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Cortical neurons are characterized by irregular firing and a broad distribution of rates. The balanced state
model explains these observations with a cancellation of mean excitatory and inhibitory currents, which
makes fluctuations drive firing. In networks of neurons with current-based synapses, the balanced state
emerges dynamically if coupling is strong, i.e., if the mean number of synapses per neuron K is large and

synaptic efficacy is of the order of 1=
ffiffiffiffi
K

p
. When synapses are conductance-based, current fluctuations are

suppressed when coupling is strong, questioning the applicability of the balanced state idea to biological
neural networks. We analyze networks of strongly coupled conductance-based neurons and show that
asynchronous irregular activity and broad distributions of rates emerge if synaptic efficacy is of the order of
1= logðKÞ. In such networks, unlike in the standard balanced state model, current fluctuations are small and
firing is maintained by a drift-diffusion balance. This balance emerges dynamically, without fine-tuning, if
inputs are smaller than a critical value, which depends on synaptic time constants and coupling strength,
and is significantly more robust to connection heterogeneities than the classical balanced state model. Our
analysis makes experimentally testable predictions of how the network response properties should evolve
as input increases.

DOI: 10.1103/PhysRevX.12.011044 Subject Areas: Biological Physics, Complex Systems,
Interdisciplinary Physics

I. INTRODUCTION

Each neuron in the cortex receives inputs from hundreds
to thousands of presynaptic neurons. If these inputs were to
sum to produce a large net current, the central limit theorem
argues that fluctuations should be small compared to the
mean, leading to regular firing, as observed during in vitro
experiments under constant current injection [1,2]. Cortical
activity, however, is highly irregular, with a coefficient of
variation of interspike intervals (CV of ISI) close to one
[3,4]. To explain the observed irregularity, it has been
proposed that neural networks operate in a balanced state,
where strong feed forward and recurrent excitatory inputs
are canceled by recurrent inhibition and firing is driven by
fluctuations [5,6]. At the single-neuron level, in order for
this state to emerge, input currents must satisfy two
constraints. First, excitatory and inhibitory currents must

be fine-tuned to produce an average input below threshold.
Specifically, if K and J represent the average number of
input connections per neuron and synaptic efficacy, respec-
tively, the difference between excitatory and inhibitory
presynaptic inputs must be of the order of 1=KJ. Second,
input fluctuations should be large enough to drive firing.
It has been shown that the balanced state emerges

dynamically (without fine-tuning) in randomly connected
networks of binary units [7,8] and networks of current-
based spiking neurons [9,10], provided that coupling is
strong, and recurrent inhibition is powerful enough to
counterbalance instabilities due to recurrent excitation.
However, these results are all derived assuming that the
firing of a presynaptic neuron produces a fixed amount
of synaptic current, hence neglecting the dependence of
synaptic current on the membrane potential, a key aspect of
neuronal biophysics. In real synapses, synaptic inputs are
mediated by changes in conductance, due to opening of
synaptic receptor channels on the membrane, and synaptic
currents are proportional to the product of synaptic con-
ductance and a driving force which depends on the
membrane potential. Models that incorporate this descrip-
tion are referred to as “conductance-based synapses”.
Large synaptic conductances have been shown to

have major effects on the stationary [11] and dynamical
[12] response of single cells and form the basis of the
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“high-conductance state” [13–19] that has been argued to
describe well in vivo data [20–22] (but see Ref. [23] and
Sec. IX). At the network level, conductance modulation
plays a role in controlling signal propagation [24], input
summation [25], interactions between traveling waves
[26], and firing statistics [27]. However, most of the
previously mentioned studies rely exclusively on numerical
simulations, and, in spite of a few attempts at analytical
descriptions of networks of conductance-based neurons
[17,28–32], an understanding of the behavior of such
networks when coupling is strong is still lacking.
Here, we investigate networks of strongly coupled

conductance-based neurons. We find that, for synapses
of the order of 1=

ffiffiffiffi
K

p
, fluctuations are too weak to sustain

firing, questioning the relevance of the balanced state idea
to cortical dynamics. Our analysis, on the other hand,
shows that stronger synapses [of the order of 1=logðKÞ]
generate irregular firing when coupling is strong. We
characterize the properties of networks with such a scaling,
showing that they match properties observed in the cortex,
and discuss constraints induced by the synaptic time
constants. The model generates qualitatively different
predictions compared to the current-based model, which
could be tested experimentally.

