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Abstract

A 3-D continuum mixture model describing the corrosion of concrete with sulfuric acid is built. Essentially, the
chemical reaction transforms slaked lime (calcium hydroxide) and sulfuric acid into gypsum releasing water. The
model incorporates the evolution of chemical reaction, diffusion of species within the porous material and mechanical
deformations. This model is applied to a 1-D problem of a plate-layer between concrete and sewer air. The influx of
slaked lime from the concrete and sulfuric acid from the sewer air sustains a gypsum creating chemical reaction
(sulfatation or sulfate attack). The combination of the influx of matter and the chemical reaction causes a net growth in
the thickness of the gypsum layer on top of the concrete base. The model allows for the determination of the plate
layer thickness h = h(t) as function of time, which indicates both the amount of gypsum being created due to
concrete corrosion and the amount of slaked lime and sulfuric acid in the material. The existence of a parameter
regime for which the model yields a non-decreasing plate layer thickness h(t) is identified numerically. The robustness
of the model with respect to changes in the model parameters is also investigated.
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1 Introduction
Forecasting concrete corrosion is a major issue in civil
engineering due to its potential of drastically decreasing
the lifespan of constructions such as sewers, bridges and
dams, see e.g. [13, 33, 35]. As an example, the differences
in mechanical properties between gypsum and concrete
result in volume expansion, cracking, and decrease in
load-bearing capacity of the concrete resulting in compro-
mised structural integrity followed by expensive repairs,
construction replacements or even accidents due to (par-
tial) collapse [19, 38] resulting in major costs for society
[14, 39].
We focus on three related topics: Firstly, we aim to

construct a 3-D continuum mixture model describing
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concrete corrosion capable of exhibiting realistic
behaviour of the growth of a concrete layer due to the
formation of gypsum inside the concrete layer. Secondly,
we apply the new model to a specific 1-D situation of the
concrete layer and investigate the validity of the behavior
of this 1-D model with respect to physical constraints
and expected physical behavior. Finally, we investigate the
parameter dependence of both the time span of realistic
behavior and growth of the concrete layer for the 1-D
model.
Even though concrete is a heterogeneous material, a lot

of research has been done relying on continuum mod-
els, where the heterogeneity details are averaged out. In
[26] the reader can find a short historical overview of
the use of continuum models in concrete research. Sim-
ilar to the continuum models from [26], the authors of
ref. [31] proposed a composite material model of con-
crete with an explicit volume division into mortar and
aggregate. These models were mostly created to better
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describe the behavior of concrete under high stresses, and,
hence, to predict the cracking behavior observed in the
experiments reported in [26, 31]. The mathematical com-
munity has addressed this corrosion issue mainly from a
single-scale or multiple-scale reaction-diffusion perspec-
tive. Usually, the single scale approach involves one or two
moving sharp reaction interfaces [1, 12, 17, 18, 29, 30],
while the multiple scale setting prefers exploiting a bet-
ter understanding of the porosity and tortuosity of the
material without involving free boundaries [2, 10, 16].
There are still a number of open issues concerning on
how poro-mechanics of the material couples with chem-
ical reactions, flow, diffusion and heat transfer hindering
a successful forecast of the durability of the concrete
exposed to sulfate attack. In this paper, we are interested
in understanding and then predicting eventual critical sit-
uations occurring before cracking. Particularly, we want
to describe the corrosion of concrete by acid attack [37],
which usually leads at a later stage to cracking followed by
erosion. The main inspiration source for our problem set-
ting is the basic scenario described in [4] which considers
a simple reaction mechanism producing gypsum, without
involving the ettringite formation.
In [4] an isothermal acid attack continuum model for

sulfuric acid corrosion was proposed with a similar sewer
pipe geometry as in our model, but including also the
porosity of the gypsum. This model focussed solely on
the creation of hydrogen sulfide and sulfuric acid, which
reacts at the boundary to create gypsum. The model
assumed that almost all the gypsum was created at the
boundary separating the uncorroded concrete causing a
moving sharp corrosion front penetrating irreversibly the
material. We deviate from this model by assuming that the
gypsum reaction gradually takes place in the full domain,
and that the corrosion front is caused by the penetra-
tion of sulfuric acid. In some sense our model can be
seen as a description of the moving corrosion front in
[4] as a fixed bulk reaction domain, and can, therefore,
be idealized into a plate-layer model. To avoid describing
the exact growth of the involved phases of the material,
we take a modeling route in the spirit of the classical
mixture theory.
Figure 1 shows the concrete geometry we have in mind.

A concrete sewer pipe contains in the air phase acid
droplets wanting to react with the concrete to form gyp-
sum. When zooming in the pipe wall, the curvature
vanishes, which allows for the formulation of a plate
layer model of the concrete pipe. We neglect, therefore,
the tangential directions and only focus on the nor-
mal (z) direction. Hence, a 1-D model can be posed to
approximate the concrete corrosion in a simplistic 3-D
sewer pipe.
It is worth noting that most of the assumptions men-

tioned in [4] are taken over here as well. For example,

our model is supposed to reflect the entire corrosion
process with no other contributing chemical reactions and
species than those explicitly mentioned. Also, the exter-
nal concentration and influx rates of sulfuric acid and
hydrogen sulfide are constant. Both these assumptions
are restrictive. For example, competing corrosion reac-
tions and other reacting chemicals, such as nitrates, are
present in an actual concrete corrosion process according
to [4]. Moreover, in [9] it is explained that experiments
show that external concentrations and influx rates are
not even approximately constant because flow changes
(changing Reynolds number) have enormous influences,
which according to [4] could change rates and concen-
trations with many powers of 10. Hence, the assumptions
of ref. [4] are necessary to reduce the complexity of our
model.
Our paper is organized as follows. In Section 2, we

construct several 3-D continuum mixture models of
chemical corrosion of concrete. We take into account
effective balance laws, diffusion processes, chemical reac-
tion effects, mechanical effects due to elastic and/or vis-
coelastic stresses, local interactions due to for instance
the Stokes drag, and influx from external reservoirs and
from domain growth due to a moving corrosion layer.
In Section 3, we focus on the normal (z) direction to
obtain an effective 1-D model of the corroding concrete
for one of the constructed models. In Section 4, we briefly
describe both the code used to simulate the model of
Section 3 and the validation of this code with respect to
the asymptotic expansion solution obtained in Appendix A.
In Section 5, we investigate the validity of the numeri-
cal behavior of the model of Section 3. In Subsection 5.1,
we investigate the dependence of the realistic behav-
ior on specific tuples of model parameters. Finally,
in the conclusion we summarize our results and
discuss the relation of these results with known
literature.

2 Derivation of a mixture-theory-based concrete
corrosionmodel

The presentation of a continuous 3-component mixture
model in this section is based on the theory of mixtures of
Bowen in [7].

2.1 Preliminaries
Let the index α denote the different constituents of our
mixture, α = 1 the gypsum (solid), α = 2 the lime
(solid) and α = 3 the acid (fluid). The configuration
G(t) indicates the domain occupied by the mixture body
at time t > 0 in R3, and x = x(t) ∈ G(t) is the
momentary position of a material point of the mixture
body. Let g(t) ⊂ G(t) be a generic element of material
volume, which by definition has no fixed volume. This
partial material volume g(t) contains nα(g(t)) molecules
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Fig. 1 A concrete sewer pipe is corroded by sulfuric acid containing air at the top and by the acidic sewage at the tidal region of the sewage-air
interface. The sulfuric acid is created by biodegradation of bio-matter in sewage. Extended corrosion leads to erosion of the concrete and
potentially to sewer pipe collapse. Our model is meant to describe the beginning of corrosion, as shown in the small square, allowing the
simplifications from a pipe to a plate layer, as shown in the large square. This simplification reduces a 3-D concrete corrosion model into a 1-D
model only dependent on the spatial variable z. The thickness, h(t), of the mixture layer changes over time due to both influx of material and the
chemical reaction in the mixture

of the constituent α with molecular mass Mα . The mass
mα(g(t)) of constituent α in g(t) is given by

mα(g(t)) = Mαnα(g(t)) = Mαnα(g(t))/NA, (1)

whereNA denotes the Avogadro constant (i.e. 6.022×1023
molecules per mole) and Mα the molar mass of con-
stituent α. The total massm(g(t)) of the mixture in g(t) is
given by

m(g(t)) =
∑

α

mα(g(t)). (2)

A strictly positive integrable function ρα(x, t), called the
partial density of component α, is defined by

mα(g(t)) =
∫

g(t)
ρα(x, t)dV . (3)

The density of the mixture in the point (x, t) is

ρ(x, t) =
∑

α

ρα(x, t). (4)

Let ρ̃α be the intrinsic density of component α (i.e. the
density of the isolated component) and let φα(x, t) be its
volume fraction, then

ρα(x, t)= ρ̃αφα(x, t),
∑

α

φα(x, t)=1 for all (x, t) ∈ g(t).

