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GEOMETRY OF CERTAIN FOLIATIONS ON THE COMPLEX PROJECTIVE PLANE

by

Samir BEDROUNI & David MARÍN

Abstract. — Let d ≥ 2 be an integer. The set F(d) of foliations of degree d on the complex projective plane can
be identified with a ZARISKI’s open set of a projective space of dimension d2 + 4d + 2 on which Aut(P2

C) acts.
We show that there are exactly two orbits O(F d

1 ) and O(F d
2 ) of minimal dimension 6, necessarily closed in F(d).

This generalizes known results in degrees 2 and 3. We deduce that an orbit O(F ) of an element F ∈ F(d) of
dimension 7 is closed in F(d) if and only if F d

i 6∈ O(F ) for i = 1,2. This allows us to show that in any degree d ≥ 3
there are closed orbits in F(d) other than the orbits O(F d

1 ) and O(F d
2 ), unlike the situation in degree 2. On the other

hand, we introduce the notion of the basin of attraction B(F ) of a foliation F ∈ F(d) as the set of G ∈ F(d) such
that F ∈ O(G). We show that the basin of attraction B(F d

1 ), resp. B(F d
2 ), contains a quasi-projective subvariety of

F(d) of dimension greater than or equal to dimF(d)− (d−1), resp. dimF(d)− (d−3). In particular, we obtain that
the basin B(F 3

2 ) contains a non-empty ZARISKI open subset of F(3). This is an analog in degree 3 of a result on
foliations of degree 2 due to CERVEAU, DÉSERTI, GARBA BELKO and MEZIANI.
2010 Mathematics Subject Classification. — 37F75, 32S65, 32M25, 32M05.

Introduction

The set F(d) of holomorphic foliations of degree d on P2
C is identified with a ZARISKI open subset of the

projective space Pd2+4d+2
C . We are interested here in the action of the group Aut(P2

C) = PGL3(C) on F(d).
We generalize to arbitrary degree some results known in small degrees [9, 1, 5] on this action.
For F ∈ F(d), we will respectively denote by O(F ) and Iso(F ) the orbit and the isotropy group of F under
the action of Aut(P2

C), i.e.

O(F ) := {ϕ∗F ∈ F(d) | ϕ ∈ Aut(P2
C)} and Iso(F ) := {ϕ ∈ Aut(P2

C) | ϕ∗F = F }.

O(F ) is a ZARISKI irreducible subset of F(d) and Iso(F ) is an algebraic subgroup of Aut(P2
C).
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Following [14] we will say that a foliation of F(d) is convex if its leaves other than straight lines have no
inflection points. We will denote by FC(d) the subset of F(d) consisting of convex foliations, which is a
ZARISKI closed subset of F(d).
According to [7, Proposition 2.2] every foliation of degree 0 or 1 is convex. For d ≥ 2, FC(d) is a
proper closed subset of F(d) and it contains the foliation F d

1 defined in the affine chart (x,y) by the 1-form
(see [3, page 75])

ω
d
1 = yddx+ xd(xdy− ydx).

We know from [9, Proposition 2.3] that if F is an element of F(d) with d ≥ 2, then the dimension of O(F )
is at least 6, or equivalently, the dimension of Iso(F ) is at most 2. In addition these bounds are attained by
the convex foliation F d

1 and the non convex foliation F d
2 defined by the 1-form (see [3])

ω
d
2 = xddx+ yd(xdy− ydx).

The main result of this paper is the following.

Theorem A. — Let d be an integer greater than or equal to 2 and let F be an element of F(d). Assume that
the isotropy group Iso(F ) of F has dimension 2. Then F is linearly conjugated to one of the two foliations
F d

1 and F d
2 defined respectively by the 1-forms

1. ωd
1 = yddx+ xd(xdy− ydx);

2. ωd
2 = xddx+ yd(xdy− ydx).

In other words, O(F d
1 ) and O(F d

2 ) are the only orbits of dimension 6. They are closed in F(d). Moreover we
have

Iso(F d
1 ) =

{(
αd−1x
1+βx

,
αdy

1+βx

) ∣∣∣ α ∈ C∗, β ∈ C
}
,

Iso(F d
2 ) =

{(
αd+1x
1+βx

,
αdy

1+βx

) ∣∣∣ α ∈ C∗, β ∈ C
}

;

these two groups are not conjugated.

This theorem is a generalization in arbitrary degree of previous results on foliations of degrees d = 2 ([9,
Proposition 2.7]) and d = 3 ([1, Theorem 10], [5, Corollary B]).
We also obtain the following corollary, which generalizes [5, Corollary 3.9]:

Corollary B. — Let d be an integer greater than or equal to 2 and let F be an element of F(d).
If dimO(F )≤ 7, then

O(F )⊂ O(F )∪O(F d
1 )∪O(F d

2 ).

In particular, when dimO(F ) = 7, the orbit O(F ) of F is closed in F(d) if and only if F d
i 6∈ O(F ) for

i = 1,2.

In the spirit of Corollary B we can ask under what condition the closure in F(d) of the orbit O(F ) of an
element F of F(d) contains the foliations F d

1 and F d
2 , a question that we have already asked and studied in

degree 3 in [5, Section 3]. In Section §3, we extend (Propositions 3.4 and 3.11) in arbitrary degree d our
previous results in [5, Propositions 3.10, 3.12, 3.15, 3.17] concerning this question.
For F ∈ F(d), we call basin of attraction of F the subset B(F ) of F(d) defined by

B(F ) := {G ∈ F(d) | F ∈ O(G)}.
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It follows from [9, Theorem 2.15] that in degree 2 the basin B(F 2
1 ) contains a quasi-projective subvariety of

F(2) of dimension greater than or equal to dimF(2)− 1. In Section §3, we establish an analogous result in
any degree greater than 2.

Theorem C (Theorem 3.10). — For any integer d ≥ 2, the basin of attraction B(F d
1 ) of F d

1 contains a quasi-
projective subvariety of F(d) of dimension greater than or equal to dimF(d)− (d−1).

Notice that the non-convexity of F d
2 and the fact that FC(d) is closed in F(d) imply that

B(F d
2 )⊂ F(d)\FC(d).(0.1)

In degree 2, according to [9, Theorem 3], inclusion (0.1) is an equality:

B(F 2
2 ) = F(2)\FC(2).(0.2)

It follows in particular from equality (0.2) that the basin B(F 2
2 ) is a ZARISKI open subset of F(2). For d ≥ 3

we show the following result.

Theorem D (Theorem 3.18). — In any degree d ≥ 3, the basin of attraction B(F d
2 ) of F d

2 contains a quasi-
projective subvariety of F(d) of dimension greater than or equal to dimF(d)−(d−3). In particular, the basin
B(F 3

2 ) contains a non-empty ZARISKI open subset of F(3).

Along the same order of ideas, we prove the following result.

Theorem E (Theorem 3.21). — For any integer d ≥ 2, the intersection B(F d
1 )∩B(F d

2 ) is non-empty and it
contains a quasi-projective subvariety of F(d) of dimension equal to dimF(d)−3d.

By combining equality (0.2) with the classification of C. FAVRE and J. V. PEREIRA of convex foliations of
degree two (cf. [10, Proposition 7.4] or [6, Theorem A]), we see that the only closed orbits in F(2) under the
action of Aut(P2

C) are those of F 2
1 and F 2

2 . We show in Section §4 that in any degree d ≥ 3 there are closed
orbits in F(d) other than the orbits O(F d

1 ) and O(F d
2 ), unlike the situation in degree 2. More precisely, we

will consider a family of elements of F(d) which has been already studied in degree d = 2 in [9, page 189],
namely the family (F d

0 (λ))λ∈C∗ of foliations of degree d on P2
C defined by the 1-form

ω
d
0(λ) = xdy−λydx+ yddy.

We will see that, for λ = 1, F d
0 (1) is linearly conjugated to the foliation F d

1 and that, for any λ 6= 1,
dimO

(
F d

0 (λ)
)
= 7. Moreover, we will show (Proposition 4.2) that the orbit O

(
F d

0 (λ)
)

is closed for any
d ≥ 3 and λ =− 1

d−1 , resp. for any d ∈ {3,4,5} and any λ ∈ C∗, and we conjecture that it is so for any d ≥ 6
and any λ ∈ C∗ (see Conjectures 1 and 2).

1. Some definitions and notations

1.1. Singularities and local invariants. — A degree d holomorphic foliation F on P2
C is defined in homo-

geneous coordinates [x : y : z] by a 1-form

ω = a(x,y,z)dx+b(x,y,z)dy+ c(x,y,z)dz,

where a, b and c are homogeneous polynomials of degree d + 1 without common factor and satisfying the
EULER condition iRω = 0, where R = x ∂

∂x + y ∂

∂y + z ∂

∂z denotes the radial vector field and iR is the interior
product by R.
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Dually the foliation F can also be defined by a homogeneous vector field

Z =U(x,y,z)
∂

∂x
+V (x,y,z)

∂

∂y
+W (x,y,z)

∂

∂z
,

the coefficients U,V and W are homogeneous polynomials of degree d without common factor. The relation
between Z and ω is given by

ω = iRiZ(dx∧dy∧dz).

The singular locus SingF of F is the projectivization of the singular locus of ω

Singω = {(x,y,z) ∈ C3 |a(x,y,z) = b(x,y,z) = c(x,y,z) = 0}.

Let C ⊂ P2
C be an algebraic curve with homogeneous equation F(x,y,z) = 0. We say that C is an invariant

curve by F if C rSingF is a union of (ordinary) leaves of the regular foliation F |P2
CrSingF . In algebraic

terms, this is equivalent to require that the 2-form ω∧ dF is divisible by F , i.e. it vanishes along each
irreducible component of C .
Let p be an arbitrary point of C . When each irreducible component of C passing through p is not F -invariant,
we define the tangency order Tang(F ,C , p) of F with C at p as follows. We fix a local chart (u,v) such that
p = (0,0); let f (u,v) = 0 be a reduced local equation of C in a neighborhood of p and let X be a vector field
defining the germ of F at p. We denote by X( f ) the LIE derivative of f along X and by 〈 f ,X( f )〉 the ideal
of C{u,v} generated by f and X( f ). Then

Tang(F ,C , p) = dimC
C{u,v}
〈 f ,X( f )〉

.

Notice that Tang(F ,C , p) coincides with the intersection multiplicity (C .C ′)p at p of the two algebraic curves
C = {F = 0} and C ′ = {Z(F) = 0}. Moreover, Tang(F ,C , p)<+∞ by the non-invariance of the irreducible
components of C passing through p. By convention, we put Tang(F ,C , p) = +∞ if there is at least one
irreducible component of C invariant by F and passing through p.
Let us recall some local notions attached to the pair (F ,s), where s∈ SingF . The germ of F at s is defined, up
to multiplication by a unity in the local ring Os at s, by a vector field X = A(u,v) ∂

∂u +B(u,v) ∂

∂v . The algebraic
multiplicity ν(F ,s) of F at s is given by

ν(F ,s) = min{ν(A,s),ν(B,s)},

where ν(g,s) denotes the algebraic multiplicity of the function g at s. Let us denote by Ls(F ) the family
of straight lines through s which are not invariant by F . For any line ` of Ls(F ), we have the inequalities
1≤ Tang(F , `,s)≤ d. This allows us to associate to the pair (F ,s) the following (invariant) integers

τ(F ,s) = min{Tang(F , `,s) | ` ∈ Ls(F )}, κ(F ,s) = max{Tang(F , `,s) | ` ∈ Ls(F )}.

