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Abstract. The famous example of the double-Watt mechanism given by Connelly and Servatius
raises some problems concerning the classical definitions of higher-order flexibility and rigidity, re-
spectively, as they attest the cusp configuration of the mechanism a third-order rigidity, which con-
flicts with its continuous flexion. Some attempts were done to resolve the dilemma but they could
not settle the problem. As cusp mechanisms demonstrate the basic shortcoming of any local mo-
bility analysis using higher-order constraints, we present a global approach inspired by Sabitov’s
finite algorithm for testing the bendability of a polyhedron, which allows us (a) to compute itera-
tively configurations with a higher-order flexion and (b) to come up with a proper redefinition of
higher-order flexibility and rigidity. The presented approach is demonstrated on several examples
(double-Watt mechanisms and Tarnai’s Leonardo structure). Moreover, we determine all configura-
tions of a given 3-RPR manipulator with a third-order flexion and present a corresponding joint-bar
framework of flexion order 23.
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1 Introduction

In this paper we give a redefinition of higher-order flexibility and rigidity of bar-joint
frameworks. Such a framework G(K ) consists of a knot set

K = {X1, . . . ,Xw} (1)

and a graph G on K . A knot Xi corresponds a rotational/spherical joint (without
clearance) in the case of a planar/spatial framework. An edge connecting two knots
corresponds to a bar. We denote the number of edges by e.

By defining the combinatorial structure of the framework as well as the lengths
of the bars, which are assumed to be non-zero, the intrinsic geometry of the frame-
work is fixed. In general the assignment of the intrinsic metric does not uniquely
determine the embedding of the framework into the Euclidean space Rd , thus such
a framework can have different incongruent realizations.
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1.1 Algebraic approach to rigidity theory

The relation that two elements of the knot set are edge-connected can also be ex-
pressed algebraically. They are either quadratic constraints resulting from a squared
distance of vertices (implied by an edge) or linear condition, in the case that one
of the pin-joints gets an ideal-point. There are further linear conditions steaming
from the elimination of isometries1. In total this results in a system of l algebraic
equations c1 = 0, . . . ,cl = 0 in m unknowns z1, . . . ,zm, which constitute an algebraic
variety V (c1, . . . ,cl). Note that l equals e+ 6 in the spatial case and e+ 3 in the
planar one. Moreover, m equals for the planar case 2w and for the spatial one 3w.

If V (c1, . . . ,cl) is positive-dimensional then the framework is flexible; otherwise
rigid. The framework is called minimally rigid (isostatic) if the removal of any al-
gebraic constraint (resulting from an edge) will make the framework flexible. In
this case m = l has to hold. Rigid frameworks, which are not isostatic, are called
overbraced or overconstrained (l > m).

If V (c1, . . . ,cl) is zero-dimensional, then each real solution corresponds to a re-
alization G(X) of the framework for X = (x1, . . . ,xw). If there is exactly one real
solution, then the framework is called globally rigid.

We can compute in a realization the tangent-hyperplane to each of the hypersur-
faces ci = 0 in Rm for i = 1, . . . , l. Note that this is always possible as all hypersur-
faces are either hyperplanes or regular hyperquadrics. The normal vectors of these
tangent-hyperplanes constitute the columns of a m× l matrix RG(X), which is also
known as rigidity matrix of the realization G(X); i.e.

RG(X) =


∂c1
∂ z1

∂c2
∂ z1

. . . ∂cl
∂ z1

∂c1
∂ z2

∂c2
∂ z2

. . . ∂cl
∂ z2

...
...

. . .
...

∂c1
∂ zm

∂c2
∂ zm

. . . ∂cl
∂ zm

 . (2)

If its rank is m then the realization is infinitesimal rigid otherwise it is infinitesimal
flexible; i.e. the hyperplanes have a positive-dimensional affine subspace in com-
mon. Therefore the intersection multiplicity of the l hypersurfaces is at least two in
a shaky realization. Therefore a shaky configuration can also be seen as the limiting
case where at least two realizations of a framework coincide [34, 40].

Clearly, by using the rank condition rk(RG(X)) < m one can also characterize
all shaky realizations G(X) algebraically by the affine variety V1. This so-called
shakiness variety is the zero set of the ideal generated by the polynomials p1, . . . , pµ

which correspond to all µ :=
( l

l−m

)
minors of RG(X) of order m×m. Note that for

minimally rigid framework µ = 1 holds, where the infinitesimal flexibility is given
by p1 : det(RG(X)) = 0.

1 This are 6 linear constraints for d = 3 and 3 linear constraints for d = 2.
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2 Review on higher-order flexibility and rigidity

A first paper on the higher-order flexion of surfaces was written by Rembs [29]. In
contrast first results on higher-order rigidity of surfaces date back to Efimov [9]. An
exhaustive treatment of higher-order flexion and rigidity of surfaces was done by
Sabitov in [30], in which also a section is devoted to discrete structures. Connelly
gave a definition of 2nd-order flexibility and rigidity of frameworks in [7]. Tarnai
wrote a paper [43] on the definition of higher-order infinitesimal mechanisms, which
seems to be more problematic than that of a framework due to the existence of non-
analytic kinematic pairs. According to Stachel [38] all these approaches to higher-
order flexible frameworks can be unified to the so-called classical definition, which
reads as follows:

Definition 1. A framework has a nth-order flex if for each vertex xi (i = 1, . . . ,w)
there is a polynomial function

x′i := xi +xi,1t + . . .+xi,ntn with n > 0 (3)

such that

1. the replacement of xi by x′i in the equation of the edge lengths gives stationary
values of multiplicity ≥ n+1 at t = 0;

2. the velocity vectors x1,1, . . . ,xw,1 do not originate from a rigid body motion
(incl. standstill) of the complete framework; i.e. they are said to be non-trivial.

Remark 1. Tarnai’s definition relies on the power-series expansion of the elongation
of the bar in terms of the displacement, but his definition is equivalent to Definition
1 (cf. [43]). Following an idea of Koiter, one can replace the bar elongation by the
strain energy of the bars, which also results in an equivalent definition (cf. [31]).
Moreover, Kuznetsov [19] gave another definition of higher-flexibility, which relies
on the Taylor expansion of the constrained equations of the framework. Without
noticing it, exactly the same approach was used by Chen [6] to define the local
mobility of a mechanism. It can be seen from [28], that the (identical) definitions of
Kuznetsov and Chen are again equivalent with Definition 1. ⋄

Based on the notion of nth-order flex given in Definition 1 one can define nth-
order rigidity as follows [7, 8]:

Definition 2. A framework is nth-order rigid if every nth-order flex has x1,1, . . . ,xw,1
trivial as a 1st -order flex.