(5)

We assume that the constituents of the mixture are
incompressible. Hence, the intrinsic densities ρ̃α are uni-
form constants.

2.2 Balance laws
Following [7] and in analogy with [6, 27], we describe the
time evolution of our 3-component mixture by means of
two sets of global balance laws for each component of
the mixture: one for mass and one for momentum con-
servation. We assume that the chemical reaction is an
isothermal process; the conservation of energy is then
automatically satisfied.
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The conservation of the partial mass for component α

is formulated as the balance law for the partial density
ρα = ρα(x, t) in the form:

d
dt

mα(g(t))= d
dt

∫

g(t)
ρα(x, t)dV

=
∫

∂g(t)
δα∇ ρα(x, t) · dS +

∫

g(t)
Rα(x, t)dV .

(6)

In this balance law, the outward flux is given by Fick’s
law of diffusion, and equals −δα∇ ρα , where δα is the dif-
fusion coefficient of the α-th component. The production
term by chemical reaction Rα acts either as a source (sink)
when the constituent is being produced (consumed) in
the chemical reaction. Remark, Eq. (6) indicates that g(t)
is NOT an element of material volume for a single con-
stituent, but it is an element of material volume for the
collection of all constituent particles. Hence, in Eq. (6),
summing up over α and using that g(t) is an element of
material volume such thatm(g(t)) is constant, we obtain

0 = d
dt

∫

g(t)
ρ(x, t)dx =

∫

∂g(t)

∑

α

(δα∇ ρα) (x, t) · ds

+
∫

g(t)

∑

α

Rα(x, t)dx.

(7)

Note, the elements g(t) can overlap due to the diffu-
sion term, but that it does not violate the material element
rules.
Since a chemical reaction is inherently a mass-

conserving process, we obtain
∑

α Rα = 0. Thus this
global mass conservation is satisfied if

∑
α δα∇ρα =∑

α δαρ̃α∇φα = 0, a compatibility condition for the
allowed types of internal diffusion processes. This is satis-
fied if, for instance, δα = δ/ρ̃α . Hence, δ = 0 (no internal
diffusion) would suffice.
Conservation of linear momentum for the component α

is formulated as
d
dt

∫

g(t)
(ραvα) (x, t)dV =

∫

∂g(t)
Tα(x, t) · dS

+
∫

g(t)
Bα(x, t)dV ,

(8)

where ραvα is the linearmomentum density of the compo-
nent α, while the outward flux is given by the partial stress
tensor Tα and the production term by the internal lin-
ear momentum production Bα . The latter two terms will
be specified in the next subsection. Since in our setting
the mechanical processes and flow dynamics are slow, we
assume a quasi-static regime. This implies that the iner-
tia term on the left-hand side in Eq. (8) may be neglected.
Moreover, the sum of the internal momentum-production

terms Bα must be zero, i.e.
∑

α Bα = 0, by Newton’s
third law.

2.3 Local equations and jump conditions
The global balance equations can in the usual way be
converted into local balance equations and jump con-
ditions across a singular surface �(t). Thus, we obtain
from Eq. (6) the local partial mass balance equations (or
continuity equations):

∂ρα

∂t
+ ∇ · (ραvα) − δα�ρα = Rα , (9)

together with the jump condition at �(t)

[[ ρα(V · n − vα · n) + δα∇ρα · n ]]= 0 (10)

where [[ · ]] denotes the outward jump across the surface
�(t), V the velocity of �(t), and n the outward unit
normal on �(t). We rewrite the mass equations by elimi-
nation of ρα in favour of φα yielding

∂φα

∂t
+ ∇ · (φαvα) − δα�φα = Rα

ρ̃α

. (11)

Summing Eq. (11) over all α, we obtain
∑

α

∇ · (φαvα) =
∑

α

(
δα�φα + Rα

ρ̃α

)

=
∑

α

1
ρ̃α

(δ�φα + Rα) ,
(12)

with use of δα = δ/ρ̃α . We refer to Eq. (12) as the incom-
pressibility condition. Later we shall use Eq. (12) to replace
one of the three mass equations (e.g. for α = 2, and then
use φ2 = 1 − φ1 − φ3).
Analogously, the quasi-static momentum balance yields

∇ · Tα + Bα = 0 (13)

with the jump condition

[[Tα · n ]]= 0. (14)

Summing Eq. (13) over all α and using T = ∑
α Tα , the

total stress tensor, and
∑

α Bα = 0, we find

∇ · T = 0. (15)

Before we can evaluate the local momentum equations
any further we have to make constitutive assumptions
concerning the structure of Tα and Bα .
The two solid components, α = (1, 2) are modeled as

linearly (visco)elastic media, the stress tensor Tα of which
is given by

Tα = −φαpI + T
el
α + T

ve
α , (16)

where p is the pressure (this pressure term is needed to
compensate for the incompressibility assumption), I the
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unit tensor, Tel
α is the linear elastic part and T

ve
α the linear

viscoelastic part. The first one is given by Hooke’s law as

T
el
α = λαTr(Eα)I + 2μαEα for α ∈ {1, 2}, (17)

where Eα = (∇uα + (∇uα)�
)
/2 is the linear deforma-

tion tensor written in terms of the displacement uα , Tr(A)

means the trace of the matrix A, and λα and μα are
the corresponding Lamé parameters. The viscoelastic part
is modeled such that Eq. (16) follows the Kelvin-Voigt
model, see [8, 25], and has the general structure

T
ve
α =

2∑

β=1
γαβDβ for α ∈ {1, 2}, (18)

where Dα = (∇vα + (∇vα)�
)
/2 is the rate of deforma-

tion tensor based on the velocity vα = ∂uα/∂t, while the
coefficients γαβ are material constants that will be further
specified below.
The internal linear momentum production represents

the Stokes Drag ([27], Eq. (92)), i.e.

B(SD)
α = −χα(vα − v3) for α ∈ {1, 2}, (19)

and

B(SD)
3 =

2∑

β=1
χβ(vβ − v3), (20)

such that
∑

α B
(SD)
α = 0. For an explicit definition of the

material parameter χα , we refer to the note † in Table 1.
The fluid is modeled as an inviscid Newtonian fluid,

possibly modified by an extra linear viscoelastic term,
which in general is zero, except for the first of the four
systems to be introduced next, i.e.

T3 = −φ3pI + T
ve
3 . (21)

The specification of γαβ entering the structure of Tve
α

(cf. Eq. 18) differs for the four systems we introduce now:

1 System A: This system corresponds best to the
evolution systems studied in [40], where conditions
for the existence of weak solutions were obtained.
Here, the individual constituents are assumed to be
viscoelastic, such that the mixture as a whole remains
purely elastic. For this, we choose γαβ = γα if
β = α ∈ {1, 2}, and γαβ = 0 if β �= α, resulting in

T
ve
α = γαDα for α ∈ {1, 2}. (22)

Moreover, we take Tve
3 such that

T
ve
3 = −

2∑

α=1
γαDα = −

2∑

α=1
T
ve
α , (23)

providing that T = ∑3
α=1 T

ve
α = 0.

2 System B: Here, γαβ = 0: the solid components are
thus purely elastic and the fluid inviscid.

3 System C: As in System A, the solid components are
intrinsic viscoelastic, but the fluid is inviscid, so
T3 = −φ3pI, implying that the mixture as a whole is
also viscoelastic. This has consequences on the
pressure term p, as can be seen in the 1-D problem
described in Section 3; see (41).

4 System D: In this case, we assume that the
viscoelastic terms in the stresses are proportional to
the differences in shear rates of the two solids so that
these stresses are zero if the velocities, or
displacements, of the solids are equal. Moreover, we
let the sum of the two stresses equal zero and keep
the fluid inviscid. Thus, the total stress is purely
elastic. This results in the following choice for γαβ

γ11 = γ22 = γ , and γ12 = γ21 = −γ . (24)

System A is well-posed mathematically (cf. [40]), but
is possibly physically incorrect as the sulfuric acid vis-
coelastic stress is defined by the viscoelastic stress of the
other components, see (23). System B is physically nice,
but mathematically it needs an additional viscoelastic
term to ensure the existence of weak solutions and FEM
approximations. System C combines the strong points
of systems A and B. It is physically justified and math-
ematically sound. However, the mixture is viscoelastic,
which is a behavior one would expect on unnaturally large
timescales. System D is both mathematically and physi-
cally sound, supporting an elastic mixture, which favors
timescales compatible with measurements.
The physical derivation of systems A, B, C and D indi-

cate that only systemD has the right physical properties at
the desired timescales. Hence, from here on we will focus
on system D from both analytical and numerical per-
spectives, for example when we judge solutions to exhibit
realistic behaviors. To reduce complexity, we investigate
a special situation leading effectively to a 1-D version of
system D.