The invariant τ(F ,s) represents the tangency order of F with a generic line passing through s. It is easy to
see that

τ(F ,s) = min{k ≥ 1 | det(Jk
s X,Rs) 6≡ 0} ≥ ν(F ,s),

where Jk
s X denotes the k-jet of X at s and Rs is the radial vector field centered at s. The MILNOR number of

F at s is the integer
µ(F ,s) = dimCOs/〈A,B〉,

where 〈A,B〉 denotes the ideal of Os generated by A and B.
The singularity s is called radial of order n−1, with n ∈ {2, . . . ,d}, if ν(F ,s) = 1 and τ(F ,s) = n.
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The singularity s is called non-degenerate if µ(F ,s) = 1, or equivalently if the Jacobian matrix of X at s,
denoted by JacX(s), possesses two nonzero eigenvalues λ,µ. In this case, the quantity

BB(F ,s) =
tr2(JacX(s))
det(JacX(s))

=
λ

µ
+

µ
λ
+2

is called the BAUM-BOTT index of F at s, see [2].

We will say that the singularity s is quasi-radial of order n−1 if µ(F ,s) = 1, BB(F ,s) = 4 and κ(F ,s) = n.
In the sequel we will denote by QRad(F ,n−1) the set of quasi-radial singularities of F of order n−1 and
by Q̂Rad(F ,n−1) the subset of Sing(F )×Ls(F ) defined by

Q̂Rad(F ,n−1) :=
{
(s, `) ∈ Sing(F )×Ls(F ) | µ(F ,s) = 1, BB(F ,s) = 4, Tang(F , `,s) = n

}
.

Remark 1.1. — Every radial singularity s of order n−1 of a foliation F of degree d≥ 2 on P2
C is quasi-radial

of order ≥ n− 1, because κ(F ,s) ≥ τ(F ,s). The converse is false: for instance, for the foliation defined in
the affine chart z = 1 by the 1-form (x+y)dy−ydx+(xn +yd)dx, with n ∈ {2,3, . . . ,d}, the point [0 : 0 : 1] is
a quasi-radial singularity of order n−1, but it is not radial.

1.2. Inflection points. — Let us consider a foliation F of degree d on P2
C and let p be a regular point of F .

Let us denote by TPpF the tangent line to the leaf of F passing through p; it is the straight line of P2
C

passing through p with direction TpF . If k ∈ {2, . . . ,d}, we will say that p is a (transverse) inflection point
of order k− 1 of F if Tang(F ,TPpF , p) = k, in which case the line TPpF is not invariant by F . When TPpF
is F -invariant, the point p will be called a trivial inflection point of F . If we denote by Inv(F ) the set of
invariant lines of F , then the set of trivial inflection points of F is precisely Inv(F )\Sing(F ). In the sequel,
we will denote by Flex(F ) the set of inflection points of F and by Flex(F ,k− 1) the subset of Flex(F )
consisting of transverse inflection points of F of order k−1, i.e.

Flex(F ,k−1) :=
{

p ∈ Flex(F ) | p 6∈ Sing(F ), Tang(F ,TPpF , p) = k
}
.

Let us recall the notion of inflection divisor of F , introduced by PEREIRA [16], which allows to determine the
set Flex(F ). Let Z be a homogeneous vector field of degree d on C3 defining F . The inflection divisor of F ,
denoted by IF , is the divisor of P2

C defined by the homogeneous equation

(1.1)

∣∣∣∣∣∣
x Z(x) Z2(x)
y Z(y) Z2(y)
z Z(z) Z2(z)

∣∣∣∣∣∣= 0.

According to [16], IF satisfies the following properties:

1. The support of IF is exactly the closure of the set Flex(F ) of inflection points of F . More precisely, IF
can be decomposed as IF = Iinv

F + Itr
F , where the support of Iinv

F is the set Inv(F ) of F -invariant lines
and the support of Itr

F is the closure of the set of transverse inflection points of F .

2. If C is an algebraic curve invariant by F , then C ⊂ IF if and only if C ⊂ Inv(F ).

3. The degree of the divisor IF is 3d.

The foliation F will be called convex if its inflection divisor IF is totally invariant by F , i.e. if IF is a product
of invariant lines.
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2. Description of the foliations F of degree greater than or equal to 2 such that dimO(F ) = 6

Recall that the foliations F d
1 and F d

2 are respectively defined in the affine chart z = 1 by the 1-forms

ω
d
1 = yddx+ xd(xdy− ydx) and ω

d
2 = xddx+ yd(xdy− ydx).

The foliation F d
1 is convex with inflection divisor IF d

1
= Iinv

F d
1
= xd+1y2d−1 and it has two singular points

s1 = [0 : 0 : 1] and s2 = [0 : 1 : 0]; the singularity s1 has maximal algebraic multiplicity d and s2 is radial
of maximal order d− 1. The foliation F d

2 is not convex with invariant inflection divisor Iinv
F d

2
= x2d+1 and

transverse inflection divisor Itr
F d

2
= yd−1. The singular locus Sing(F d

2 ) is reduced to the point s1 = [0 : 0 : 1];

moreover ν(F d
2 ,s1) = d. We note that the 1-forms

ωd
1

x2yd and
ωd

2
xd+2 are closed and they respectively admit as

first integrals

1
d−1

(
x
y

)d−1

+
1
x

and
1

d +1

(y
x

)d+1
− 1

x
;

this allows to check that

Iso(F d
1 ) =

{(
αd−1x
1+βx

,
αdy

1+βx

) ∣∣∣ α ∈ C∗, β ∈ C
}

and Iso(F d
2 ) =

{(
αd+1x
1+βx

,
αdy

1+βx

) ∣∣∣ α ∈ C∗, β ∈ C
}
.

In particular, dimIso(F d
i ) = 2 for i = 1,2. Thus the orbits O(F d

1 ) and O(F d
2 ) are both of dimension 6, which

is the minimal dimension possible in any degree d ≥ 2 ([9, Proposition 2.3]). Theorem A announced in the
Introduction shows that the orbits O(F d

1 ) and O(F d
2 ) are the only orbits having minimal dimension 6. The

goal of this section is to prove this theorem.
Let us denote by χ(P2

C) the LIE algebra of holomorphic vector fields on P2
C: χ(P2

C) is of course the LIE algebra
of the automorphism group of P2

C. Let F be a foliation on P2
C and let X be an element of χ(P2

C). Following [9]
we will say that X is a symmetry of the foliation F if the flow exp(tX) is, for each t, in the isotropy group
Iso(F ) of F . If ω defines F in an affine chart, X is a symmetry of F if and only if LXω∧ω = 0, where LXω

denotes the LIE derivative of ω along X.

Lemma 2.1. — Let F be a foliation of degree d on P2
C and let X be a symmetry of F . Assume that there is

an affine chart C2 ⊂ P2
C such that the vector field X is affine (i.e. degX ≤ 1) and let ω be a 1-form defining F

in this chart. Then there is a constant λ ∈ C such that LXω = λω.

Proof. — We will use an argument similar to one in [9, Proposition 2.5]. Since LXω∧ω = 0 and ω has
isolated singularities, the DE RHAM-SAITO division theorem (cf. [17] or [8, Proposition 1.14]) ensures the
existence of a holomorphic function g on C2 such that LXω = gω. The 1-form ω and the vector field X
being polynomials, LXω is also polynomial; therefore g is rational and holomorphic on C2 hence polynomial.
The vector field X being affine we have degLXω≤ degω; the equality LXω = gω implies that g is constant.

If F is a foliation on P2
C, we will denote by iso(F ) the LIE algebra of the algebraic group Iso(F ); iso(F )

is a LIE subalgebra of χ(P2
C) and it consists of symmetries of F . We know from [9, Proposition 2.5] that

if dim iso(F ) = 2 then iso(F ) is affine, i.e. generated by two vector fields X and Y such that [X,Y] = Y.
The following lemma classifies the affine LIE subalgebras of χ(P2

C) and it will be used to prove Theorem A.

Lemma 2.2. — Every affine LIE subalgebra of χ(P2
C) is linearly conjugated to one of the following models

(a)
〈
γx ∂

∂x + y ∂

∂y ,
∂

∂y

〉
with γ ∈ C∗;
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(b)
〈
y ∂

∂y ,
∂

∂y

〉
;

(c)
〈

∂

∂x + y ∂

∂y ,
∂

∂y

〉
;

(d)
〈
x ∂

∂x +(x+ y) ∂

∂y ,
∂

∂y

〉
;

(e)
〈
x ∂

∂x +2y ∂

∂y ,
∂

∂x + x ∂

∂y

〉
.

Proof. — Let g be an affine LIE subalgebra of χ(P2
C). Then there exist X and Y in χ(P2

C) such that g= 〈X,Y〉
and [X,Y] = Y. Fixing homogeneous coordinates [x : y : z] in P2

C we have an isomorphism of LIE algebras
τ : sl3(C)→ χ(P2

C) defined, for A ∈ sl3(C), by

τ(A) = (x y z)A


∂

∂x
∂

∂y
∂

∂z

 .

Notice that if A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ sl3(C), then in the affine chart z = 1 the vector field τ(A) ∈ χ(P2
C)

writes as(
a31 +(a11−a33)x+a21y−a13x2−a23xy

) ∂

∂x
+
(
a32 +a12x+(a22−a33)y−a13xy−a23y2) ∂

∂y
.

Let M and N be the matrices of sl3(C) associated to the vector fields X and Y respectively, i.e. M = τ−1(X)
and N = τ−1(Y). Then the LIE bracket [X,Y] corresponds to [M,N] := MN−NM and therefore [M,N] = N.

Let us write M =

 −m22−m33 m12 m13
m21 m22 m23
m31 m32 m33

 . Taking into account the possible JORDAN forms of a matrix

of sl3(C), it suffices us to treat the following possibilities

N =

 −a−b 0 0
0 a 0
0 0 b

 , N =

 −2c 0 0
0 c 0
0 1 c

 , N =

 0 0 0
0 0 0
0 1 0

 , N =

 0 0 0
1 0 0
0 1 0

 .

where a,b ∈ C,c ∈ C∗, with (a,b) 6= (0,0).

1. If N =

 −a−b 0 0
0 a 0
0 0 b

 then the equality [M,N] = N implies that a = b = 0: contradiction.

2. If N =

 −2c 0 0
0 c 0
0 1 c

 then the (1,1) coefficient of the matrix [M,N]−N is equal to 2c and is

therefore nonzero: contradiction.

3. Assume that N =

 0 0 0
0 0 0
0 1 0

; the equality [M,N] =N then leads to M =

 1−2m33 m12 0
0 m33−1 0

m31 m32 m33

.

Up to replacing M by M−m32N we can assume that m32 = 0. Now we will distinguish several eventualities:
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3.1. When (3m33− 1)(3m33− 2) 6= 0 the matrix P =

 3m33−1 m12 0
0 3m33−2 0
−m31 −m31m12 3m33−2

 commutes

with N and P−1MP =

 1−2m33 0 0
0 m33−1 0
0 0 m33

. Thus g is linearly conjugated to

〈
τ(P−1MP),τ(N)

〉
=
〈
(1−3m33)x ∂

∂x − y ∂

∂y ,
∂

∂y

〉
=
〈
γx ∂

∂x + y ∂

∂y ,
∂

∂y

〉
, where γ = 3m33−1 ∈ C∗.

3.2. Assume that m33 = 1
3 . If δ ∈ C∗ then the matrix P =

 1
δ
−m12 0

0 1 0
0 m12m31 1

 commutes with N and

P−1MP =

 1
3 0 0
0 −2

3 0
m31

δ
0 1

3

. As a result g is linearly conjugated to

〈
τ(P−1MP),τ(N)

〉
=
〈m31

δ

∂

∂x − y ∂

∂y ,
∂

∂y

〉
=
〈
− m31

δ

∂

∂x + y ∂

∂y ,
∂

∂y

〉
.

The case where m31 = 0 leads to the model (b). If m31 6= 0 then by taking δ =−m31 we get the model (c).