Remark 2. Clearly, in the context of Definition 1 one is only interested in the flex
with maximal n; i.e. the framework has to be rigid of order (n+ 1) according to
Definition 2. ⋄

But the famous example of the double-Watt mechanism (cf. Fig. 1) given by Con-
nelly and Servatius [8] raises some problems concerning these Definitions 1 and 2,
as they attest this mechanism a 3rd-order rigidity in a certain configuration, which
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x1 x2

Fig. 1 Double-Watt mechanism of Connelly and Servatius in its cusp configuration; i.e. the mech-
anism has an instantaneous standstill. The dimensions of each Watt mechanism are as follows: the
arms have length 1 and the coupler is of length

√
2. The midpoints x1 and x2 of both couplers are

connected by a bar of length 3.

x

y
x1 x2

Fig. 2 Reduction of the double-Watt mechanism of Connelly and Servatius to a two-point guidance
problem.

conflicts2 with its continuous flexibility. This configuration corresponds to a cusp in
the configuration space [8], which was also pointed out by Müller’s study [26] of
the mechanism from the perspective of kinematic singularities. Based on the latter
work further examples of cusp mechanisms (even spatial ones) were given in [22].

Example 1. In the following we present the analysis of the double-Watt mechanism
according to the method presented by Stachel in [39]. With respect to the coordinate
system displayed in Fig. 2 the coupler-curve of the point x1 is given by the algebraic
equation

x6 +3x4y2 +3x2y4 + y6 +3x4 +6x3y−2x2y2 +6xy3 −5y4 −6xy+8y2 = 0. (4)

We are interested in the branch where the x-axis is the tangent to the inflection point.
It can be parametrized locally by means of Puiseux series as:

x1 =

(
τ1

1
2 τ3

1 + τ5
1 +

9
4 τ7

1 +
13
2 τ9

1 + . . .

)
. (5)

Clearly, the path of x2 is obtained by reflection on the x-axis and by translation along
the vector (0,3)T yielding:

x2 =

(
τ2

3− 1
2 τ3

2 − τ5
2 −

9
4 τ7

2 −
13
2 τ9

2 − . . .

)
. (6)

Thus we end up with a two-point guidance problem, where the time dependence of
τi is set up by

2 One expects from a proper definition that an nth-order rigidity implies rigidity (cf. [8]).
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τi = vi,1t + vi,2t2 + vi,3t3 + . . . . (7)

Now the vi, j have to be adjusted in order to fulfill

F := ∥x2(τ2)−x1(τ1)∥2 −32 = o(tn) (8)

for a nth-order flexibility at t = 0. We substitute Eq. (7) into Eq. (8) and consider the
coefficients fi of t i in the resulting expression. We get f1 = 0 and f2 = (v1,1−v2,1)

2.
Setting v2,1 = v1,1 we get f3 = −6v3

1,1. This means with v1,1 ̸= 0 it is only flexible
of 2nd-order implying 3rd-order rigidity. ⋄

Two attempts are known to the author to resolve the dilemma (cf. Footnote 2):
Gaspar and Tarnai [11] suggested to use fractional exponents which corresponds to
the replacement of Eq. (3) by

x′i := xi +xi,1t +x
i, 3

2
t

3
2 +xi,2t2 +x

i, 5
2

t
5
2 . . .+xi,ntn, (9)

where x1,1, . . . ,xw,1 is non-trivial. This solved the particular problem for the cusp
configuration of the double-Watt mechanism but not the parametrization problem
according to [44], where it is also written that “a very promising approach was
presented recently by [38]”.

This approach of Stachel follows the more general notation of (k,n)-flexibility
suggested by Sabitov [30] which replaces Eq. (3) by

x′i := xi +xi,ktk + . . .+xi,ntn with n ≥ k > 0 (10)

where x1,k, . . . ,xw,k is non-trivial. In addition Eq. (10) has to represent an irreducible
flex; this means that Eq. (10) does not result from a polynomial parameter substitu-
tion of a lower-order flex.

Example 2. Continuation of the double-Watt mechanism: According to the notation
of Eq. (10) the double-Watt mechanism in the cusp configuration is (1,2)-flexible
but not (1,3)-flexible (cf. Example 1). Therefore we set v1,1 and continue Example
1 by considering f4 = (v1,2 − v2,2)

2. We set v2,2 = v1,2 and get f5 = 0. Moreover,
for f6 we obtain the expression −6v3

1,2 +v2
1,3 −2v1,3v2,3 +v2

2,3, which can be solved

for3 v2,3 = v1,3 ±
√

6v3
1,2 showing (2,6)-flexibility. Moreover, we can proceed in

this way (i.e. solving fi = 0 for v2,i−3 for i > 6) implying (2,∞)-flexibility.
We only have to check that the (2,∞)-flexibility was not obtained by the (1,2)-

flexibility by a polynomial parameter substitution of the form

t = t p(a0 +a1t +a2t2 + . . .) (11)

with a0 ̸= 0 and p > 1. For p = 2 we get f 1 = f 2 = f 3 = 0. f 4 = a2
0(v1,1 − v2,1)

2

implies v2,1 = v1,1. Then f 5 = 0 and f 6 =−6a3
0v3

1,1. Therefore the substitution turns

3 Note that the ± sign corresponds to the two ways out of the cusp configurations.
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Fig. 3 Double-Watt mechanism of Stachel in a branching configuration; i.e. it corresponds to a
double point in the configuration space.

x

y
x1 x2

Fig. 4 Reduction of Stachel’s double-Watt mechanism to a two-point guidance problem.

the (1,2)-flexibility into a reducible (2,5)-flexibility. As a consequence the (2,∞)-
flexibility has to be an irreducible flex. ⋄

Remark 3. Note that the substitution of Eq. (11) into Eq. (9) for p = 2 yields the
(2,∞)-flexibility of Stachel discussed in the last example. Therefore, Stachel’s ap-
proach also includes the one of Gaspar and Tarnai [11]. ⋄

Stachel’s proposal was only presented within the Tensegrity Workshop in 2007 [38],
but remained unpublished so far. According to Stachel [41], the reason for this is
the example of another double-Watt mechanism, which is extended by a Kempe-
mechanism (cf. Fig. 5), presented in [39], as no unique flexion order can be identi-
fied with his proposed definition. Therefore the problem is not yet settled.

Example 3. Stachel’s double-Watt framework: In the following we also give this
example of Stachel where the second Watt-mechanism is just a translation of the first
one (see Fig. 3) by the vector (0,3)T . Thus we get for the path of x2 the following
parametrization

x2 =

(
τ2

3+ 1
2 τ3

2 + τ5
2 +

9
4 τ7

2 +
13
2 τ9

2 + . . .

)
(12)

for the interpretation as a two-point guidance problem, which is illustrated in Fig. 4.
In this case the two-point guidance is in a branching configuration; i.e. it corresponds
to a double point in the configuration space.

Then Stachel extended his double-Watt linkage by a Kempe-mechanism for the
generation of the straight line motion of the midpoint x3 of x1 and x2 (see Fig. 5).
In contrast, we only use a point guidance4 to restrict the location of x3 on the line
y = 3

2 (cf. Fig. 6); i.e.

4 This can also be interpreted in the terms of bar-joint framework, where the corresponding pin-
joint is the ideal point of the y-axis.
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Fig. 5 Stachel’s double-Watt mechanism extended by a Kempe-mechanism (Figure by courtesy of
Hellmuth Stachel [39]).

x1 x2
x3

Fig. 6 Stachel’s double-Watt mechanism extended by the guidance of the midpoint x3 of x1 and
x2 along a straight line.

x3 =

(
τ3
3
2

)
. (13)

For a nth-order flexibility at t = 0 still Eq. (8) has to hold as well as the affine
combination (

G
H

)
:= x1(τ1)+x2(τ2)−2x3(τ3) = o(tn). (14)

We substitute Eq. (7) into Eqs. (8) and (14) and consider the coefficients fi, gi and
hi of t i in the resulting expressions. It can easily be seen that gi = v1,i + v2,i − 2v3,i
holds for all i = 1,2, . . ., thus we set

v3,i =
v1,i+v2,i

2 . (15)

Moreover we get f1 = h1 = h2 = 0 and f2 = (v1,1 − v2,1)
2. We set v2,1 = v1,1 and

obtain f3 = 0 and h3 = v3
1,1. Therefore this results in a (1,2)-flexibility.