2.4 Chemical corrosion of concrete with sulphates
The concrete corrosion we discuss here refers to sulfu-
ric acid reacting with slaked lime to create gypsum. The
reaction mechanism is very complex, leading to ettringite
growth, e.g. see [37]. In this paper, the chemical reaction
mechanism takes the simplified form (s: solid, f: fluid)

slaked lime (s) sulfuric acid (f ) gypsum (s)
Ca(OH)2 + H2SO4 → CaSO4 · 2H2O.

Hence, the stoichiometric coefficients Nα are N1 = 1
and N2 = N3 = −1.
The chemical reaction, as shown above, is the net reac-

tion and does not reflect the full complexity of all the
intermediate steps necessary for this reaction. The com-
plexity is encompassed in a single rate equation. A similar
reaction as above but with calcite, CaCO3, instead of
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Table 1 Table with numerical values of material constants, normalization constants, dimensionless parameters, and numerical
parameters

Material constants Dimensionless parameters

Value (MKS unit) Reference Value Definition

E1 1.60·109 (kg/m s2) [32] E1 0.038 E1/E

E2 4.20·1010 (kg/m s2) [41] E2 1.00 E2/E

χ1 2.67·1010 (kg/m3s) † χ1 1.00 χ1/χ

χ2 2.67·1010 (kg/m3s) † χ2 1.00 χ2/χ

J2 0.326·10−5 (m/s) * J2 0.40 J2/J

J3 1.632·10−5 (m/s) * J3 2.00 J3/J

γ1 3.604·1010 (kg/ms) * γ1 0.50 γ1/γ

γ2 3.604·1010 (kg/ms) * γ2 0.50 γ2/γ

A1 0.821·10−3 (1/m) * A1 0.50 A1/A

A2 0.821·10−3 (1/m) * A2 0.50 A2/A

ρ̃1 2.32·103 (kg/m3) [20] φ1sat 1.00

ρ̃2 2.21·103 (kg/m3) [20] φ3thr 0.00

ρ̃3 1.84·103 (kg/m3) [20] φ2res 1.00

M1 0.172164 (kg/mol) [20] φ3res 1.00

M2 0.074093 (kg/mol) [20] κ1 23.00 Eq. (51)

M3 0.098079 (kg/mol) [20] κ3 13.50 Eq. (51)

δ 5.10 (kg/m s) * δ1 1.00 δ1/KH2

δ1 2.20·10−3 (m2/s) ‡ δ2 1.05 δ2/KH2

δ2 2.31·10−3 (m2/s) ‡ δ3 1.26 δ3/KH2

δ3 2.77·10−3 (m2/s) ‡

k 1.00·10−6 (m3/mol s) [3]

Normalization Constants Numerical Parameters

Value (MKS unit) Definition Value Definition

H 1.643·100 (m) h(0) �t 0.001

K 0.816·10−3 (1/s) Eq. (44) tf 0.5 Tf /T

SK -1 (-) Eq. (44) 1/�z 300

χ 2.67·1010 (kg/m3s) χ1 φmin 10−5

E 4.20·1010 (kg/m s2) E2 Vmax 106

T 1.716 (s) χH2/E

U 2.300·10−3 (m) χH3K/E

V 1.341·10−3 (m/s) HK

J 0.816·10−3 (m/s) HK

γ 7.208·1010 (kg/m s) χH2

ε 0.0014 (-) χH2K/E

* An experimental value of this parameter is unknown to us; we have chosen their values such that their dimensionless values are of order one of magnitude. Specifically, the
values of J2 and J3 are so large that they guarantee growth of the layer; see also remark just below Eq. (55)
†We estimated the values of χα from the Darcy law with χα = μ/k0 with μ the dynamic viscosity of sulfuric acid (value of 26.7 · 10−3 kg/ms, see ([15], p. 304-305) and k0 the
average pore size or permeability (about 1 μm2 = 10−12 m2); see [11, 24]
‡We used δα = δ/ρ̃α for α = 1, 2, 3

slaked lime has been treated in [5]. Therefore, we assume
a rate equation similar to the one in [5], i.e.

r=kF = kL
(
[H2SO4]−Ceq

)
L

(
Cmax−[ gypsum]

)
, (25)

where we denote L(u) = uH(u) with H the Heaviside
function, k is the volumetric reaction rate (in [m3/mol·s]),
[ f ] the molar concentration of f, Ceq the dissolution equi-
librium molar concentration of the sulfuric acid, and
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Cmax the maximum precipitation molar concentration
of gypsum.
The mass production term Rα = Rα(x, t) is given by

Rα(x, t) = NαMαr(x, t) for (x, t) ∈ g(t), (26)

which satisfies
∑

α Rα = 0.Moreover, Eq. (26) implies that
the volume fraction production can be written as

Rα(x, t)
ρ̃α

= MαNα

ρ̃α

k̃
ρ̃1ρ̃3

M1M3
F(x, t) for (x, t) ∈ g(t),

(27)

with

F = L
(
φ3 − φ3,thr

)
L

(
φ1,sat − φ1

)
, (28)

where φ1,sat is the gypsum saturation level, while φ3,thr
represents the sulfuric acid dissolution threshold.

2.5 Initial and boundary conditions
We consider a mixture body, placed freely in space, and
initially in a homogeneous, undeformed state, free of
stress and movement. This yields the initial conditions:

φα(x, 0) = φα0(x) and uα(x, 0) = 0 for (x, 0) ∈ g(0),
(29)

where φα0 = ρα0/ρ̃α are prescribed initial concentration
values.
We wish to point out here that, although u3

(
x, 0+) = 0,

there is a jump in the velocity v3, which is inherent to the
quasi-static approximation we used.
Due to the influx of material (acid and/or gypsum)

across the boundary and the chemical reactions, the
domain G will change as time elapses, i.e. G = G(t) as
does its boundary ∂G = ∂G(t). However, in consistency
with the linear deformation assumption, the boundary
condition may be considered to hold on the undeformed
(reference) boundary. The space outside the domain can
contain any of the constituents with a concentration φ+

α .
The influx is assumed to be proportional to the concen-
tration difference [[φα ]] across ∂G, provided this difference
is positive. The boundary is semi-permeable for all con-
stituents α, allowing only one-sided transfer from outside
the domain into the domain if φ+

α > φα|∂G. This leads to
the boundary condition (compare with Eq. (10)), holding
for t > 0

φα(vα −V) ·n+δα∇φα ·n = Jα (L( [[φα]] )) at ∂G, (30)

where n denotes the outward normal on ∂G, V the veloc-
ity of the boundary, [[φα ]]= φ+

α − φα with φ+
α the volume

fraction of α outside ∂G and φα just inside it, while Jα is
a material constant. If, on the other hand, for certain α,
we have φ+

α < φα|∂G, then the influx is zero (due to the
semi-permeability), leading to the boundary condition1

∇φα · n = 0 at ∂G. (31)

If the outer space contains only one constituent, say β ,
then Eq. (31) holds for the two values α �= β , but then∑

α φα = 1 yields directly that also ∇φβ · n = 0, and thus
the second term on the left-hand side of Eq. (30) vanishes,
so that this boundary condition for α → β becomes

φβ(vβ − V) · n = JβL
(
[[φβ ]]

)
at ∂G, (32)

the right-hand side of which is greater than zero if
φ+

β > φβ .
For the free unloaded body that we will consider in this

paper, the boundary is free of stress, which implies

T · n =
∑

α

Tα · n = 0 at ∂G. (33)

If, for some α , we have φ+
α < φα , then the flux is zero

and hence, the boundary condition (6) reduces to

vα · n = V · n at ∂G. (34)

However, instead of (30) a different boundary condition,
particular for the solid constituents (α = 1, 2) is used,
namely

(∇xuα · n)� · n = Aα (uα − W) · n at ∂G. (35)

In Eq. (35), W denotes the displacement vector of the
boundary such that V(t) = dW/dt. In [40] it was shown
that a finite positive value ofAα is useful to prove existence
of a realistic numerical approximation of weak solutions.
Note that in the limit Aα → ∞ the boundary condition
uα = W is retrieved. On the other hand, in the oppo-
site limit Aα → 0 the boundary condition becomes the
homogeneous Neumann boundary condition

(∇xuα · n)� · n = 0, (36)

which is equivalent to requiring that the partial normal
stress of constituent α is zero.