3.3. Assume that m33 =
2
3 . If δ ∈ C∗ then the matrix P =

 δ 0 0
0 1 0

−δm31 −m12m31 1

 commutes with N

and P−1MP =

 −1
3

m12
δ

0
0 −1

3 0
0 0 2

3

. As a consequence g is linearly conjugated to

〈
τ(P−1MP),τ(N)

〉
=
〈
− x ∂

∂x +(m12
δ

x− y) ∂

∂y ,
∂

∂y

〉
=
〈
x ∂

∂x +(y− m12
δ

x) ∂

∂y ,
∂

∂y

〉
.

The case m12 = 0 leads to the model (a) with γ = 1. If m12 6= 0 then by taking δ = −m12 we obtain the
model (d).

4. Assume that N =

 0 0 0
1 0 0
0 1 0

; then the equality [M,N] = N implies that M =

 −1 0 0
m32 0 0
m31 m32 1

.

Up to replacing M by M−m32N we can assume that m32 = 0. The matrix P =

 1 0 0
0 1 0
−m31

2 0 1

 commutes

with N and P−1MP =

 −1 0 0
0 0 0
0 0 1

. Therefore g is linearly conjugated to

〈
τ(P−1MP),τ(N)

〉
=
〈
−2x ∂

∂x − y ∂

∂y ,y
∂

∂x +
∂

∂y

〉
=
〈
2x ∂

∂x + y ∂

∂y ,y
∂

∂x +
∂

∂y

〉
.

By permuting the coordinates x and y we obtain the model (e).

Proof of Theorem A. — Since dim iso(F ) = dimIso(F ) = 2, [9, Proposition 2.5] implies that iso(F ) is
affine. Therefore, up to linear conjugation, iso(F ) is one of the models (a)–(e) of Lemma 2.2.
Let ω be a 1-form defining F in the affine chart z = 1

ω = A(x,y)dx+B(x,y)dy, A,B ∈ C[x,y], gcd(A,B) = 1.
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We will study the five possible models (a)–(e) of the LIE algebra iso(F ) and show that ω is linearly conju-
gated to one of the two 1-forms ωd

1 or ωd
2 .

1. Assume that iso(F ) is of one of the types (a)–(d), i.e. that iso(F ) =
〈
X,Y

〉
where X ∈ {γx ∂

∂x +

y ∂

∂y ,ε
∂

∂x + y ∂

∂y ,x
∂

∂x +(x+ y) ∂

∂y},Y = ∂

∂y with ε ∈ {0,1} and γ ∈ C∗. By Lemma 2.1 there exist λ,µ ∈ C such
that LXω = λω and LYω = µω. Since LYdx = dLYx = 0 and LYdy = dLYy = 0, we have LYω = Y(A)dx+
Y(B)dy = ∂A

∂y dx + ∂B
∂y dy. Therefore LYω = µω if and only if ∂A

∂y = µA and ∂B
∂y = µB. Since A,B ∈ C[x,y]

and µ ∈ C, it follows that µ = 0, A(x,y) = A(x) and B(x,y) = B(x). Thus

ω = A(x)dx+B(x)dy, A,B ∈ C[x], gcd(A,B) = 1.

1.1. Let us consider the case where X = γx ∂

∂x + y ∂

∂y with γ ∈ C∗. We have

LXω = X(A)dx+AdX(x)+X(B)dy+BdX(y) =
(
γxA′+ γA

)
dx+

(
γxB′+B

)
dy,

so that LXω = λω if and only if γxA′ = (λ− γ)A and γxB′ = (λ− 1)B. By putting κ = λ−γ

γ
and ν = λ−1

γ
,

the last two equations can be rewritten as xA′ = κA and xB′ = νB and can be immediately integrated to give
A(x) = αxκ and B(x) = βxν, where α,β ∈C. Since A,B ∈C[x] and gcd(A,B) = 1, we deduce that α,β ∈C∗,
κ,ν ∈ N and κν = 0. The equality degF = d then implies that

– either κ = 0 and ν = d, in which case ω = αdx+βxddy;
– or ν = 0 and κ = d, in which case ω = αxddx+βdy.

If ω = αdx+βxddy, resp. ω = αxddx+βdy, by making the change of coordinates (x,y) 7→
(

y
x ,−

α

βx

)
, we

reduce ourselves to ω = ωd
1 = yddx+ xd(xdy− ydx), resp. ω = ωd

2 = xddx+ yd(xdy− ydx).

1.2. Let us examine the case where X = ε
∂

∂x + y ∂

∂y with ε ∈ {0,1}. Since LXdx = dLXx = 0 and
LXdy = dLXy = dy, we have LXω = X(A)dx+X(B)dy+Bdy = εA′dx+(εB′+B)dy. Therefore LXω = λω if
and only if εA′ = λA and εB′ = (λ−1)B. Since A,B ∈ C[x] and λ ∈ C, it follows that AB = 0: contradiction
with gcd(A,B) = 1.

1.3. Let us study the eventuality: X = x ∂

∂x +(x+ y) ∂

∂y . We have dX(x) = dx and dX(y) = dx+dy, so that

LXω = X(A)dx+Adx+X(B)dy+B(dx+dy) = (xA′+A+B)dx+(xB′+B)dy.

The condition LXω = λω is then equivalent to the system of differential equations xA′ + B = (λ− 1)A
and xB′ = (λ− 1)B, which can be easily integrated to yield A(x) = (a− b lnx)xλ−1 and B(x) = bxλ−1,
where a,b ∈C. Since A ∈C[x], we deduce that b = 0 and therefore B≡ 0: contradiction with gcd(A,B) = 1.

2. Assume that iso(F ) is of type (e), i.e. iso(F ) =
〈
X,Y

〉
where X = x ∂

∂x +2y ∂

∂y ,Y = ∂

∂x +x ∂

∂y . As before
by writing explicitly that LXω = λω and LYω = µω, with λ,µ ∈ C (Lemma 2.1), we obtain the system of
partial differential equations

x ∂A
∂x +2y ∂A

∂y = (λ−1)A, x ∂B
∂x +2y ∂B

∂y = (λ−2)B, ∂A
∂x + x ∂A

∂y = µA−B, ∂B
∂x + x ∂B

∂y = µB.

It follows in particular that

(x2−2y) ∂B
∂y = (µx+2−λ)B and (x2−2y) ∂A

∂y = (µx+1−λ)A− xB.

Elementary integrations then lead to

B(x,y) = b(x)(x2−2y)
λ−2−µx

2 and A(x,y) =
(

a(x)
√

x2−2y− xb(x)
)
(x2−2y)

λ−2−µx
2 ,
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for some functions a and b of the coordinate x. Since A,B ∈ C[x,y] and gcd(A,B) = 1, we deduce that
λ− 2− µx = 0 and a(x) = 0 for any x ∈ C, hence λ = 2,µ = 0 and a ≡ 0. Therefore B(x,y) = b(x) and
A(x,y) =−xb(x) =−xB(x,y): contradiction with gcd(A,B) = 1.

3. Foliations of F(d) degenerating onto F d
1 and F d

2

In this section we will study the problem of knowing whether the closure of the orbit of a foliation of F(d)
contains the foliations F d

1 and F d
2 . The following definition will be useful.

Definition 3.1 ([9]). — Let F and F ′ be two foliations of F(d). We say that F degenerates onto F ′ if the
closure O(F ) (in F(d)) of the orbit O(F ) contains O(F ′) and O(F ) 6= O(F ′).

Remarks 3.2. — Let F and F ′ be two foliations such that F degenerates onto F ′. Then:
(i) dimO(F ′)< dimO(F );
(ii) degIinv

F ≤ degIinv
F ′ , which is equivalent to degItr

F ≥ degItr
F ′ . In particular, if F is convex, F ′ is also

convex.

Corollary B is an immediate consequence of Theorem A and Remark 3.2 (i).

Remark 3.3. — Corollary B applies particularly to any foliation of F(d) which is homogeneous, i.e. which
is given, for a suitable choice of affine coordinates (x,y), by a homogeneous 1-form ω=A(x,y)dx+B(x,y)dy,
where A,B ∈ C[x,y]d and gcd(A,B) = 1. Indeed, for such a foliation H ∈ F(d), we have (cf. [4])

Iso(H ) = {(αx,αy) | α ∈ C∗};
in particular, dimO(H ) = 7 and consequently

O(H )⊂ O(H )∪O(F d
1 )∪O(F d

2 ).

Assertion 1. (resp. 2.) of the following proposition gives a necessary (resp. sufficient) condition for a foliation
of F(d) to degenerate onto the foliation F d

1 .

Proposition 3.4. — Let F be an element of F(d) such that F d
1 6∈ O(F ). The following assertions hold:

1. If F degenerates onto F d
1 , then F possesses a non-degenerate singularity m satisfying BB(F ,m) = 4.

2. If F possesses a quasi-radial singularity of maximal order d − 1, i.e. if QRad(F ,d − 1) 6= /0, then F
degenerates onto F d

1 .

Proof. — 1. Assume that F degenerates onto F d
1 . Then there is an analytic family of foliations (Fε) defined

by a family of 1-forms (ωε) such that Fε belongs to O(F ) for ε 6= 0 and Fε=0 = F d
1 . The non-degenerate

singular point of F d
1 , denoted by m0, is “stable” in the sense that there is an analytic family (mε) of non-

degenerate singular points of Fε such that mε=0 = m0. The Fε’s being conjugated to F for ε 6= 0, the foliation
F admits a non-degenerate singular point m such that

∀ ε ∈ C∗, BB(Fε,mε) = BB(F ,m).

Since µ(Fε,mε) = 1 for any ε ∈ C, the function ε 7→ BB(Fε,mε) is continuous, hence constant on C. As
a consequence

BB(F ,m) = BB(Fε=0,mε=0) = BB(F d
1 ,m0) = 4.
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2. Assume that F has a quasi-radial singularity m of order d − 1. Then µ(F ,m) = 1,BB(F ,m) = 4
and κ(F ,m) = d. This last equality ensures the existence of a line `m passing through m, not invariant by
F and such that Tang(F , `m,m) = d. Let us choose an affine coordinate system (x,y) such that m = (0,0)
and `m = {x = 0}. The foliation F is defined in these coordinates by a 1-form ω of type

ω =Cd(x,y)(xdy− ydx)+
d

∑
i=1

(
Ai(x,y)dx+Bi(x,y)dy

)
, where Ai, Bi ∈ C[x,y]i, Cd ∈ C[x,y]d .

We have

ω∧dx
∣∣∣
x=0

=
d

∑
i=1

Bi(0,y)dy∧dx =
d

∑
i=1

Bi(0,1)yidy∧dx.

Then the equality Tang(F , `m,m) = d translates into Bi(0,1) = 0 for i ∈ {1,2, . . . ,d− 1} and Bd(0,1) 6= 0.
This allows to write

B1(x,y) = αx, Bd(x,y) = xB̂d−1(x,y)+ γyd , Bi(x,y) = xB̃i−1(x,y) for i ∈ {2,3, . . . ,d−1},

where B̃i−1 ∈ C[x,y]i−1, B̂d−1 ∈ C[x,y]d−1, γ ∈ C∗, α ∈ C. The equalities µ(F ,m) = 1 and BB(F ,m) = 4
imply that α 6= 0 and A1(x,y) = δx−αy for some δ ∈ C. Thus ω is of type

ω = δxdx+
(
xB̂d−1(x,y)+ γyd)dy+

(
Cd(x,y)+α

)(
xdy− ydx

)
+

d

∑
i=2

Ai(x,y)dx+ x
d−1

∑
i=2

B̃i−1(x,y)dy,

where Ai ∈ C[x,y]i, B̃i−1 ∈ C[x,y]i−1, B̂d−1 ∈ C[x,y]d−1, δ ∈ C, α,γ ∈ C∗.

