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Abstract. In this paper, we consider a singularly perturbed integro-differential equation with a rapidly
oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main
goal of this work is to generalize the Lomov’s regularization method and to reveal the influence of the
rapidly oscillating right-hand side and a rapidly varying kernel on the asymptotics of the solution to the
original problem.
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Various applied problems related to the study of the properties of media with a periodic
structure can be described using differential equations with rapidly oscillating inhomogeneities.
The presence of rapidly oscillating components creates serious problems for the numerical inte-
gration of such equations. Therefore, asymptotic methods are usually applied to equations of
this type, the most famous of which are the Feshchenko—Shkil-Nikolenko splitting method [1-3]
and the Lomov regularization method [4-17]. However, both of these methods were developed
mainly for singularly perturbed differential equations that do not contain an integral operator.
Note that, as far as we know, the splitting method has not been applied to integro-differential
equations, and the transition from differential equations to integro-differential equations with
rapidly oscillating inhomogeneities requires a significant revision of the algorithm of the regular-
ization method itself. The integral term gives rise to new types of singularities in solutions that
differ from the previously known ones, which complicates the development of the algorithm of
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the regularization method [4]. Moreover, in the problem considered below, the integral operator
contains a rapidly decreasing factor. Problems of this type have been studied only in the presence
of slowly varying inhomogeneities (see, for example, [12-14]. An analysis of the influence of a
rapidly decreasing kernel on the asymptotic solution of problems with fast oscillations has not
been performed before and is the subject of our study.

1. Problem statement

Consider the following integro-differential equation:

L[ )
wa@zs%—Auw—/kz“ K (8, s)y(s,e)ds
0

1)
t
=)+ ho(0sin " y0.e) =10, te1,
where A(t), u(t), hi(t), ha(t), B (t) are scalar functions, 8'(¢) > 0 is the frequency of a rapidly
oscillating sine, 3° is a constant number, £ > 0 is a small parameter. The function \; (t) = A(t) is
the eigenvalue of the limiting operator A (t), the functions As (t) = —if’ (t) and A3 (t) = +if’ (t)
are related to the presence of a rapidly oscillating sine in eqation (1), the function A4 () = wu(t)
characterizes the rapid change in the kernel of the integral operator.
Problem (1) will be considered under the following conditions:

1) A(t), u(t)B(t) € C*([0, T],R), hi(t), ho(t) € ([0,T],C),

K(t,s) eC®({0<s<t<T},C);

2) A(t) <0 Vt€[0,T).

Let us develop an algorithm for the regularization method under the specified conditions.

2. Solution space and regularization of problem (1)

We introduce the regularizing variables (cm. [4])

I  (t
net [ v@a=2 51 ©)
€ Jo €
and instead of the problem (1) consider the problem
~ 4 ~ to1f
_ _ 0y oy . = J Aa(6)do _ (s) B
L.g(t,7,¢e) = o + Z)\J(t)a—Tj — M)y — /0 e : K(t,s)y(s, - ,z—:)ds =
j=1 (3)
1
= hi(t) = 5zha(t) (€™ — ™), §(0,0,) =4", t€[0,T]

for the function § = § (¢, 7,¢), where (according to (2)) 7 = (11,72, 73,74), ¥ = (¥1,¥2,03,14).
It is clear that if § = §(¢,7,¢) is the solution of the problem (3), then the vector function

¥ (1)

gy =19|(t,—=,¢| is an exact solution of the problem (1); therefore, problem (3) is extended
€

with respect to problem (1). However, it cannot be considered fully regularized, since the integral
term

t 1 f
B N gf)\4(9)d9 B S
Jy =J (y (taT7 5) |t:s,’r:'¢v(s)/a) = / e = K(t75> y(57 1/)( ),E)ds
0
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has not been regularized in it.