2.6 Summary of the model equations
Based on the discussion from the preceding sections,
we are now able to formulate complete 3-D systems of
equations and boundary conditions for the reacting, dif-
fusing and deforming 3-component continuum mixture.
From the four systems presented before, we opt for Sys-
tem D. The internal unknowns (6 in number, of which
3 scalar and 3 vectorial) are {φ1,φ3,u1,u2, v3, p}, with
φ2 = 1 − φ1 − φ3, for which we have a set of bal-
ance equations, following from successively the local
mass balances, the incompressibility condition and the 3
local momentum balances. Together with the constitutive
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equations for Tα and Bα , given by Eqs. (16) to (21) and
(24), we obtain for t > 0 and x ∈ G:

∂φα

∂t
+∇· (φαvα)−δα�φα = Rα

ρ̃α

for α ∈ {1, 2, 3}, (37a)

∇ ·
( 3∑

α=1
φαvα

)
−

3∑

α=1
δα�φα =

3∑

α=1

Rα

ρ̃α

, (37b)

∇(−φαp+[λα +μα]∇·uα)+μα�uα=χα(vα −v3)−
3∑

β=1
γαβ�vβ , α �=3,

(37c)

∇(−φ3p)=−
2∑

β=1

[
χβ(vβ − v3)+γ3β�vβ

]
,

(37d)

where vβ = ∂tuβ = ∂uβ/∂t for β ∈ 1, 2. Combining the
three momentum equations, and using that

∑3
α=1 φα = 1,

we obtain the global momentum equation:

∇
(

−p +
2∑

α=1
(λα + μα)∇ · uα

)
+

2∑

α=1
μα�uα

+
3∑

α=1

3∑

β=1
γαβ�vβ = 0,

(38)

in which the γ -term is only non-zero for System C.
We can replace Eq. (37d) describing the fluid motion by

this global equation, and then determine the pressure p
from it with the aid of the stress boundary condition.
The initial conditions are given in Eq. (29) and the

necessary boundary conditions are Eqs. (30), (31), (33)
and (35).

3 Dimension reduction: 1-Dmodel of a concrete
plate-layer

We reduce the 3-D model of Section 2 to a simpler 1-
D problem, namely a flat plate-layer of concrete of initial
thickness H, which is exposed at its upper side to acidic
air due to the presence of droplets of sulfuric acid. The
bottom of the plate layer is fixed on a rigid ground space
of non-reacting concrete having a fixed concentration of
lime. The material of the layer (concrete) is a mixture of
gypsum (α = 1), lime (α = 2) and sulfuric acid (α = 3).
Initially, i.e. for t < 0, the layer is in a homogeneous, unde-
formed, and stress-free state, where the sulfuric acid has
penetrated the concrete and has already partially reacted
to create gypsum, such that φα0 > 0 for α = (1, 2, 3).
The external space both below and above the plate is free
of stress. As the layer is created in a homogeneous and
uniform way, and the acid is in equilibrium, we can for-
get about the tangential directions and only focus on the
normal (z) direction. Hence, a 1-D plate-layer model is
sufficient to model a 3-D sewer pipe as already explained
in the Introduction.

From t > 0 onwards, the inflow of lime from below and
acid from above into the plate takes place and chemical
reactions start; here it is assumed that the concentrations
φ−
2 , of lime in the ground space, and φ+

3 , of acid in the air
above the plate, are greater than φ20 and φ30, respectively,
resulting in an inflow of lime and acid. Due to the com-
bination of inflow and the chemical reactions, the plate
grows, as is experimentally observed in [19, 38], and the
thickness of the plate increases to a value h(t) > H = h(0)
at time t > 0. We consider only a time span from t = 0
to a final time tf in which the growth remains small, i.e.
such that (h(t) − H)/H 	 1. Thus justifying our lin-
ear deformation assumption. A direct consequence of this
assumption is that we may apply the boundary conditions
at z = H instead of at z = h(t). All field variables are only
dependent on z and t, and the only displacement compo-
nents are uα = uα(z, t) = uα ·ez, with ez the unit vector in
the z-direction. This leads us to our 1-D model, valid for
all four systems. Before recapitulating the resulting set of
equations, we first use the global equation of equilibrium
for the total stress Eq. (38), which in 1-D version reads

∂z(−p + E1∂zu1 + E2∂zu2) = 0, (39)

where E1(2) = λ1(2) + 2μ1(2) is the Young’s modulus of the
solid constituent. Since the upper plane z = H is free of
stress, we have, for the moment for Systems A, B, and D
only,

(−p + E1∂zu1 + E2∂zu2) (H , t) = 0, (40)

which, in combination with the equation above, implies
that the total stress must be zero everywhere in the plate,
yielding

p(z, t)=E1∂zu1(z, t)+E2∂zu2(z, t) for z ∈[0,H] and t ≥ 0.
(41)

This result holds for Systems A, B, and D, but for System
C an extended expression is found, because in System C
the total stress contains a viscoelastic part. Due to this, we
get here

p = E1∂zu1 + E2∂zu2 + γ1∂z∂tu1 + γ2∂z∂tu2
for z ∈[ 0,H] and t ≥ 0,

(42)

which further on leads to the expressions γ̃αβ ; see Eq. (45).
After the elimination of p from Eqs. (37c) and (37d), the
set of unknown variables in the one-dimensional model is
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{φ1,φ3,u1,u2, v3}(z, t),
for z ∈ (0,H) and t ∈ (0, tf ). Reducing Eqs. (37a) to
(37d) to their 1-D version, eliminating p, and inserting the
volume fraction production Rα due to chemical reactions
given by Eq. (27), we obtain the following 1-D model:

∂tφ1 + ∂z (φ1∂tu1) − δ1∂
2
z φ1 = N1ρ̃3

M3
kF(φ1,φ3), (43a)

∂tφ3 + ∂z (φ3v3) − δ3∂
2
z φ3 = N3ρ̃1

M1
kF(φ1,φ3), (43b)

∂z(φ1∂tu1+φ2∂tu2+φ3v3)−
3∑

α=1
δα∂2z φα=SKKF(φ1,φ3), (43c)

∂tu1− E1
χ1

∂2z u1−
γ11
χ1

∂2z ∂tu1− γ12
χ1

∂2z ∂tu2=v3−∂z

(
φ1

E1
χ1

∂zu1+φ1
E2
χ1

∂zu2
)
,

(43d)

∂tu2−E2
χ2

∂2z u2−
γ22
χ2

∂2z ∂tu2−γ21
χ2

∂2z ∂tu1=v3−∂z

(
φ2

E1
χ2

∂zu1+φ2
E2
χ2

∂zu2
)
,

(43e)

where F(φ1,φ3) is given in Eq. (28), δα = δ/ρ̃α ,
φ2 = 1 − φ1 − φ3, and

K =
( 3∑

α=1

NαMα

ρ̃α

)
ρ̃1ρ̃3

M1M3
k, SK = sgn

( 3∑

α=1

NαMα

ρ̃α

)
.

(44)

Moreover, γ11 = γ1, γ22 = γ2, γ12 = γ21 = 0 for Sys-
tem A, γ11 = γ22 = γ12 = γ21 = 0 for System B, and
γ11 = γ22 = −γ12 = −γ21 = γ for System D. For System
C one has, due to the additional terms in p, the effective
coefficients γ̃ defined by

γ̃11 = (1 − φ1)γ1, γ̃12 = −φ1γ2,
γ̃21 = −φ2γ1, γ̃22 = (1 − φ2)γ2,

(45)

instead of γ . Since these effective coefficients depend
on the volume fractions φ1,2 the (numerical) analysis of
this system becomes more complicated than for the other
systems.
The initial conditions at t = 0 are

φ1 = φ10, φ3 = φ30, u1 = u2 = 0. (46)

As boundary conditions we have for t > 0 at z = 0:

∂zφ1 = ∂zφ3 = u1 = v3 = 0, φ2∂tu2 = J2L ([[φ2 ]] ) ,
(47)

and at z = H :

∂zφ1 = ∂zφ3 = 0, φ3v3 = φ3∂th(t) − J3L([[φ3 ]] ),
∂zu1 = A1(u1 − h(t) + h(t0)), ∂zu2 = A2(u2 − h(t) + h(t0)),

(48)

as they follow from (31), (32) and (35), respectively. We
notice that we need in total 9 boundary conditions (2 for
each of φ1, φ2, u1, u2 and 1 for v3), as well as an extra
condition to determine h(t), so in total 10 conditions.

3.1 Dimensionless formulation
We nondimensionalize the fundamental variables,
unknowns and parameters by dividing them by a normal-
ization constant to make them dimensionless and O(1).
The normalization constants are denoted as U for the
displacement, H for the position, V for the velocity, T
for the time, and J for the flux. Material coefficients χ1,2
and E1,2 are normalized with respect to the largest value
of all constituents, so χ = max{χ1,χ2}, E = max{E1,E2}.
Moreover, we introduce the small parameter ε as the
ratio of U and H. This small parameter recalls that our
model uses linear deformation theory, in which defor-
mations are small with respect to the size of the domain.
We note here that this assumption holds as long as
(h(t) − H)/H = O(ε). Concerning the choice of the time
scale T, we have three natural options: diffusion time scale
T = U/V , reaction time scale T = 1/K , and inflow time
scale T = U/J . If we opt for the diffusion time scale and
nondimensionalize Eq. (43c) making all terms and coeffi-
cients of the same order, we obtain V = HK and J = HK
yielding T = U/V = U/J = (U/H)/K = ε/K , for both
the diffusion and the inflow time scale. Consequently, the
diffusion time scale is much smaller than the reaction
time scale, implying that diffusion is much faster than the
reaction, and therefore we opt here for the normalization
constant T = U/V = ε/K . Analogously, we find from
Eqs. (43d) or (43e) the relation EU/H2 = χV . All this
leads to the definitions of the following dimensionless
numbers, viz:

V =HK , T = ε/K , U= χH3K
E

, J=HK , and ε= χH2K
E

.