Now we consider the case v1,1 = 0: Then we get f4 = (v1,2 − v2,2)
2. Thus we

set v2,2 = v1,2 and get h4 = f5 = h5 = 0. Moreover we obtain f6 = (v1,3 − v2,3)
2,

implying v2,3 = v1,3 and h6 = v3
1,2. The latter shows a (2,5)-flexibility.

Now we can set v1,2 = 0 and proceed this procedure yielding the following se-
quence of flexion orders (k,3k−1) for k = 1,2, . . .. According to Stachel the ques-
tion remained open which is the correct order, as all the obtained ones are irre-
ducible. This can be seen as follows:

The conditions for a (1,2)-flex which are
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v3,1 =
v1,1+v2,1

2 , v3,2 =
v1,2+v2,2

2 , v2,1 = v1,1 (16)

imply under the polynomial parameter substitution of Eq. (11) a reducible (p,3p−
1)-flexibility. Let’s do this explicitly for p = 2. Then we get:

vi,2 = a0vi,1 (17)
vi,3 = a1vi,1 (18)

vi,4 = a2
0vi,2 +a2vi,1 (19)

vi,5 = 2a0a1vi,2 +a3vi,1. (20)

Therefore the conditions for the (2,5)-flexibility, which are

v1,2 − v2,2 = 0, v1,3 − v2,3 = 0, v1, j + v2, j −2v3, j = 0 (21)

for j = 2,3,4,5 are fulfilled identically under Eq. (16). But v1,4 and v2,4 are in a cer-
tain relation as only a2 can act as a free parameter, which in general has not to be the
case. This shows the irreducibly of Stachel’s (2,5)-flexibility. The same argument
can be done also for the higher flexion orders in Stachel’s sequence (k,3k−1). ⋄

Remark 4. Note that flexibility of 1st -order is invariant under projectivities [47, 52]
but this does not hold for higher-orders (even not for affine transformations). ⋄

Remark 5. Note that it is well known (cf. [30, page 232] and [2]) that there exists for
each geometric structure an upper bound n∗ such that the n∗-order flexibility results
in a continuous flexion. ⋄

2.1 Structures studied with respect to higher-order flexibility

Wohlhart [49] followed Kuznetsov’s approach (using a kinematic interpretation of
the power-expansion in terms of velocity, acceleration, jerk, and so forth) for the
study of higher-order flexible planar and spatial parallel manipulators of Stewart–
Gough type. A deeper geometric study of these planar mechanisms was done by
Stachel in [35], who also studied higher-order flexibility of bipartite planar frame-
works [36] as well as octahedra [37]. Open and closed spatial serial chains where
studied in [6, 26, 51]. Kuznetsov [19] and Tarnai [43] demonstrate their theoretical
considerations only on basis of some simple planar linkages, where the so-called
Leonardo structure [44] has to be pointed out as in this way frameworks with a
(2λ −1)-order flex (according to Def. 1) for arbitrary λ ∈ N can be constructed (cf.
Fig. 7). Local rigidity analysis of origami structures up to the 2nd-order were done
by He and Guest [13]. A characterization for 2nd-order flexibility of quad-surfaces
with planar faces was given by Schief et al. [33]. Finally, Tachi [42] capped rigid-
foldable tubes with 2nd-order flexible structures.
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F1 M1 F2 F1 M1

M2

F3

F2 F1 M1 F2

M2 M3 F4

F3

Fig. 7 Leonardo structure for λ = 1 (left), λ = 2 (center) and λ = 3 (right).

Remark 6. One should not forget about the work of Walter Wunderlich, who studied
the geometry of several shaky structures and sometimes pointed out special ones
with a higher-order flexibility (see overview article [34]). ⋄

Due to Remark 5 the idea of higher-order flexibility can also be used to compute
over-constrained mechanisms. Based on the approach of Kuznetsov this method was
stressed by Wohlhart [50] to determine a special class of Stewart–Gough platforms
with self-motions and by Bartkowiak and Woernle [4, 5] as well as Milenkovic [25]
for the design of overconstrained single-loop mechanisms. In contrast, Rameau and
Serre [28] focused on different computational methods of this problem. From the
computation point of view also the work [45] should be mentioned, where numeric
algebraic geometry is used to test locally a so-called high-multiplicity infinitesimal
degree of freedom by means of Macaulay matrices.

3 Redefinition of a higher-order flexibility and rigidity

According to Müller [26] the above mentioned examples with cusps in the config-
uration space (cusp mechanisms) demonstrate the basic shortcoming of any local
mobility analysis using higher-order constraints. Therefore we present a global ap-
proach, which is also inspired by an idea of Sabitov like Stachel’s approach; namely
by his finite algorithm for testing the bendability of a polyhedron [30, page 231].
This can be formulated as follows:

Let us consider the configuration-set S of all frameworks having the same con-
nectivity but only differ in their intrinsic metric. Note that S is only a subset of Rm

(due to the fact that edges are not allowed to have zero length). In the case of 1st -
order flexibility each vertex xi (i = 1, . . . ,w) can be associated with a velocity vector
xi,1 such that the edge lengths do not change instantaneously, where the set of ve-
locity vectors is not allowed to originate from a rigid body motion (incl. standstill);
i.e. no trivial 1st -order flex. The subset S1 ⊂ S of 1st -order flexible configurations
corresponds to the already mentioned shakiness variety V1 in Rm. The sets S j with
j > 1 are defined recursively as follows: If in a point of S j−1 a non-trivial 1st -order
flex exists, which is tangential to Vj−1 then this point belongs to the set S j thus we
get a hierarchical structure of flexibility of higher-order. A configuration is called
nth-order flexible if it belongs to Sn but not to Sn+1.
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Fig. 8 Illustration of the surface S1 (gray), the curve S2 (black) and the discrete set S3 of points
(red) for the configurations of the 3-RPR manipulator discussed in Example 8.

We proceed with a discussion of this approach:

• This approach goes along with a recent result of Alexandrov [3] for smooth sur-
faces, who was able to show that a 1st -order flex tangential to V1 can be extended
to a 2nd-order flex.

• Sabitov assumed that all the appearing sets S ,S1,S2, . . . are manifolds and sub-
manifolds, respectively. In general the varieties V1,V2, . . . contain singular points,
which correspond mostly to the interesting configurations in the study of higher-
order flexibility.

• An analogous assumption has to be done by Alexandrov [3] in the smooth setting
mentioned above, namely the restriction to regular points of V1.

This means that this approach gives a proper definition of nth-order flexibility
for configurations that correspond to points of Rm which are regular with respect to
each of the varieties V1,V2, . . . ,Vn.

Lemma 1. Every regular point of V1 has to have a single non-trivial instantaneous
flexion.

