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A New Hidden Markov Model for Protein Quality Assessment
Using Compatibility Between Protein Sequence and Structure

Zhiquan He, Wenji Ma, Jingfen Zhang, and Dong Xu�

Abstract: Protein structure Quality Assessment (QA) is an essential component in protein structure prediction and

analysis. The relationship between protein sequence and structure often serves as a basis for protein structure QA.

In this work, we developed a new Hidden Markov Model (HMM) to assess the compatibility of protein sequence and

structure for capturing their complex relationship. More specifically, the emission of the HMM consists of protein

local structures in angular space, secondary structures, and sequence profiles. This model has two capabilities:

(1) encoding local structure of each position by jointly considering sequence and structure information, and (2)

assigning a global score to estimate the overall quality of a predicted structure, as well as local scores to assess

the quality of specific regions of a structure, which provides useful guidance for targeted structure refinement. We

compared the HMM model to state-of-art single structure quality assessment methods OPUSCA, DFIRE, GOAP,

and RW in protein structure selection. Computational results showed our new score HMM.Z can achieve better

overall selection performance on the benchmark datasets.
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1 Introduction

Proteins are large biological molecules consisting of
one or more chains of amino acids performing a vast
array of functions within living organisms. Proteins
with various sequences of amino acids fold into
different and unique three-dimensional (3-D) structures.
The functions of proteins are determined by their
structures. Massive amounts of protein sequence data
are produced by modern large-scale DNA sequencing
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efforts such as the Human Genome Project. Protein
structure prediction is an effective and efficient way to
bridge the growing gap between the number of protein
sequences and the number of experimental tertiary
structures. Although numerous efforts for more than
three decades have been made, the prediction of protein
3-D structures from their amino acid sequences still has
a large room to improve[1, 2].

Sequence-structure compatibility plays a critical role
in protein structure prediction, such as fold recognition,
threading alignment (or sequence-structure alignment),
and protein structure Quality Assessment (QA).

To measure the sequence-structure compatibility, the
structure environment of a protein residue is specified
by a number of variables. Then a score is assigned
for the observation of an amino acid type occurring in
a structure environment. Some simple measures have
been widely used in threading alignment methods[3-6].
For example, the secondary structure matching score
is the match ratio between the predicted secondary
structure from an amino acid sequence and the actual
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ones calculated from the template structure. Another
one is the environmental fitness score, which measures
the propensity of an amino acid type to appear in
the structure environment specified by three types of
secondary structures (Helix, Sheet, and Coil) or three
types of solvent accessibilities (Buried, Intermediate,
and Exposed). More advanced studies have been
done to address this problem, which mainly differ
in the definition of structure environment and the
method to calculate the compatibility score (probability
or pseudo-energy)[7-11]. For example, in Ref. [8],
three-dimensional profiles were derived from native
structures to measure the compatibility in which the
structural environment was defined by parameters such
as the area of the side chain that is buried and the
secondary structure type; in Ref. [11], more complex
structural environment was defined in which side chain
packing and hydrogen bonding were used as one of
its four measurement functions; a neural network was
trained to predict the probability of observing an amino
acid type given the structural environment[7].

It is commonly observed that proteins have recurrent
local sequences and structure patterns. The sequence-
structure dependency at local levels leads researchers
to use the Hidden Markov Model (HMM) approach
to describe the proteins. In Refs. [12, 13], an
HMM was used to compress protein three-dimensional
conformations into a one-dimensional series of letters
of a structural alphabet, where the emission of the
HMM at each state is a multi-dimensional Gaussian
distribution for the distance configuration of four
consecutive neighboring C˛ atoms. In Ref. [14],
a more complex HMM-based method, HMMSTR,
was proposed to capture local sequence-structure
correlations, in which four types of emissions were
defined, i.e., amino acid types, secondary structure
types, backbone angle region (i.e., using the .�;  /
Ramachandran plot to partition the protein chain into
several non-overlapping regions), and structural context
descriptor (for example, distinguishing a hairpin
turn from a diverging turn). However, the structure
information contained in this HMM is not informative
enough as it only contains discretized backbone angle
region types and secondary structures.