(49)

Looking at the problem at the diffusion time scale
regime, we obtain the following nondimensionalized sys-
tem equations:

∂tφ1 + ε∂z (φ1∂tu1) − εδ1∂
2
z φ1 = εκ1F(φ1,φ3), (50a)

∂tφ3 + ε∂z (φ3v3) − εδ3∂
2
z φ3 = −εκ3F(φ1,φ3), (50b)

∂z (φ1∂tu1 + φ2∂tu2 + φ3v3) −
∑

α

δα∂2z φα = SKF(φ1,φ3), (50c)

χ1∂tu1 − E1∂2z u1 − γ11∂
2
z ∂tu1 − γ12∂

2
z ∂tu2 = χ1v3 − ∂z (φ1E1∂zu1

(50d)+ φ1E2∂zu2) ,

χ2∂tu2 − E2∂2z u2 − γ22∂
2
z ∂tu2 − γ21∂

2
z ∂tu1 =χ2v3−∂z (φ2E1∂zu1

+ φ2E2∂zu2) , (50e)

where

κα = Mα

ρ̃α

ρ̃1
M1

ρ̃3
M3

k
K
. (51)

In these equations all material coefficients are made
dimensionless in the usual way and without changing their
notation, meaning that:
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{
δα → δα/KH2 = δ/KH2ρ̃α ,χα → χα/χ , Eα → Eα/E, γα →γα/χH2} .

(52)

Due to the nondimensionalization, the domain changes
from (0,H) to (0, 1). The initial conditions and most
of the boundary conditions do not change their struc-
ture. Only the nonzero boundary conditions at the upper
boundary (now at z = 1) change due to the introduc-
tion of the dimensionless boundary displacement function
W(t) = (h(t) − H)/εH such that W = O(1). The non-
homogeneous boundary conditions at z = 1 become

φ3 (∂tW(t) − v3) = J3L( [[φ3]] ) , (53a)
∂zu1 = A1(u1 − W(t)), (53b)
∂zu2 = A2(u2 − W(t)). (53c)

Integrating Eq. (43c) from z = 0 to z = 1, and using
(47) and (48), we obtain a closed expression for W(t) for
all t > 0 in terms of influxes, the production term by the
chemical reaction, and the mismatch of displacement at
the boundary, viz.

W(t) =
∫ t

0

[
J2L( [[φ2(0, s)]] ) + SK

∫ 1

0
F(φ1(z, s),φ3(z, s))dz

+J3L( [[φ3(1, s) ]] ) −
2∑

α=1

φα(1, s)
Aα

∂t∂zuα(1, s)
]
ds.

(54)

We note here that in the limiting case A1,2 ↓ 0, as then
also ∂zu1,2 → 0, the last term of Eq. (54) becomes undeter-
mined. In this case we cannot use (53b) and (53c), which
results in the following adapted relation forW(t) (derived
in a way analogously to the derivation of Eq. (54))

W(t) =
∫ t

0

1
φ3(1, s)

[
J2L( [[φ2(0, s)]] ) + SK

∫ 1

0
F(φ1(z, s),φ3(z, s))dz

+J3L( [[φ3(1, s)]] ) −
2∑

α=1
φα(1, s)∂tuα(1, s)

]
ds.

(55)

From both these results we conclude that the first two
terms, the influxes withJ2,3 being positive, yield a positive
contribution to W(t) making the layer increase in thick-
ness. Whether or not the third term has an increasing or
decreasing effect depends on the sign of SK ; when, as in
our case, SK = −1, the chemical reaction does shrink the
layer. At this moment, nothing specific can be said for the
last term. However, our numerical results reveal that
the effect of this term is always small. Thus, we can state
that the domain of the layer only grows if the magnitude
of the first two terms is greater than the third one. Hence,
there is a competition effect here.

In Appendix A, a solution for System D has been
obtained as a formal asymptotic expansion in ε. The
asymptotic expansion is formal as it is not a priori known
whether or not this expansion is converging in ε. The pre-
dictive power of a formal asymptotic expansion should not
be underestimated, because there exist formal asymptotic
expansions, which are diverging, but can be very accurate
when only a truncated version of the expansion is used;
see the example in Section 1.4.2 on pages 13 and 14 of [21].
This motivated us in the choice of the two J-parameters;
see Table 1.

4 Numerical method
In this section, we solve numerically the systems A, C
and D. We omit system B, because a viscoelastic term is
needed to obtain a coercive system, such as in system A,
for which we have proven the convergence of the time-
discrete evolutions to the corresponding weak solution;
see [40].We expect that similar convergence results can be
obtained for the systems C and D, as they have a viscoelas-
tic term similar to the one in system A. Also, when solving
system D we exclude the Laplacian terms in Eq. (43c), or
stated in another way: the numerical method uses δα = 0
for (43c). This exclusion is justified by an order analysis
of the terms of (43c) from the φα-solutions of (43a) and
(43b), which states that

∑3
α=1 δα�φα = O

(√
εF

)
.

Our code is called NewGypsum and it is based on a
combination of MATLAB routines. We start off with a
Rothe time discretization of the systems A, C and D,
which linearizes the systems. Benefitting from the one-
dimensional-in-space formulation, solving the linear sys-
tems is done automatically by using the built-in boundary
value problem (BVP) solvers of MATLAB, see bvp4c
and bvp5c; [22, 23]. These solvers take a grid, a guess
for the solution, and the BVP system as input. Then
they automatically readjust the grid and interpolate the
guess solution to obtain a starting point for the numerical
scheme, controlling a certain error metric to determine
the solution based on user-defined-convergence criteria.
The solver bvp4c is an implicit Runge-Kutta method

using the 3-stage Lobatto IIIa formula with control on the
residual [22]. The method is only applicable to linear Lip-
schitz systems [22]. Fortunately, systems A, C, and D can
be shown to satisfy this condition within certain parame-
ter constraints (which we will explain more thoroughly in
the next section). For an easy guide in understanding and
using bvp4c we recommend [36]. Moreover, [36] shows
that boundary layer effects are well resolved by the bvp4c
solver.
The solver bvp5c is an implicit Runge-Kutta method

using the 4-stage Lobatto IIIa formula with control on the
true error [23]. The solver bvp5c is more precise than
bvp4c, but it is also less versatile [23]. This does not pose
a problem as our three systems A, C and D still satisfy the
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applicability conditions for bvp5c and bvp5c has similar
capabilities in handling boundary layers as bvp4c [23]. In
our case the choice was made to use bvp5c as it made our
simulations about 27 times faster than when using bvp4c.
A more detailed explanation of our NewGypsum can be

found in Section 2.4 of [40]. Moreover, in Appendix A
one can find a validation of the NewGypsum routine with
a Mathematica simulation of the asymptotic ε-expansion
solutions derived in the same appendix.

5 Quest for realistic numerical behavior
Even though our systems were derived based on first prin-
ciples in terms of balance/conservation laws, this does not
guarantee that all physical constraints are automatically
satisfied for large variations in the model parameters. A
solution is said to show realistic behavior if the following
three constraints are satisfied within this framework:

1 The volume fractions should be nonnegative and less
than one. From the mathematical analysis point of
view we expect that system A behaves poorly when
volume fractions become very small. To outlaw this
unwanted behavior a positive minimal value φmin is
introduced, leading to the constraint

0 < φmin ≤ φα(t, z) < 1 (56)

for all α ∈ {1, 2, 3}, for all z ∈ (0, 1), and for all
t ∈ (0, tf ).

2 A second condition is a demand on the upper bound
for the velocity. Fast local deformations are allowed
as long as the total contribution to the domain
deformation is still small, the stresses remain low and
the quasi-static approximation is not violated. Hence,
it is natural to cap both the total velocity in the
domain and the total spatial change of the velocity in
the domain. This is reflected in the condition

‖v3‖2L2(t0,t;H1(0,1)) =
∫ t

0

[∫ 1

0

(
v3(s, z)2 + (∂zv3(s, z))2

)
dz

]
ds < V 2

(57)

for all t ∈ (0, tf ).
3 The concrete layer has two boundaries that allow

influx. Even though the chemical reaction itself is
volume contractive, the combination of influx and
chemical reactions must be volume expansive due to
the porous nature of gypsum [28]. Hence, the height
of the plate-layer must be a nondecreasing function:

∂th(t) = ε∂tW(t) ≥ 0 for all t ∈ (0, tf ). (58)

Realistic behavior is defined as satisfying all three con-
straints Eqs. (56) to (58). We immediately stop a simula-
tion when one of the three inequalities is violated.
We need a benchmark of our numerical program to test

the numerical solutions for realistic behavior. For this we

introduce a reference set of material constants. The values
of these constants, and their dimensionless counterparts,
dimensionalized with respect to the diffusion time scale,
are listed in Table 1. The numerical evaluations use a
time step �t, the size of the time interval tf , and a num-
ber of spatial subdivisions, 1/�z. We choose fixed values
�t = 0.001, tf = 0.500 and 1/�z = 300 for these param-
eters. In the remainder of this paper we implicitly use
the parameter values of Table 1, whenever parameter val-
ues are not explicitly specified. A spatial-temporal analysis
of our benchmark problem with the parameter values of
Table 1 can be found in Section 2.6 of [40], showing that
our benchmark simulation gives expected behaviour.