By putting ϕ =
(
εd x,εy

)
and θ = α(xdy− ydx)+ γyddy, we obtain

1
εd+1 ϕ

∗
ω = θ+ ε

d−1
(

δxdx+ xB̂d−1(ε
d−1x,y)dy

)
+ ε

dCd(ε
d−1x,y)(xdy− ydx)+

d

∑
i=2

ε
i−1Ai(ε

d−1x,y)dx+ x
d−1

∑
i=2

ε
i−1B̃i−1(ε

d−1x,y)dy

which tends to θ as ε tends to 0. By making the change of coordinates (x,y) 7→
(

x
y −

γ

αy ,
x
y

)
, we reduce

ourselves to θ = ωd
1 = yddx+ xd(xdy− ydx). As a result F degenerates onto F d

1 .

Example 3.5. — Let us consider the homogeneous foliation H d
1 defined in the affine chart z = 1 by the

1-form
ω

d
1 = yddx− xddy.

We know from [4, Proposition 4.1] that H d
1 is convex and admits the points [1 : 0 : 0] and [0 : 1 : 0] as radial

singularities of maximal order d− 1. Therefore H d
1 degenerates onto F d

1 (Proposition 3.4) and it does not
degenerate onto F d

2 , because F d
2 is not convex. Thus, according to Remark 3.3, we have

O(H d
1 ) = O(H d

1 )∪O(F d
1 ).

Example 3.6. — Let us consider the family (Gd(γ))γ∈C of foliations of degree d on P2
C defined in the affine

chart z = 1 by
η

d(γ) = (x− γy)dy− ydx+ xddx− yddy.

We remark that the point m = [0 : 0 : 1] is a non-degenerate singularity of Gd(γ) with BAUM-BOTT index 4.

Moreover, along the line ` = {y = 0} we have ηd(γ)∧ dy
∣∣∣
y=0

= xddx∧ dy, so that Tang(Gd(γ), `,m) = d.

It follows that the singularity m of Gd(γ) is quasi-radial of maximal order d− 1. As a consequence Gd(γ)
degenerates onto F d

1 (Proposition 3.4).
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The converse of assertion 2. of Proposition 3.4 is false as the following example shows.

Example 3.7. — Let F be the foliation of degree d ≥ 2 on P2
C defined in the affine chart z = 1 by

ω = xdy− ydx+P(y)dy,

where P is a polynomial of C[y] of degree d admitting 0 as a root of multiplicity ≤ d−1, i.e. P is of the form

P(y) = yν(a0 +a1y+ · · ·+ad−νyd−ν), where ν ∈ {1,2, . . . ,d−1}, ai ∈ C, a0ad−ν 6= 0.

The singular locus of F consists of the two points m = [0 : 0 : 1] and m′ = [1 : 0 : 0]; moreover

µ(F ,m) = 1, BB(F ,m) = 4, κ(F ,m) = ν < d, µ(F ,m′)> 1.

It follows that F has no quasi-radial singularity of maximal order d−1, i.e. QRad(F ,d−1) = /0. However,

F degenerates onto F d
1 . Indeed, by putting ϕ =

(
ad−ν

εd x,
1
ε

y
)

, we see that

lim
ε→0

εd+1

ad−ν

ϕ
∗
ω = xdy− ydx+ yddy.

Question 1. — Let F be a foliation of degree d ≥ 2 on P2
C. Is it true that if F degenerates onto F d

1 then
– either F admits a quasi-radial singularity of maximal order d−1,
– or F is conjugated to Example 3.7, i.e. up to linear conjugation F is given by a 1-form of type

xdy− ydx+P(y)dy with P ∈ C[y], degP = d and P(0) = 0?

Proposition 3.8. — Let d be an integer greater than or equal to 2. Let us denote by U1(d) the subset of F(d)
defined by

U1(d) :=
{

F ∈ F(d) | ∀s ∈ Sing(F ), µ(F ,s) = 1,τ(F ,s) = 1
}
.

Then:
(i) U1(d) is a non-empty ZARISKI open subset of F(d); in particular, for any γ ∈ C, Gd(γ) ∈U1(d) if and

only if γ

(
γd+1 +

(d +1)d+1

dd

)
6= 0.

(ii) Let F be an element of U1(d). For any singular point s ∈ Sing(F ), the set

Λ(F ,s) :=
{
`s ∈ Ls(F ) | Tang(F , `s,s)> 1

}
has at most 2 elements. In particular, the set

d⋃
n=2

Q̂Rad(F ,n−1) is finite.

To prove this proposition, we need the following lemma.

Lemma 3.9. — Let F be a foliation of degree d ≥ 2 on P2
C, s a singular point of F , `s a line passing

through s and not invariant by F and X = A(x,y) ∂

∂x +B(x,y) ∂

∂y a polynomial vector field defining F in an
affine chart (x,y) containing s. Let us denote by (x0,y0) the coordinates of s and let a(x− x0)+b(y− y0) = 0
be an equation of the line `s. Then, for any n ∈ {2,3, . . . ,d}, Tang(F , `s,s)≥ n if and only if

d j

dt j

(
aA(x0 +bt,y0−at)+bB(x0 +bt,y0−at)

)∣∣∣
t=0

= 0, ∀ j ∈ {1,2, . . . ,n−1}.

In particular, the set Λ(F ,s) :=
{
`s ∈ Ls(F ) | Tang(F , `s,s) > τ(F ,s)

}
is finite and its cardinality is

at most τ(F ,s)+1.
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Proof. — The 1-form ω = A(x,y)dy−B(x,y)dx also defines the foliation F because iXω = 0. We have

ω∧d
(
a(x− x0)+b(y− y0)

)∣∣∣
(x,y)=(x0+bt,y0−at)

= P(t)dy∧dx,

where P(t) = aA(x0 + bt,y0 − at) + bB(x0 + bt,y0 − at). Thus Tang(F , `s,s) = ν(P(t),0). Notice that
P(0) = 0 because the point s being singular for F , we have A(x0,y0) = B(x0,y0) = 0. Then Tang(F , `s,s)≥ n
if and only if the root t = 0 of the polynomial P has multiplicity at least n, that is if and only if
P′(0) = P′′(0) = · · ·= P(n−1)(0) = 0, hence the announced equivalence holds.

By conjugating ω by the translation (x+ x0,y+ y0), we can assume that s = (0,0). Let us denote τ(F ,s)
simply by τ. Then the vector field X decomposes in the form

X =Cτ−2(x,y)R+
d+1

∑
i=τ

Xi,

where R = x ∂

∂x + y ∂

∂y , Cτ−2 is a polynomial of degree ≤ τ−2, Xi = Ai(x,y) ∂

∂x +Bi(x,y) ∂

∂y is a homogeneous
vector field of degree i, with det(Xτ,R) 6≡ 0. Thus, we have

aA(bt,−at)+bB(bt,−at) =
(

a
(

xCτ−2(x,y)+
d+1

∑
i=τ

Ai(x,y)
)
+b
(

yCτ−2(x,y)+
d+1

∑
i=τ

Bi(x,y)
))∣∣∣∣

(x,y)=(bt,−at)

=
d+1

∑
i=τ

(
aAi(bt,−at)+bBi(bt,−at)

)
=

d+1

∑
i=τ

t iQi+1(a,b),

where Qi+1(a,b) := aAi(b,−a)+bBi(b,−a) is a homogeneous polynomial of degree i+1 in (a,b). From this,
we deduce that Tang(F , `s,s)> τ if and only if Qτ+1(a,b) = 0. As a result

Λ(F ,s) =
{
`s = {ax+by = 0} ∈ Ls(F ) | Qτ+1(a,b) = 0

}
.

Now, the polynomial Qτ+1 is not identically zero because Qτ+1(a,b)=−det(Xτ,R)
∣∣
(x,y)=(b,−a) 6≡ 0. It follows

that Λ(F ,s) has cardinality at most τ+1.

Proof of Proposition 3.8. — We have

U1(d) =
{

F ∈ F(d) | ∀s ∈ Sing(F ), det(JacX(s)) 6= 0, det(J1
s X,Rs) 6≡ 0

}
,

where X denotes a polynomial vector field defining F in an affine chart containing s and Rs is the radial
vector field centered at s. It follows that U1(d) is a ZARISKI open subset of F(d). To establish assertion (i),
it remains to show that for any γ ∈ C, Gd(γ) ∈U1(d) if and only if γ

(
γd+1 + (d+1)d+1

dd

)
6= 0. In homogeneous

coordinates, the foliation Gd(γ) is defined by the 1-form

Ω
d(γ) = z

(
xd− yzd−1)dx− z

(
yd + γyzd−1− xzd−1)dy+

(
yd+1− xd+1 + γy2zd−1)dz .

The singular locus Sing
(
Gd(γ)

)
consists of the points

s0 = [0 : 0 : 1], sk = [xk : xd
k : 1], s′l = [1 : ξ

l : 0], k ∈ {1,2, . . . ,d2−1}, l ∈ {0,1, . . . ,d},

where ξ = exp
( 2iπ

d+1

)
and the xk’s are the roots of the polynomial P(x) = xd2−1 + γxd−1−1.
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In the affine chart z = 1, resp. x = 1, Gd(γ) is given by the vector field

Y =
(
yd + γy− x

) ∂

∂x
+
(
xd− y

) ∂

∂y
, resp. Z =

(
yd+1 + γy2zd−1−1

) ∂

∂y
+ z
(
yd + γyzd−1− zd−1) ∂

∂z
.

A direct computation show that det(JacY(s0)) = 1 6= 0, det(J1
s0

Y,Rs0) = γy2 and

det(JacZ(s′l)) = (d +1)ξ−2l 6= 0, det(JacY(sk)) = 1−dγxd−1
k −d2xd2−1

k = (d−1)
(
dγxd−1

k −d−1
)
, because P(xk) = 0,

det(J1
s′l

Z,Rs′l ) = dξ
−l(y−ξ

l)z 6≡ 0, det(J1
sk

Y,Rsk ) =
(
dxd2−d

k + γ
)(

y− xd
k
)2−dxd−1

k
(
x− xk

)2 6≡ 0, because xk 6= 0.

From these we deduce that Gd(γ) ∈U1(d) if and only if γ 6= 0 and dγxd−1
k −d−1 6= 0, i.e. if and only if γ 6= 0

and xd−1
k 6= d+1

dγ
. Now, by putting Q(t) = td+1+ γ t−1, we have P(x) = Q(xd−1) so that t0 ∈C is a root of the

polynomial Q(t) if and only if there exists k ∈ {1,2, . . . ,d2−1} such that t0 = xd−1
k . It follows that

Gd(γ) ∈U1(d)⇐⇒ γQ
(

d +1
dγ

)
6= 0⇐⇒ γ

(
γ

d+1 +
(d +1)d+1

dd

)
6= 0.

Assertion (ii) is an immediate consequence of Lemma 3.9.

Theorem 3.10. — Let d be an integer greater than or equal to 2. Let us denote by Σ1(d) the subset of F(d)
defined by

Σ1(d) :=
{

F ∈ F(d) | QRad(F ,d−1) 6= /0

}
.

Then
(a) /0 6= Σ1(d) B(F d

1 );
(b) Σ1(d) is a constructible subset of F(d) of dimension greater than or equal to dimF(d)− (d−1).

Proof. — (a) Σ1(d) contains the foliations H d
1 and Gd(γ),γ∈C (Examples 3.5 and 3.6) and is therefore non-

empty. Assertion 2. of Proposition 3.4 ensures that Σ1(d) ⊂ B(F d
1 ); this inclusion is strict as Example 3.7

shows.

