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Diabetic kidney disease (DKD) is a prevalent renal complication of diabetes mellitus that ultimately develops into end-stage kid-
ney disease (ESKD) when not managed appropriately. Substantial risk of ESKD remains even with intensive management of hy-
perglycemia and risk factors of DKD and timely use of renin-angiotensin-aldosterone inhibitors. Sodium-glucose cotransporter 2 
(SGLT2) inhibitors reduce hyperglycemia primarily by inhibiting glucose and sodium reabsorption in the renal proximal tubule. 
Currently, their effects expand to prevent or delay cardiovascular and renal adverse events, even in those without diabetes. In ded-
icated renal outcome trials, SGLT2 inhibitors significantly reduced the risk of composite renal adverse events, including the devel-
opment of ESKD or renal replacement therapy, which led to the positioning of SGLT2 inhibitors as the mainstay of chronic kid-
ney disease management. Multiple mechanisms of action of SGLT2 inhibitors, including hemodynamic, metabolic, and anti-in-
flammatory effects, have been proposed. Restoration of tubuloglomerular feedback is a plausible explanation for the alteration in 
renal hemodynamics induced by SGLT2 inhibition and for the associated renal benefit. This review discusses the clinical rationale 
and mechanism related to the protection SGLT2 inhibitors exert on the kidney, focusing on renal hemodynamic effects.
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INTRODUCTION 

Diabetic kidney disease (DKD) is one of the most important 
complications in patients with type 1 and type 2 diabetes mel-
litus. Diabetes is currently the most common cause of chronic 
kidney disease (CKD), leading to kidney failure worldwide [1]. 
In South Korea, nearly 50% of end-stage kidney disease 
(ESKD) cases are caused by diabetes [2]. Over 30% of people 
with diabetes have albuminuria or reduced glomerular filtra-
tion rate (GFR) [3]. The progress of standard care and the ad-
vent of new drugs have substantially decreased the risk of mor-
bidity and mortality in patients with diabetes [4]. Nonetheless, 
the prevalence of DKD and ESKD is steadily increasing, 
whereas that of ischemic heart disease and ischemic stroke has 

gradually decreased over the past decades [5,6]. Given the sig-
nificantly increased mortality risk related to ESKD [7], pre-
venting DKD with intensive risk factor management is critical. 
In major clinical trials, the renoprotective effect of renin-an-
giotensin-aldosterone system (RAAS) inhibitors has been 
demonstrated in diabetic patients with hypertension [8-10]. 
However, for approximately 20 years after that, no single treat-
ment that could delay the progression of DKD has been re-
ported [11,12].

Sodium-glucose cotransporter 1 (SGLT1) is expressed most-
ly in the intestinal tract and less so in the kidney, whereas 
SGLT2 is predominantly present in the renal proximal tubule; 
both SGLTs are responsible for the reabsorption of glucose and 
sodium [13]. SGLT2 is responsible for 80% to 90% glucose re-
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absorption in the early proximal tubule, whereas SGLT1 reab-
sorbs the remaining 10% of the filtered glucose [14]. Some 
studies have indicated that the mRNA levels and activity of 
SGLTs are increased in patients with diabetes [15,16]. There-
fore, strategies to inhibit SGLT2 have been proposed to lower 
blood sugar levels in diabetic patients [17,18], and several 
SGLT2 inhibitors have been introduced. In addition to their 
glucose-lowering effect, SGLT2 inhibitors have beneficial ef-
fects on cardiovascular and renal disease risk factors, such as 
weight loss and blood pressure reduction [19,20]. Indeed, car-
diovascular and dedicated renal outcome trials of SGLT2 in-
hibitors have demonstrated that these drugs inhibit and delay 
the development and progression of cardiovascular and renal 
diseases [21-23].