A number of knowledge-based scoring functions
such as OPUSCA[15], DFIRE[16], GOAP[17], and
RW[18] for protein structure quality assessment can
also be considered as sequence-structure compatibility
measures at global levels. Most of these scores are

weighted sums of several energy terms obtained
through statistics over native structures. For example,
OPUSCA uses the distance distributions of residue
pairs and DFIRE constructs residue-specific all-atom
potential of mean force from a database of native
structures. GOAP is the extension of DFIRE score.

More advanced descriptions of local structures are
important for improving HMM’s capability of capturing
sequence-structure relationship. For this purposes, we
defined new emission functions for the HMM to
describe the local sequence-structure relationship. The
structural emission contains information for every
four consecutive C˛ atoms, which is represented
as three-dimensional Gaussian distributions in the
angular space. Another important emission is about the
sequence profile, which contains the distribution of 20
types of amino acids, and the insertion and deletion
during the evolution process. The HMM model has
two capabilities: (1) encoding local structure of each
position by considering the local sequence-structure
relationship, and (2) assigning a global score to estimate
the overall quality of a predicted structure, as well as
local scores to assess the quality of a specific structural
segment.

Our new model was tested and compared with the
state-of-art single structure QA methods. Test results
demonstrated that our model can achieve better overall
selection performance than the other QA methods that
were compared.

2 Methods

Our goal is to construct a new Hidden Markov Model
to encode the compatibility between protein sequence
and structure, and capture their complex relationships.
First, the emission of the HMM is defined based on
protein local structures in the angular space, secondary
structures, and sequence profile. Second, with a training
data set, the proposed HMM was trained using the
Expectation Maximization (EM) algorithm.

2.1 Sequence and structure representation

For each protein, we calculated the sequence profile
matrix PSFMŒ� and SEQŒ� from the output alignments
of PSI-BLAST[19] running against the Non-Redundant
(NR) sequence database (ftp://ftp.ncbi.nih.gov/blast/
db/) three rounds with an E-value cutoff of 0:001.
Each row of the matrix PSFMŒ� is a vector of 21
dimensions containing frequencies for 20 types of
amino acids and indels (insertions and deletions) in
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the Multiple Sequence Alignment (MSA), while SEQŒ�
only contains amino acids distribution information with
each row being 20 dimensions.

The local structure of a protein is represented in
the angular space according to the work of Ref. [20].
Specifically, for each residue xk in a protein structure,
we calculated an angle triplet .�k; �k; �kC1/ for four
consecutive C˛ atoms .xk�2; xk�1; xk; xkC1/, where
�k is the bend angle of .xk�2; xk�1; xk/, �k is the
dihedral angle of .xk�2; xk�1; xk; xkC1/, and �kC1 is
the bend angle of .xk�1; xk; xkC1/, as shown in Fig.
1. Let xk � .�k; �k; �kC1/, a protein of length L is
represented by a list of xk , where k goes from 3 toL�1.
The probability distribution of an angle triplet x for the
entire structure space was approximated by a Gaussian
mixture model of 17 components[20], i.e.,

P.x/ D
17X
iD1

�iNi .xIui ; ˙̇̇ i / (1)

Ni .xIui ; ˙̇̇ i / D .2 /
�3=2
j̇˙̇ i j

�1=2e
1
2 .x�ui /�̇˙̇�1i �.x�ui /

(2)
whereNi .xIui ; ˙̇̇ i / is the i -th normal distribution, �i is
the corresponding weight, and ui and ˙̇̇ i are the mean
vector and covariance matrix, respectively.