To regularize the operator J, we introduce a class M. that is asymptotically invariant with
respect to the operator Jg (see [4], p. 62). Let us first consider the space U of vector functions
y (t,7), representable by the sums

Yy (t,7) = yo ( +§:% e,y (t) e €= ([0,T],CY), j=0,4. (4)

Let us show that the class M, = Ul,_y /. is asymptotically invariant under the operator Jy.
The image of the operator on the element (4) of the space U has the form:

1

L 0)d0 t s/ [ @) s
Jy (t, 1) :/e [ K (t,3)yo( ds—!—Z/ ! K (t,s)y, (s)ex Jo X0 gg —
0

¢ % t)‘4(0 1 [t
_ / e MO ke 4 5y g () ds + et Jo 00 / K (t,8) ya () ds+
0 0

4

P

j=1,j7#4

1
€

o

A4<9>d9/ K 1j()\j(a)_/\4(9))d9d3.

By applying the operation of integration by parts, we find that the image of the operator J on
an element (4) of the space U can be represented as a series

L fau(0)ds
Jy(t,7)=e © / K (t,8)ys (s)ds+
0

oo - 3} éf“h(a)da ,
+y 0 (=1)er ! {([0 (K (t,8)yo (5)))gpe © — (L5 (K (t:8) Yo (8))) g=o | +
v=0
2 = V_p+1 %ft/\j(e)de
bY S e (1 (K o ), et
j=1,j#4v=0
y %ft/\4(9)d0
(1 s o) 0 v
where it is indicated:
1 1 0
IO - = V="  ~ v—1
O Ni(s) YT —ai(s)os 0
10:71 IV: 1 a U_laj:ﬁ’y>1'

TN E-ME) T A6 M) s

Tt is easy to show (see, for example, [18], pp. 291—294), that this series converges asymptotically
when ¢ — 40 (uniformly over ¢ € [0,7]). This means that the class M, asymptotically invariant
(for ¢ — +0) with respect to the operator J.

Let us introduce operators R, : U — U, acting on each element y (¢,7) € U of the form (4)
according to the law:

Roy (t,7) =™ /0 K (t,s)ys (s)ds, (50)
Ruy (t,7) = [(I0 (K (t,5) 90 (5))) ,_,e™ — (1§ (K (t,8) %0 (5))) ._o] +

0 0 (1) () e = (0 (K (19) w5 (), _ge™ .

Jj=1

(51)
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Ryy (t,7) = (=1)" [(Ig (K (£,5) yo (5))) s=e™ — (I (K (£5) yo (5))) s=o] +
D[ (I (B (k) s () o™ = (I (K (19) w3 ()€™ s v =1, (Bo1)

j=1

Now let § (t, 7, €) be arbitrary continuous in (¢,7) € [0, 7] x {7 : Rer; <0, j = 1,4} function
with asymptotic expansion

g(t,7,e) Zs ye (6, 7)), ye(t,7) €U (6)

converging as ¢ — +0 (uniformly in (t,7) € [0,7] x {7 :Rer; <0,j =1,4}). Then image
Ji (t,7,¢) of this function expands into an asymptotic series

g (t,T,¢) ZsJyktT Z ZRT sYs (6 T) lr=yp(t) fe-

This equality is the basis for introducing an extension of the operator J on series of the form (6):

Jy (t,7,¢) (Ze yi (6,7 > défieril%r_sys (t, 7). (7)
r=0 s=0

Although the operator J is defined formally, its usefulness is obvious, since in practice one usually
constructs an N-th approximation of the asymptotic solution of the problem (1), in which only
N-th partial sums of the series (7) that have not formal, but true meaning. Now we can write
the problem completely regularized with respect to the original problem (2):

L.j(t,7.¢) _e +ZA —Al(t)gj—jg:

= hl( ) - 277,}@( )( - 673)’ g(thvs)h:O,‘r:O = yO’ te [O,T],

where the operator .J has the form (7).