II. MODELS OF SINGLE-NEURON AND
NETWORK DYNAMICS

A. Membrane potential dynamics

We study the dynamics of networks of leaky integrate-
and-fire (LIF) neurons with conductance-based synaptic
inputs. The membrane potential Vj of the jth neuron in the
network follows the equation

Cj
dVj

dt
¼ −

X
A¼L;E;I

gjAðVj − EAÞ; ð1Þ

where Cj is the neuronal capacitance; EL, EE, and EI are the
reversal potentials of the leak, excitatory, and inhibitory
currents, respectively; while gjL, g

j
E, and gjI are the leak,

excitatory, and inhibitory conductances, respectively.
Assuming instantaneous synapses (the case of finite syn-
aptic time constants is discussed in Sec. VIII), excitatory
and inhibitory conductances are given by

gjE;I
gjL

¼ τj
X
m

ajm
X
n

δðt − tnmÞ: ð2Þ

In Eq. (2), τj ¼ Cj=g
j
L is the single-neuron membrane time

constant, ajm are dimensionless measures of synaptic
strength between neuron j and neuron m, and

P
nδðt− tnmÞ

represents the sum of all the spikes generated at times tnm by
neuron m. Every time the membrane potential Vj reaches
the firing threshold θ, the jth neuron emits a spike, and its

membrane potential is set to a reset Vr and stays at that
value for a refractory period τrp; after this time, the
dynamics resumes, following Eq. (1).
We use ajm ¼ a (ag) for all excitatory (inhibitory)

synapses. In the homogeneous case, each neuron receives
synaptic inputs from KE ¼ K (KI ¼ γK) excitatory (inhibi-
tory) cells. In the network case, each neuron receives
additional KX ¼ K excitatory inputs from an external
population firing with Poisson statistics with rate νX. We
use excitatory and inhibitory neurons with the same bio-
physical properties; hence, the above assumptions imply
that the firing rates of excitatory and inhibitory neurons are
equal; ν ¼ νE ¼ νI . Models taking into account the bio-
physical diversity between the excitatory and inhibitory
populations are discussed in the Appendix D. When hetero-
geneity is taken into account, the above-defined values
of KE;I;X represent the means of Gaussian distributions.
We use the following single-neuron parameters: τrp¼2ms,
θ¼−55mV, Vr ¼ −65 mV, EE ¼ 0 mV, EI ¼ −75 mV,
EL ¼ −80 mV, and τj ¼ τL ¼ 20 ms. We explore various
scalings of a with K, and, in all cases, we assume that
a ≪ 1. When a ≪ 1, an incoming spike produced by an
excitatory presynaptic neuron produces a jump in the
membrane potential of amplitude aðEE − VÞ, where V is
the voltage just before spike arrival. In the cortex, V ∼
−60 mV and average amplitudes of postsynaptic potentials
are on the order of 0.5–1.0 mV [33–39]. Thus, we expect
realistic values of a to be on the order of 0.01.

B. Diffusion and effective time constant approximations

We assume that each cell receives projections from a large
number of cells (K ≫ 1), neurons are sparsely connected
and fire approximately as Poisson processes, each incoming
spike provides a small change in conductance (a ≪ 1), and
temporal correlations in synaptic inputs can be neglected.
Under these assumptions, we can use the diffusion approxi-
mation and approximate the conductances as

gE
gL

¼ aτL½KrE þ
ffiffiffiffiffiffiffiffiffi
KrE

p
ζE�;

gI
gL

¼ agτL½γKrI þ
ffiffiffiffiffiffiffiffiffiffi
γKrI

p
ζI�; ð3Þ

where rE and rI are the firing rates of presynaptic E and I
neurons, respectively, and ζE and ζI are independent
Gaussianwhite noise termswith zeromean and unit variance
density. In the single-neuron case, we take rE ¼ νX,
rI ¼ ηνX, where η represents the ratio of I=E input rate.
In the network case, rE ¼ νX þ ν, rI ¼ ν, where νX is the
external rate, while ν is the firing rate of excitatory
and inhibitory neurons in the network, determined self-
consistently (see below).We point out that, for some activity
levels, the assumption of Poisson presynaptic firing made in
the derivation of Eq. (3) breaks down, as neurons in the
network show interspike intervals with CV significantly
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different from one [e.g., see Fig. 3(c)]. However, compar-
isons between mean field results and numerical simulations
(seeAppendixE) show that neglecting non-Poissonianity [as
well as other contributions discussed above Eq. (3)] gen-
erates quantitative but not qualitative discrepancies, with
magnitude that decreases with coupling strength. Moreover,
in Appendix B, we show that if a ≪ 1, the firing of neurons
in the network matches that of a Poisson process with a
refractory period and, hence, when ν ≪ 1=τrp, deviations
from Poissonianity become negligible.
Using the diffusion approximation, Eq. (1) reduces to

τ
dV
dt

¼ −V þ μþ σðVÞ ffiffiffi
τ

p
ζ; ð4Þ

where ζ is a white noise term, with zero mean and unit
variance density, while

τ−1 ¼ τL
−1 þ aKðrE þ rIgγÞ;