2.2 HMM definition

Let Y D Œy1; y2; ::; yT � and O D Œo1; ::; oT � be the
state sequence and observation sequence of length T ,
respectively. The basic form of HMM, denoted by ���,
can be written as the joint probability of Y and O ,

p.Y;Oj���/ D �y0

TY
tD1

ayt�1yt

TY
tD1

byt .ot / (3)

Fig. 1 Angles of four consecutive C˛̨̨ atoms. For a residue
xk in a protein structure, the associated angle triplet for four
consecutive C˛̨̨ atoms (xk�2; xk�1; xk; xkC1/ is represented as
.���k; ���k; ���kC1/. ���k is the bend angle of (xk�2; xk�1; xk/, ���k is the
dihedral angle of (xk�2; xk�1; xk; xkC1/, and ���kC1 is the bend
angle of .xk�1; xk; xkC1/.

where yt is the state of position t , ayt�1yt is the
transition probability from state yt�1 to yt , and byt .ot /
is the emission probability for state yt . In this work, the
emission probability is defined as the multiplication of
the following three terms,

byt .ot / D

� 17X
kD1

wyt ;k �Nk.xt Iuk; ˙̇̇ k/

�
�

� 20X
bD1

syt ;b � SEQŒt; b� � env.b;SSd ;SAd /
�
�

� 21X
aD1

fyt ;a � PSFMŒt; a�

�
(4)

The first part of Eq. (4) describes the structure
information, whereNk.xt Iuk; ˙̇̇ k/ is the k-th Gaussian
function, whose parameters were taken from Eq. (2)
and xt is the angle triplet defined above. The
second part of Eq. (4) is the sequence profile
distribution, where PSFMŒ� is the sequence profile
matrix. The third part of Eq. (4) describes the sequence-
structure distribution, where evn.b;SSd ;SAd / is the
probability score of amino acid type b appearing in
the structure environment specified by three types
of secondary structures SSd and three types of
solvent accessibilities SAd [3, 4]. For the simplicity of
implementation, currently only parameterswyt ;k , fyt ;a,
and syt ;b in the emission function need to be trained
by the learning procedure. Therefore the number of
states is set to 17 by default[20], which can be optimized
by Bayes Information Criteria (BIC) or other model
selection techniques such as cross validation. We have
tried different numbers of states, and the test results did
not show any significant improvement.

2.3 Scoring structures by HMM

Once the HMM is given, we can assign a score to
measure the global sequence structure compatibility of
a protein by

V D arg max
Y �

P.Y;Oj�/ (5)

or
Z D

X
Y

P.Y;Oj�/ (6)

where � is the model, O is the observation, and Y is
the state sequence. Practically, the probability given by
Eq. (6) is more robust than that of Eq. (5). Throughout
this paper, we use HMM.Z to denote the score defined
by Eq. (6).
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2.4 Training data set

Considering the diversity of structural space, each test
protein will have its own training dataset. First, for
each protein in the testing data, we use PSI-BLAST
to search the sequence against the PDB[21] database to
get statistically significant (E-value less than 0.001)
templates, and remove those templates having more
than 70% sequence identity to test sequence. If too few
or no template remains, we add a random subset from
the following default data set to constitute the training
data set of about 200 chains for this protein. The default
data set for training is extracted from PDB according to
the following steps:

(1) Filtering the entire PDB database with the
following setting:
� X-Ray structure with resolution less than 0.2 nm;
� All residues have 3-D coordinates, at least for

backbone atoms;
� Sequence length L 2 Œ50 300�.
(2) Remove all chains that have sequence similarity
higher than 70% to any test sequence using
BLAST[19].
(3) Remove redundant proteins within the training
data set by decreasing the mutual sequence similarity
to 40% using CD-Hit[22].
With this data set, the proposed HMM is trained using

the EM algorithm.