3. Iterative problems and their solvability in the space U

Substituting series (6) into (8) and equating the coefficients at the same powers of &, we
obtain the following iterative problems:

4

0 1
Lyo (t.7) = 3 MO 52 = Mi(t)yo — Royo = ha(t) = 5-ha(t) (€7 =€), 30 (0,0) = 3" (9)
j=1 ’
0
Ly (t,7) = —ﬁ + Ryyo, 11 (0,0) = 0; (91)
0
Lys (t,7) = —% + Riy1 + Rayo, 9o (0,0) = 0; (92)
OYi—
Lyy(t,7)=— ygt L % Riyo + - + Riyk—1, Uk (0,0)=0, k>1. (9%)
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Each of the iterative problems (9;) can be written as

3
Z)‘] 87' (t)y — Roy=H (t’T) ) (O’ 0) = Y s (10)

3
where H (t,7) = Hy (t)+ > H; (t) €7 is a well-known function of the space U, y. € C is constant,
j=1

and the operator Ry has the form (see (6))

szR(mm+§pAWﬂ)=WAﬁamwu@w

We introduce a scalar (for each ¢ € [0,7]) product in the space U :

4 4
de

< z,w >=< 20 (t) + sz (t)e™, wo () + ij (t)e™” > =/

j=1

Jj=1

o (1) w0 (0) + 3 (2 (1) wy (1))

Jj=1

where (*, x) denotes the usual scalar product in the complex space C. Let us prove the following
statement.

Theorem 1. Let the conditions 1) and 2) hold and right-hand part H (t,7) = Hy(t) +
+ Z H; (t)e™ of the equation (10) belongs to the space U. Then for the solvability of equation

(10) in U it is necessary and sufficient that the identity
< Hy (t,7),e" >=0< Hy (t) =0Vt € [0,T] (11)
1s fulfilled.

Proof. We will define the solution of the equation (10) as an element (4) of the space U:
y(t,7) =1yo( +—j£:zm - (12)

Substituting (12) into the equation (10), we will have

4

4
STy M]%UW—MUm(—e/KWQMU%—MN)E}ﬁ@ﬂ-

j=1 j=1

Equating here separately the free terms and coefficients at the same exponents, we obtain the
following equations:

i (B30 (1) = Ho (1), (13)
Aj () = A ()] y; (t) = H; (t),j =1,3, (135)
[M@—M@MMﬂjAKwﬂm@%=HM) (134)
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Due to the fact that the function A; (t) # 0Vt € [0,7], the equation (13) has a unique
solution yo(t) = —A7* (t) Ho(t). Since the function [A4 (t) — Ay (t)] # 0Vt € [0,7], then the
equation (134) can be written as

ya (1) = / (D () = M O] K (19) )y () ds = Da () = M O] Ha (1) (14)

Due to the smoothness of the kernel ([)\4 ) — A\ ()] 'K (¢, s)) and heterogeneity
[Ag(t) — A (¢)] "Hy (t) this Volterra integral equation has a unique solution ys(t) €
C* ([0, T], C).

Since Ag 3 (t) = il (t) are purely imaginary functions, and the function A; (¢) is real, then
the equation (13;) mpu j = 2,3 solvable in the space C* ([0,7],C). The equation (13;) is
solvable in the space C* ([0,T],C) if and only if the identity Hy (t) =0 V¢ € [0,7] holds. Tt is
easy to see that this identity coincides with the identity (11). Thus, condition (11) is necessary
and sufficient for the solvability of equation (10) in the space U. The theorem is proved. O

Remark 1. If identity (11) holds, then under conditions 1) and 2) the equation (10) has the
following solution in the space U :

y(t,7)=1yo (t) +aq (t) ™ + Hoy(t)e™ + Hs1(t)e™ + yy () ™, (15)

where ay (t) € C= ([0, T],C) is an arbitrary function, yo(t) = —A;* () Ho(t), y4 (t) is the solu-
tion of the integral equation (14) and introduced the notation:

H (1)
Aa () = Ar (8)]

Hj (t)
Az (t) = Ap ()

Hy (t) Hs,(t)
4. Unique solvability of a general iterative problem
in the space U. Remainder term theorem
As can be seen from (15), the solution to the equation (10) is determined ambiguously.
However, if it is subject to additional conditions:
y(0,0) =y,
(16)

<*%+R1y+Q(t,T)’ e >=0Vte0,T]

4
where Q (t,7) = Qo (t) + > Q; (t)e™ is a known function of the space U, y. is a constant
j=1

number of the complex space C, then problem (10) will be uniquely solvable in the space U.
More precisely, the following result takes place.

