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oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main
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original problem.
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Various applied problems related to the study of the properties of media with a periodic
structure can be described using differential equations with rapidly oscillating inhomogeneities.
The presence of rapidly oscillating components creates serious problems for the numerical inte-
gration of such equations. Therefore, asymptotic methods are usually applied to equations of
this type, the most famous of which are the Feshchenko–Shkil–Nikolenko splitting method [1–3]
and the Lomov regularization method [4–17]. However, both of these methods were developed
mainly for singularly perturbed differential equations that do not contain an integral operator.
Note that, as far as we know, the splitting method has not been applied to integro-differential
equations, and the transition from differential equations to integro-differential equations with
rapidly oscillating inhomogeneities requires a significant revision of the algorithm of the regular-
ization method itself. The integral term gives rise to new types of singularities in solutions that
differ from the previously known ones, which complicates the development of the algorithm of
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the regularization method [4]. Moreover, in the problem considered below, the integral operator
contains a rapidly decreasing factor. Problems of this type have been studied only in the presence
of slowly varying inhomogeneities (see, for example, [12–14]. An analysis of the influence of a
rapidly decreasing kernel on the asymptotic solution of problems with fast oscillations has not
been performed before and is the subject of our study.

1. Problem statement

Consider the following integro-differential equation:

Lεy(t, ε) ≡ ε
dy

dt
−A(t)y −

∫ t

0

e
1
ε

t∫
s

µ(θ)dθ
K(t, s)y(s, ε)ds =

= h1(t) + h2(t) sin
β(t)

ε
, y(0, ε) = y0, t ∈ [0, T ],

(1)

where A(t), µ(t), h1(t), h2(t), β (t) are scalar functions, β′(t) > 0 is the frequency of a rapidly
oscillating sine, y0 is a constant number, ε > 0 is a small parameter. The function λ1(t) = A(t) is
the eigenvalue of the limiting operator A (t), the functions λ2 (t) = −iβ′ (t) and λ3 (t) = +iβ′ (t)

are related to the presence of a rapidly oscillating sine in eqation (1), the function λ4 (t) = µ(t)

characterizes the rapid change in the kernel of the integral operator.
Problem (1) will be considered under the following conditions:
1) A(t), µ(t)β(t) ∈ C∞([0, T ],R), h1(t), h2(t) ∈ ([0, T ],C),

K (t, s) ∈ C∞ ({0 6 s 6 t 6 T} ,C) ;
2) A(t) < 0 ∀t ∈ [0, T ].

Let us develop an algorithm for the regularization method under the specified conditions.

2. Solution space and regularization of problem (1)

We introduce the regularizing variables (см. [4])

τj =
1

ε

∫ t

0

λj (θ) dθ ≡
ψj (t)

ε
, j = 1, 4, (2)

and instead of the problem (1) consider the problem

Lεỹ(t, τ, ε) ≡ ε
∂ỹ

∂t
+

4∑
j=1

λj(t)
∂ỹ

∂τj
− λ1(t)ỹ −

∫ t

0

e
1
ε

t∫
s

λ4(θ)dθ
K(t, s)ỹ

(
s,
ψ(s)

ε
, ε
)
ds =

= h1(t)−
1

2i
h2(t) (e

τ2 − eτ3) , ỹ(0, 0, ε) = y0, t ∈ [0, T ]

(3)

for the function ỹ = ỹ (t, τ, ε) , where (according to (2)) τ = (τ1, τ2, τ3, τ4) , ψ = (ψ1, ψ2, ψ3, ψ4) .