μ ¼ τfEL=τL þ aK½rEEE þ rIgγEI�g;
σ2ðVÞ ¼ a2Kτ½rEðV − EEÞ2 þ g2γrIðV − EIÞ2�: ð5Þ

In Eq. (4), τ is an effective membrane time constant, while μ
and σ2ðVÞ represent the average and the variance of the
synaptic current generated by incoming spikes, respectively.
The noise term in Eq. (4) can be decomposed into an

additive and a multiplicative component. The latter has an
effect on membrane voltage statistics that is of the same
order of the contribution coming from synaptic shot noise
[40], a factor which is neglected in deriving Eq. (3).
Therefore, for a consistent analysis, we neglect the multi-
plicative component of the noise in the above derivation;
this leads to an equation of the form of Eq. (4) with the
substitution

σðVÞ → σðμÞ: ð6Þ

This approach is termed the effective time constant
approximation [40]. Note that the substitution of Eq. (6)
greatly simplifies mathematical expressions, but it is not a
necessary ingredient for the results presented in this paper.
In fact, all our results can be obtained without having to
resort to this approximation (see Appendixes A, B, and D).

C. Current-based model

The previous definitions and results translate directly to
current-based models, with the only exception that the
dependency of excitatory and inhibitory synaptic currents
on the membrane potential are neglected (see Ref. [10] for
more details). Therefore, Eq. (1) becomes

τj
dVj

dt
¼ −Vj þ IjE − IjI; ð7Þ

where

IjA ¼ τj
X
m

Jjm
X
n

δðt − tnmÞ

represent the excitatory and inhibitory input currents.
Starting from Eq. (7), making assumptions analogous to
those discussed above and using the diffusion approxima-
tion [10], the dynamics of current-based neurons is given
by an equation of the form of Eq. (4) with

τ ¼ τL; μ ¼ τJK½rE − gγrI�;
σ2 ¼ τJ2K½rE þ g2γrI�: ð8Þ

Note that, unlike what happens in conductance-based mod-
els, τ is a fixed parameter and does not depend on the network
firing rate or external drive. Another difference between the
current-based and conductance-based models is that in the
latter, but not the former, model σ depends on V; as we
discuss above, this difference is neglected in the main text,
where we use the effective time constant approximation.

III. BEHAVIOR OF SINGLE-NEURON
RESPONSE FOR LARGE K

We start our analysis by investigating the effects of
synaptic conductance on single-neuron response. We con-
sider a neuron receiving K (γK) excitatory (inhibitory)
inputs, each with synaptic efficacy J (gJ), from cells firing
with Poisson statistics with a rate

rE ¼ νX; rI ¼ ηνX ð9Þ

and analyze its membrane potential dynamics in the
frameworks of current-based and conductance-based
models. In both models, the membrane potential V follows
a stochastic differential equation of the form of Eq. (4);
differences emerge in the dependency of τ, μ, and σ on the
parameters characterizing the connectivity, K and J. In
particular, in the current-based model, the different terms in
Eq. (8) can be written as

τ ∼ τcurr0 ; μ ∼ KJμcurr0 ; σ ∼
ffiffiffiffi
K

p
Jσcurr0 ;

where τcurr0 , μcurr0 , and σcurr0 are independent of J and K. In
the conductance-based model, the efficacy of excitatory
and inhibitory synapses depend on the membrane potential
as J ¼ aðEE;I − VÞ; the different terms in Eq. (4), under the
assumption that Ka ≫ 1, become of the order of

τ ∼
τcond0

Ka
; μ ∼ μcond0 ; σ ∼

ffiffiffi
a

p
σcond0 :

Here, all these terms depend on parameters in a completely
different way than in the current-based case. As we show
below, these differences drastically modify how the neural
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response changes as K and J are varied and, hence, the size
of J ensuring a finite response for a given value of K.
The dynamics of a current-based neuron is shown in

Fig. 1(a)(i), with parameters leading to irregular firing.
Because of the chosen parameter values, the mean excita-
tory and inhibitory inputs approximately cancel each other,
generating subthreshold average input and fluctuation-
driven spikes, which leads to irregularity of firing. If all
parameters are fixed while K is increased (J ∼ K0), the
response changes drastically [Fig. 1(a)(ii)], since the mean
input becomes much larger than threshold and firing
becomes regular. To understand this effect, we analyze
how terms in Eq. (4) are modified as K increases. The
evolution of themembrane potential in time is determined by
two terms: a drift term −ðV − μÞ=τ, which drives the
membrane potential toward its mean value μ, and a noise
term σ=