2.5 Test data set

We tested the method in protein structure selection
scenario using Global Distance Test score (GDT)[23]

as structure similarity measure. GDT is defined as
N1 CN2 CN4 CN8

4L
, where Ni ; i D 1; 2; 4; 8, is the

number of positions with distance less than 0:1i nm
after optimal structural superimposition and L is the
protein length. Therefore, GDT value being 1 means
two structures are the most similar. We applied the
method to four benchmark datasets from different
protein structure prediction methods. The first dataset,
I-TASSER-DATA, contains 56 targets (proteins) with
decoys generated by I-TASSER ab initio method[24-26]

(http:// zhanglab.ccmb.med.umich.edu/decoys/). The
second one, Modeller-DATA, has 55 targets, with
decoys generated by Modeller[27]. In both datasets, each
target has about 500 decoys, and the best decoy for
each target has a GDT score greater than 0.4, which
ensures that the pool contains at least some good-
quality decoys. Figures 2a and 2b show the GDT

Fig. 2 Decoy distributions of I-TASSER-DATA (a) and
Modeller-DATA (b). The horizontal axis indicates the index
of each target and the vertical axis shows the GDT score. The
dashed curve shows the maximum GDT score, the solid curve
without stars shows the mean GDT score, and the curve with
stars shows the minimum GDT score in the pool for each
target.

distribution information, i.e., the maximum, average,
and minimum GDT of I-TASSER-DATA and Modeller-
DATA, respectively. The third benchmark data has 20
targets, containing FISA, LMDS V2, and SEMFOLD
from the Decoys ‘R’ Us decoy set[28]. The fourth one
is HG STRUCTAL from Decoys ‘R’ Us containing 29
targets.

3 Results

We compared the score HMM.Z with the state-of-art
QA tools, OPUSCA, DFIRE, GOAP, and RW, all of
which make use of global contact information in protein
structures. We also compared the score HMM.Z with
the secondary structure matching score (SSMatch) and
environmental fitness (Fitness) which is the summation
of compatibility score of all positions in a protein
structure[3, 4]. In the test, scores were used to rank the
decoys of a given protein. In the following tables,
we used the criteria below to study the selection and
ranking performance:
� Top1: the GDT score of the top-1 selected model;
� Top5: the best GDT of selected top 5 models;
� Mean5: the average GDT score of the top 5 models;
� Pearson: Pearson correlation coefficient between the

QA score and the true GDT score;
� Spearman: Spearman correlation coefficient between
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the QA score and true GDT score.
Tables 1 and 2 showed the global QA performance

of score HMM.Z, compared with OPUSCA, DFIRE,
GOAP, and RW on I-TASSER-DATA and Modeller-
DATA, respectively. We can see that HMM.Z achieved
the best average top-1 selection performance on
both datasets and the best correlation (Pearson and
Spearman) to GDT score on Modeller-DATA. In
particular, in Table 1, HMM.Z has comparable
performance to the four QA methods in which
OPUSCA is the best. But in Table 2, HMM.Z achieved
the best top-1 selection performance (GDT: 0.594),
which is significantly better than that of OPUSCA
(0.579) and RW (0.569). Figure 3 compared the
top-1 selection performance of HMM.Z to that of
OPUSCA on I-TASSER-DATA and Fig. 4 compared
HMM.Z to DFIRE on Modeller-DATA. We can find that
for many targets, the decoys selected by our method
were significantly better than those from OPUSCA or
DFIRE. In Fig. 3, although the average performance
was similar to that of OPUSCA, for a significant
number of targets HMM.Z selected almost the best
model in the pool. The result in Fig. 4 showed that
HMM.Z outperformed DFIRE or GOAP, which ranked
the best in the four QA methods on Modeller-DATA.
Table 3 compared the global QA performances on
FISA, LMDS V2, and SEMFOLD together. As we can
see, HMM.Z achieved the best selection performance
with top-1 selection performance of 0:485 which was

Table 1 Global QA performance on I-TASSER-DATA.