Proof. Let recall that V1 is the zero set of the ideal generated by all minors p1, . . . , pµ

of RG(X) of order m×m.
Let p j equals the det(r1,r2, . . . ,rm) where the ri’s denote pairwise distinct

columns of the rigidity matrix RG(X) given in Eq. (2).
Now the entries of the gradient of p j, which is given by

∇p j =
(

∂ p j
∂ z1

,
∂ p j
∂ z2

, . . . ,
∂ p j
∂ zm

)
, (22)
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x

y

F0M0 F2M2

F1 M1
F3

M3

N0,1 N2,3

Fig. 9 Stachel’s double-Watt mechanism extended by the guidance of the midpoint x3 of x1 and
x2 along a straight line.

can be computed due to the following product rule for determinants [1, page 626]:

∂ p j
∂ zi

= det( ∂r1
∂ zi

,r2, . . . ,rm)+det(r1,
∂r2
∂ zi

, . . . ,rm)+ . . .+det(r1,r2, . . . ,
∂rm
∂ zi

). (23)

This already shows that for points of V1 with rk(RG(X))< m−1 all these gradients
∇p1, j are zero vectors, as all summands of Eq. (23) are zero. As a consequence,
these points have to be singular ones of V1. □

Remark 7. Lemma 1 explains Husty’s observation for 3-RPR mechanisms given in
[14]; namely “the surprising property that it (singularity surface) has a singularity
itself at the point which corresponds to the pose with two dof local mobility.”

Moreover, this lemma also gives another reasoning for the note in [12] that the
transverse rigidity test always fails if more than one non-trivial infinitesimal flex
exist, as in this case the corresponding point on V1 has to be a singular one. ⋄

Example 4. Let us consider Stachel’s extended double-Watt framework introduced
in Example 3. For setting up the algebraic equations we use the following coordina-
tization according to Fig. 9:

F0 = (0,0)T , F1 = (−3,−1)T , F2 = (3,0)T , F3 = (0,−1)T , (24)

for the points pinned to the base and

M0 = (a0,b0)
T , M1 = (a1,b1)

T , M2 = (a2,b2)
T , M3 = (a3,b3)

T , (25)

for the moving points. Then the mechanism is determined by the following set of
eight equations:

∥Fi −Mi∥2 = 1 for i = 0, . . . ,3 (26)

∥M j −M j+1∥2 = 2 for j = 0,2 (27)

∥N0,1 −N2,3∥2 = 9 (28)
a0 +a1 +a2 +a3 = 0 (29)

with N0,1 = M0+M1
2 and N2,3 = M2+M3

2 . Note that Eq. (29) corresponds with the
straight line motion of the midpoint of N0,1 and N2,3. Direct computations show
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that the rank of the (8×8)-rigidity matrix RG(X) in the configuration X given by

(a0,b0,a1,b1,a2,b2,a3,b3) = (−1,0,−2,−1,2,0,1,−1) (30)

equals 6. This confirms that X is a singular point of the variety V1. ⋄

Beside Lemma 1 we also have to keep in mind that according to Remark 5 a
certain flexibility order n∗ exists which implies flexibility of order ∞. With this in-
gredients we can prove the following alternative characterization:

Theorem 1. The nth-order flexibility with n < n∗ of a configuration which corre-
sponds to a regular point of each variety V1,V2, . . . ,Vn is equivalent with the fact
that the configuration is a framework realization of multiplicity n+1.

Proof. V1 is the set of points determined by the constraint equations c1, . . . ,cl with
multiplicity of at least two. In a general point X of V1 the intersection multiplicity
with respect to V1 ∩ c1 ∩ . . .∩ cl is 1. For increasing it a necessary and sufficient
condition is that the tangent spaces have a positive-dimensional subspace in com-
mon. This is exactly the condition that in X an instantaneous flexion exists, which
is tangential to V1. Due to Lemma 1 the common subspace has to be 1-dimensional.
Therefore by construction a generic element of the variety V2 has to have multiplic-
ity 3 with respect to V (c1, . . . ,cl).

This line of argumentation can be iterated until we reach the set Vn∗ , which con-
sists of points having multiplicity ∞. Thus points of Vn \Vn+1 with n < n∗ have to
correspond with framework realizations of multiplicity n+1. □

A redefinition can be based on this property as it can also be extended to singular
points of the varieties V1,V2, . . . which are not covered by Sabitov’s algorithm.

Definition 3. If a configuration does not belong to a continuous flexion of the frame-
work then we define its order of flexibility by the number of coinciding framework
realizations minus 1.

Remark 8. This definition follows the way Wunderlich (cf. Remark 6) studied in-
finitesimal flexibility; namely as the limiting case where two realizations of a frame-
work coincide (cf. Stachel [40]). ⋄

Based on Definition 3 we can also give a redefinition of higher-order rigidity as
follows:

Definition 4. Is a configuration nth-order flexible according to Definition 3 then it
is (n+1)-rigid.

3.1 Computational Aspects

As we now have obtained proper redefinitions of higher-order flexibility and rigidity,
we remain with the problem of how to compute the number of coinciding realiza-
tions. For that we have to calculate the intersection multiplicity of the hypersurfaces
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c1, . . . ,cl in the considered configuration X. For the determination of the flexion
order we suggest the following 3-step algorithm:

1. According to the Lasker–Noether theorem every algebraic set is the union of
a finite number of uniquely defined algebraic sets known as irreducible com-
ponents. They can be computed with an irredundant primary decomposition5

algorithm (see e.g. [21]).
2. Then one has to test if the given realization is contained in a irreducible compo-

sition of dimension 1 or higher. If this is the case the configuration X is assigned
with the flexion order ∞ (in accordance with Fulton’s properties [10] of an in-
tersection number). If this is not the case then we identify all zero-dimensional
primary ideals I1, . . . , Is containing X.

3. We compute the intersection multiplicity qi of X with respect to each primary
ideal Ii for i = 1, . . . ,s. Then the intersection multiplicity of X with respect to
the hypersurfaces c1, . . . ,cl equals the sum q1 + . . .+qs.

Remark 9. According to Definition 3 the flexion order equals q1 + . . .+ qs − 1, but
if one is interested in a more detailed analysis of the configuration and its flexion
order, then one should have a look at the sequence (q1, . . . ,qs). It is well known
that the irredundant primary decomposition has not to be unique; but in our case we
are save as we assumed that all primary ideals containing X are zero-dimensional.
Therefore they have to correspond to minimal prime ideals and not to embedded
ones, which are causing non-uniqueness (cf. [21]). ⋄

In the following we sketch a possibility for the computation of qi. Let us assume
that the zero-dimensional primary ideal Ii is generated by polynomials g1, . . . ,gγ .
We distinguish the following two cases:

a) If γ = m; i.e. Ii is a complete intersection, then we can use theoretically the U-
resultant method (see [24, § 18], [46, § 83] or [18]), which works as follows: One
adds the so-called U-polynomial

g0 = u0 +u1z1 + . . .+umzm (31)

to the set g1, . . . ,gm and eliminates z1, . . . ,zm by means of Macaulay resultant
[23]. This results in a homogeneous polynomial R(g0, . . . ,gm) where the degree
equals the product of the degrees of g1, . . . ,gm. Moreover, R(g0, . . . ,gm) factor-
izes into powers of f linear factors

f

∏
j=1

(
ζ j,0u0 +ζ j,1u1 + . . .+ζ j,mum

)q j . (32)

Then the jth common point of g1, . . . ,gm has multiplicity q j and its coordinates
are given by zi = ζ j,i/ζ j,0 for i = 1, . . . ,m.

b) If γ > m one can use a generalization of the U-resultant method given by Lazard
[20] to end up with an expression of the form given in Eq. (32).