Theorem 2. Let conditions 1) and 2) hold, the right-hand side H (t,T) of the equation (10)
belongs to the space U and satisfies the orthogonality condition (11). Then equation (10) under
additional conditions (16) is uniquely solvable in U.

Proof. Under condition (11), the equation (10) has the solution (15) in the space U, where
the function g (t) € C* ([0,T],C) so far arbitrary. Subordinate (15) to the initial condition
y(0,0) = y.. Will have
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H,(0) N
A4(0) — A1(0) (17))

& 1 (0) =y + A7 (0) Ho (0) — Hz1(0) — Hz (0) + m

Let us now subordinate the solution (15) to the second condition (16). The right-hand side of
this equation is

Y« = Y0 (0) + a1 (0) + H21(0) + Hz1(0) —

8t + Rlyo —+ Q (t T) 7@0 (t) — o'zl(t)eﬁf
3

) HAlO) Y g ger 4 KD K000
JZ;(A‘U—M)) PR ST - - i

(00, K603,
+Z[ M0 T 0 - A (0)

+Q(t, 7).
Now multiplying (18) scalarly by e™, we obtain the differential equation
—dn(t) +

Adding the initial condition (17) to it, we uniquely find the function a;(t), and, therefore,
construct the solution (15) of the problem (10) in the space U uniquely. The theorem is proved.

Applying Theorems 1 and 2 to iterative problems (9), we find uniquely their solutions in the
space U and construct series (6). Just as in [4], we prove the following statement.

Theorem 3. Let conditions 1)-2) be satisfied for the equation (1). Then at e € (0,20](gg > 0 is
small enough) equation (1) has a unique solution y(t,e) € C*([0,T),C); in this case, the estimate

ly(t,e) = yen Ol ey S enve™, N=0,1,2,...,

t
m) of the N-th partial sum of the series (6)

€
(with coefficients yy (t,7) € U satisfying iterative problems (9,), and the constant ¢y > 0 does
not depend on ¢ at € € (0,¢e0].

holds true; here y.n(t) is narrowing (at T =

5. Construction of a solution of the first iterative problem

Using Theorem 1, we will try to find a solution for the first iterative problem (9, ). Since the
right-hand side h(t) to the equation (9,), satisfies condition (11), this equation has (according
o (15)) the solution in the space U in the form

o (t,7) = 43 () + al? (£) €™ + hoy () 01€™ + hay (£) 02€™, (19)

where a§°> (t) € C*(]0,T],C) is an arbitrary function,y((J ) (t) = =A7 1 (t) hi(t) and introduced

the notations: i o () )= ) o ()
2id () — A (1) ! 2i A3 (1) — A\ (8)

Submitting (19) to the initial condition yq (0, 0) = 3°, will have

By (t) = —

o (0) + a{” (0) + a1 (0) + 31 (0) =y° =
e al”(0) = 40 + A7 (0) 7y (0) — hay (0) — ha (0).
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For the complete computation of the function a§°) (t), we proceed to the next iterative prob-
lem (9,). Substituting solution (19) of the equation (9,) into it, we arrive at the following
equation:

K)o () .  K(t0)a” (0)
M) - A 0) = (0)

d d
Ly (1) = == () = = (a7(®)) ™ +

Performing scalar multiplication here, we obtain the ordinary differential equation

ngo) (t) K(tt) NO!
dt A (t) = Aa(t)

(t) =0.
Adding the initial condition (20) to this equation, we find ago)(t) :

O (1) = [y + A7 (0) hy (0) — hay (0) — s (0)] e / R T
Q = — — X - ' 7z
1 ) 1 1 21 31 p 0 )\1 (9) _ )\4 (0>
and hence the solution (19) to problem (9,) will be found uniquely in the space U. In this case,
the leading term of the asymptotics is as follows:
i[5 00 o
e 0 0

yeo(t) = ys” (£) + hay (1) + hay (t)e

(21)
[ B0 gy 1 [, (0)do
+ [y() + )\;1 (0) hl (0) _ h21 (0) N hgl(O)] 00 X1 (0)—=Xx4(0) ) 1 .