Top1 Top5 Mean5 Pearson Spearman
GDT 0.705 0.705 0.693 1.000 1.000
OPUSCA 0.614 0.646 0.613 0.322 0.237
DFIRE 0.609 0.641 0.608 0.312 0.231
RW 0.610 0.636 0.609 0.278 0.196
GOAP 0.603 0.643 0.610 0.285 0.230
Fitness 0.607 0.641 0.606 0.176 0.119
SSMatch 0.617 0.651 0.616 0.216 0.166
HMM.Z 0.615 0.651 0.616 0.265 0.192

Table 2 Global QA performance on Modeller-DATA.

Top1 Top5 Mean5 Pearson Spearman
GDT 0.688 0.688 0.675 1.000 1.000
OPUSCA 0.579 0.627 0.584 0.192 0.175
DFIRE 0.587 0.623 0.585 0.175 0.157
RW 0.569 0.613 0.574 0.104 0.093
GOAP 0.588 0.628 0.589 0.192 0.179
Fitness 0.558 0.621 0.567 0.018 0.020
SSMatch 0.578 0.624 0.580 0.075 0.067
HMM.Z 0.594 0.631 0.593 0.227 0.205

Fig. 3 Detailed comparison of global QA on the I-TASSER-
DATA. The thickest curve represents the best true GDT score
of the decoy for each target. The middle curve shows the
performance of OPUSCA. The thinnest one represents the
GDT score achieved by our method HMM.Z. The circled
stars indicate the corresponding targets where our method
HMM.Z performs significantly better than OPUSCA. The
boxed stars show that HMM.Z significantly underperforms
over OPUSCA on the corresponding targets.

Fig. 4 Detailed comparison of global QA on the Modeller-
DATA. The thickest curve represents the best true GDT score
of the decoy for each target. The middle curve shows the
performance of DFIRE. The thinnest one represents the GDT
score achieved by our method HMM.Z.

0:016 higher than the second best method, DFIRE,
and 0:021 higher than OPUSCA and RW, although
HMM.Z does not stand out in other metrics. Figure 5
showed the detailed comparison between HMM.Z and
DFIRE. For this dataset, we do not have GOAP result
as several targets have too large number of decoys for
GOAP to calculate all the scores. Table 4 showed the
average performance on the HG STRUCTRAL data set.
HMM.Z had nearly the same average performance as
OPUSCA, DFIRE, GOAP, and RW, all of which were
close to the limit.
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Table 3 Global QA performance on data of FISA +
LMDS V2 + SEMFOLD.

Top1 Top5 Mean5 Pearson Spearman
GDT 0.623 0.623 0.598 1.000 1.000
OPUSCA 0.464 0.517 0.450 0.274 0.274
DFIRE 0.469 0.525 0.468 0.288 0.282
RW 0.463 0.524 0.465 0.268 0.268
Fitness 0.470 0.542 0.465 0.190 0.186
SSMatch 0.467 0.519 0.451 0.172 0.166
HMM.Z 0.485 0.525 0.464 0.236 0.218

Fig. 5 Detailed comparison of global QA on
FISA+LMDS V2+SEMFOLD data. The thickest curve
represents the best true GDT score of the decoy for each
target. The middle curve shows the performance of DFIRE.
The thinnest represents the GDT score achieved by our
method HMM.Z.

Table 4 Global QA performance on HG STRUCTAL data.

Top1 Top5 Mean5 Pearson Spearman
GDT 0.860 0.860 0.836 1.000 1.000
OPUSCA 0.840 0.858 0.823 0.779 0.739
DFIRE 0.844 0.856 0.824 0.806 0.756
RW 0.847 0.858 0.824 0.812 0.759
GOAP 0.844 0.859 0.824 0.842 0.754
Fitness 0.826 0.854 0.803 0.740 0.592
SSMatch 0.789 0.845 0.795 0.680 0.625
HMM.Z 0.839 0.857 0.813 0.780 0.721

From Fig. 6, we see that except for one case, HMM.Z
can select almost the best decoy from the decoy pool.
Tables 1-4 also compared the global QA performance of
HMM.Z with Fitness and SSMatch. Overall, HMM.Z
was mostly better than Fitness and SSMatch in terms
of selection and correlation performance on four
benchmark datasets.