A single effect cannot explain the mechanisms underlying 
the cardiovascular and renal benefits of SGLT2 inhibitors. In-
stead, various metabolic and hemodynamic effects appear to 
be related, and the mechanisms by which SGLT2 inhibitors ex-
ert beneficial effects on the renal and cardiovascular systems 
have been reviewed elsewhere [24,25]. This review discusses 
the mechanism by which SGLT2 inhibitors exert a renoprotec-
tive effect. In particular, we summarize the results of recent 
studies focusing on changes in renal hemodynamics induced 
by SGLT2 inhibition.

IMPLICATIONS FROM CARDIOVASCULAR 
AND RENAL OUTCOME TRIALS OF SGLT2 
INHIBITORS 

Table 1 summarizes the renal effects of SGLT2 inhibitors in 
cardiovascular and renal outcome trials. The cardiovascular 
outcome trial of empagliflozin ((Empagliflozin) Cardiovascu-
lar Outcome Event Trial in Type 2 Diabetes Mellitus Patients 
[EMPA REG OUTCOME]) demonstrated a significant reduc-
tion in the incidence of major adverse cardiovascular events 
with empagliflozin versus placebo in patients with type 2 dia-
betes mellitus and established cardiovascular disease (CVD) 
[26]. In this study, pre-specified renal endpoints, incident or 
worsening nephropathy (progression to macroalbuminuria, 
doubling of serum creatinine, initiation of renal replacement 
therapy, or death from renal disease) also significantly de-
creased by 39% in the empagliflozin group [27]. Thereafter, in 
the Canagliflozin Cardiovascular Assessment Study (CAN-
VAS) of canagliflozin and the Dapagliflozin Effect on Cardio-
vascular Events (DECLARE) trial of dapagliflozin, the risk for 

prespecified renal endpoints was also significantly reduced in 
the treatment group compared to placebo by 30% and 39%, re-
spectively [28,29]. Although these studies have limitations in 
that kidney outcomes were measured as a secondary endpoint, 
the results exceeded the magnitude of the beneficial effects of 
angiotensin receptor blockers on the progression of DKD, 
which was demonstrated by the Reduction of Endpoints in 
NIDDM with the Angiotensin II Antagonist Losartan Study 
(RENAAL) and Irbesartan Diabetic Nephropathy Trial 
(IDNT) (16% and 19%, respectively) [8,10]. Subsequent dedi-
cated renal outcome trials, namely the Canagliflozin and Renal 
Events in Diabetes with Established Nephropathy Clinical 
Evaluation (CREDENCE) and Dapagliflozin And Prevention 
of Adverse outcomes in Chronic Kidney Disease (DAPA 
CKD) studies, confirmed the effects of canagliflozin and dapa-
gliflozin on primary renal endpoints in advanced CKD pa-
tients [10,30]; the risk of renal endpoints was significantly re-
duced in the CREDENCE study by 30%, and in the DAPA 
CKD study by 39%. In particular, the DAPA CKD study was 
conducted in patients with advanced CKD with or without di-
abetes, and the renoprotective effect of dapagliflozin was ob-
served in both diabetic and non-diabetic patients [31].

The cardiovascular and renal outcome trials described above 
have consistently shown favorable results for kidney outcomes 
of SGLT2 inhibitors; therefore, it can be said that SGLT2 inhib-
itors have a protective role in the DKD progression as a class 
effect. The results of meta-analysis and subgroup analyses of 
these studies have several important clinical implications. First, 
the renal benefit of SGLT2 inhibitors is consistent regardless of 
CKD stage and albuminuria [21,22,29,30,32,33]. Notably, a 
similar renal benefit was seen even in patients with stage 1 or 2 
CKD or normoalbuminuria as in those with higher stages of 
CKD or increased albuminuria. The absolute risk reduction for 
adverse renal events was even greater in patients with normal 
estimated glomerular filtration rate (eGFR) than in patients 
with advanced CKD [21,22]. This suggests that SGLT2 inhibi-
tors can be applied at an earlier stage of DKD, significantly af-
fecting early changes in the diabetic kidney, including glomer-
ular hyperfiltration. Second, an initial decline in eGFR (initial 
“dip”) was observed after SGLT2 inhibitor use in most trials 
[34,35]. This pattern is similar to the transient eGFR decrease 
often observed after RAAS inhibitor use, suggesting significant 
changes in renal hemodynamics after SGLT2 inhibitor treat-
ment initiation. As described later, decreased renal blood flow 
or renal vascular resistance appears to be responsible for this 
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phenomenon. The initial dip in eGFR is a reversible process. It 
has been reported that the degree of decline is associated with 
subsequent kidney function preservation in some [34,36], but 
not in all trials [37]. In addition, many clinical trials have re-
ported a low risk of acute kidney injury related to SGLT2 in-
hibitors [22,38], which indirectly shows that the initial dip oc-
curs within a physiological range. Third, it has been demon-
strated that SGLT2 inhibitors have beneficial effects not only 
on renal outcomes but also on heart failure outcomes [39-41]. 
Given that both CKD and heart failure have reduced effective 
circulating volume, it has been suggested that SGLT2 inhibi-
tors can induce significant and beneficial changes in systemic 
hemodynamics [42].