ffiffiffi
τ

p
, which leads to fluctuations around this mean

value. Increasing K modifies the equilibrium value μ of
the drift force and the input noise, which increase propor-
tionally to KJð1 − γgηÞ and KJ2ðγg2ηþ 1Þ, respectively
[Figs. 1(b) and 1(c)]. This observation suggests that, to
preserve irregular firing as K is increased, two ingredients
are needed. First, the rates of excitatory and inhibitory
inputs must be fine-tuned to maintain a mean input below
threshold; this can be achieved by choosing γgη − 1 ∼ 1=KJ.
Second, the amplitude of input fluctuations should be
preserved; this can be achieved by scaling synaptic efficacy
as J ∼ 1=

ffiffiffiffi
K

p
. Once these two conditions are met, irregular

firing is restored [Fig. 1(a)(iii)]. Importantly, in a network

with J ∼ 1=
ffiffiffiffi
K

p
, irregular firing emerges without fine-

tuning, since rates dynamically adjust to balance excitatory
and inhibitory inputs and maintain mean inputs below
threshold [7,8].
We now show that the above solution does not work once

synaptic conductance is taken into account. The dynamics
of a conductance-based neuron in response to the inputs
described above is shown in Fig. 1(d)(i). As in the current-
based neuron, it features irregular firing, with mean input
below threshold and spiking driven by fluctuations, and
firing becomes regular for larger K, leaving all other
parameters unchanged [Fig. 1(d)(ii)]. However, unlike the
current-based neuron, input remains below threshold at large
K; regular firing is produced by large fluctuations, which
saturate the response and produce spikes that are regularly
spaced because of the refractory period. These observations
can be understood by inspecting the equation for the
membrane potential dynamics [Eq. (4)]: increasingK leaves
invariant the equilibrium value of the membrane potential μ
but increases the drift force and the input noise amplitude as
Ka and

ffiffiffiffi
K

p
a, respectively [Figs. 1(e) and 1(f)]. Since the

equilibrium membrane potential is fixed below threshold,
response properties are determined by the interplay between
drift force and input noise, which have opposite effects on the
probability of spike generation. The response saturation
observed in Fig. 1(d)(ii) shows that, as K increases at fixed
a, fluctuations dominate over drift force. On the other hand,
using the scaling a ∼ 1=

ffiffiffiffi
K

p
leaves the amplitude of fluctua-

tions unchangedbut generates a restoring force of theorder of

FIG. 1. Effects of coupling strength on the firing behavior of current-based and conductance-based neurons. (a) Membrane potential of
a single current-based neuron for (i) J ¼ 0.3 mV, K ¼ 103, g ¼ γ ¼ 1, and η such that 1 − gγη ¼ 0.075; (ii) with K ¼ 5 × 104;
(iii) with K ¼ 5 × 104 and scaled synaptic efficacy (J ∼ 1=

ffiffiffiffi
K

p
, which gives J ¼ 0.04 mV) and input difference 1 − gγη ¼ 0.01; (b),(c)

Effect of coupling strength on drift force and input noise in a current-based neuron. (d) Membrane potential of a single conductance-
based neuron for fixed input difference (g1 − γη ¼ −2.8) and (i) a ¼ 0.01, K ¼ 103; (ii) K ¼ 5 × 104; (iii) K ¼ 5 × 104 and scaled
synaptic efficacy (a ∼ 1=

ffiffiffiffi
K

p
, a ¼ 0.001). (e),(f) Effect of coupling strength on drift force and input noise in a conductance-based

neuron. In (a) and (d), dashed lines represent the threshold and reset (black) and equilibrium value of membrane potential (green). In (a)
(ii) and (d)(ii), light purple traces represent dynamics in the absence of a spiking mechanism. Input fluctuations in (c) and (f) represent
input noise per unit time, i.e., the integral of σ

ffiffiffi
τ

p
ζ of Eq. (4) computed over an interval Δt and normalized over Δt.
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ffiffiffiffi
K

p
[Fig. 1(e)] which dominates and completely abolishes

firing at strong coupling [Fig. 1(d)(iii)].
Results in Fig. 1 show that the response of a conduct-

ance-based neuron when K is large depends on the balance
between drift force and input noise. The scalings a ∼Oð1Þ
and a ∼ 1=

ffiffiffiffi
K

p
leave one of the two contributions domi-

nant, suggesting that an intermediate scaling could keep a
balance between them. Below, we derive such a scaling,
showing that it preserves firing rate and CVof ISI when K
becomes large.