5.1 Parameter dependence of found realistic behavior
We aim to determine how the size of the realistic time
interval, given in number of numerical iterations NR,
depends on the system parameters. Our definition of real-
istic behavior contains three constraints, see the begin-
ning of Section 5, which can be numerically checked. We
investigate the numerical simulation applied to systems A,
C and D for a large parameter range, by changing spe-
cific parameters in Table 1. In this way our results even
hold when experimental values with large uncertainties
are used for the model parameters if these values with
uncertainties remain in the probed region. Out of the 20
model parameters, we will only change specific parame-
ters chosen on basis of their influence on the analytical
bounds in the existence proof in [40]. When a bound in
this existence proof contains a product of two parame-
ters, then this parameter pair is chosen. All parameters are
modified in a double exponential fashion such that large
parameter ranges are investigated. Finally, the initial con-
dition (φ10,φ20,φ30) is chosen, because they immediately
determine whether chemical reactions or influx do occur.
We have chosen to investigate the response of the model

with respect to the following parameters and parame-
ter tuples, because these parameters or combinations of
parameters are either crucial for System D from a physical
perspective or dominant in mathematically derived upper
bounds in the existence proof in [40]:

(φ10,φ20,φ30), δ, ε, (J2,φ2,res) and (A1, γ1). (59)

The parameter pair (A2, γ2) should be investigated as
well. However, we chose to fix the ratios A1/A2 and γ1/γ2,
because the dependence on (A2, γ2) is expected to be sim-
ilar to the dependence on (A1, γ1). Similarly, we chose to
fix the ratios J2/J3 and φ2,res/φ3,res. Moreover, if param-
eters are not mentioned to have special values, then these
parameters are set to their standard values as listed in
Table 1.
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Fig. 2 Barycentric grid with at each grid point the number of consecutive iterations yielding solutions with realistic behavior for Systems A, C and D ,
respectively. The volume fraction values of that grid point were used as initial conditions. The shaded central triangle indicates the parameter region
for which the existence proof in [40] works for a finite time interval

The existence proof in [40] points out a dependence on
the (κ1, κ3,φ1,sat) parameter triple. However, the depen-
dence on φ1sat , κ1 and κ3 is quite subtle: only for φ1,sat >

φ1 ≈ φ10 the chemical reaction is active and F > 0. This
has only a relevant effect on the incompressibility con-
dition, because in the first two diffusion equations Eqs.
(50a) and (50b) the right-hand sides are of O(ε). This
implies that the effect of κ1 and κ3 on the simulations is
expected to be (negligibly) small. As we made not enough
simulations for φ1 above the φ1,sat threshold value, we can
not draw any conclusions concerning its effect on realis-
tic behavior. However, we expect an increasing φ1,sat to
decrease the size of the realistic time interval, as increas-
ing φ1,sat increases the size of F and, hence, also the size
of v3.
We investigate the triple (φ10,φ20,φ30) using a barycen-

tric triangular grid with grid size 0.1, as shown in Fig. 2.
The performance of the simulations is measured in terms
of the number of consecutive iterations yielding realistic
behavior. Each number denotes that the first unrealistic
behavior occurs at the next iteration, while 500 denotes
that no unrealistic behavior has been encountered. This
performance value is placed at the grid point of the initial
volume fraction values used for obtaining the result. We
have added the existence region of [40] to the barycentric
plots of Fig. 2 as a shaded region.
The three systems behave differently as one can see from

the size of the parameter region with 500 iterations. The
parametric region pointing at the high acid concentra-
tion region is outperforming the other parameter regions
in all systems. A high concentration of acid implies that

the reaction is slow (i.e. F is small), and consequently,
the velocity v3 remains small. Moreover, also the influx of
acid is low or even absent. This results in a relatively small
increase of the norm of v3, and, therefore, violating the
velocity norm upper bound (which is the most critical of
the three conditions to violate) takes more time for large
values of φ3. This explains the good performance of this
parameter region.
For the determination of the dependence on other

parameters the best choice of initial conditions for each
system is exactly in the transition region between the
regions of small (single digit) and high (500) amount
of iterations. In this transition region, the amount of
iterations is expected about half way in between 1 and
500 iterations. Any dependence yielding lower or higher
amounts of iterations is faithfully represented. Outside
this transition region the registration of the dependence
is limited to a one-sided deviation of the reference level
of amount of iterations, while in this transition region
the registration allows for the full two-sided deviation
of the reference level of the amount of iterations. We
have chosen (φ10,φ20,φ30) equal to (11/30, 11/30, 8/30),
(1/3, 1/3, 1/3), and (1/4, 1/4, 1/2) for System A, C, and D,
respectively.
As for δ and ε, we modified their values in an expo-

nential fashion. Again, we recorded the amount of con-
secutive iterations, NR, for which the solutions remained
realistic. The amount NR for Systems A, C and D is
recorded in Table 2 for changes in δ.
For all systems, we see that the size of δ has practically

no influence and is, therefore, unimportant in establishing

Table 2 Number of consecutive iterations yielding realistic behavior for Systems A, C and D at different values of δ

δ = 1.00× factor below

System 10−5 10−4 10−3 10−2 10−1 1 10 102 103 104 105

A 297 304 297 311 311 324 332 338 331 338 338

C 212 222 220 216 218 220 216 212 230 222 212

D 462 462 462 462 464 464 464 464 464 464 464
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Fig. 3 Log-log plot of the number of consecutive iterations yielding realistic behavior (NR) versus the parameter value of ε for several systems and
initial values. Since the duration of the simulation was limited to 500 iterations, only the unambiguous values smaller than 500 iterations are chosen

realistic behavior defined in this section. This makes sense
because the initial conditions are smooth, which leads to
small values of the Laplacian. Hence, δ has only a minor
effect on the simulation output.
In Fig. 3, the values of NR are plotted for systems A,

C and D for ε equal to 1.4 times a factor equal to all
powers of

√
10 between 10−2 and 103. Only the unam-

biguous values of NR < 500, are plotted next to similar
simulations executed with the modified parameter values
(φ10,φ20,φ30) = (0.2, 0.3, 0.5).
The effect of ε shows a different performance for ε ≥

0.0014 and ε < 0.0014, where in the former case the
behavior becomes worse for greater values of ε. However,
one should be aware that only small values of ε are accept-
able because our model is based on the assumption of
linear (small) deformations (ε 	 1). The linear behavior
of systemD in the log-log plot of Fig. 3 is a clear power law
signal. In Table 3, we have listed the power law exponent
estimate and its unbiased variance estimate for both ini-
tial value data sets. The estimators are explained in detail
in Section 14.2 of [34]. Essentially, Treal = NR�t ∼ ε−0.5

is a reasonable hypothesis for System D and it indicates
how the validity of our model depends on physical scale
separation.

Table 3 Unbiased estimators of α0 and their standard error for
the relationship Treal ∼ εα0 describing the dependence of the
realistic time interval of System D on the parameter ε for two
different initial conditions

System D: (φ10,φ30) (0.20,0.50) (0.25,0.50)

α̂0 −0.509 -0.487

sα̂0 0.00854 0.0121

# datapoints 7 7

The realistic behavior is affected by changes in Jα ,
α ∈ {2, 3}, as they control the rate of influx and so a
major aspect of thickness growth. Increasing the size of
Jα gives a corresponding increase in the size of W(t)
for large enough Jα . However, for small Jα we cannot
expect the same correspondence, because at some point
the reaction becomes the dominant contributor. Hence,
for small Jα the growth of W(t) must be independent of
Jα , while at large Jα this growth must be in a one-to-one
correspondence.
The size of W(t) correlates with the size of Jα , see