(b) Let us denote by P̌2
C the dual projective plane of P2

C. Let π : F(d)×P2
C× P̌2

C→ F(d) be the projection
onto the first factor; we have Σ1(d) = π(W1(d)), where

W1(d) : =
⋃

F ∈Σ1(d)

{F }× Q̂Rad(F ,d−1)

=
{
(F ,s, `) ∈ F(d)×P2

C× P̌2
C | s ∈ Sing(F ), ` ∈ Ls(F ), µ(F ,s) = 1, BB(F ,s) = 4, Tang(F , `,s) = d

}
.

According to Lemma 3.9, W1(d) can be rewritten as

W1(d) =


(F ,s, `) ∈ F(d)×P2

C× P̌
2
C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s = (x0,y0) ∈ `= {a(x− x0)+b(y− y0) = 0}

A(x0,y0) = 0, B(x0,y0) = 0, det(JacX(s)) 6= 0,
tr2(JacX(s))
det(JacX(s))

= 4

aA(x0 +bt,y0−at)+bB(x0 +bt,y0−at) 6≡ 0

d j

dt j

(
aA(x0 +bt,y0−at)+bB(x0 +bt,y0−at)

)∣∣∣
t=0

= 0, j = 1, . . . ,d−1


,(3.1)

where X = A(x,y) ∂

∂x +B(x,y) ∂

∂y is a polynomial vector field defining F in an affine chart (x,y) containing s.

It follows that W1(d) is a quasi-projective subvariety of F(d)×P2
C× P̌2

C. Thus, by CHEVALLEY’s Theorem
[11, Exercise II.3.19], the set Σ1(d) = π(W1(d)) is constructible.
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According to the above discussion and Proposition 3.8 (i), the intersection U1(d)∩Σ1(d) contains the folia-
tions Gd(γ), with γ

(
γd+1 + (d+1)d+1

dd

)
6= 0, and is therefore non-empty (U1(d) being the set of F ∈ F(d) such

that for any s ∈ SingF , µ(F ,s) = 1 and τ(F ,s) = 1). Then there exists an irreducible component Σ0
1(d) of

Σ1(d) such that U1(d)∩Σ0
1(d) 6= /0. Let W1(d) =

k⋃
i=1

W i
1(d) be the decomposition of W1(d) into its irreducible

components. Let us denote by π0 : W1(d)→ F(d) the restriction of π to W1(d). Then, there is n ∈ {1, . . . ,k}

such that π0(W n
1 (d))=Σ0

1(d). Indeed, since Σ1(d)= π0(W1(d)), we have Σ0
1(d)⊂Σ1(d)=

k⋃
i=1

π0(W i
1(d)). The

irreducibility of Σ0
1(d) therefore ensures the existence of n∈ {1, . . . ,k} such that Σ0

1(d)⊂ π0(W n
1 (d))⊂ Σ1(d).

Since Σ0
1(d) is an irreducible component of Σ1(d) and since π0(W n

1 (d)) is irreducible by continuity of π0, we
deduce that π0(W n

1 (d)) = Σ0
1(d).

Thus, since U1(d) is a ZARISKI open subset of F(d) (Proposition 3.8 (i)), the morphism π0 induces by
restriction a dominant morphism of quasi-projective varieties πn

0 : W n
1 (d)∩π

−1
0 (U1(d))→ Σ0

1(d)∩U1(d).
Notice that all the fibers of π0 over the elements of U1(d) ∩ Σ1(d) are finite and non-empty. Indeed,
if F ∈U1(d)∩Σ1(d) then, by Proposition 3.8 (ii), the set Q̂Rad(F ,d−1) is finite and non-empty; therefore
so is π

−1
0 (F ) = {F }× Q̂Rad(F ,d − 1). Since π0(W n

1 (d)∩ π
−1
0 (U1(d))) ⊂ U1(d)∩ Σ1(d), it follows that

all the non-empty fibers of πn
0 are finite and therefore zero-dimensional. The fiber dimension theorem

(cf. [15, Theorem 3, page 49]) then implies that dim(W n
1 (d)∩ π

−1
0 (U1(d))) = dim(Σ0

1(d)∩U1(d)); since
W n

1 (d) ∩ π
−1
0 (U1(d)) and Σ0

1(d) ∩U1(d) are non-empty open subsets of the irreducible varieties W n
1 (d)

and Σ0
1(d) respectively, we have

dimΣ0
1(d) = dim(Σ0

1(d)∩U1(d)) = dim(W n
1 (d)∩π

−1
0 (U1(d))) = dimW n

1 (d).

Now, from (3.1) we deduce that each irreducible component W i
1(d) of W1(d) has dimension

dimW i
1(d)≥ dim(F(d)×P2

C× P̌2
C)−4− (d−1) = dimF(d)− (d−1),

hence

dimΣ1(d) = dimΣ1(d)≥ dimΣ0
1(d) = dimW n

1 (d)≥ dimF(d)− (d−1).

Assertion 1. (resp. 2.) of the following proposition gives a necessary (resp. sufficient) condition for a foliation
of F(d) to degenerate onto the foliation F d

2 .

Proposition 3.11. — Let F be an element of F(d) such that F d
2 6∈ O(F ). The following assertions hold:

1. If F degenerates onto F d
2 , then degItr

F ≥ d−1.
2. If F admits an inflection point of maximal order d− 1, i.e. if Flex(F ,d− 1) 6= /0, then F degenerates
onto F d

2 .

Proof. — 1. If F degenerates onto F d
2 , then degItr

F ≥ degItr
F d

2
. An immediate computation shows that

Itr
F d

2
= yd−1 so that degItr

F d
2
= d−1, hence the announced inequality holds.

2. Assume that F possesses such a point. We choose an affine coordinate system (x,y) such that p = (0,0)
is an inflection point of order d− 1 of F and x = 0 is the tangent line to the leaf of F passing through p.
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Let ω be a 1-form defining F in these coordinates. Since TPpF = {x = 0}, ω is of type

ω =Cd(x,y)(xdy− ydx)+αdx+
d

∑
i=1

(
Ai(x,y)dx+Bi(x,y)dy

)
, where Ai, Bi ∈ C[x,y]i, Cd ∈ C[x,y]d , α ∈ C∗.

We have

ω∧dx
∣∣∣
x=0

=
d

∑
i=1

Bi(0,y)dy∧dx =
d

∑
i=1

Bi(0,1)yidy∧dx.

Therefore the hypothesis that (0,0) is an inflection point of order d− 1 of F translates into Bi(0,1) = 0
for i ∈ {1,2, . . . ,d−1} and Bd(0,1) 6= 0. Then we can write

Bd(x,y) = xB̂d−1(x,y)+βyd , Bi(x,y) = xB̃i−1(x,y) for i ∈ {1,2, . . . ,d−1},

where B̃i−1 ∈ C[x,y]i−1, B̂d−1 ∈ C[x,y]d−1, β ∈ C∗. Thus ω is of type

ω = αdx+
(
xB̂d−1(x,y)+βyd)dy+Cd(x,y)

(
xdy− ydx

)
+

d

∑
i=1

Ai(x,y)dx+ x
d−1

∑
i=1

B̃i−1(x,y)dy,

where Ai ∈ C[x,y]i, B̃i−1 ∈ C[x,y]i−1, B̂d−1 ∈ C[x,y]d−1, α,β ∈ C∗.

Let us consider the family of automorphisms ϕ = ϕε = (εd+1x,εy). We have

1
εd+1 ϕ

∗
ω = αdx+

(
ε

dxB̂d−1(ε
dx,y)+βyd

)
dy+ ε

d+1Cd(ε
dx,y)(xdy− ydx)+

d

∑
i=1

ε
iAi(ε

dx,y)dx+ x
d−1

∑
i=1

ε
iB̃i−1(ε

dx,y)dy

which tends to αdx+βyddy as ε tends to 0. Clearly αdx+βyddy defines a foliation conjugated to F d
2 ; as a

result F degenerates onto F d
2 .

Example 3.12. — Let us consider the homogeneous foliation H d
2 defined in the affine chart z = 1 by the

1-form
ω

d
2 = xddx− yddy.

We know from [4, Proposition 4.1] that H d
2 has no non-degenerate singularity with BAUM-BOTT index 4 and

that
Flex(H d

2 ,d−1) = {xy = 0}\{[0 : 0 : 1]} 6= /0.

Thus H d
2 degenerates onto F d

2 (Proposition 3.11) and it does not degenerate onto F d
1 (Proposition 3.4).

Consequently, according to Remark 3.3, we have

O(H d
2 ) = O(H d

2 )∪O(F d
2 ).

Example 3.13 (JOUANOLOU’s foliation). — Let us consider the foliation F d
J of degree d ≥ 2 on P2

C de-
fined, in the affine chart z = 1, by

ω
d
J = (xdy−1)dx+(yd− xd+1)dy.

This example is due to JOUANOLOU and is historically the first explicit example of foliation without invariant
algebraic curve ([12]). The point p = (0,0) is an inflection point of maximal order d− 1 of F d

J because

TPpF d
J = {x = 0} and ωd

J ∧ dx
∣∣∣
x=0

= yddy∧ dx. As a result F d
J degenerates onto F d

2 (Proposition 3.11).

However, we know from [13, Section 3] that every singularity s of F d
J is non-degenerate with BAUM-BOTT

index

BB(F d
J ,s) =

(d +2)2

d2 +d +1
6= 4,
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so that F d
J does not degenerate onto F d

1 (Proposition 3.4).

The converse of assertion 2. of Proposition 3.11 is false as the following example shows.

Example 3.14. — Let F be the foliation of degree d ≥ 2 on P2
C defined in the affine chart z = 1 by

ω = dx+P(y)dy, where P ∈ C[y], degP = d.

It is easy to check that Sing(F ) =
{
[1 : 0 : 0]

}
and Itr

F = P′(y). If the derivative P′ has a single root, i.e if P is
of the form P(y) = a(y−α)d +b, where α,a,b ∈ C,a 6= 0, then F is conjugated to F d

2 ; indeed, we have

1
a

ϕ
∗
ω = dx+ yddy, where ϕ = (ax−by,y+α).

We assume that the derivative P′ has at least two distinct roots; this implies that d ≥ 3. A straightforward
computation shows that F has no inflection point of maximal order d−1, i.e. Flex(F ,d−1) = /0. However,
F degenerates onto F d

2 . Indeed, by writing P(y) = a0 + a1y+ · · ·+ adyd , ai ∈ C, ad 6= 0, and by putting

ψ =

(
ad

εd+1 x,
1
ε

y
)

, we obtain that

lim
ε→0

εd+1

ad
ψ
∗
ω = dx+ yddy.

Question 2. — Let F be a foliation of degree d ≥ 3 on P2
C. Is it true that if F degenerates onto F d

2 then
– either F possesses an inflection point of maximal order d−1,
– or F is conjugated to Example 3.14, i.e. up to linear conjugation F is given by a 1-form of type

dx+P(y)dy with P ∈ C[y], degP = d?

Proposition 3.15. — Let d be an integer greater than or equal to 2. Let us denote by U2(d) the set of foliations
F ∈ F(d) whose inflection divisor IF is transverse (i.e. IF = Itr

F ) and reduced. Then
(i) U2(d) contains the JOUANOLOU’s foliation F d

J and it is a (non-empty) ZARISKI open subset of F(d);
(ii) for any d ≥ 3, every foliation F ∈U2(d) has a finite number (possibly zero) of transverse inflection

points of order greater than or equal to 2; in other words, the set
d⋃

k=3
Flex(F ,k−1) is finite.

To establish this proposition, let us first prove the following lemma.

Lemma 3.16. — Let F be a foliation of degree d ≥ 2 on P2
C, p a regular point of F and X a polynomial vec-

tor field defining F in an affine chart (x,y) containing p. Then, for any k∈ {2,3, . . . ,d}, Tang(F ,TPpF , p)≥ k

if and only if the matrix
(

X(x) X2(x) · · · Xk(x)
X(y) X2(y) · · · Xk(y)

)∣∣∣
p

has rank 1.