5 The prime decomposition is not valid as it does not preserve the intersection multiplicity.
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Let us demonstrate the above algorithm for the already mentioned Leonardo struc-
ture [44].

Example 5. According to Tarnai [43] these frameworks with a (2λ − 1)-order flex
can be generated by an iterative procedure. In the following we demonstrate this for
λ = 1, λ = 2 and λ = 3 (cf. Fig. 7), using the following coordinatization:

F1 = (−1,0)T , F2 = (1,0)T , F3 = (0,−2)T , F4 = (2,−1)T , (33)

for the points pinned to the base and

M1 = (a,b)T , M2 = (c,d)T , M3 = (e, f )T , (34)

for the moving points.

• λ = 1: In this case one has to solve the two equations ∥M1 −Fi∥2 = 1 for i = 1,2,
which read after homogenizing with h as:

a2 +2ah+b2 = 0, a2 −2ah+b2 = 0. (35)

The primary decomposition of the ideal spanned by these two equations yields
the two primary ideals I1

1 = ⟨a,b2⟩ and I1
2 = ⟨h,a2 +b2⟩. Only I1

1 , which is zero-
dimensional, contains the considered configuration X having homogeneous coor-
dinates (h : a : b)= (1 : 0 : 0). Computation of the U-resultant (with MACAULAY2)
yields u2

0, which shows that the configuration has multiplicity 2 and therefore a
1st -order flexion.

• λ = 2: In addition to Eq. (35) one has to consider the two conditions ∥M2 −
M1∥2 = 1 and ∥M2 −F3∥2 = 1, which read after homogenizing with h as:

a2 −2ac+b2 −2bd + c2 +d2 −h2 = 0, c2 +d2 +4dh+3h2 = 0. (36)

The primary decomposition (operated by MAPLE 2022) of the ideal spanned by
Eqs. (35-36) yields the following primary ideals

I2
1 = ⟨a,b2,b−2d −2h,bh+ c2⟩,

I2
2 = ⟨h,b2 +a2,d2 + c2,bc−ad,bd + ca⟩,

I2
3 = ⟨a3,h2,ah,a2b,hb,b2 +a2,ad −bc−2ch,ac+bd +2dh,c2 +d2 −2ac−2bd⟩,

I2
4 = ⟨a4,c5,h6,ah,a3c4,a3bc,hbc2,b2 +a2,bh3 + c2h2,2cdh2 −bch2 +2ch3,

2dh3 −bh3 +2h4,c2 +d2 +4dh+3h2,a2d −abc−2bh2 +4dh2 +4h3,

ac+bd +2dh+2h2,acd −bc2 −3bh2 −2c2h+2dh2 +2h3⟩.
(37)

Again only I2
1 , which is zero-dimensional, contains the considered configuration X

having homogeneous coordinates (h : a : b : c : d)= (1 : 0 : 0 : 0 :−1). Computation
of the U-resultant (with MACAULAY2) yields 24(u0−u4)

4. This validates the 3rd-
order flexion.
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• λ = 3: In addition to Eqs. (35) and (36) one has to consider the two conditions
∥M3 −M2∥2 = 1 and ∥M3 −F4∥2 = 1, which read after homogenizing with h as:

c2 −2ce+d2 −2d f + e2 + f 2 −h2, e2 −4eh+ f 2 +2 f h+4h2. (38)

The primary decomposition (operated by MAPLE 2022) of the ideal spanned by
Eqs. (35,36,38) contains only6 one primary ideal with h ̸= 0, which reads as:

I3
1 = ⟨a,b,c2,c−2e+2h,2e− c+2d,e2 +2e f + f 2 −2ce− c f ⟩. (39)

But this cannot be correct as the U-resultant (with MACAULAY2) yields 28(u0 −
u4 + u5 − u6)

4, which shows only a 4-fold realization at the considered configu-
ration X having homogeneous coordinates (h : a : b : c : d : e : f ) = (1 : 0 : 0 : 0 :
−1 : 1 : −1).
We did a recheck following the idea of [48] by slightly perturbating the system of
equations. Then it can easily be seen that there are 8 solutions7 in the neighbor-
hood of X.
This shows up a problem of the PrimaryDecomposition command in MAPLE
2022. In order to correct I3

1 of Eq. (39) one has to replace b by b2 (as this is the
case in I1

1 and I2
1 ). Then the U-resultant (operated with MACAULAY2) yields the

expected expression 216(u0 −u4 +u5 −u6)
8. ⋄

Example 6. Continuation of Example 4: The primary decomposition (operated by
MAPLE 2022) of the ideal spanned by Eq. (26–29) yields only one zero-dimensional
primary ideal I containing the configuration X of Eq. (30); namely

I = ⟨(1+a0)
2,(a2 −2)2,(3−a2)

2 +b2
2 −1,(a0 +3)a1 +5+(b0 +1)b1,

(a3 −3)a2 +5+(b2 +1)b3,a1 +a0 +a3 +a2,a2
0 +b2

0 −1,

(6−2a3)a2 +a2
3 −2b2b3 +b2

3 −10,a2
1 −2a0a1 −2b0b1 +b2

1 −1,
(a0 −a2 −a3 −3)a1 +(3−a0 +a3)a2 +(b0 −b2 −b3 −1)b1+

(b2 −b0 −1)b3 −a0a3 −b0b2 −26⟩.

(40)

As this ideal has more than eight generators, we cannot apply the U-resultant method
as done in Example 5. As we are not aware of any implementation of the generalized
U-resultant method of Lazard [20], we proceeded as follows: The ideal I of Eq. (40)
only has the solution X and we determined its multiplicity by the MAPLE command
NumberOfSolutions8 of the PolynomialIdeals package, which yields 6.

As one cannot trust for sure the PrimaryDecomposition command in
MAPLE 2022 as demonstrated in Example 5, we did again a recheck by the per-

6 The other primary ideals with h = 0 are not given due to their length.
7 This number can additionally be verified by the IntersectionMultiplicity command
implemented in MAPLE 2022.
8 In MAPLE 2022 there is no documentation on how the command NumberOfSolutions
works.
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x1 x2
x3

Fig. 10 Double-Watt mechanism of Connelly and Servatius extended by the guidance of the mid-
point x3 of x1 and x2 along a straight line.

tubation approach of [48], which confirms multiplicity 6. According to Definition 3
this implies a flexion of order 5. ⋄

Example 7. We can also force the midpoint x3 of x1 and x2 of the original double-
Watt mechanism of Connelly and Servatius (cf. Example 1) to run on a vertical line.
In analogy to Example 3 one can use Stachel’s approach, which yields the sequence
of flexion orders (k,3k−1) for odd k and (k,3k+ k

2 −1) for even k.
Similar considerations as in Example 6 show, that in this case seven solutions9

coincide, yielding flexion order 6. ⋄

Remark 10. The flexion order of the frameworks discussed in Examples 6 and 7
can be raised from 5 and 6 to 9 and 14, respectively, by modifying the dimension
of the used Watt-linkage in a way that the coupler is vertical (i.e. the coupler is
tangential to the considered branch) but the arms remain horizontal in the considered
configuration. ⋄

Clearly as the algorithm given in Section 3.1 is based on symbolic methods from
computer algebra, we are faced with computational limits. But beside this problem
the flexion order of a given configuration can be computed with the presented tools
in all cases from the pure theoretical point of view. Another problem is the compu-
tation of configurations with a higher-order flexion, which is discussed in the next
section.