From the expression (21) for y.o(¢) it is seen that the construction of the leading term of
the asymptotics of the solution to problem (1) is significantly influenced by both the rapidly
oscillating inhomogeneity and the kernel of the integral operator.

Example. Consider the integro-differential problem

d b s ¢
6d—z::—2y+/e_T(t—t2+52)y(s7s)ds+t2+tsing, y(0,6) =9°, t€[0,T]. (22)
0

Here:
K(t,s)=t—t2+3s% hi(t)=t3 ha(t)=t, B(t)=t,

A =-=2, Ag=—i, A3g=+41i, A\g=—1, K(t,t) =1.
Using formula (21), we calculate the leading term of the asymptotic solution to problem (22):

=t L et
A T G ) 2i (i + 2)

2 1 [t t 0 2 a
=—+-t(2sin|-)—cos| - +y'e 27 .
2 5 € 5

t
If there were no rapidly oscillating term ¢sin — in the right-hand side of equation (22), then

it 0 _t2_ 2t
es +ye 2 ¢

(23)

€
the leading term of the asymptotics would have the form

Jeo (t) = 5 +ye” 27
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_ t2
and the limiting solution of problem (22) would be the function g (¢) = 5 In the presence of a

rapidly oscillating inhomogeneity, as can be seen from formulas (23), the exact solution y (¢, ¢)
of the problem (22), leaving the value y° at t = 0, performs (when ¢ — +0) fast oscillations
2

S

_ 4
around the function g (t) = 5 The formation of a term y%~ =

% is influenced by the kernel

K (t,s) of the integral operator (more precisely: K (¢,t)). In its absence, the specified term
would have the form y%e~ % Influence of a rapidly decreasing factor e~ =" on the leading term
of the asymptotics does not affect. It will be found when constructing the following asymptotic
solution yeq (t).

This work is supported by the grant no. AP05133858 "Contrast structures in singularly per-
turbed equations and their application in the theory of phase transitions” by the Committee of
Science, Ministry of Education and Science of the Republic of Kazakhstan.
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Awnnoranusi. B wHacrosmieit pabore paccMaTpWBAETCS  CHUHTYJISIPDHO  BO3MYIIEHHOE  HWHTEIPO-
nuddepeHnnaibHOe ypaBHEHHE € ObICTPO OCHUJUIAPYIONIEH IPaBOil YacTbhio, KOTOPOE BKJIIOYAET
WHTErpaJIbHBII orepaTop ¢ GbICTpO MeHsfouMcest siapoM. OCHOBHAS 11eJ1b JAHHON paboThl — 0606IIUTH
MEeTOJT peryaspu3anuu JIoMoBa U BBISIBUTH BJIUSHHE OBICTPO OCIHWIIMPYIONEH MPaBOil 9acTu U OBICTPO
MEHSIIOIIEroCs s/Ipa Ha ACUMIITOTUKY PEIIeHUs] UCXOIHOM 3a/1a4u.

KuroueBbie cjioBa: CUHTYJISIPHOE BO3MYIINEHNE, UHTErpo-auddepeHnnaabHoe ypaBHeHne, ObICTPO OC-
MULTAPYIOIAsi HEOMHOPOIHOCTh, OBICTPO MEHSIIOIIEECs PO, PEryIsSpU3alinsi, Pa3perrnMOCTb UTEPAIIH-
OHHBIX 3a/1a4.
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