HEMODYNAMIC ALTERATIONS IN 
DIABETIC KIDNEY DISEASE

The mechanism by which glomerular hyperfiltration occurs in 
patients with diabetes is not fully understood, but the structur-
al, vascular, and tubular changes associated with hyperglyce-
mia and diabetes seem to be involved [43]. In addition, chang-
es in various growth factors and cytokines in response to hy-
perglycemia and hyperinsulinemia induce renal hypertrophy 
[44,45], which is recognized as a causative factor for the occur-
rence of hyperfiltration. 

Hyperfiltration is generally regarded as an early hemody-
namic change in patients with diabetes [46] and is found in up 

Table 1. Summary of renal effects of SGLT2 inhibitors in the cardiovascular and renal outcome trials

Renal 
endpoint

No. of 
participants Population

Mean 
eGFR, mL/

min/1.73 m2 
Renal endpoint

HRa of 
composite 

renal 
endpoint

HRa of 
ESKD

EMPA REG 
OUTCOME 
(Empagliflozin)

Secondary 7,020 T2DM and  
ASCVD

74.2 Macroalbuminuria, doubling of sCr with 
eGFR <45 mL/min/1.73 m2, initiation 
of RRT, death from renal disease

0.61 
(0.53–0.70)

0.45 
(0.21–0.97)

CANVAS  
(Canagliflozin)

Exploratory 10,142 T2DM, ASCVD or 
MRF

76.7 ≥40% decrease in eGFR, need for RRT, 
death from renal cause

0.60 
(0.47–0.77)

0.77 
(0.30–1.97)

DECLARE 
(Dapagliflozin)

Secondary 17,160 T2DM, ASCVD or 
MRF

85.4 ≥40% decrease in eGFR to <60 mL/
min/1.73 m2, ESKD, death from renal 
or cardiovascular causes

0.76 
(0.67–0.87)

0.31 
(0.13–0.79)

CREDENCE 
(Canagliflozin)

Primary 4,401 T2DM, CKD and  
macroalbuminuria

56.3 Doubling of sCr, ESKD, death from renal 
or cardiovascular causes

0.70 
(0.59–0.82)

0.68 
(0.54–0.86)

DAPA CKD 
(Dapagliflozin)

Primary 4,304 With or without 
T2DM, CKD and  
albuminuria

43.2 ≥50% decrease in eGFR, ESKD, death 
from renal or cardiovascular causes

0.61 
(0.51–0.72)

0.64 
(0.50–0.82)

VERTIS CV   
(Ertugliflozin)

Secondary 8,246 T2DM and  
ASCVD

76.1 Doubling of sCr, RRT, death from renal 
causes

0.81 
(0.63–1.04)

NA

DAPA HF  
(Dapagliflozin)

Secondary 4,744 With or without 
T2DM, EF ≤40%

66.0 ≥50% decrease in eGFR, ESKD, death 
from renal causes

0.71 
(0.44–1.16)

1.00 
(0.50–1.99)

EMPEROR- 
Reduced  
(Empagliflozin)