IV. A SCALING RELATION THAT PRESERVES
SINGLE-NEURON RESPONSE FOR LARGE K

We analyze under what conditions the response of a
single conductance-based neuron is preserved when K is
large. For a LIF neuron described by Eqs. (4)–(6), the
single cell transfer function, i.e., the dependency of the
firing rate ν on the external drive νX, is given by [41,42]

ν ¼
�
τrp þ τ

ffiffiffi
π

p Z
vmax

vmin

dx expðx2Þ½1þ erfðxÞ�
�
−1
; ð10Þ

with

vðxÞ ¼ x − μ

σ
; vmin ¼ vðVrÞ; vmax ¼ vðθÞ: ð11Þ

In the biologically relevant case of a ≪ 1, Eq. (10)
simplifies significantly, using the fact that vmax, the distance
between the average membrane potential and the threshold,
is of the order of 1=

ffiffiffi
a

p
. Therefore, vmax is large when a is

small; in this limit, the firing rate is given by the Kramers
escape rate [43], and Eq. (10) becomes

ν ¼ 1

τrp þ Q
νX

; Q ¼ τ̄
ffiffiffi
π

pffiffiffi
a

p
Kv̄

exp

�
v̄2

a

�
; ð12Þ

where we define v̄2 ¼ av2max and τ̄ ¼ aKνXτ. The moti-
vation to introduce v̄ and τ̄ is that they remain of the order
of 1 in the small a limit, provided the external inputs νX are
at least of the order of 1=ðaKτLÞ. When the external inputs
are such that νX ≫ 1=ðaKτLÞ, these quantities become
independent of νX, and a and K are given by

τ̄ ¼ ð1þ gγηÞ−1; v̄ ¼ θ − μ̄

σ̄
;

μ̄ ¼ τ̄ðEE þ gγηEIÞ;
σ̄2 ¼ τ̄½ðμ̄ − EEÞ2 þ g2γηðμ̄ − EIÞ2�: ð13Þ

The firing rate given by Eq. (12) remains finite when a is
small and/orK is large ifQ remains of the order of one; this
condition leads to the following scaling relationship:

K ∼
τ̄ffiffiffi
a

p
v̄
exp

�
v̄2

a

�
; ð14Þ

i.e., a should be of the order of 1=logðKÞ.
In Appendix C, we show that expressions analogous to

Eq. (12) can be derived in integrate-and-fire neuron models
which feature additional intrinsic voltage-dependent cur-
rents, as long as synapses are conductance based and
input noise is small (a ≪ 1). Examples of such models
include the exponential integrate-and-fire neurons with its
spike-generating exponential current [44] and models with
voltage-gated subthreshold currents [23]. Moreover, we
show that, in these models, firing remains finite if
a ∼ 1= logðKÞ, and voltage-dependent currents generate
corrections to the logarithmic scaling which are negligible
when coupling is strong.
In Fig. 2(a), we compare the scaling defined by Eq. (14)

with the a ∼ 1=
ffiffiffiffi
K

p
scaling of current-based neurons. At

low values of K, the values of a obtained with the two
scalings are similar; at larger values of K, synaptic strength
defined by Eq. (14) decays as a ∼ 1=logðKÞ—i.e., synapses
are stronger in the conductance-based model than in the
current-based model. Examples of single-neuron transfer
function computed from Eq. (10) for different coupling
strength are shown in Figs. 2(b) and 2(c). Responses are
nonlinear at onset and close to saturation. As predicted by
the theory, scaling a with K according to Eq. (14) preserves
the firing rate over a region of inputs that increases with the
coupling strength [Figs. 2(c) and 2(d)], while the average
membrane potential remains below threshold [Fig. 2(d)].
The quantity v̄=

ffiffiffi
a

p
represents the distance from threshold

of the equilibrium membrane potential in units of input
fluctuations; Eq. (14) implies that this distance increases
with the coupling strength. When K is very large, the
effective membrane time constant, which is of the order of
τ ∼ 1=aKνX, becomes small and firing is driven by fluc-
tuations that, on the timescale of this effective membrane
time constant, are rare.
We next investigate if the above scaling preserves

irregular firing by analyzing the CVof interspike intervals.
This quantity is given by [10]

CV2 ¼ 2πν2τ2
Z

vmax

vmin

dxex
2

Z
x

−∞
dyey

2 ½1þ erfðyÞ�2 ð15Þ

and, for the biologically relevant case of a ≪ 1 and μ < θ,
reduces to (see Appendix B for details)

CV ¼ 1 − τrpν; ð16Þ

i.e., the CV is close to one at low rates, and it decays
monotonically as the neuron approaches saturation.
Critically, Eq. (16) depends on the coupling strength only
through ν; hence, any scaling relation preserving firing rate
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also produces a CV of the order of one at a low rate. We
validate numerically this result in Fig. 2(e).
We now investigate how Eq. (14) preserves irregular

firing in conductance-based neurons. We have shown that
increasing K at fixed a produces large input and membrane
fluctuations, which saturate firing; the scaling a ∼ 1=

ffiffiffiffi
K

p
preserves input fluctuations but, because of the strong drift
force, suppresses membrane potential fluctuations and,
hence, firing. The scaling of Eq. (14), at every value of
K, yields the value of a that balances the contribution of
drift and input fluctuations, so that membrane fluctuations
are of the right size to preserve the rate of threshold
crossing. Note that, unlike what happens in the current-
based model, both input fluctuations and drift force
increase with K [Figs. 2(f) and 2(g)], while the membrane
potential distribution, which is given by [45]

