxicity [18]. We observed a two-fold 
increase in the serum levels of the above-mentioned 
enzymes after treatment with INH-RMP. The 
findings suggest that INH and RMP adversely 
affected the liver, which corroborated the findings 
reported by previous studies [19-21]. The 
upregulation in the serum levels of the above 
enzymes is primarily attributed to their leakage from 
damaged hepatic parenchymal cells [22, 23]. 
Previous studies have relied on the assessment of the 
serum levels of these biomarkers to evaluate the 
hepatotoxic effects of anti-TB drugs and their 
amelioration [12, 18].   

Our findings from the current study indicated that 
pretreatment with betaine at 250 or 500 mg/kg led to 
a significant amelioration of the hepatotoxicity due 
to INH-RMP treatment. Further, the 
hepatoprotective effect of the low dose of betaine 
(125 mg/kg) was not significant. In comparison to 
silymarin at 200mg/kg, betaine showed an 
equivalent effect at 500 mg/kg for its 
hepatoprotective effect. Our findings were 
consistent with those of previous studies that 
assessed the protective effects of betaine against the 
hepatotoxic effects of chloroform and 
lipopolysaccharides [17, 20]. The total protein levels 
decreased in INH-RMP treated group, proving that 
the administration of the drugs caused impairment in 
the liver function. However, the betaine 
pretreatment at 125, 250, or 500 mg/kg increased the 
protein levels, consistent with the findings reported 
by previous studies [18, 21, 24]. 

The hepatotoxicity induced by anti-TB drugs has 
also been associated with a rise in the oxidative 
stress [18]. Similarly, INH-RMP treatment also led 
to ROS generation and oxidative stress, indicating 
deterioration of the antioxidant defense system. 
Another important biomarker of hepatotoxicity due 
to the INH-RMP side effect is MDA, which is an 
end-product of lipid peroxidation [6, 7, 16]. It is 
noteworthy that the agents that protect against the 
hepatotoxicity act via inhibition of ROS and MDA. 
Corroborating the previous studies, we observed a 
marked elevation in the lipid peroxidation in rats 
treated with INH-RMP [24-27].  However, these 
effects were ameliorated after the rats received 
betaine, likely due to its ROS scavenging capacity. 
Therefore, the findings suggest that treatment with 
betaine effectively restores the mitochondrial GSH 
at normal level. 

Rats treated with INH-RMP exhibited a marked 
down-regulation of hepatic GSH, CAT and SOD 
activities. The SOD is important for the protection 
against the superoxide radicals generated as INH is 
metabolized. Hence, we assessed the mitochondrial 
SOD (mSOD) activity in the livers of rats treated 
with both betaine and INH-RMP combined. 
Compared to the control group, the INH-RMP-
treated rats that were pretreated with 250 or 500 
mg/kg betaine exhibited significantly higher mSOD 
activity. However, the INH-RMP-treated group that 
was pretreated with 125 mg/kg betaine did not 
exhibit marked amelioration or reduction in the SOD 
activity. Overall, our findings suggest that betaine 
treatment attenuates mitochondrial toxicity via 
restoration of the SOD activity. 

Based on the published literature, GSH helps 
protect against oxidative stress-induced toxicity by 
attenuating the levels of oxidants. Similarly, GPx, 
SOD, and CAT also protect against tissue damages 
from ROS [28]. The elevation in the levels and 
activities of the elements of the antioxidant system 
in the INH-RMP-treated rats could be attributed to 
the involvement of the elements in the scavenging 
of free radicals. However, pretreatment with betaine 
at 125, 250, or 500 mg/kg ameliorated the hepatic 
GSH levels and the high SOD and CAT activities. 
These observations were consistent with a 
previously published report, suggesting that betaine 
relieved the hepatotoxicity due to the high dose of 
acetaminophen [6, 29, 30]. It is likely that betaine 
exerted its protective effect via potentiating the 
antioxidant defense enzymes. However, the 
protective effects of betaine were milder at a dose of 
125 mg/kg than the higher doses. These findings 
suggest that betaine might be involved in the 
attenuation of NH-RMP-induced toxicity, 
particularly via inhibition of oxidative stress. 

The elevated release of several inflammatory 
cytokines during drug-induced hepatotoxicity is 
associated with elevated tissue damages [31]. In the 
current study, we observed that the INH-RMP-
treated rats exhibited elevated levels of TNF-α and 
IL-1β. Previous studies have also shown that the 
cytokines are associated with the promotion of liver 
necrosis, inflammatory cell activation, hepatocyte 
apoptosis, and increased vascular permeability [32]. 
In this context, IL-1β mediates inflammatory effects 
via binding to its receptors and subsequently 
activates transcription factors that belong to the NF-
κB family [33]. On the other hand, TNF-α binds to 
its receptor and activates the proapoptotic caspase 
cascade [34]. In the current study, the elevated TNF-
α and IL-1β levels observed in the INH-RMP-
treated rats might be attributed to ROS-mediated 
upregulation of the hepatic NF-κB. Conversely, the 
rats pretreated with betaine exhibited significantly 
lower levels of TNF-α and IL-1β levels, which are 
corroborated by the findings reported by previous 
studies [35-37]. 
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The histopathological analyses conducted in this 
study revealed a rise in lymphocytic infiltration and 
hepatocytic degeneration in INH-RMP-treated rats. 
Conversely, pretreatment with betaine significantly 
reduced the hepatic lesions in rats pretreated with 
INH-RMP and restored the liver’s normal 
histological features. In addition, we also assessed 
the effects of silymarin (milk thistle) in the current 
study and our findings were consistent with those 
reported by a previous study [8]. Our data also 
indicated that at 125 mg/kg, the effects of betaine 
were relatively mild. The hepatoprotective effects of 
betaine were more prominent at high doses of 250 or 
500 mg/kg. The most effective betaine dosage was 
500 mg/kg, at which the effects of betaine were quite 
comparable to those of silymarin. 

Conclusions 
Based on the findings of the current study, we 

conclude that treatment with betaine in animal 
model helps in the alleviation of INH-RMP-induced 
liver damages. Specifically, betaine reduced the 
inflammation and oxidative stress in the liver via 
regeneration of the mitochondrial GSH, reduction of 
ROS, and protection against mitochondria complex 
II. Future investigations are warranted to explore the 
clinical outcomes after treatment of animals and 
humans with betaine. 
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