Prespecified 3,730 With or without 
T2DM, EF ≤40%

61.8 ≥40% decrease in eGFR, ESKD 0.50 
(0.32–0.77)

NA

SCORED  
(Sotagliflozin)

Secondary 10,584 T2DM, CKD, MRF 44.4 ≥50% decrease in eGFR, ESKD 0.71 
(0.46–1.08)

NA

SGLT2, sodium-glucose cotransporter 2; eGFR, estimated glomerular filtration rate; HR, hazard ratio; ESKD, end-stage kidney disease; EMPA 
REG OUTCOME, (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients; T2DM, type 2 diabetes mellitus; 
ASCVD, atherosclerotic cardiovascular disease; sCr, serum creatinine; RRT, renal replacement therapy; CANVAS, Canagliflozin Cardiovascular 
Assessment Study; MRF, multiple risk factors for ASCVD; DECLARE, Dapagliflozin Effect on Cardiovascular Events; CREDENCE, Cana-
gliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation; CKD, chronic kidney disease; DAPA CKD, Dapa-
gliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease; VERTIS CV, Evaluation of ertugliflozin efficacy and safety cardiovas-
cular outcomes trial; NA, not available; DAPA HF, dapagliflozin and prevention of adverse outcomes in heart failure; EF, ejection fraction; EM-
PEROR-Reduced, empagliflozin outcome trial in patients with chronic heart failure and a reduced ejection fraction; SCORED, effect of sota-
gliflozin on cardiovascular and renal events in patients with type 2 diabetes and moderate renal impairment who are at cardiovascular risk. 
aStudy drug (SGLT2 inhibitors) vs. placebo.
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to 70% of patients with type 1 and type 2 diabetes mellitus [43]. 
Afferent renal vasodilation, subsequent glomerular hyperten-
sion, and an increased filtration fraction (the ratio between 
GFR and effective renal plasma flow) have been observed in 
patients with early diabetes and experimental models of diabe-
tes [47,48]. Tubuloglomerular feedback (TGF) is an important 
mechanism explaining this phenomenon [49]. During intra-
vascular volume contraction or decreased circulating plasma 
volume, sodium delivery to the macular densa decreases. This 
leads to vasoconstriction of the efferent arteriole by renin/an-
giotensin release and vasodilation of the afferent arteriole by 
reduced adenosine formation. As a result, intraglomerular 
pressure is restored, and GFR increases. Therefore, sodium de-
livery to the distal nephron and the subsequent changes in re-
nin, angiotensin, and adenosine production is central to the 
TGF model [50]. 

Under physiologic condition, glucose filtered from the 
glomerulus is reabsorbed almost completely in the proximal 
tubule [14]. In patients with diabetes, glucose filtration is in-
creased by hyperglycemia, leading to increased sodium and 
glucose reabsorption via SGLT upregulation [51]. Increased 
SGLT1 and SGLT2 expression have been observed in diabetic 
mouse models and human studies [15,16]. This is supported 
by the fact that the threshold of glucosuria in diabetic patients 
is approximately 60 mg/dL higher than that in normal subjects 
[52]. Consequently, the amount of sodium reaching the macu-
lar densa at the juxtamedullary apparatus decreases, which is 
recognized as a decrease in the effective circulating volume 
[53,54]. This induces changes in glomerular capillaries, leading 
to hyperfiltration and glomerular hypertension [55]. In detail, 
when sodium is transferred to the tubular epithelial cells of the 
macular densa, the conversion of adenosine triphosphate 
(ATP) to adenosine diphosphate by the Na+/K+-ATPase de-
creases, and consequently, the production of adenosine de-
creases. Adenosine induces arteriolar vasoconstriction through 
the adenosine type 1 (A1) receptor at the afferent arteriole. 
Therefore, a decrease in adenosine production inhibits this 
process and causes relative afferent arteriolar vasodilation. In 
contrast, a reduction in sodium delivery to the distal tubule in 
the diabetic kidney induces intrarenal RAAS activation, which 
results in efferent arteriolar vasoconstriction [55,56]. Taken to-
gether, the effects of hyperglycemia in the diabetic kidney in-
fluence both afferent and efferent arterioles, resulting in intra-
glomerular hypertension and hyperfiltration.