Eq. (54). However, Eqs. (47) and (48) show that ∂tu2
and v3 are related to Jα . The incompressibility condition
Eq. (50c) immediately gives that the norm of v3 is, then,
correlated with the size of Jα . Hence, from Eqs. (50c) and
(54) we expect for small Jα no dependence between the
realistic time interval Treal and Jα . At large Jα , we expect
an inverse dependence of the realistic time interval Treal
on Jα . In Fig. 4 the expected behavior is shown. This
figure also shows that the choice of the system (A, C, or D)
and the value of φα,res has only a minor influence on the
realistic behavior.
The size of the viscoelastic parameter γα has a major

effect on the realistic behavior: when γα is too small,
the system loses coercivity and the numerical program
immediately terminates. This happens for all values of
γα < 0.005. For large enough values of γα the system pre-
serves ellipticity, resulting in stable realistic behavior; see
Table 4 for System A, C, and D.
The realistic behavior depends also on Aα . When Aα

takes large values, then the coupling between W(t) and
the displacements u1 and u2 becomes strong, leading to
a larger value of v3, and thus smaller NR. On the other
hand, when Aα is small (say Aα < 1), then the boundary
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Fig. 4 Log-log plot of the number of consecutive iterations yielding realistic behavior (NR) versus the parameter value of J2 for all three systems at
two different values for φ2,res , with J3/J = 5 ∗ J2/J. Notice the two regions with different performance as expected due to the influence ofW(t)
on v3

condition will behave more like a Neumann boundary
condition, having no effect whatsoever on the realistic
time interval. Again, we see these behaviors in Table 4
for Systems A, C, and D. This behavior agrees with the
analytical results from [40] for System A.
For System D, we have used the standard values for

the parameters and initial conditions, the dimensionless
thickness growth W(t). In Fig. 5, the results for a set of
ε-values are depicted. For ε ≥ 0.0014 the curve of W(t)
has a rotated S shape, whereas for ε < 0.0014 the behav-
ior is linear and identically the same for all ε. This linear
behavior is clearly different for t/T ≈ 0 and should not
be confused with a windowing artifact applied to an S-
shaped curve as the linear behavior occurs immediately
and does not show a characteristic decrease in slope as

with ε < 0.0014. Therefore, it seems there exists a bifurca-
tion value of ε at which the system changes the qualitative
behavior in W(t) near t = 0. A deeper insight in this
aspect requires more numerical and theoretical investiga-
tions. Future investigations are needed to shed light on
this bifurcation behavior.

6 Conclusion
We have derived, based on first principles, several mod-
els describing concrete corrosion by taking into account
mixture theory, small deformations, compressibility and
viscoelastic effects, diffusion, chemical reactions, influx
of chemical species and an expanding domain. The most
suitable model is System D. For this system, we could
obtain the best numerical results with nice power law

Table 4 Number of consecutive iterations yielding realistic behavior (NR) for Systems A, C and D, and a set of values for the parameter
pair (A1, γ1)

System A System C System D

2γ1 2γ1 2γ1

2A1 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10

0.15 12 13 57 500 16 17 33 500 410 410 410 412

0.14 12 13 57 500 16 17 33 500 410 410 410 412

0.13 12 13 59 500 16 17 33 500 410 410 410 412

0.12 12 13 59 500 14 17 33 500 410 410 412 412

0.1 10 14 123 500 14 19 38 500 416 416 416 418

1 8 10 324 1 12 14 220 45 462 464 464 464

10 8 1 4 6 10 1 4 8 244 320 308 306

102 2 6 8 8 2 4 8 8 1 1 1 1

The values for 2γ1 ≤ 0.13 were omitted since the system lost coercivity and therefore no simulation was performed. The values for γ1 = 50 have been omitted for brevity
since they are almost identical to the values for γ1 = 5
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Fig. 5 A plot ofW(t) in System D at different parameter values of ε

behaviors, which lead us to the hypothesis that the realis-
tic time interval Treal scales as 1/

√
ε. Moreover, we could

interpret the spatial behavior of all variables by taking into
account the physical effects of the chemical reaction and
of the influx of reacting materials.
Even though we have derived our systems from first

principles, many material constants (δα , γα , Aα) have
either unknown values or are determined at length scales
orders of magnitude larger than our simulated domain
(e.g. the Young modulus cf. [32]). Consequently, many of
our model parameters need to be identified. Better insight
in the model parameters is needed. This can be obtained
in at least three ways:

(i) By performing more specific measurements at the
length scale of our domain;

(ii) By upscaling procedures, obtain effective material
coefficients at length scales compatible with the
measurements;

(iii) By suitably combining (i) and (ii).

By performing simulations with intentionally large
parameter ranges, we localized the uncertainties in the
model parameters and probed simultaneously the contin-
uous dependence of the solution to our systems on the
choice of parameters. In this way, the behavior of Sys-
tem D is valid, even for the model parameters with large
uncertainties. While probing the parameter dependence
of our system on 20 different parameters, of which about
10 are indeterminate, we immediately encounter the curse
of dimensionality – sampling a high dimensional space2 is
a sparse operation. A more structured sampling was pos-
sible by targeting the variables present in analytical upper
bounds derived in [40]. An additional complication is the
nonlinear coupling of all unknowns involved concurrently

in several physical processes. Such a strong coupling pro-
hibits a fast simulation at a single parameter tuple and
creates a complex nonlinear parameter dependence of the
solution behavior.
What concerns System D, at least for a short transient

time the realistic behavior showed practically constant
concentrations due to the slow reaction with respect to the
influx. The displacements and velocities seemed consis-
tent with the influx of material, while the thickness of the
concrete layer was growing steadily, as expected from real
world observations. Moreover, these results coincide with
[4] as the plate thickness increases in time and the correct
changes in volume fractions were observed. Displace-
ments and velocities could not be related to any quantity
in [4], because their reaction occurs in the boundary, while
ours occurs in the full domain.
The Systems A, C, and D showed strong dependence on

several parameters. For all systems the number of consec-
utive iterations yielding realistic behavior (NR) is highly
dependent on the choice of φ30, due to the incompress-
ibility condition, while φ10 and φ20 seem unimportant, as
long as φ10+φ20 = 1−φ30. The diffusion coefficient δ > 0
had no effect on NR, while the scale separation parame-
ter ε greatly influenced NR for all systems, especially for
System D with an apparent power law dependence. The
reaction parameters κ1, κ3, φ1,sat had no influence on NR,
because ε is small and J3 > 1. The flux parameters J2
and J3 are unimportant at small values (J2 < 1), while
almost in one to one correspondence with NR at large val-
ues (J2 > 10) due to Eq. (54). The external concentrations
φres had almost no influence onNR, what can be attributed
to an under sampling of large values (φres > 0.3).
The viscoelastic parameters γ1 and γ2 are important for
keeping coercivity. They show a high dependence on NR
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for Systems A and C, but almost no dependence for
System D. The boundary condition parameters A1 and A2
highly influenceNR, but for Systems A and C the behavior
seems erratic, except at small values due to the conver-
gence to Neumann boundary conditions. The thickness
W(t) for System D becomes larger for smaller values of
ε, but changes behavior for ε < 0.0014, for which W(t)
seems independent of ε. This behavioral change is unex-
pected and advocates for additional research. Moreover,
the thickness W(t) increases continuously as expected
from experiments.
Hence, the important parameters of Systems A, C, and

D describing the behavior of NR are φ30, ε, Jα , γβ and
Aβ for α ∈ {2, 3} and β ∈ {1, 2}. Moreover, the observed
behavior of the thicknessW(t) is largely as expected from
observations.

Endnotes
1 In principle the right-hand side of Eq. (31) should be

−φα(vα − V) instead of 0. However, in our linear the-
ory the value 0 is justified due to the scale separation
between displacement and the actual size of the domain.
See Section 3 for the effect of scale separation on the
system in the dimension reduction process.

2 In our case, the dimensionality is linked to the space
of simulations for all possible combinations of parameter
values.

Appendix A
Asymptotic ε-small solutions to System D
The system (50a)-(50e) contains the small parameter
ε, 0 < ε 	 1, and we assume that the solution of

this system can be expanded as a Poincaré series in ε, for
instance:

φα(z, t; ε) = φ(0)
α (z, t) + εφ(1)

α (z, t) + . . . , (60)

and the same for uα(z, t; ε) and v3(z, t; ε).
We substitute these expansions into the equations of

system (50a)-(50e) and develop themwith respect to ε.We
start with (50a), which results in

∂tφ
(0)
1 + ε

(
∂tφ

(1)
1 + ∂z

(
φ

(0)
1 ∂tu(0)

1

)
− δ1∂

2
z φ

(0)
1 − κ1F

(
φ

(0)
1 ,φ(0)

3

))

+ O
(
ε2

) = 0 .

(61)

The ε0-term yields ∂tφ
(0)
1 = 0. Together with the initial

condition φ
(0)
1 (z, 0) = φ10, this gives φ

(0)
1 (z, t) = φ10 for all

t > 0 and all z ∈ (0, 1). If needed, the following equation
for the first-order perturbation of φ1 can be used

∂tφ
(1)
1 + φ10∂z∂tu(0)

1 = κ1F(φ10,φ30) =: κ1F0 . (62)

In analogous way we obtain from (50b): φ(0)
3 (z, t) = φ30,

implying that also φ
(0)
2 (z, t) = 1 − φ10 − φ30 = φ20, and

∂tφ
(1)
3 + φ30∂zv(0)

3 = −κ3F0 . (63)

For the remaining three Eqs. (50c), (50d), and (50e),
we are only interested in the zeroth-order approximation,
meaning that we let ε → 0. From here on, we denote
u(0)
1 ,u(0)

2 , v(0)
3 simply by u1,u2, v3; moreover we use here

SK = −1. This reduces these equations to:

∂z (φ10∂tu1 + φ20∂tu2 + φ30v3) = −F0,

χ1∂tu1 − (1 − φ10)E1∂2z u1 + φ10E2∂2z u2 − γ ∂2z ∂t(u1 − u2) = χ1v3,

χ2∂tu2 + φ20E1∂2z u1 − (1 − φ20)E2∂2z u2 − γ ∂2z ∂t(u2 − u1) = χ2v3.