It is clear that if ỹ = ỹ (t, τ, ε) is the solution of the problem (3), then the vector function

ỹ = ỹ

(
t,
ψ (t)

ε
, ε

)
is an exact solution of the problem (1); therefore, problem (3) is extended

with respect to problem (1). However, it cannot be considered fully regularized, since the integral
term

Jỹ ≡ J
(
ỹ (t, τ, ε) |t=s,τ=ψ(s)/ε

)
=

∫ t

0

e
1
ε

t∫
s

λ4(θ)dθ
K (t, s) ỹ

(
s,
ψ (s)

ε
, ε
)
ds
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has not been regularized in it.
To regularize the operator J , we introduce a class Mε that is asymptotically invariant with

respect to the operator Jỹ (see [4], p. 62). Let us first consider the space U of vector functions
y (t, τ) , representable by the sums

y (t, τ) = y0 (t) +
4∑
j=1

yj (t) e
τj , yj (t) ∈ C∞ ([0, T ] ,C1

)
, j = 0, 4. (4)

Let us show that the class Mε = U |τ=ψ(t)/ε is asymptotically invariant under the operator Jy.
The image of the operator on the element (4) of the space U has the form:

Jy (t, τ) =

∫ t

0

e
1
ε

t∫
s

λ4(θ)dθ
K (t, s) y0 (s) ds+

4∑
j=1

∫ t

0

e
1
ε

t∫
s

λ4(θ)dθ
K (t, s) yj (s) e

1
ε

∫ s
0
λj(θ)dθds =

=

∫ t

0

e
1
ε

t∫
s

λ4(θ)dθ
K (t, s) y0 (s) ds+ e

1
ε

∫ t
0
λ4(θ)dθ

∫ t

0

K (t, s) y4 (s) ds+

+
4∑

j=1,j ̸=4

e
1
ε

t∫
0

λ4(θ)dθ
∫ t

0

K (t, s) yj (s) e
1
ε

s∫
0

(λj(θ)−λ4(θ))dθ
ds.

By applying the operation of integration by parts, we find that the image of the operator J on
an element (4) of the space U can be represented as a series

Jy (t, τ) = e

1
ε

t∫
0

λ4(θ)dθ
∫ t

0

K (t, s) y4 (s) ds+

+
∞∑
ν=0

(−1)
ν
εν+1

[
(Iν0 (K (t, s) y0 (s)))s=te

1
ε

t∫
0

λ4(θ)dθ
− (Iν0 (K (t, s) y0 (s)))s=0

]
+

+
4∑

j=1,j ̸=4

∞∑
ν=0

(−1)
ν
εν+1

[(
Iνj (K (t, s) yj (s))

)
s=t

e
1
ε

t∫
0

λj(θ)dθ
−

−
(
Iνj (K (t, s) yj (s))

)
s=0

e
1
ε

t∫
0

λ4(θ)dθ
]
, τ = ψ (t) /ε

where it is indicated:

I00 =
1

−λ4 (s)
, Iν0 =

1

−λ4 (s)
∂

∂s
Iν−1
0 ,

I0j =
1

λj (s)− λ4 (s)
, Iνj =

1

λj (s)− λ4 (s)

∂

∂s
Iν−1
j , j = 1, 3, ν > 1.

It is easy to show (see, for example, [18], pp. 291—294), that this series converges asymptotically
when ε→ +0 (uniformly over t ∈ [0, T ]). This means that the class Mε asymptotically invariant
(for ε→ +0) with respect to the operator J.

Let us introduce operators Rν : U → U, acting on each element y (t, τ) ∈ U of the form (4)
according to the law:

R0y (t, τ) = eτ4
∫ t

0

K (t, s) y4 (s) ds, (50)

R1y (t, τ) =
[(
I00 (K (t, s) y0 (s))

)
s=t

eτ4 −
(
I00 (K (t, s) y0 (s))

)
s=0

]
+

+

3∑
j=1

[(
I0j (K (t, s) yj (s))

)
s=t

eτj −
(
I0j (K (t, s) yj (s))

)
s=0

eτ4
]
,

(51)
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Rν+1y (t, τ) = (−1)ν [(Iν0 (K (t, s) y0 (s)))s=te
τ4 − (Iν0 (K (t, s) y0 (s)))s=0] +

+
3∑
j=1

(−1)ν
[(
Iνj (K (t, s) yj (s))

)
s=t

eτj −
(
Iνj (K (t, s) yj (s))

)
s=0

eτ4
]
, ν > 1.