Remark 3.17. — If X=
n
∑

i=1
Xi(z1, . . . ,zn)

∂

∂zi
is a holomorphic vector field onCn and if t 7→α(t) is an integral

curve of X, then we have the following formula which can be easily proved by induction on j :

d j

dt j α(t) = (X j(z1), . . . ,X j(zn))◦α(t).(3.2)

Proof. — Let t 7→ α(t) be the integral curve of X passing through p at t = 0. The point p being
regular for F , we have TpF 3 α′(0) = X(p) 6= 0. Up to linear conjugation, we can assume that

p = (0,0) and TPpF = {y = 0}. We can then write α(t) =
(

∑
i≥1

xi
t i

i! , ∑
i≥1

yi
t i

i!

)
with y1 = 0 and x1 6= 0.
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Thus, Tang(F ,TPpF , p) = ν(g(t),0), where g(t) = ∑
i≥2

yi
t i

i! . As a result, Tang(F ,TPpF , p) ≥ k if and only

if y2 = y3 = · · · = yk = 0, or equivalently if and only if the matrix
(

x1 x2 · · · xk
0 y2 · · · yk

)
has rank 1.

Now, by using formula (3.2), we see that(
x1 x2 · · · xk
0 y2 · · · yk

)
=

(
X(x) X2(x) · · · Xk(x)
X(y) X2(y) · · · Xk(y)

)∣∣∣
(x,y)=(0,0)

,

hence the lemma follows.

Proof of Proposition 3.15. — (i) For F ∈ F(d), to say that IF is transverse and reduced means that F has
no invariant line and that IF has no multiple component, which shows that U2(d) is a ZARISKI open subset
of F(d).
As we have already mentioned in Example 3.13, the JOUANOLOU’s foliation F d

J has no invariant algebraic
curve [12]; in particular, it has no invariant line and consequently IF d

J
= Itr

F d
J
. To establish the first announced

assertion, it remains to prove that IF d
J

is reduced. In homogeneous coordinates, the foliation F d
J is defined

by the vector field yd ∂

∂x + zd ∂

∂y + xd ∂

∂z ; an immediate computation, using formula (1.1), shows that IF d
J

has
equation F(x,y,z) = 0, where

F(x,y,z) = x2d+1zd−1 + y2d+1xd−1 + z2d+1yd−1−3xdydzd .

We must show that F has no multiple factor in C[x,y,z]. Since F ∈ Z[x,y,z], it suffices to show that F has
no multiple factor in F2[x,y,z]. Indeed, if F had a multiple factor in C[x,y,z], then one of the resultants
Resx(F, ∂F

∂x ) ∈ Z[y,z] or Resy(F, ∂F
∂y ) ∈ Z[x,z] or Resz(F, ∂F

∂z ) ∈ Z[x,y] would be identically zero and therefore
so would be its reduction modulo 2; so that F would also have a multiple factor in F2[x,y,z]. We have to show
that gcd(F, ∂F

∂x ,
∂F
∂y ,

∂F
∂z ) = 1 in F2[x,y,z], or equivalently that

gcd(F, ∂F
∂x ) = 1 in F2(y,z)[x], gcd(F, ∂F

∂y ) = 1 in F2(x,z)[y], gcd(F, ∂F
∂z ) = 1 in F2(x,y)[z].

The coordinates x,y,z playing a symmetric role, it suffices again to show that gcd(F, ∂F
∂x ) = 1 in F2(y,z)[x].

In F2[x,y,z] we have

F = x2d+1zd−1 + y2d+1xd−1 + z2d+1yd−1 + xdydzd and ∂F
∂x = xd−2

(
xd+2zd−1 +dxydzd +(d +1)y2d+1

)
.

Then x = 0 is not a root of F ∈ F2(y,z)[x] and consequently

F2(y,z)[x] 3 gcd(F, ∂F
∂x ) = gcd(F,ϕ), where ϕ = xd+2 +dxzyd +(d +1)

y2d+1

zd−1 .

Moreover, a straightforward computation shows that

x3F =
(

xd+2zd−1− (d−1)xydzd −dy2d+1
)

ϕ+ yd−1z2d+1
(

x+
yd+1

zd

)(
x2 +(d2−d−1)

yd+1

zd x+d(d +1)
y2d+2

z2d

)
,
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so that

F2(y,z)[x] 3 gcd(F,ϕ) = gcd
((

x+
yd+1

zd

)(
x− yd+1

zd

)
, ϕ

)
, because d2−d ≡ d(d +1)≡ 0 mod 2

= gcd
(

x− yd+1

zd , xd+2 +dxzyd +(d +1)
y2d+1

zd−1

)
= gcd

(
x− yd+1

zd , xd+2− y2d+1

zd−1

)
= 1,

because
(

yd+1

zd

)d+2

6= y2d+1

zd−1 in the field F2(y,z). As a result F2(y,z)[x] 3 gcd(F, ∂F
∂x ) = 1.

(ii) Let F be a foliation of degree d ≥ 3 on P2
C with reduced and transverse inflection divisor IF , i.e.

F ∈U2(d). We want to show that the set Γ(F ) :=
d⋃

k=3
Flex(F ,k−1) is finite. By definition of Γ(F ) we have

Γ(F )⊂
{

p ∈ P2
C | p 6∈ Sing(F ), Tang(F ,TPpF , p)≥ 3

}
.(3.3)

Let X be a vector field defining F in an affine chart C2 = {(x,y)} ⊂ P2
C. Lemma 3.16 and inclusion (3.3)

imply that Γ(F )∩C2 is contained in the set of points p ∈ C2 such that(
X(x)
X(y)

)
(p) 6=

(
0
0

)
, IX(p) :=

∣∣∣∣ X(x) X2(x)
X(y) X2(y)

∣∣∣∣(p) = 0, X(IX)(p) =
∣∣∣∣ X(x) X3(x)

X(y) X3(y)

∣∣∣∣(p) = 0.

Now, the affine chart C2 = {(x,y)} ⊂ P2
C being arbitrary, Γ(F ) is finite if and only if Γ(F )∩C2 is finite.

It suffices therefore to show that the algebraic curves IF ∩C2 = {IX(x,y) = 0} and C := {X(IX)(x,y) = 0}
intersect at a finite number of points, i.e. that they have no common component. Let us argue by contradiction
and assume that there exist K,L,L′ ∈ C[x,y], with degK > 0, such that IX = KL and X(IX) = KL′. Then
KL′ = X(KL) = X(K)L+KX(L) and therefore X(K)L = K(L′−X(L)). Moreover, the hypothesis that IF is
reduced implies that gcd(K,L) = 1. It follows that there is L′′ ∈ C[x,y] such that X(K) = KL′′, which means
that the algebraic curve C ′ := {K(x,y) = 0}, contained in IF , is invariant by F , contradicting the hypothesis
that IF is transverse.

Theorem 3.18. — Let d be an integer greater than or equal to 2. Let us denote by Σ2(d) the subset of F(d)
defined by

Σ2(d) :=
{

F ∈ F(d) | Flex(F ,d−1) 6= /0

}
.

Then
(a) B(F 2

2 ) = F(2)\FC(2) = Σ2(2) and, for any d ≥ 3, we have /0 6= Σ2(d) B(F d
2 );

(b) Σ2(d) is a constructible subset of F(d);
(c) for any d ≥ 3, we have dimΣ2(d)≥ dimF(d)− (d−3).

In particular, the set Σ2(3), and therefore B(F 3
2 ), contains a non-empty ZARISKI open subset of F(3).

Proof. — (a) As we have already said in Introduction, the first equality B(F 2
2 ) = F(2) \ FC(2) follows

from [9, Theorem 3]. The second equality F(2)\FC(2) = Σ2(2) is a consequence of the following obvious
remark: if F ∈ F(2)\FC(2) then every transverse inflection point of F is of order 1.
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The set Σ2(d) contains the foliations H d
2 and F d

J (Examples 3.12 and 3.13) and is therefore non-empty.
According to assertion 2. of Proposition 3.11, we have Σ2(d)⊂ B(F d

2 ); this inclusion is strict for any d ≥ 3
as Example 3.14 shows.

(b) Let π : F(d)×P2
C→ F(d) be the projection onto the first factor; notice that Σ2(d) = π(W2(d)), where

W2(d) : =
⋃

F ∈Σ2(d)

{F }×Flex(F ,d−1)

=
{
(F , p) ∈ F(d)×P2

C | p 6∈ Sing(F ), Tang(F ,TPpF , p) = d
}
.

By Lemma 3.16, W2(d) can be rewritten as

W2(d) =
{
(F , p) ∈ F(d)×P2

C |
(

X(x)
X(y)

)
(p) 6=

(
0
0

)
,

∣∣∣∣ X(x) X j(x)
X(y) X j(y)

∣∣∣∣(p) = 0, j = 2, . . . ,d
}
,(3.4)

where X denotes a polynomial vector field defining F in an affine chart (x,y) containing p. It follows
that W2(d) is a quasi-projective subvariety of F(d)× P2

C. Therefore, by CHEVALLEY’s theorem [11, Ex-
ercise II.3.19], the set Σ2(d) = π(W2(d)) is constructible.

(c) From the above discussion and Proposition 3.15 (i), we have F d
J ∈U2(d)∩Σ2(d) 6= /0 (U2(d) being the

set of foliations of F(d) with reduced and transverse inflection divisor). Therefore there exists an irreducible
component Σ0

2(d) of Σ2(d) such that U2(d)∩Σ0
2(d) 6= /0. We denote by π0 : W2(d)→ F(d) the restriction of π

to W2(d). Let W2(d) =
n⋃

i=1
W i

2(d) be the decomposition of W2(d) into its irreducible components. Then, by

arguing as in the proof of Theorem 3.10, we see that there is k ∈ {1, . . . ,n} such that π0(W k
2 (d)) = Σ0

2(d).
Since U2(d) is a ZARISKI open subset of F(d) (Proposition 3.15 (i)), the morphism π0 therefore induces
by restriction a dominant morphism of quasi-projective varieties πk

0 : W k
2 (d)∩π

−1
0 (U2(d))→ Σ0

2(d)∩U2(d).
Notice that, for any F ∈ U2(d) ∩ Σ2(d), the fiber π

−1
0 (F ) is finite and non-empty, because π

−1
0 (F ) =

{F } × Flex(F ,d − 1) and Flex(F ,d − 1) is finite and non-empty by assertion (ii) of Proposition 3.15.
Since π0(W k

2 (d)∩π
−1
0 (U2(d)))⊂U2(d)∩Σ2(d), we deduce that all the non-empty fibers of πk

0 are finite and
therefore zero-dimensional. The fiber dimension theorem (cf. [15, Theorem 3, page 49]) then ensures
that dim(W k

2 (d)∩ π
−1
0 (U2(d))) = dim(Σ0

2(d)∩U2(d)); since W k
2 (d)∩ π

−1
0 (U2(d)) and Σ0

2(d)∩U2(d) are
non-empty open subsets of the irreducible varieties W k

2 (d) and Σ0
2(d) respectively, we have

dimΣ0
2(d) = dim(Σ0

2(d)∩U2(d)) = dim(W k
2 (d)∩π

−1
0 (U2(d))) = dimW k

2 (d).

Now, it follows from (3.4) that each irreducible component W i
2(d) of W2(d) has dimension

dimW i
2(d)≥ dim(F(d)×P2

C)− (d−1) = dimF(d)− (d−3),

hence
dimΣ2(d) = dimΣ2(d)≥ dimΣ0

2(d) = dimW k
2 (d)≥ dimF(d)− (d−3).