PðVÞ ¼ 2ντ

σ

Z
vmax

vðVÞ
dxθ½x − vðVrÞ� exp ½x2 − vðVÞ2�; ð17Þ

slowly becomes narrower [Fig. 2(h)]. This result can be
understood by noticing that, when a ≪ 1 and neglecting
the contribution due to the refractory period, Eq. (17)
reduces to

PðVÞ ¼ 1

σ
ffiffiffi
π

p exp

�
−
ðV − μÞ2

σ2

�
: ð18Þ

Hence, the probability distribution becomes Gaussian when
coupling is strong, with a variance proportional to σ2 ∼ a.
We note that, since a is of the order of 1= logK, the width
of the distribution becomes small only for unrealistically
large values of K.

V. ASYNCHRONOUS IRREGULAR ACTIVITY IN
NETWORK RESPONSE AT STRONG COUPLING

We have so far considered the case of a single neuron
subjected to stochastic inputs. We now show how the above
results generalize to the network case, where inputs to a
neuron are produced by a combination of external and
recurrent inputs.
We consider networks of recurrently connected excita-

tory and inhibitory neurons, firing at rate ν, stimulated by
an external population firing with Poisson statistics with
firing rate νX. Using again the diffusion approximation, the
response of a single neuron in the networks is given by
Eq. (10) [and, hence, Eq. (12)] with

rE ¼ νX þ ν; rI ¼ ν: ð19Þ

Equation (10), if all neurons in a given population are
described by the same single-cell parameters and the
network is in an asynchronous state in which cells fire
at a constant firing rate, provides an implicit equation
whose solution is the network transfer function. Example

FIG. 2. The scaling of Eq. (14) preserves the response of a single conductance-based neuron for large K. (a) The scaling relation
preserving firing in conductance-based neurons [Eq. (14), solid line]; constant scaling (a ∼ K0, dotted line) and scaling of the balanced
state model (a ∼ 1=

ffiffiffiffi
K

p
, dashed line) are shown as a comparison. Colored dots indicate values of a and K used subsequently. (b)–(h)

Response of conductance-based neurons, for different values of the coupling strength and synaptic efficacy (colored lines). The scaling
of Eq. (14) preserves how the firing rate (b),(c), equilibrium value of the membrane potential (d), and CV of the interspike interval
distribution (e) depend on external input rate νX. This invariance is achieved by increasing the drift force (f) and input fluctuation (g) in a
way that weakly decreases (logarithmically in K) membrane potential fluctuations (h). Different scalings either saturate or suppress the
response [(b); black lines correspond to K ¼ 105 and a values as in (a)]. Parameters: a ¼ 0.01 for K ¼ 103, g ¼ 12, η ¼ 1.8,
and γ ¼ 1=4.

A. SANZENI, M. H. HISTED, and N. BRUNEL PHYS. REV. X 12, 011044 (2022)

011044-6



solutions are shown in Fig. 3(b) (numerical validation of
the mean field results is provided in Appendix E). In
Appendix D, we prove that firing in the network is
preserved when coupling is strong if parameters are
rescaled according to Eq. (14). Moreover, we show that
response nonlinearities are suppressed and the network
response in the strong-coupling limit (i.e., when K goes
infinity) is given, up to saturation, by

ν ¼ ρνX: ð20Þ

The parameter ρ, which is obtained by solving Eq. (12) self-
consistently (see Appendix D for details), is the response
gain in the strong-coupling limit. Finally, our derivation
implies that Eq. (14) preserves irregular firing and creates a
probability distribution of membrane potential whose width
decreases only logarithmically as K increases [Figs. 3(c)
and 3(d) and numerical validation in Appendix E], as in the
single-neuron case. While this logarithmic decrease is a
qualitative difference with the current-based balanced state
in which the width stays finite in the large K limit, in
practice, for realistic values of K, realistic fluctuations of
membrane potential (a few mV) can be observed in
both cases.
We now turn to the question of what happens in networks