(5ν+1)

Now let ỹ (t, τ, ε) be arbitrary continuous in (t, τ) ∈ [0, T ]×{τ : Reτj 6 0, j = 1, 4
}

function
with asymptotic expansion

ỹ (t, τ, ε) =
∞∑
k=0

εkyk (t, τ) , yk (t, τ) ∈ U (6)

converging as ε → +0 (uniformly in (t, τ) ∈ [0, T ] ×
{
τ : Reτj 6 0, j = 1, 4

}
). Then image

Jỹ (t, τ, ε) of this function expands into an asymptotic series

Jỹ (t, τ, ε) =
∞∑
k=0

εkJyk (t, τ) =
∞∑
r=0

εr
r∑
s=0

Rr−sys (t, τ) |τ=ψ(t)/ε.

This equality is the basis for introducing an extension of the operator J on series of the form (6):

J̃ ỹ (t, τ, ε) ≡ J̃

( ∞∑
k=0

εkyk (t, τ)

)
def
=

∞∑
r=0

εr
r∑
s=0

Rr−sys (t, τ) . (7)

Although the operator J̃ is defined formally, its usefulness is obvious, since in practice one usually
constructs an N -th approximation of the asymptotic solution of the problem (1), in which only
N -th partial sums of the series (7) that have not formal, but true meaning. Now we can write
the problem completely regularized with respect to the original problem (2):

Lεỹ(t, τ, ε) ≡ ε
∂ỹ

∂t
+

4∑
j=1

λj (t)
∂ỹ

∂τj
− λ1(t)ỹ − J̃ ỹ =

= h1(t)−
1

2i
h2(t) (e

τ2 − eτ3) , ỹ(t, τ, ε)|t=0,τ=0 = y0, t ∈ [0, T ],

(8)

where the operator J̃ has the form (7).

3. Iterative problems and their solvability in the space U

Substituting series (6) into (8) and equating the coefficients at the same powers of ε, we
obtain the following iterative problems:

Ly0 (t, τ) ≡
4∑
j=1

λj(t)
∂y0
∂τj

− λ1(t)y0 −R0y0 = h1(t)−
1

2i
h2(t) (e

τ2 − eτ3) , y0 (0, 0) = y0; (90)

Ly1 (t, τ) = −∂y0
∂t

+R1y0, y1 (0, 0) = 0; (91)

Ly2 (t, τ) = −∂y1
∂t

+R1y1 +R2y0, y0 (0, 0) = 0; (92)

· · ·

Lyk (t, τ) = −∂yk−1

∂t
+Rky0 + · · ·+R1yk−1, yk (0, 0) = 0, k > 1. (9k)
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Each of the iterative problems (9k) can be written as

Ly (t, τ) ≡
3∑
j=1

λj (t)
∂y

∂τj
− λ1(t)y −R0y = H (t, τ) , y (0, 0) = y∗ , (10)

where H (t, τ) = H0 (t)+
3∑
j=1

Hj (t) e
τj is a well-known function of the space U, y∗ ∈ C is constant,

and the operator R0 has the form (see (60))

R0y ≡ R0

(
y0 (t) +

4∑
j=1

yj (t) e
τj

)
= eτ4

∫ t

0

K (t, s) y4 (s) ds.

We introduce a scalar (for each t ∈ [0, T ]) product in the space U :

< z,w >≡< z0 (t) +

4∑
j=1

zj (t) e
τj , w0 (t) +

4∑
j=1

wj (t) e
τj >

def
=

def
= (z0 (t) , w0 (t)) +

4∑
j=1

(zj (t) , wj (t))

where (∗, ∗) denotes the usual scalar product in the complex space C. Let us prove the following
statement.

Theorem 1. Let the conditions 1) and 2) hold and right-hand part H (t, τ) = H0 (t) +

+
4∑
j=1

Hj (t) e
τj of the equation (10) belongs to the space U. Then for the solvability of equation

(10) in U it is necessary and sufficient that the identity

< H1 (t, τ) , e
τ1 >≡ 0 ⇔ H1 (t) ≡ 0 ∀t ∈ [0, T ] (11)

is fulfilled.