4 Computing 3-RPR configurations with a higher-order flexion

In this section we demonstrate, how the idea of Sabitov’s finite algorithm for testing
the bendability of a polyhedron [30, page 231] can be used to compute iteratively
configurations with a higher-order flexion. We do this exemplarily for a planar 3-
RPR manipulator consisting of a moving triangle which is connected by three legs
to the fixed base. The legs are jointed to the platform and the base by rotational (R)

9 A slight perturbation of the system of equations shows that seven solutions converge
against the given configuration. Note that in this case the PrimaryDecomposition com-
mand in MAPLE 2022 does not work as the resulting solution is only sixfold and also the
IntersectionMultiplicity command fails for all possible 8! = 40320 permutations.
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joints and the corresponding anchor points are denoted by mi and Mi, respectively,
for i = 1,2,3. The length ri of the legs can actively be controlled by prismatic (P)
joints.

Our choice of the example was motivated by the following statement of Husty
[15] that 3rd-order flexibility “can be reached by any design because the three nec-
essary conditions could be imposed on the input parameters only. Unfortunately
neither the conditions nor the number of corresponding poses are known”. We will
clarify this in Section 4.1.

Note that we can interpret the triangular base and platform either as (a) trian-
gular plates or (b) triangular bar structures. In case (a) the 3-RPR manipulator can
be seen as a pin-jointed bar-plate framework and in case (b) as a classical bar-joint
framework. In the following Subsections 4.1 and 4.2 we distinguish these two in-
terpretations as they will effect the discussion of configurations with a higher-order
flexion. But let us start with some review on this topic.

As already mentioned in Section 2.1 Wohlhart [49] followed a kinematic version
of Kuznetsov’s approach for the study of higher-order flexible 3-RPRs (interpreted
as bar-plate frameworks). Stachel studied the geometry of higher-order flexible 3-
RPRs (interpreted as bar-joint frameworks) in [35], where he has shown the follow-
ing result for a configuration of flexion order (1,n):

If one disconnects the leg Mimi from the platform, then the trajectory of the point
mi under the resulting four bar motion has nth-order contact with the circle centered
in Mi having radius ri.10

Moreover, this result implies that in this configuration (n+ 1) realizations co-
incide, which also goes along with our redefinition given in Definition 3. Based on
this characterization Husty [15] has given an approach for the computation of 3-RPR
configurations (interpreted as bar-plate frameworks) with flexion order 5, which has
to be done carefully as it can also yield pseudo-solutions11.

4.1 Bar-plate framework

Let us start with the computation of V1 for these mechanisms, which can be done in
several ways. For the problem at hand we stress an approach of Husty and Gosselin
[16], which is recapped next:

The coordinates (ai,bi)
T of a point mi of the moving platform with respect to

the moving frame can be transformed into coordinates of the fixed frame using the
so-called Blaschke-Grünwald parameters (q0 : q1 : q2 : q3). They can be seen as

10 According to [35, Lem. 1] a corresponding result also holds for Stewart–Gough platforms, which
goes along with the definition of an “order of a configuration” given by Sarkissyan and Parikyan
[32] in 1990 (see also Wohlhart [49, page 1116]).
11 Note that the example illustrated in Fig. 8 of [15] does not show a 5th-order flexion, as it is not
a sixfold solution of the direct kinematics problem. The direct kinematic splits up into a fourfold
solution and a twofold one. Therefore the two corresponding configurations are flexible of order 3
and 1, respectively.
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homogeneous coordinates of points of a projective 3-dimensional space P3. It is
well known, that there is a bijection between points of this space sliced along the
line q0 = q1 = 0 and the planar motion group SE(2). The slicing has to be done to
ensure that the 4-tuple (q0 : q1 : q2 : q3) can be normalized by c4 = 0 with

c4 := q2
0 +q2

1 −1. (41)

If this normalization condition holds the above mentioned transformation reads as
follows: (

a
b

)
7→

(
q2

0 −q2
1 −2q0q1

2q0q1 q2
0 −q2

1

)(
a
b

)
+

(
2q1q2 +2q0q3
2q1q3 −2q0q3

)
. (42)

Using these Blaschke-Grünwald parameters the condition that a point mi is located
on a circle with radius ri around the fixed point Mi with coordinates (Ai,Bi)

T with
respect to the fixed frame, can be written as ci = 0 with:

ci :=2Aiaiq2
1 −2Aiaiq2

0 +4Aibiq0q1 −4Biaiq0q1 −2Bibiq2
0 +2Bibiq2

1+

a2
i q2

0 +a2
i q2

1 +b2
i q2

0 +b2
i q2

1 −4Aiq0q3 −4Aiq1q2 +4Biq0q2 −4Biq1q3+

4aiq0q3 −4aiq1q2 −4biq0q2 −4biq1q3 +A2
i +B2

i +4q2
2 +4q2

3 − r2
i

(43)

The information of the leg lengths ri complete the intrinsic metric of the framework.
Then its realizations12 G(X) are obtained as the solutions of the four algebraic equa-
tions c1 = c2 = c3 = c4 = 0. It is well-known that there can only exist six solutions
thus a 6th-order flex (according to Definition 3) implies a continuous flexion; i.e.
n∗ = 6.

Now we are looking for poses of the platform yielding an infinitesimal flexibility
of the framework. As described in Section 1.1, these configurations are character-
ized by the fact that the determinant of the rigidity matrix RG(X) vanishes, which is
given by

RG(X) = (∇c1,∇c2,∇c3,∇c4) =


∂c1
∂q0

∂c2
∂q0

∂c3
∂q0

∂c4
∂q0

∂c1
∂q1

∂c2
∂q1

∂c3
∂q1

∂c4
∂q1

∂c1
∂q2

∂c2
∂q2

∂c3
∂q2

∂c4
∂q2

∂c1
∂q3

∂c2
∂q3

∂c3
∂q3

∂c4
∂q3

 (44)

according to Eq. (2). Then the shakiness variety V1 equals the zero set of s :=
det

(
RG(X)

)
. According to [17] this variety has only singularities for some special

designs beside the singularities resulting from the parametrization, which equal the
line q0 = q1 = 0. Therefore in the generic case each point of V1 sliced along the
line q0 = q1 = 0 is a regular one. Thus according to Lemma 1 the tangent planes to
c1, . . . ,c4 have a line in common. The orthogonality of this line to ∇s is equivalent
to the condition

rk(∇c1,∇c2,∇c3,∇c4,∇s) = 3 (45)

which implies the four conditions s1 = s2 = s3 = s4 = 0 with:

12 In this context the realizations are also known as solutions of the direct kinematics problem.
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s1 :=det(∇c2,∇c3,∇c4,∇s), s2 :=det(∇c1,∇c3,∇c4,∇s), (46)
s3 :=det(∇c1,∇c2,∇c4,∇s), s4 :=det(∇c1,∇c2,∇c3,∇s). (47)

Then V2 is the zero set of the ideal

I2 = ⟨s,s1,s2,s3,s4⟩. (48)

Iteration of the above procedure yields the conditions s1,i = s2,i = s3,i = s4,i = 0
with:

s1,i :=det(∇c2,∇c3,∇c4,∇si), s2,i :=det(∇c1,∇c3,∇c4,∇si), (49)
s3,i :=det(∇c1,∇c2,∇c4,∇si), s4,i :=det(∇c1,∇c2,∇c3,∇si), (50)

for i = 1, . . . ,4. Then V3 is the zero set of the ideal

I3 = ⟨s,s1,s2,s3,s4,s1,1, . . . ,s4,1,s1,2, . . . ,s4,2,s1,3, . . . ,s4,3,s1,4, . . . ,s4,4⟩. (51)

In addition the singular points of V2 have to considered separately. As V2 is a curve
in P3 a singularity corresponds to the case

rk(∇s,∇s1,∇s2,∇s3,∇s4) = 1. (52)

In the following we apply this procedure to a concrete example.

Example 8. The geometry of the platform and base is given by:

A1 = 0, B1 = 0, A2 = 3, B2 = 0, A3 = 1, B3 = 3,
a1 = 0, b1 = 0, a2 = 1, b2 = 0, a3 = 2, b3 = 1.

(53)

For this values we obtain

s =5q3
0q2 −13q2

0q1q2 −4q2
0q1q3 +5q2

0q2
2 +7q0q2

1q2 +11q0q2
1q3−

6q0q1q2
2 −6q0q1q2

3 +10q3
1q3 −5q2

1q2
3.

(54)

In the next step we consider the ideal I2 given in Eq. (48). By means of Hilbert
dimension it can be verified that V2 is a curve in P3. Moreover, the degree of V2 is 18.
But V2 splits up into a curve g of degree 14 and the line q0 = q1 = 0 of multiplicity
4, which can be seen as follows: We add the expression (q2

0 +q2
1)u−1 to the ideal

I2 and eliminate the unknown u (also known as the Rabinowitsch trick). The variety
of the resulting elimination ideal is only of degree 14. Moreover, it can be checked
that only (q0 : q1) = (0 : 0) fulfill the equations s = s1 = s2 = s3 = s4 = 0 but not
(q0 : q1) = (1 : ±I). Due to the slicing of P3 along q0 = q1 = 0 we can restrict to the
curve g of degree 14. It can easily be checked that g does not contain any singular
points by applying the criterion of Eq. (52).

In the last step we consider the ideal I3 given in Eq. (51). V3 again contains the
line q0 = q1 = 0 with multiplicity 3. We can get rid of this line in the same way
as done in the case of V2 (Rabinowitsch trick). The elimination ideal then yields 32
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Table 1 All real RPR-configurations with a 3rd-order flex for the geometry given in Eq. (53)

# q0 q1 q2 q3 Fig. 11
1 0.612011087187 0.790849182309 −1.605503824990 0.608460800603 (a)
2 −0.335887854729 0.941901984839 −0.360610831902 2.136077449950 (b)
3 0.933493296982 0.358594847269 −0.518343596625 0.387989956333 (c)
4 −0.351833124675 0.936062739553 1.595410958064 1.897762719666 (d)
5 0.926572314644 0.376116665058 0.064697675622 −0.063224689351 (e)
6 −0.985793710397 0.167960592226 0.665253728293 2.206010002417 (f)
7 −0.388425191626 0.921480260510 0.083061189759 0.100978528116 (g)
8 −0.430899664574 0.902399844342 1.635384670001 −0.158191823892 (h)
9 0.700957636960 0.713202910248 1.476082504043 0.619974829761 (i)
10 −0.981604898439 0.190923606082 0.557314730844 −1.086046127580 (j)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11 Visualization of the 10 configuration with a 3rd-order flex given in Table 1.

solutions. We can even eliminate q0 and q3 from the set of equations generating I3 to
end up with the polynomial of degree 32, which is given in the Appendix. By setting
q1 = 1 we can easily check that it has 10 real solutions, which are given in Table
1. Moreover, the corresponding configurations are illustrated in Fig. 11. In addition,
the shakiness variety V1, the curve g and the 10 configurations are illustrated in Fig.
8 for q0 = 1.

Finally it should be noted, that it remains unclear if examples with 32 real solu-
tions exist. ⋄

4.2 Bar-joint framework

For the interpretation as bar-joint framework there exists 24 realizations, as the plat-
form triangle as well as the base triangle can flip. But this does not imply that
n∗ = 24 holds true for all cases, as the following study will show.
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As we assumed in Section 1 that bar lengths are always non-zero we can assume
a rescaling of the framework such that the bar between M1 and M2 has length one.
Then the pin-joints can be coordinatized as follows with respect to the fixed frame:

M1 = (0,0)T , M2 = (1,0)T , M3 = (A3,B3)
T , m j = (a j,b j)

T , (55)

for j = 1,2,3. If the remaining 8 bar lengths are known they imply 8 distance equa-
tions c1, . . . ,c8. The solutions of this set of equations correspond to realizations of
this isostatic bar-joint framework. Then we can compute the (8× 8) rigidity ma-
trix according to Eq. (2). Again the shakiness variety V1 is given as the zero set of
det

(
RG(X)

)
which splits up into the following three factors s1s2s3 with:

s1 =B3,

s2 =a1b2 −a1b3 −a2b1 +a2b3 +a3b1 −a3b2,

s3 =A3a1b2b3 −A3a2b1b3 −B3a1a3b2 +B3a2a3b1−
A3b1b2 +A3b1b3 +B3a1b2 −B3a3b1 −a1b2b3 +a3b1b2

(56)

Their geometric interpretation is that for s1 = 0 (resp. s2 = 0) the base (resp. plat-
form) degenerates into a line13. For s3 = 0 the three legs belong to a pencil of lines.
Let us denote the varieties si = 0 by Si for i = 1,2,3. Now we can easily identify the
following regions of V1 where different values for n∗ hold true:

S1 \ (S2 ∪S3) n∗ = 2 (57)
S2 \ (S1 ∪S3) n∗ = 2 (58)
S3 \ (S1 ∪S2) n∗ = 6 (59)
(S1 ∩S2)\S3 n∗ = 4 (60)
(S1 ∩S3)\S2 n∗ = 12 (61)
(S2 ∩S3)\S1 n∗ = 12 (62)
S1 ∩S2 ∩S3 n∗ = 24 (63)

Remark 11. We are aware of the fact that no point on S1 \ (S2 ∪S3) or S2 \ (S1 ∪S3)
can reach a higher flexion order than 1, as a triangle does not allow an isometric
deformation according to the side-side-side theorem. Therefore n∗ = 2 of Eqs. (57)
and (58) as well as n∗ = 4 of Eq. (60) can never be reached and are only of theoretical
nature. ⋄

In the following we give the construction of configurations with the highest pos-
sible flexion order. Let us assume that the platform and the base triangles degenerate
into lines l and L, respectively. A necessary condition for a configuration of flexion
order 23, is that l and L coincide. If this would not be the case one can reflect the
configuration on one of these lines to get another realization, which contradicts the
assumption that all 24 realization coincide.