with different scalings between a and K. Our analysis of

single-neuron response described above shows that scal-
ings different from that of Eq. (14) fail to preserve firing for
large K, as they let either input noise or drift dominate.
However, the situation in networks might be different, since
recurrent interactions could, in principle, adjust the sta-
tistics of input currents such that irregular firing at low rates
is preserved when coupling becomes strong. Thus, we turn
to the analysis of the network behavior when a scaling
a ∼ K−α is assumed. For α ≤ 0, the dominant contribution
of input noise at the single-neuron level (Figs. 1 and 2)
generates saturation of response and regular firing in the
network (Fig. 3). This can be understood by noticing that,
for largeK, the factorQ in Eq. (12) becomes negligible and
the self-consistency condition defining the network rate is
solved by ν ¼ 1=τrp. For α > 0, the network response for
large K is determined by two competing elements. On the
one hand, input drift dominates and tends to suppress firing
(Figs. 1 and 2). On the other hand, for the network to be
stable, inhibition must dominate recurrent interactions [9].
Hence, any suppression in network activity reduces recur-
rent inhibition and tends to increase neural activity. When
these two elements conspire to generate a finite network
response, the factor Q in Eq. (12) must be of the order of
one and v̄ ∼ a ∼ K−α. In this scenario, the network activity
exhibits the following features (Fig. 3): (i) the mean inputs
drive neurons very close to threshold (θ − μ̄ ∼ aσ̄ ∼ K−α);
(ii) the response of the network to external inputs is linear
and, up to corrections of the order of K−α, given by

ν ¼ ðEE − θÞνX
θð1þ gγÞ − EE − gγEI

; ð21Þ

(iii) firing is irregular [because of Eq. (16)]; (iv) the width
of the membrane potential distribution is of the order of
a ∼ K−α [because of Eq. (18)]. Therefore, scalings different
from that in Eq. (14) can produce asynchronous irregular
activity in networks of conductance-based neurons, but this
leads to networks with membrane potentials narrowly
distributed close to threshold, a property which seems at
odds with what is observed in the cortex [46–51].

VI. ROBUST LOG-NORMAL DISTRIBUTION OF
FIRING RATES IN NETWORKS WITH
HETEROGENEOUS CONNECTIVITY

Up to this point, we have assumed a number of
connections equal for all neurons. In real networks, how-
ever, this number fluctuates from cell to cell. The goal of
this section is to analyze the effects of heterogeneous
connectivity in networks of conductance-based neurons.
We investigate numerically the effects of connection

heterogeneity as follows. We choose a Gaussian distribu-
tion of the number of connections per neuron, with mean K
and variance ΔK2 for excitatory connections and mean γK
and variance γ2ΔK2 for inhibitory connections. The con-
nectivity matrix is constructed by drawing first randomly E

FIG. 3. Response of networks of conductance-based neurons
for large K. (a) Scaling relation defined by self-consistency
condition given by Eqs. (14) and (19) (black line), values of
parameters used in (b)–(d) (colored dots). Constant scaling
(a ∼ K0, dotted line) and scaling of the balanced state model
(a ∼ 1=

ffiffiffiffi
K

p
, dashed line) are shown for comparison. (b),(c) Firing

rate and CV of ISI as a function of the external input, obtained
from Eqs. (10) and (15) (colored lines) with the strong-coupling
limit solution of Eqs. (20) and (16) (black line). (d) Probability
distribution of the membrane potential obtained from Eq, (17). In
(b)–(d), dotted and dashed lines represent quantities obtained
with the scalings J ∼ K0 and J ∼ 1=

ffiffiffiffi
K

p
, respectively, for values

of K and J indicated in (a) (black dots). Parameters: γ ¼ 1=4
and g ¼ 30.
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and I in-degrees Ki
E;X;I from these Gaussian distributions

for each neuron and then selecting at random Ki
E;X;I E=I

presynaptic neurons. We then simulate network dynamics
and measure the distribution of rates and CVof the ISI in the
population. Results for different values ofCVK ¼ ΔK=K are
shown in Figs. 4(a)–4(c). For small and moderate values of
connection heterogeneity, increasing CVK broadens the
distribution of rates and CVof the ISI, but both distributions
remain peaked around a mean rate that is close to that of
homogeneous networks [Figs. 4(a) and 4(b)]. For larger
CVK , on the other hand, the distribution of rates changes its
shape, with a large fraction of neurons moving to very low
rates, while others increase their rates [Fig. 4(a)] and the
distribution of the CVof ISI becomes bimodal, with a peak at
low CV corresponding to the high-rate neurons, while the
peak at a CV close to 1 corresponds to neurons with very low
firing rates [Fig. 4(b)].
To characterize more systematically the change in the

distribution of rates with CVK , we measure, for each value
of CVK , the fraction of quiescent cells, defined as the
number of cells that do not spike during 20 s of the
simulated dynamics [Fig. 4(c)]. This analysis shows that

the number of quiescent cells, and, hence, the distribution
of rates, changes abruptly as the CVK is above a critical
value CV�

K . Importantly, unlike our definition of the
fraction of quiescent cells, this abrupt change is a property
of the network that is independent of the duration of the
simulation.
To understand these numerical results, we perform a

mean field analysis of the effects of connection hetero-
geneity on the distribution of rates (Appendix F). This
analysis captures quantitatively numerical simulations
[Fig. 4(a)] and shows that, in the limit of small CVK
and a, rates in the network are given by