The subset Σ2(d)⊂ F(d) being constructible, it contains a dense open subset of its closure Σ2(d). In degree
d = 3 we have dimΣ2(3)≥ dimF(3) and therefore dimΣ2(3) = dimF(3), so that Σ2(3) = F(3) because F(3)
is irreducible. It follows that Σ2(3) contains a dense open subset of F(3). This ends the proof of the theorem.
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Remark 3.19. — The set F(d) contains elements which degenerate onto both F d
1 and F d

2 , e.g. the family of
foliations Gd(γ), γ∈C. Indeed, on the one hand, we have seen (Example 3.6) that Gd(γ) degenerates onto F d

1 .

On the other hand, by putting ϕ = ( x
ε
, y

ε
) we obtain that lim

ε→0
εd+1ϕ∗ηd(γ) = ω

d
2 , which shows that Gd(γ)

degenerates onto the homogeneous foliation H d
2 (Example 3.12) and therefore, by transitivity, onto F d

2 .

Example 3.20. — Let us consider the homogeneous foliation H d
1,2 defined in the affine chart z = 1 by the

1-form
ω

d
1,2 = (xd + yd)dx+ xddy.

This foliation degenerates onto both F d
1 and F d

2 . Indeed, on the one hand, H d
1,2 is given in the affine chart y= 1

by
θ

d
1,2 = xdz− zdx+ xddz+ xd(xdz− zdx);

we see that the point [0 : 1 : 0] is a radial singularity of maximal order d−1 of H d
1,2. Thus, by Proposition 3.4,

H d
1,2 degenerates onto F d

1 . On the other hand, a straightforward computation shows that

Flex(H d
1,2,d−1) = {y = 0}\{[0 : 0 : 1]} 6= /0;

consequently, H d
1,2 also degenerates onto F d

2 (Proposition 3.11).

Since O(H d
1,2)⊂ O(H d

1,2)∪O(F d
1 )∪O(F d

2 ) (Remark 3.3), we deduce that in fact

O(H d
1,2) = O(H d

1,2)∪O(F d
1 )∪O(F d

2 ).

Theorem 3.21. — Let d be an integer greater than or equal to 2. Then
(a) /0 6= Σ1(d)∩Σ2(d)⊂ B(F d

1 )∩B(F d
2 )⊃ B(H d

1,2);

(b) B(H d
1,2) contains a quasi-projective subvariety of F(d) of dimension equal to dimF(d)−3d.

Proof. — (a) The intersection Σ1(d)∩Σ2(d) contains the homogeneous foliation H d
1,2 (Example 3.20) and is

therefore non-empty. The inclusion Σ1(d)∩Σ2(d)⊂ B(F d
1 )∩B(F d

2 ) follows from Theorems 3.10 and 3.18.
Let us show the inclusion B(H d

1,2)⊂B(F d
1 )∩B(F d

2 ). Let F ∈B(H d
1,2), i.e. F ∈ F(d) such that H d

1,2 ∈O(F ).

Since H d
1,2 degenerates onto F d

i , i = 1,2, it follows that F d
i ∈ O(H d

1,2)⊂ O(F ), hence F ∈ B(F d
1 )∩B(F d

2 ).

(b) Let us denote by Σ(H d
1,2) the subset of F(d) defined as follows: an element F of F(d) belongs to

Σ(H d
1,2) if and only if

(1) F admits an invariant line `;
(2) there is a system of homogeneous coordinates [x : y : z] ∈ P2

C in which `= {z = 0} and F is defined in
the affine chart z = 1 by a 1-form ω of type

ω =
d−1

∑
i=0

ωi +λω
d
1,2 =

d−1

∑
i=0

ωi +λ

(
(xd + yd)dx+ xddy

)
,

where λ ∈ C∗ and the ωi’s are homogeneous 1-forms of degree i.
Notice that Σ(H d

1,2) ⊂ B(H d
1,2). Indeed, by putting ϕ = ( x

ε
, y

ε
) and by writing ωi = Pi(x,y)dx+Qi(x,y)dy,

where Pi,Qi ∈ C[x,y]i, we obtain

ε
d+1

ϕ
∗
ω =

d−1

∑
i=0

(εd−iPi(x,y)dx+ ε
d−iQi(x,y)dy)+λω

d
1,2
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which tends to λω
d
1,2 as ε tends to 0. It follows that H d

1,2 ∈ O(F ) for any F ∈ Σ(H d
1,2), hence the inclusion

Σ(H d
1,2)⊂ B(H d

1,2) holds.
Moreover, every foliation F ∈ F(d) is given in the affine chart z = 1 by a 1-form of type

d

∑
i=0

(
Ai(x,y)dx+Bi(x,y)dy

)
+Cd(x,y)(xdy− ydx),

where Ai,Bi ∈C[x,y]i,Cd ∈C[x,y]d with gcd
(
yCd−

d
∑

i=0
Ai,xCd +

d
∑

i=0
Bi
)
= 1. Condition (2) is then equivalent

to taking Cd ≡ 0, Ad(x,y) = λ(xd +yd), Bd(x,y) = λxd . Since the set of foliations of F(d) admitting an invari-
ant line is a ZARISKI closed subset of F(d), we deduce that Σ(H d

1,2) is a quasi-projective subvariety of F(d).
Since ω and µω define the same foliation if µ 6= 0, and the choice of a line `⊂ P2

C is equivalent to the choice
of a point in P̌2

C, conditions (1) and (2) imply that

dimΣ(H d
1,2) = 2+2

d−1

∑
i=0

(i+1) = d2 +d +2 = dimF(d)−3d.

4. A family of foliations of F(d) with orbits of dimension less than or equal to 7

In this section we will establish some properties of the family (F d
0 (λ))λ∈C∗ of foliations of degree d on P2

C
defined in the affine chart z = 1 by

ω
d
0(λ) = xdy−λydx+ yddy.

In homogeneous coordinates, F d
0 (λ) is given by

Ω
d
0(λ) =−λyzddx+ z

(
xzd−1 + yd

)
dy+ y

(
(λ−1)xzd−1− yd

)
dz.

Thus, the singular locus of F d
0 (λ) consists of the two points s1 = [0 : 0 : 1] and s2 = [1 : 0 : 0]. The singularity s1

is non-degenerate with BAUM-BOTT index BB(F d
0 (λ),s1) = 2+λ+ 1

λ
and the singular point s2 has maximal

algebraic multiplicity d. We see that for λ = 1 the 1-form Ωd
0(1) writes in the affine chart x = 1 as

zddy+ yd(zdy− ydz);

we deduce that F d
0 (1) is conjugated to the foliation F d

1 and is therefore convex.
In the sequel we assume that λ ∈ C\{0,1}. A direct computation, using formula (1.1), leads to

Iinv
F d

0 (λ)
= yz2d−1 and Itr

F d
0 (λ)

= (λ−1)x−
(
(d−1)λ+1

)
yd ;(4.1)

it follows that, for any λ ∈ C\{0,1}, F d
0 (λ) is not convex.

A straightforward computation shows that the algebraic curve (1− λd)x+ yd = 0 is invariant by F d
0 (λ).

What is more, the rational 1-form ηd
0(λ) =

ωd
0(λ)

y((1−λd)x+ yd)
is closed. For λ = 1

d we note that ηd
0(

1
d ) =

ωd
0(λ)

yd+1 has as first integral
x

dyd − lny; this allows to see that Iso(F d
0 ( 1

d )) is the group {(αdx,αy) | α ∈ C∗}.

When λ ∈ C\{0,1, 1
d} a straightforward computation shows that ηd

0(λ) integrates into

λ ln
(
(1−λd)x+ yd

)
− lny,
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which allows to verify that the isotropy group is here again

Iso(F d
0 (λ)) = {(αdx,αy) | α ∈ C∗}.

It follows in particular that, for any λ ∈ C\{0,1}, O(F d
0 (λ)) has dimension 7.

Notice that two foliations F d
0 (λ) and F d

0 (λ′) are conjugated if and only if λ = λ′.

Proposition 4.1. — Let λ be a nonzero complex number. Let F be an element of F(d) such that F d
0 (λ) 6∈

O(F ).
1. If F degenerates onto F d

0 (λ), then F admits a non-degenerate singular point m satisfying BB(F ,m) =

2+λ+ 1
λ

.
2. If F possesses a non-degenerate singular point m such that

BB(F ,m) = 2+λ+
1
λ

and κ(F ,m) = d,

then F degenerates onto F d
0 (λ).

Proof. — It suffices to argue as in the proof of Proposition 3.4, replacing the foliation F d
1 by F d

0 (λ) and the
equality BB(F ,m) = 4 by BB(F ,m) = 2+λ+ 1

λ
.

Proposition 4.2. — The orbit O
(
F d

0 (λ)
)

is closed in F(d) in the following two cases:

(i) d ≥ 3 and λ =− 1
d−1

;

(ii) d ∈ {3,4,5} and λ ∈ C∗.

The proof of this proposition uses the following lemma.

Lemma 4.3. — Let λ be a nonzero complex number. Then, the orbit O
(
F d

0 (λ)
)

is closed in F(d) if and only
if F d

0 (λ) does not degenerate onto F d
2 .

Proof. — The direct implication is obvious. Let us prove the converse. From the above discussion, F d
0 (1)

is conjugated to the convex foliation F d
1 ; therefore its orbit O

(
F d

0 (1)) is closed in F(d). For any λ∈C\{0,1},
the unique non-degenerate singular point s1 = [0 : 0 : 1] of F d

0 (λ) has BAUM-BOTT index BB(F d
0 (λ),s1) =

2+ λ+ 1
λ
6= 4; this implies, according to assertion 1. of Proposition 3.4, that F d

0 (λ) does not degenerate
onto F d

1 . Moreover, for any λ∈C\{0,1}, O(F d
0 (λ)) has dimension 7. The converse implication then follows

immediately from Corollary B.

Proof of Proposition 4.2. — (i) Let us put λ0 =− 1
d−1 ; according to (4.1) we have Itr

F d
0 (λ0)

= (λ0−1)x, hence

degItr
F d

0 (λ0)
= 1 < d− 1 for any d ≥ 3. According to the first assertion of Proposition 3.11, it follows that,

for any d ≥ 3, the foliation F d
0 (λ0) does not degenerate onto F d

2 , so that its orbit O
(
F d

0 (λ0)
)

is closed
in F(d) (Lemma 4.3).

(ii) Let [x : y : z] be homogeneous coordinates in P2
C. For n ∈ N, let us denote by Λ1

n the C-vector space
of 1-forms in the variables x,y,z, whose coefficients are homogeneous polynomials of degree n. Let us put
α = ydz− zdy, β = zdx− xdz and γ = xdy− ydx. We have the identification

F(d) =
{
[Ω] ∈ P(Λ1

d+1) | Ω = pdx+qdy+ rdz, p,q,r ∈ C[x,y,z]d+1, xp+ yq+ zr = 0,gcd(p,q,r) = 1
}

=
{
[Ω] ∈ P(Λ1

d+1) | Ω = Aα+Bβ+Cγ, A,B ∈ C[x,y,z]d , C ∈ C[x,y]d , gcd
(
yA− xB,zB− yC,xC− zA

)
= 1
}
.
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By writting

A = ξ1 xd +ξ3 xd−1y+ · · ·+ξ2d+1 yd +
(

ξ2d+3 xd−1 +ξ2d+5 xd−2y+ · · ·+ξ4d+1 yd−1
)

z+
(

ξ4d+3 xd−2 +ξ4d+5 xd−3y+ · · ·+ξ6d−1 yd−2
)

z2 + · · ·+ξd2+3d+1 zd ,

B = ξ2 xd +ξ4 xd−1y+ · · ·+ξ2d+2 yd +
(

ξ2d+4 xd−1 +ξ2d+6 xd−2y+ · · ·+ξ4d+2 yd−1
)

z+
(

ξ4d+4 xd−2 +ξ4d+6 xd−3y+ · · ·+ξ6d yd−2
)

z2 + · · ·+ξd2+3d+2 zd ,

C = ξd2+3d+3 xd +ξd2+3d+4 xd−1y+ξd2+3d+5 xd−2y2 + · · ·+ξd2+4d+2 xyd−1 +ξd2+4d+3 yd ,

we can identify the class [Ω] of Ω = Aα+Bβ+Cγ to the element [ξ1 : ξ2 : · · · : ξd2+4d+3] ∈ Pd2+4d+2
C . Thus,

we can identify F(d) with the ZARISKI open set:


[ξ1 : ξ2 : · · · : ξd2+4d+3] ∈ P

d2+4d+2
C

∣∣∣∣∣∣∣∣∣∣∣

A = ξ1xd +ξ3xd−1y+ · · ·+ξ2d+1yd +
(
ξ2d+3xd−1 +ξ2d+5xd−2y+ · · ·+ξ4d+1yd−1)z+ · · ·+ξd2+3d+1zd

B = ξ2xd +ξ4xd−1y+ · · ·+ξ2d+2yd +
(
ξ2d+4xd−1 +ξ2d+6xd−2y+ · · ·+ξ4d+2yd−1)z+ · · ·+ξd2+3d+2zd

C = ξd2+3d+3xd +ξd2+3d+4xd−1y+ξd2+3d+5xd−2y2 + · · ·+ξd2+4d+2xyd−1 +ξd2+4d+3yd

gcd
(
yA− xB,zB− yC,xC− zA

)
= 1


.