EFFECTS OF SGLT2 INHIBITORS ON RENAL 
HEMODYNAMICS 

According to clinical studies, SGLT2 inhibitors reduce glyco-
sylated hemoglobin by 0.4% to 1.0% in patients with type 2 di-
abetes mellitus under various trial settings [57]. In addition, 
SGLT2 inhibitors also control risk factors for CVD and CKD 
by reducing systolic blood pressure by 2 to 5 mm Hg and body 
weight by 2 to 4 kg [19,20]. However, compared to glucagon-
like peptide-1 receptor agonists, which had a greater effect on 
reduction in glycosylated hemoglobin and weight loss, SGLT2 
inhibitors showed superiority in ESKD prevention [57,58]. 
This finding implies that the effects of SGLT2 inhibitors on 
metabolic changes and cardiovascular risk factors do not fully 
explain their renoprotective effects. 

TGF restoration is an important mechanism for explaining 
renal hemodynamic changes induced by SGLT2 inhibitors. 
SGLT2 inhibitors normalize the decreased distal sodium deliv-
ery to the macular densa in the diabetic kidney by inhibiting 
sodium reabsorption in the proximal tubule [56]. This increas-
es adenosine production and consequently induces vasocon-
striction of the afferent arteriole. As a result, the intraglomeru-
lar pressure is reduced, and hyperfiltration is improved. This 
has been demonstrated in several animal studies and patients 
with type 1 diabetes mellitus. In streptozotocin-induced dia-
betic rats, dapagliflozin decreased single-nephron GFR, ac-
companied by decreased proximal solute reabsorption and in-
creased distal tubule chloride [59]. In patients with type 1 dia-
betes mellitus with hyperfiltration, empagliflozin treatment 
significantly reduced renal blood flow and hyperfiltration, ac-
companied by a decrease in plasma nitric oxide and an increase 
in renal vascular resistance [60]. In an animal model of type 1 
diabetes mellitus, in vivo imaging demonstrated that empa-
gliflozin reduced hyperfiltration via afferent arteriole constric-
tion. In this study, an A1 adenosine receptor blocker counter-
acted the action of empagliflozin, supporting the hypothesis 
that SGLT2 inhibition affects renal hemodynamic function via 
adenosine production [61]. These studies showed that TGF 
restoration by SGLT2 inhibition does work, but there are limi-
tations in that the studies were conducted primarily under the 
conditions of type 1 diabetes mellitus and hyperfiltration. 

Of note, most large-scaled renal outcome trials have demon-
strated the renoprotective effects of SGLT2 inhibitors in pa-
tients with type 2 diabetes mellitus and advanced stage of 
CKD. A possible explanation for the role of hyperfiltration in 
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patients with advanced CKD is that hyperfiltration still occurs 
at the single nephron level in the late stage of kidney disease 
progression [62]. This is considered a compensatory mecha-
nism for the reduced nephron number [63]. On the other 
hand, obesity, which is frequently found in patients with type 2 
diabetes mellitus, also contributes to increased tubular sodium 
reabsorption by increasing abdominal pressure and compres-
sion of loops of Henle [64,65]. Therefore, even in advanced 
CKD, SGLT2 inhibitors may show hemodynamic effects simi-
lar to those observed in early CKD stages. 

A recent study on patients with type 2 diabetes mellitus pro-
vided new insights into the hemodynamic effects of SGLT2 in-
hibitors [66]. In this study of 44 patients with type 2 diabetes 
mellitus, dapagliflozin decreased the measured GFR, and fil-
tration fraction compared to gliclazide but did not increase re-
nal vascular resistance. In addition, dapagliflozin treatment in-
creased urinary adenosine and prostaglandin concentrations. 