Proof. We will define the solution of the equation (10) as an element (4) of the space U :

y (t, τ) = y0 (t) +
3∑
j=1

yj (t) e
τj . (12)

Substituting (12) into the equation (10), we will have

4∑
j=1

[λj (t)− λ1(t)] yj (t) e
τj − λ1(t)y0 (t)− eτ4

∫ t

0

K (t, s) y4 (s) ds = H0 (t) +

4∑
j=1

Hj (t) e
τj .

Equating here separately the free terms and coefficients at the same exponents, we obtain the
following equations:

−λ1 (t) y0 (t) = H0 (t) , (130)

[λj (t)− λ1 (t)] yj (t) = Hj (t) , j = 1, 3, (13j)

[λ4 (t)− λ1 (t)] y4 (t)−
∫ t

0

K (t, s)y4 (s) ds = H4(t). (134)
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Due to the fact that the function λ1 (t) ̸= 0 ∀t ∈ [0, T ], the equation (130) has a unique
solution y0(t) = −λ−1

1 (t)H0(t). Since the function [λ4 (t) − λ1 (t)] ̸= 0 ∀t ∈ [0, T ], then the
equation (134) can be written as

y4 (t) =

∫ t

0

(
[λ4 (t)− λ1 (t)]

−1
K (t, s)

)
y4 (s) ds− [λ4 (t)− λ1 (t)]

−1
H4 (t) . (14)

Due to the smoothness of the kernel
(
[λ4 (t)− λ1 (t)]

−1
K (t, s)

)
and heterogeneity

[λ4 (t)− λ1 (t)]
−1
H4 (t) this Volterra integral equation has a unique solution y4(t) ∈

C∞ ([0, T ], C).
Since λ2,3 (t) = ±iβ′ (t) are purely imaginary functions, and the function λ1 (t) is real, then

the equation (13j) при j = 2, 3 solvable in the space C∞ ([0, T ] ,C) . The equation (131) is
solvable in the space C∞ ([0, T ] ,C) if and only if the identity H1 (t) ≡ 0 ∀t ∈ [0, T ] holds. It is
easy to see that this identity coincides with the identity (11). Thus, condition (11) is necessary
and sufficient for the solvability of equation (10) in the space U . The theorem is proved. 2

Remark 1. If identity (11) holds, then under conditions 1) and 2) the equation (10) has the
following solution in the space U :

y (t, τ) = y0 (t) + α1 (t) e
τ1 +H21(t)e

τ2 +H31(t)e
τ3 + y4 (t) e

τ4 , (15)

where α1 (t) ∈ C∞ ([0, T ] ,C) is an arbitrary function, y0(t) = −λ−1
1 (t)H0(t), y4 (t) is the solu-

tion of the integral equation (14) and introduced the notation:

H21(t) ≡
H2 (t)

λ2 (t)− λ1 (t)
, H31(t) ≡

H3 (t)

λ3 (t)− λ1 (t)
.

4. Unique solvability of a general iterative problem
in the space U. Remainder term theorem

As can be seen from (15), the solution to the equation (10) is determined ambiguously.
However, if it is subject to additional conditions:

y (0, 0) = y∗,

< −∂y
∂t

+R1y +Q (t, τ) , eτ1 >≡ 0 ∀t ∈ [0, T ]

(16)

where Q (t, τ) = Q0 (t) +
4∑
j=1

Qi (t) e
τj is a known function of the space U, y∗ is a constant

number of the complex space C, then problem (10) will be uniquely solvable in the space U .
More precisely, the following result takes place.

Theorem 2. Let conditions 1) and 2) hold, the right-hand side H (t, τ) of the equation (10)
belongs to the space U and satisfies the orthogonality condition (11). Then equation (10) under
additional conditions (16) is uniquely solvable in U.

Proof. Under condition (11), the equation (10) has the solution (15) in the space U , where
the function α1 (t) ∈ C∞ ([0, T ] ,C) so far arbitrary. Subordinate (15) to the initial condition
y (0, 0) = y∗. Will have
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y∗ = y0 (0) + α1 (0) +H21(0) + H31(0)−
H4(0)

λ4(0)− λ1(0)
⇔

⇔ α1 (0) = y∗ + λ−1
1 (0)H0 (0)−H21(0)− H31(0) +

H4(0)

λ4(0)− λ1(0)
.