4 Discussion and Conclusions

Our Hidden Markov Model is modeled in the sequence-
structure space, in which the emission contains

Fig. 6 Detailed comparison of global QA on the
HG STRUCTAL data. The thickest curve represents
the best true GDT score of the decoy for each target. The
middle curve shows the performance of RW. The thinnest
one represents the GDT score achieved by our method
HMM.Z.

sequence profile information and continuous (instead of
discrete) structural content. As one of its advantages,
HMM considers the dependency between adjacent
local sequences and structures. The emission of HMM
contains rich information about the sequence profile,
secondary structures, and solvent accessibilities as
well as local conformation represented in the angular
space. The model for each test protein is trained
on its homologous structures (if available) obtained
by template search, which enhances the discerning
power of the model and greatly reduces the noise
in the training procedure, helping better capture
the underlying relationship between the sequence
and the native structure. From the test results,
comparing to the four single model QA methods
OPUSCA, DFIRE, GOAP, and RW, our test results
have shown clear improvement of score HMM.Z in
selection performance on the second (Modeller-DATA)
and third (FISA+LMDS V2+SEMFOLD) datasets and
comparable performance on the first one (I-TASSER-
DATA) and the fourth one (HG STRUCTAL). From
the detailed comparisons, we can conclude that for
a significant number of cases HMM.Z is able to
select almost the best model from the pool and
achieve significant better selection performance than
other scores, which means our HMM method is more
sensitive in selecting near-native structures.

Another advantage of our HMM method is the less
computation time. The most computation intensive step
in our method is to generate the sequence profile using
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PSI-BLAST. But this only needs to be calculated once.
For a large number of decoys, our method is much faster
than the four comparing methods, among which DFIRE
and GOAP are the slowest.

However, our HMM method has room for
improvement. In a few cases HMM.Z are significantly
worse than the corresponding best method. One
example is the 30th target in Fig. 3, which is 2CR7
from I-TASSER-DATA. And another example is the
one in Fig. 6 from the FISA+LMDS V2+SEMFOLD
data set. We manually checked the case of 2CR7.
Our HMM mis-selected a protein decoy whose local
structures are very similar to the native one, but having
a different packing, as shown in Fig. 7. Table 5 shows
the pairwise GDT score between the native structure
and the top-1 models selected by all the methods. RW
and DFIRE also selected an incorrect decoy similar to
the one selected by HMM.Z, while OPUSCA chose a
decoy with correct packing. This indicates that adding
global pairwise contact information into our method
for HMM.Z might lead to further improvement. We
are investigating those cases that HMM.Z loses more
than 10 GDT points (in the 100 scale) to the best decoy
for further possible improvement. As one of the future
studies, we will derive informative scores from this
method for local structure assessment and compare

Fig. 7 Native structure (a) and top-1 model selected by
HMM.Z (b) for 2CR7 from I-TASSER-DATA.

Table 5 Pairwise GDT of selected top-1 models for protein
2CR7 from I-TASSER-DATA.

Native OPUSCA DFIRE RW HMM.Z
Native 1.000 0.662 0.525 0.525 0.442
OPUSCA 1.000 0.521 0.521 0.463
DFIRE 1.000 1.000 0.762
RW 1.000 0.762
HMM.Z 1.000

Note: Native means the native structure of protein 2CR7,
OPUSCA means its selected top-1 model, and similarly for
DFIRE, RW, and HMM.Z.

with existing local QA methods.
In summary, our HMM method can be used as

a component tool for protein structure prediction
to evaluate the global structure quality of predicted
decoys. It will be released to the public when the stand-
alone tool is fully tested.
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