Then, via this identification, we have

F d
2 =

[
Ω

d
2
]
=
[
xd

β+ yd
γ] = [0 : 1 : 0 : 0 : · · · : 0 : 0 : 1

]
and

F d
0 (λ) =

[
Ω

d
0(λ)

]
=
[
(yd + xzd−1)α+λyzd−1

β
]
=
[

0 : 0 : · · · : 0︸ ︷︷ ︸
2d

: 1 : 0 : 0 : · · · : 0︸ ︷︷ ︸
d2+d−5

: 1 : 0 : 0 : λ : 0 : 0 : · · · : 0︸ ︷︷ ︸
d+3

]
.

In addition, the orbit of a foliation F = [Ω] ∈ F(d) is

O(F ) =
{
[ϕ∗Ω]

∣∣∣ ϕ = [a1x+a2y+a3z : a4x+a5y+a6z : a7x+a8y+a9z] ∈ Aut(P2
C)
}
.

Let [x1 : x2 : · · · : xd2+4d+3] be a system of homogeneous coordinates in Pd2+4d+2
C . For d = 3, let us consider

the following homogeneous polynomial in x1,x2, . . . ,x24 of degree 5:

P3 =−90x2

(
x1 (294x1−269x4)+10x2 (29x3 +4x6)+86x2

4

)
x22x24−1125x2

2 (21x1−23x4)x23x24

+45x2

(
2x3 (294x1 +13x4)− x6 (552x1−271x4)+1125x2x5

)
x21x24 +28125x2x10x21x23x24

+25
(

108(x9−2x12)(3x1−4x4)+9x10 (112x3−93x6)+675x2x11

)
x2

21x24−6000x2x10x2
22x24

−5625x5x11x3
21 +20

(
(2x1− x4)(41x9−7x12)+30x10 (2x3−3x6)+50x2x11

)
x3

22−50625x3
2x2

24

−5
(

2x9 (207x1−116x4)− x12 (153x1−314x4)+5x10 (356x3−359x6)+1350x2x11

)
x21x22x23

+1875
(

x11 (2x3− x6)+ x5 (2x9− x12)
)

x2
21x22−375x2

(
2x1 (3x1−7x4)− x2 (3x3−2x6)+8x2

4

)
x2

23

+50
(

5x10 (39x1−38x4)−3x2 (x9−32x12)
)

x21x2
23−50

(
x10 (14x1−37x4)−3x2 (7x9 + x12)

)
x2

22x23

+15
(

5x11 (21x1 +22x4)−8x3 (14x9−43x12)+6x6 (13x9−56x12)−350x5x10

)
x2

21x23 +Rx2
21

−5
(

20x11 (24x1−7x4)+4x9 (97x3−43x6)+ x12 (94x3−211x6)−600x5x10

)
x21x2

22 +Sx21x22

−75
(

2x10 (78x1−29x4)−15x2 (2x9−19x12)
)

x21x22x24 +125x2x10x22x2
23 +T x2

22 +Ux21x23

+V x22x23,
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where

R = 5568x6x5 (3x1−4x4)−18x3x5 (1612x1−1941x4)+6x2
3 (1952x3−4389x6)+3x2

6 (7057x3−2136x6)−11250x2x2
5

+2700x7 (3x1−4x4)
2 +54x8 (3x1−4x4)(106x3−89x6) ,

S = 27000x2x7 (3x1−4x4)−24x2
3 (658x1−249x4)+1512x4x8 (11x1−4x4)+252x2

1 (83x5−36x8)−90x2x3 (329x5−318x8)

−2x4x5 (17073x1−6047x4)+3x1x6 (8712x3−3599x6)− x4x6 (11658x3−6041x6)+90x2x6 (226x5−267x8) ,

T = 20x1x3 (294x1−253x4)−40x1x6 (159x1−152x4)+1900x2x3 (x3− x6)+20x2
4 (68x3−95x6)−25x2x6 (40x3−33x6)

+60x1x2 (361x5−252x8)−10x2x4 (983x5−756x8)+67500x2
2x7,

U = 90x1x3 (98x1−117x4)−30x1x6 (171x1−284x4)−150x2x6 (68x3−35x6)−30x2x4 (167x5 +396x8)+7050x2x2
3

+20x2
4 (73x3−157x6)+270x1x2 (41x5 +33x8) ,

V = 5x2x4 (1604x3−611x6)−30x2
1 (294x1−563x4)−30x2

4 (355x1−86x4)−30x1x2 (463x3−242x6)−75x2
2 (109x5−198x8) .

A computation carried out with Maple shows that evaluating P3 at an arbitrary element [ξ1 : ξ2 : · · · : ξ24] of
O
(
F 3

0 (λ)
)
, we find P3

(
[ξ1 : ξ2 : · · · : ξ24]

)
= 0, i.e. O

(
F 3

0 (λ)
)

is contained in the zero locus of P3

Zeros(P3) :=
{
[x1 : x2 : · · · : x24] ∈ P23

C | P3
(
[x1 : x2 : · · · : x24]

)
= 0
}
,

which is a ZARISKI closed subset of P23
C . Therefore we have O

(
F 3

0 (λ)
)
⊂ Zeros(P3) for any λ ∈ C∗. More-

over, we have

P3 (0,1,0,0, · · · ,0,0,1) =−50625 6= 0,

hence F 3
2 6∈ Zeros(P3). It follows that, for any λ ∈ C∗, we have F 3

2 6∈ O
(
F 3

0 (λ)
)
, so that F 3

0 (λ) does not
degenerate onto F 3

2 . Consequently, according to Lemma 4.3, the orbit O
(
F 3

0 (λ)
)

is closed in F(3).
To show that the orbit O

(
F 4

0 (λ)
)
, resp. O

(
F 5

0 (λ)
)
, is closed in F(4), resp. F(5), it suffices to argue as in

degree d = 3, replacing the polynomial P3 by the following polynomial P4, resp. P5:

P4 =
(

3x3 (129x3−212x6)+3x4 (178x5 +15x8)+12x1 (22x5−3x8)+5184x2x7−20x2
6

)
x31 +1728x15x2

31

−432(2x13− x16)x31x32 +48(42x11−31x14)x31x33−18(24x11−19x14)x2
32−162x2 (4x1−15x4)x34

−18
(

2x1 (27x3−20x6)− x4 (15x3− x6)+ x2 (170x5−69x8)
)

x32 +4212x12x31x34−486x12x32x33

+36
(

3(x1− x4)(12x1− x4)+22x2 (3x3−2x6)
)

x33−10368x2
2x35,

resp. P5 =
(

50x7 (4906x1−4749x4)−27040x10 (5x1−6x4)−5x5 (10596x3−13469x6)+20x8 (1019x3−2028x6)

+569100x2x9

)
x43 +142275x19x2

43−11690x17x43x44 +98140x14x43x47−140x2 (2180x1−1691x4)x47

+35(1564x13−1645x16)x43x46 +
(

8620x8 (2x1− x4)−50x5 (141x1−11x4)+10x3 (513x3−1580x6)

+70x2 (2779x7−2704x10)+9875x2
6

)
x44−35

(
(x1− x4)(295x1 +683x4)− x2 (3776x3−4427x6)

)
x46

+70(323x18−253x15)x43x45 +7(686x13−293x16)x44x45−2975x15x2
44−15946x14x2

45−1422750x2
2x48

+
(

14x3 (15x1 +1124x4)−14x6 (10x1 +1129x4)−595x2 (221x5−250x8)
)

x45 +49210x14x44x46.
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For d ≥ 6, we propose:

Conjecture 1. — Let d be an integer greater than or equal to 6 and λ a nonzero complex number. A homo-
geneous coordinate system [x1 : x2 : · · · : xd2+4d+3] being fixed in Pd2+4d+2

C , there exists a homogeneous poly-
nomial Qd ∈ C[x1,x2, · · · ,xd2+4d+3] of degree 3, not depending on λ, which vanishes on the orbit O

(
F d

0 (λ)
)

and does not vanish at the point F d
2 = [0 : 1 : 0 : 0 : · · · : 0 : 0 : 1

]
.

Computations made with Maple by the first author show the validity of this conjecture for d small (d ≤ 30)
by taking the polynomial Qd in the following form:

Qd = xd2+3d+3

(
d−1

∑
i=1

αi x2d+2i+1 xd2+4d+2−i +
4

∑
i=0

βi x2d+2i+4 xd2+4d+2−i

)
+(x1 x2 · · · xd+1)M


xd2+4d+3
xd2+4d+2

...
xd2+3d+3


+ xd2+3d+4

(
δ0 x2d+4 xd2+4d+1 +δ1 x2d+6 xd2+4d +

d−3

∑
i=1

γi x2d+2i+1 xd2+4d+1−i

)
,

where M =


L1
L2
...

Ld+1

 is a square matrix of order d +1 whose lines are of the form:

L1 =
[
0 0 a1,3x1 +b1,3x4 a1,4x3 +b1,4x6 a1,5x5 +b1,5x8 · · · a1,d+1x2d−3 +b1,d+1x2d

]
L2 =

[
b2,1x2 a2,2x1 +b2,2x4 a2,3x3 +b2,3x6 a2,4x5 +b2,4x8 a2,5x7 +b2,5x10 · · · a2,d+1x2d−1 +b2,d+1x2d+2

]
...

L2k−1 =

0 0 · · · 0︸ ︷︷ ︸
min(2k,d+1)

a2k−1,2k+1x2k−1 +b2k−1,2k+1x2k+2 a2k−1,2k+2x2k+1 +b2k−1,2k+2x2k+4 · · · a2k−1,d+1x2d−2k−1 +b2k−1,d+1x2d−2k+2


L2k =

0 0 · · · 0︸ ︷︷ ︸
2k−2

b2k,2k−1x2k a2k,2kx2k−1 +b2k,2kx2k+2 a2k,2k+1x2k+1 +b2k,2k+1x2k+4 · · · a2k,d+1x2d−2k+1 +b2k,d+1x2d−2k+4

 ,
where αi,βi,γi,δi,ai, j,bi, j ∈ C with b2,1 6= 0.

It is clear that Conjecture 1 and Lemma 4.3 imply the following conjecture.

Conjecture 2. — For any integer d ≥ 6 and any λ ∈ C∗, the orbit O
(
F d

0 (λ)
)

is closed in F(d).
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