(17))

Let us now subordinate the solution (15) to the second condition (16). The right-hand side of
this equation is

−∂y0
∂t

+R1y0 +Q (t, τ) = −ẏ0 (t)− α̇1(t)e
τ1−

−
3∑
j=2

(
Hj1(t)

λj(t)− λ1(t)

)�
eτj + ẏ4(t)e

τ4 +
K(t, t)α1(t)

λ1 (t)− λ4 (t)
eτ1 − K(t, 0)α1(0)

λj(0)− λ4 (0)
+

+
4∑
j=2

[
K(t, t)yj(t)

λj (t)− λ4 (t)
eτj − K(t, 0)yj(0)

λj(0)− λ4 (0)

]
+Q(t, τ).

(18)

Now multiplying (18) scalarly by eτ1 , we obtain the differential equation

−α̇1(t) +
K(t, t)α1(t)

[λ1(t)− λ4(t)]
+Q1(t) = 0.

Adding the initial condition (17) to it, we uniquely find the function α1(t), and, therefore,
construct the solution (15) of the problem (10) in the space U uniquely. The theorem is proved.

Applying Theorems 1 and 2 to iterative problems (9k), we find uniquely their solutions in the
space U and construct series (6). Just as in [4], we prove the following statement.

Theorem 3. Let conditions 1)–2) be satisfied for the equation (1). Then at ε ∈ (0, ε0](ε0 > 0 is
small enough) equation (1) has a unique solution y(t, ε) ∈ C1([0, T ],C); in this case, the estimate

||y(t, ε)− yεN (t)||C[0,T ] 6 cNε
N+1, N = 0, 1, 2, . . . ,

holds true; here yεN (t) is narrowing
(
at τ =

ψ(t)

ε

)
of the N -th partial sum of the series (6)

(with coefficients yk (t, τ) ∈ U satisfying iterative problems (9k), and the constant cN > 0 does
not depend on ε at ε ∈ (0, ε0].

5. Construction of a solution of the first iterative problem

Using Theorem 1, we will try to find a solution for the first iterative problem (9k). Since the
right-hand side h1(t) to the equation (90), satisfies condition (11), this equation has (according
to (15)) the solution in the space U in the form

y0 (t, τ) = y
(0)
0 (t) + α

(0)
1 (t) eτ1 + h21 (t)σ1e

τ2 + h31 (t)σ2e
τ3 , (19)

where α(0)
1 (t) ∈ C∞ ([0, T ] ,C) is an arbitrary function,y(0)0 (t) = −λ−1

1 (t)h1(t) and introduced
the notations:

h21 (t) = − 1

2i

h2 (t)

λ2 (t)− λ1 (t)
, h31 (t) =

1

2i

h2 (t)

λ3 (t)− λ1 (t)
.

Submitting (19) to the initial condition y0 (0, 0) = y0, will have

y
(0)
0 (0) + α

(0)
1 (0) + h21 (0) + h31 (0) = y0 ⇔

⇔ α
(0)
1 (0) = y0 + λ−1

1 (0)h1 (0)− h21 (0)− h31 (0) .
(20)
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For the complete computation of the function α
(0)
1 (t), we proceed to the next iterative prob-

lem (91). Substituting solution (19) of the equation (90) into it, we arrive at the following
equation:

Ly1 (t, τ) = − d

dt
y
(0)
0 (t)− d

dt

(
α
(0)
1 (t)

)
eτ1 +

[
K (t, t)α

(0)
1 (t)

λ1 (t)− λ4 (t)
eτ1 − K (t, 0)α

(0)
1 (0)

λ1 (0)− λ4 (0)

]
.

Performing scalar multiplication here, we obtain the ordinary differential equation

−dα
(0)
1 (t)

dt
+

K (t, t)

λ1 (t)− λ4 (t)
α
(0)
1 (t) = 0.