13 A triangle and its mirrored version can only coincide if it degenerates into a line.
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m1 m2 m3

M1 M2 M3

Fig. 12 (left) Visualization of the bar-joint framework with a flexion of order 23. The green curve
shows the coupler curve of the point m1, which results by giving away the first leg. The red curve
is a circle with radius r1 and midpoint M1. The circle intersects the green coupler curve in m1 with
multiplicity 6. (right) Model of the bar-joint framework with flexion order 23, which is constructed
using multiple layers (bottom). The model allows a large flexion as illustrated in the top.

Remark 12. Interestingly such a configuration is not only a singular point of V1, as
it is located in the intersection of S1, S2 and S3 but already a singular point of S3
according to [17]. ⋄

Therefore a 23rd-order flexible bar-joint framework follows from a 5th-order flex-
ible plate-bar framework, where all six anchor points are located on a line. This
problem can be solved following the already mentioned approach of Husty [15]. In
this way the following example was computed.

Example 9. The geometry of the base is given by

M1 = (0,0)T , M2 = (1,0)T , M3 = (5,0)T (64)

with respect to the fixed system and the geometry of the platform is given by

m1 = (0,0)T , m2 = ( 1
2 +

2
√

10
5 −

√
120

√
10−255

10 ,0)T , m3 = (3,0)T (65)

with respect to the moving frame. The information on the intrinsic metric of the
framework is completed by the following lengths of the three legs:

r1 =
3
2 +

2
√

10
5 −

√
120

√
10−255

10 , r2 = 2, r3 =
7
2 +

2
√

10
5 −

√
10
√

48
√

10−102
20 . (66)

This configuration is illustrated in Fig. 12 where also pictures of a model can be
seen, which was produced for validation of the higher-order flexion. ⋄

Remark 13. It should be possible to determine the set of these frameworks with flex-
ion order 23 in full generality (as only 4 unknowns are involved), which is dedicated
to future research. ⋄
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5 Final remarks, open problems and future work

In the paper we presented a global approach for a proper redefinition of higher-order
flexibility and rigidity. We only discussed planar frameworks, but the proposed al-
gebraic method works for frameworks of any dimension. Especially, it is planned to
apply the iterative procedure of Section 4 also to the spatial version of 3-RPR ma-
nipulators, which are Stewart–Gough platforms. Any such manipulator (interpreted
as bar-body framework) has to have configurations with a 6th-order flexion, whose
detailed investigation is dedicated to future research. Furthermore we are interested
in the highest possible flexion order14 of Stewart–Gough configurations and their
computation.

Let us close the paper with the following list of final remarks and open problems:

1. Note that the presented approach does not only work for bar-joint frameworks
but it can be applied to any framework with algebraic joints; i.e. the relative po-
sition of two jointed rigid bodies can be described algebraically. But it remains
open to extend it to frameworks with non-algebraic joints (cf. [43]).

2. With our approach we were able to give a proper redefinition of higher-order
flexibility and rigidity, but the computation of the associated (k,n)-flex(es) in
dependence of the time parameter t remains open and is dedicated to future
research. We plan to solve this problem by means of tropical geometry and
Puiseux series as this promising approach was already successfully used in [27]
for analyzing the configuration space of mechanisms.
Moreover, for this task we also want to generate further examples by following
an idea of Stachel [41] using the two-point guidance method, where the points
x1(t) and x2(t) are in (higher-order) singularities of their paths at t = 0.

3. Our approach operates over C and does not take reality issues into account so
far (for a local attempt see [45]). For example, a planar 4-bar mechanism where
the bar lengths a,b,c,d fulfill the equation a+ b+ c = d has a 1-dimensional
set of configurations which are all complex with exception of one single con-
figuration X. Our algorithm would assign to X the flexion order ∞ but it is
only shaky over R. We suggest the following procedure for resolving this mi-
nor problem15. Namely, instead of just assigning the value ∞ as flexion order,
we propose to consider the corresponding (k,n)-flex(es) mentioned in item 2
above. More precisely we are only interested in the degree nR ≤ n of the high-
est possible real flexion. The(se) number(s) can then be used to assign a real
flexion order to the configuration.
Note that the analysis of a framework configuration X, which corresponds to an
isolated real solution within a higher-dimensional complex configuration set,

14 According to Definition 3 its upper bound is 39 but a configuration only depends on 30 unknowns
(up to Euclidean motions), which can be adjusted. From that one might expect a maximal flexion
order of 30.
15 Note that this special case is circumvented by the formulation of Definition 3, as we assumed
that the considered configuration does not belong to a continuous flexion of the framework (over
C).
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has to be handled with special care, as in this case X can also arise as an em-
bedded component in the complex solution set (cf. [21]). Then the irredundant
primary decomposition proposed in the algorithm of Section 3.1 is not unique
anymore (cf. Remark 9). The study of further examples in this context is dedi-
cated to future research.

4. The algorithm presented in Section 3.1 for determining the intersection mul-
tiplicity requires global constructions (like primary decomposition and U-
resultant method), but the multiplicity is a local property according to [18].
Therefore again one can think about using local methods (e.g. Serre’s Tor for-
mula) to determine this number. It remains open if these local methods can also
detect a continuous flexion and if they work in all cases (like the presented
global approach).
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Appendix: Polynomial of degree 32

516969488961264858296977044q32
1 −9280309213987777419484380570q31

1 q2+

43526270232117271834556502073q30
1 q2

2 −45280692730479399589412412168q29
1 q3

2−

71413409266992435779029661320q28
1 q4

2 +733787582609859082926495640512q27
1 q5

2−

1216057499416546331816336021712q26
1 q6

2 +1178525008268380508404672967040q25
1 q7

2+

304983853881480483586054315776q24
1 q8

2 +373067534199906557276943674880q23
1 q9

2−

3506865857305108140637354422016q22
1 q10

2 +1515457906293380496214847031296q21
1 q11

2 +

2762451499211791028130610419712q20
1 q12

2 −1507176820840441939654068420608q19
1 q13

2 −

1140312255149192283851181674496q18
1 q14

2 +370917717379345332121827704832q17
1 q15

2 +

540356234313346392866675687424q16
1 q16

2 +218622983025805473045891121152q15
1 q17

2 −

513129700297250458379419975680q14
1 q18

2 −146998314630604587702018375680q13
1 q19

2 +

453229949991189146809689178112q12
1 q20

2 −132638145759863692629486075904q11
1 q21

2 −

148240985447636170928282402816q10
1 q22

2 +124425897331594410107904983040q9
1q23

2 −

12386269734048188883819036672q8
1q24

2 −27049821097913736077418430464q7
1q25

2 +

14831418158089604670896996352q6
1q26

2 −1721669183596659665641930752q5
1q27

2 −

1309349875968694100160413696q4
1q28

2 +691975482131520534161129472q3
1q29

2 −

156210223994716269983039488q2
1q30

2 +18063680521134606070579200q1q31
2 −

874805860916262711853056q32
2 = 0
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