(64)

Fig. 6MATLAB simulation of u1(z, t) for z ∈ {0, 0.1, . . . , 0.9, 1} for A1 = A2 = 0 and the other parameters with the values of Table 1. The oscillations
in the graphs are due to an unphysical alternating-in-time solution of v3(z, t) in the MATLAB simulation
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Fig. 7MATLAB simulation of u2(z, t) for z ∈ {0, 0.1, . . . , 0.9, 1} for A1 = A2 = 0 and the other parameters with the values of Table 1. The oscillations
in the graphs are due to an unphysical alternating-in-time solution of v3(z, t) in the MATLAB simulation

Integrating the first equation to z and using the boundary
condition at z=0: φ20∂tu2(0, t) = J2 L(φ2,res−φ20) =: F1,
we obtain

v3 = 1
φ30

(F1 − F0z − φ10∂tu1 − φ20∂tu2) . (65)

We eliminate v3 with use of this relation from the last
two equations. After some manipulations we can write
these two equations as one matrix equation of the form

A ∂tu − B ∂2z u − C ∂2z ∂tu = r, (66)

with

u =
[
u1
u2

]
,

A = 1
φ30

[
(φ10 + φ30)χ1 φ20χ1

φ10χ2 (φ20 + φ30)χ2

]
,

B =
[

(φ20 + φ30)E1 −φ10E2
−φ20E1 (φ10 + φ30)E2

]
,

C =
[

γ −γ

−γ γ

]
,

r = r(z) = F1 − F0z
φ30

[
χ1
χ2

]
. (67)

Fig. 8MATLAB simulation ofW(t) for A1 = A2 = 0 and the other parameters with the values of Table 1. The oscillations in the graphs are due to an
unphysical alternating-in-time solution of v3(z, t) in the MATLAB simulation



Vromans et al. Pacific Journal of Mathematics for Industry  (2018) 10:5 Page 18 of 21

Fig. 9MATLAB simulation of u1(z, t) for t ∈ {0, 0.05, . . . , 0.45, 0.50} for A1 = A2 = 0 and the other parameters with the values of Table 1. The
oscillations in the graphs are due to an unphysical alternating-in-time solution of v3(z, t) in the MATLAB simulation

This system is a linear pseudo-parabolic system with
constant coefficients for 2 unknown variables: u1(z, t) and
u2(z, t) and for z ∈ (0, 1) and t ∈ (0, tf ). The initial and
boundary conditions for this system are u(z, 0) = 0 and

at z = 0, u(0, t) = J = {0, F1/φ20},
at z = 1, ∂zu(1, t) = 0. (68)

Moreover,W(t) can be found from (55) as

W(t) = (F1+φ30J3−F0)t−φ10u1(1, t)−φ20u2(1, t), (69)

with φ30J3 := J3L(φ3,res − φ30).

For χ1χ2φ30 �= 0 and E1E2φ30 �= 0, we can rewrite the
pseudo-parabolic equation above as an initial-boundary-
value problem by introducing

u(z, t) = U0(z) + Jt + ũ(z, t), (70)

where the first two terms are chosen such that ũ satisfies
the homogeneous pseudo-parabolic equation

DPP{ũ} = ∂tũ(z, t) − B̂ ∂2z ũ(z, t) − Ĉ ∂2z ∂tũ(z, t) = 0, (71)

together with the homogeneous boundary conditions

at z = 0, ũ(0, t) = 0,
at z = 1, ∂zũ(1, t) = 0, (72)

Fig. 10MATLAB simulation of u2(z, t) for t ∈ {0, 0.05, . . . , 0.45, 0.50} for A1 = A2 = 0 and the other parameters with the values of Table 1. The
oscillations in the graphs are due to an unphysical alternating-in-time solution of v3(z, t) in the MATLAB simulation
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Fig. 11Mathematica simulation of v3(z, t) with from top to bottom t ∈ {0, 0.05, . . . , 0.45, 0.50}, respectively, for A1 = A2 = 0 and the other
parameters with the values of Table 1. The oscillatons in the t = 0 graph are artifacts of the unevitable truncation of the infinite sum in Eq. (82)

and the inhomogeneous initial condition

ũ(z, 0) = −U0(z), (73)

such that the original initial condition u(z, 0) = 0 is still
satisfied. In (71) B̂ = A

−1
B and Ĉ = A

−1
C, and , while

U0(z) is given by

U0(z) = b1z + b2z2 + b3z3, (74)

with b1 = −2b2 − 3b3, 2b2 = B̂
−1(J − r̂1) and 6b3 = −

B̂
−1r̂0, where r̂(z) = A

−1r(z) =: r̂1 + r̂0z. Note, A and
B are invertible because χ1χ2φ30 �= 0 and E1E2φ30 �= 0,
respectively.
For γ �= − χ1χ2

χ1+χ2
4

π2(2k−1)2 with k ≥ 1 integer, i.e.
γ > 0 for χ1,χ2 > 0, we write the solution of (71)
with the homogeneous boundary conditions as a series

expansion in sine terms such that the boundary conditions
are automatically satisfied of the form

ũ(z, t) =
∞∑

k=1
Uk(t) sin(ζkz), (75)

with ζk = (2k − 1)π/2, while the functions Uk(t) have to
satisfy the ODE

∂tUk(t) + ζ 2
k

(
B̂Uk(t) + Ĉ∂tUk(t)

)
= 0, (76)

or, because Ĉ + ζ−2
k I is invertible due to choice of γ ,

slightly rewritten as

∂tUk(t) + KkUk(t) = 0, (77)

Fig. 12Mathematica simulation of v3(z, t) for z ∈ {0, 0.1, . . . , 0.9, 1} with the order in the same color scheme as in Fig. 11 for A1 = A2 = 0 and the
other parameters with the values of Table 1
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with Kk =
(
Ĉ + ζ−2

k I

)−1
B̂ and I the 2-D unit matrix.

This ODE has the fundamental solutions e−λ1kt and e−λ2kt ,
where λ1k and λ2k are the eigenvalues of the 2x2-matrix
Kk . Hence, Uk(t) must be of the form

Uk(t) = UkCk(t), (78)

where Uk is the matrix of the eigenvectors of Kk , i.e.

Uk = {{Kk12,Kk12}, {λ1k − Kk11, λ2k − Kk11}},
with Kkij the (i, j) entry of Kk , while

Ck(t) = {
ck1e−λ1kt , ck2e−λ2kt

}
,

with ck1 and ck2 two unknown constants that will be
determined from the condition that

ũ(z, 0) =
∞∑

k=1
Ukck sin(ζkz) = −U0(z),

ck = Ck(0) = {ck1, ck2}.
Realizing that U0(z) can be expanded in the sine series

U0(z) = − (
2z − z2

)
b2 − (

3z − z3
)

b3 = S1(z)b2 + S2(z)b3 =:
∞∑

k=1
Bk sin(ζkz),

(79)

with

S1(z) = − 32
π3

∞∑

k=1

1
(2k − 1)3

sin(ζkz) ,

S2(z) = 192
π4

∞∑

k=1

(−1)k

(2k − 1)4
sin(ζkz) ,

(80)

we find

ck = −U
−1
k Bk . (81)

With this result, the solution for u(z, t) is complete.
Recapitulating, we write (70) as

u(z, t) = − (
2z − z2

)
b2 − (

3z − z3
)
b3

+ Jt +
∞∑

k=1
UkCk(t) sin(ζkz) .

(82)

Finally, we find v3(z, t) from (65) andW(t) from (69).
Simulating these results with both Mathematica and

MATLAB gave near identical results, except for an
unphysical velocity v3(z, t) in the MATLAB simulation
yielding almost negligible small oscillations in time for
u1(z, t), u2(z, t), and W(z, t). Even though the MATLAB
and Mathematica simulations use different approaches,
especially for determining the initial velocity v3

(
z, 0+)

,
we can conclude that both simulations are accurate with
respect to u1(z, t), u2(z, t), and W(z, t), while only the
Mathematica simulation shows accurate physical veloc-
ities of v3(z, t). The MATLAB simulations of u1(z, t),
u2(z, t) andW(t) for different fixed z or t values are shown

in Figs. 6, 7, 8, 9 and 10, while the Mathematica plots
of v3(z, t) for different fixed z or t are shown in Figs. 11
and 12, respectively. All simulations are dimensionless.
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