Adding the initial condition (20) to this equation, we find α(0)
1 (t) :

α
(0)
1 (t) =

[
y0 + λ−1

1 (0)h1 (0)− h21 (0)− h31 (0)
]
exp

{∫ t

0

K (θ, θ)

λ1 (θ)− λ4 (θ)
dθ

}
and hence the solution (19) to problem (90) will be found uniquely in the space U . In this case,
the leading term of the asymptotics is as follows:

yε0(t) = y
(0)
0 (t) + h21 (t) e

− i
ε

t∫
0

β′(θ)dθ
+ h31 (t) e

+ i
ε

t∫
0

β′(θ)dθ
+

+
[
y0 + λ−1

1 (0)h1 (0)− h21 (0)− h31(0)
]
e

t∫
0

K(θ,θ)
λ1(θ)−λ4(θ)

dθ+ 1
ε

t∫
0

λ1(θ)dθ
.

(21)

From the expression (21) for yε0(t) it is seen that the construction of the leading term of
the asymptotics of the solution to problem (1) is significantly influenced by both the rapidly
oscillating inhomogeneity and the kernel of the integral operator.

Example. Consider the integro-differential problem

ε
dy

dt
= −2y +

∫ t

0

e−
t−s
ε

(
t− t2 + s2

)
y (s, ε) ds+ t2 + t sin

t

ε
, y (0, ε) = y0, t ∈ [0, T ] . (22)

Here:
K (t, s) = t− t2 + s2, h1 (t) = t2, h2 (t) = t, β (t) = t,

λ1 = −2, λ2 = −i, λ3 = +i, λ4 = −1, K (t, t) = t.

Using formula (21), we calculate the leading term of the asymptotic solution to problem (22):

yε0(t) =
t2

2
− t

2i (−i+ 2)
e−

it
ε +

t

2i (i+ 2)
e

it
ε + y0e−

t2

2 − 2t
ε =

=
t2

2
+

1

5
t

(
2 sin

(
t

ε

)
− cos

(
t

ε

))
+ y0e−

t2

2 − 2t
ε .

(23)

If there were no rapidly oscillating term t sin
t

ε
in the right-hand side of equation (22), then

the leading term of the asymptotics would have the form

ŷε0 (t) =
t2

2
+ y0e−

t2

2 − 2t
ε
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and the limiting solution of problem (22) would be the function ¯̄y (t) =
t2

2
. In the presence of a

rapidly oscillating inhomogeneity, as can be seen from formulas (23), the exact solution y (t, ε)

of the problem (22), leaving the value y0 at t = 0, performs (when ε → +0) fast oscillations

around the function ¯̄y (t) =
t2

2
. The formation of a term y0e−

t2

2 − 2t
ε is influenced by the kernel

K (t, s) of the integral operator (more precisely: K (t, t)). In its absence, the specified term
would have the form y0e−

2t
ε . Influence of a rapidly decreasing factor e−

t−s
ε on the leading term

of the asymptotics does not affect. It will be found when constructing the following asymptotic
solution yε1 (t) .
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Алгоритм метода регуляризации для сингулярно
возмущенного интегро-дифференциального уравнения
с быстро убывающим ядром и с быстро осциллирующей
неоднородностью

Абдухафиз А.Бободжанов
Национальный исследовательский университет "Московский энергетический институт"

Москва, Российская Федерация
Бурхан Т.Калимбетов

Международный казахско-турецкий университет имени Ахмета Яссави
Туркестан, Казахстан

Валерий Ф.Сафонов
Национальный исследовательский университет "Московский энергетический институт"

Москва, Российская Федерация

Аннотация. В настоящей работе рассматривается сингулярно возмущенное интегро-
дифференциальное уравнение с быстро осциллирующей правой частью, которое включает
интегральный оператор с быстро меняющимся ядром. Основная цель данной работы — обобщить
метод регуляризации Ломова и выявить влияние быстро осциллирующей правой части и быстро
меняющегося ядра на асимптотику решения исходной задачи.

Ключевые слова: сингулярное возмущение, интегро-дифференциальное уравнение, быстро ос-
циллирующая неоднородность, быстро меняющееся ядро, регуляризация, разрешимость итераци-
онных задач.
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