Table 2. Summary of the effects of SGLT2 inhibitors on kidney 
in diabetes

Diabetes Diabetes with 
SGLT2 inhibitors

↑ SGLT2 expression ↓
↑ Na+ reabsorption at proximal 

tubule
↓

↓ Na+ level at macula densa ↑
↓ Adenosine level at macula 

densa
↑

↓
Vasodilation

Afferent arteriole tone ↑
Vasoconstriction

↑
Vasoconstriction

Efferent arteriole tone ↓
Vasodilation

↑ Intraglomerular pressure ↓
↑ GFR (early change) ↓

SGLT2, sodium-glucose cotransporter 2; GFR, glomerular filtration 
rate.

Fig. 1. Hemodynamic changes following sodium-glucose cotransporter 2 (SGLT2) inhibition in the kidney. ① SGLT2 is responsi-
ble for 80% to 90% glucose reabsorption in the early proximal tubule, and SGLT1 reabsorbs the remaining 10% of the filtered glu-
cose under physiologic conditions. ② Under hyperglycemic condition, glucose filtration is increased, which leading to increased 
sodium and glucose reabsorption via SGLT2 upregulation. SGLT2 inhibitor primarily blocks the action of SGLT2, ③ resulting in 
increased delivery of sodium and glucose to the distal renal tubule. ④ In type 1 diabetes mellitus or hyperfiltration state, increased 
sodium delivery to the tubular epithelial cells of the macular densa induces adenosine production which activates adenosine A1 re-
ceptor, triggering an increase in cytosolic Ca2+. ⑤ Restoration of tubuloglomerular feedback ultimately results in afferent arteriolar 
vasoconstriction. ⑥ In type 2 diabetes mellitus on renin-angiotensin-aldosterone system (RAAS) blockade, SGLT2 inhibition may 
act on renal arterioles in a different way. SGLT2 inhibitors increased production of adenosine and prostaglandin ⑦ which resulting 
in efferent vasodilation on RAAS blockade. 
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Adenosine, a vasoconstrictor in the afferent arteriole, had a 
conflicting effect (vasodilation) on the efferent arteriole in the 
presence of RAAS blockade [67]. This means that SGLT2 in-
hibitors have different renal hemodynamic effects in type 2 di-
abetes mellitus patients on top of RAAS blockers compared to 
type 1 diabetes mellitus patients. In other words, efferent arte-
riole vasodilation through prostaglandin release could be a 
novel mechanistic explanation. The patients in this study had a 
baseline mean eGFR of 85 mL/min/1.73 m2 and diabetes dura-
tion of 9.8 years, and about 70% of participants were treated 
with RAAS inhibitors, which suggested that SGLT2 inhibitors 
may have a different renohemodynamic effect in patients with 
advanced type 2 diabetes mellitus without hyperfiltration. An-
other study, including 101 patients with type 2 diabetes melli-
tus, showed that treatment with empagliflozin and linagliptin 
versus metformin and insulin glargine did not increase the re-
sistance of afferent arterioles. Still, it decreased efferent arteri-
oles’ resistance and was accompanied by reduced GFR [68]. 
Table 2, Fig. 1 summarizes renal hemodynamic changes fol-
lowing SGLT2 inhibition.

CONCLUSIONS 

Recent evidence clearly shows that SGLT2 inhibitors prevent 
or delay DKD progression. The renoprotective effects of 
SGLT2 inhibitors appear throughout the course of CKD, from 
the early to the late stages of the disease. In type 1 diabetes mel-
litus or under hyperfiltration conditions, restoration of TGF 
induced by SGLT2 inhibition reduces glomerular hyperten-
sion via afferent arteriole vasoconstriction. Recent studies have 
suggested that the renal hemodynamic effect of SGLT2 inhibi-
tors in older patients with type 2 diabetes mellitus may differ 
from that in type 1 diabetes mellitus or under hyperfiltration 
conditions. However, although the route is likely to differ, in-
traglomerular pressure reduction by SGLT2 inhibition has 
been consistently observed. This change in renal hemodynam-
ics is one of the important mechanisms explaining the reno-
protective effect of SGLT2 inhibitors. It is expected that more 
evidence in the future will provide a better understanding of 
the true renal effects of SGLT2 inhibitors. 
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