νi ¼ ν0 exp

�
Ω
CVK

a
zi

�
; ð22Þ

where ν0 is the population average in the absence of
heterogeneity, zi is a Gaussian random variable, and the
prefactorΩ is independent of a,K, and νX. The exponent in
Eq. (22) represents a quenched disorder in the value of vi,
i.e., in the distance from threshold of the single cell μi in
units of input noise. As shown in Appendix F, Eq. (22)
implies that the distribution of rates is log-normal, a feature
consistent with experimental observations [52–54] and
distributions of rates in networks of current-based LIF
neurons [55]. It also implies that the variance of the
distribution Δν=ν should increase linearly with CVK , a
prediction which is confirmed by numerical simulations
[Fig. 4(c)]. The derivation in Appendix F also provides an
explanation for the change in the shape of the distribution
for larger CVK. In fact, for larger heterogeneity, the small
CVK approximation is not valid, and fluctuations in input
connectivity produce cells for which μi far from θ, that are
firing either at an extremely low rate (μi < θ) or regularly
(μi > θ). The latter generates the peak at low values in the
CV of the ISI seen for large values CVK .
The quantity CV�

K represents the level of connection
heterogeneity above which significant deviations from the
asynchronous irregular state emerges; i.e., large fractions of
neurons show extremely low or regular firing. Equation (22)
suggests that CV�

K should increase linearly with a. We
validate this prediction with our mean field model, by
computing the minimal value of CVK at which 1% of the
cells fire at a rate of 10−3 spk=s [Fig. 4(d)]. Note that the
derivationofEq. (22) assumes onlya to be small anddoes not
depend on the scaling relation between a andK. On the other
hand, the fact that CV�

K increases linearly with a makes the
state emerging in networks of conductance-based neurons
with a ∼ 1= logðKÞ significantly more robust to connection
fluctuations than that emerging with a ∼ K−α, for which
CV�

K ∼ K−α, and with current-based neurons, where CV�
K ∼

1=
ffiffiffiffi
K

p
[56]. Note that, while in randomly connected net-

works CVK ∼ 1=
ffiffiffiffi
K

p
, a larger degree of heterogeneity is

observed in cortical networks [50,56–62]. Our results
show that networks of conductance-based neurons could

FIG. 4. Effects of heterogeneous connectivity on the network
response. (a),(b) Distribution of ν and CV of ISI computed from
network simulations (dots) and from the mean field analysis
[(a), black lines] for different values of CVK [values are indicated
by dots in (c)]. (c)Δν=ν (green, left axis) and fraction of quiescent
cells (brown, right axis) computed from network simulations as a
function of CVK . For CVK ≲ CV�

K, Δν=ν increases linearly, as
predicted by themean field analysis; deviations from linear scaling
emerge for CVK ≳ CV�

K, when a significant fraction of cells
become quiescent. The deviation from linear scaling at lowCVK is
due to a sampling error in estimating the firing rate from
simulations. (d) CV�

K as a function of K computed from the mean
field theory (green, left axis), with a rescaled according to Eq. (14).
For large K, CV�

K decays proportionally to a (brown, right axis).
When K is too low, the network is silent and CV�

K ¼ 0. In (a)–(c),
K ¼ 103, g ¼ 20, a ¼ 1.6 × 10−3, NE ¼ NX ¼ NI=γ ¼ 10K,
and νX ¼ 0.05=τrp. In network simulations, the dynamics is
run for 20 s using a time step of 50 μs. Parameters in (d) are as
in Fig. 3.
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potentially bemuchmore robust to such heterogeneities than
networks of current-based neurons.

VII. COMPARISONWITH EXPERIMENTAL DATA

The relation between synaptic efficacy and number of
connections per neuron has been recently studied exper-
imentally using a culture preparation [63]. In this paper, it is
found that cultures in which K is larger have weaker
synapses than cultures with smaller K (Fig. 5). In what
follows, we compare these data with the scalings expected
in networks of current-based and conductance-based neu-
rons and discuss implications for in vivo networks.
In the current-based model, the strength of excitatory and

inhibitory postsynaptic potentials as a function of K can be
written as JE ¼ J0=

ffiffiffiffi
K

p
and JI ¼ gJE, respectively. In the

conductance-based model, these quantities become JE ¼
ðV − EEÞa and JI ¼ gðV − EIÞa, where a ¼ aðK; v̄Þ is
given by Eq. (14) while, for the dataset of Ref. [63],
V ∼ −60 mV, JE ∼ JI, EE ∼ 0 mV, and EI ∼ −80 mV. For
each model, we infer free parameters from the data with a
least-squares optimization in logarithmic scale (best fit,
g ¼ 1.1 and J0 ¼ 20 mV in the current-based model and
g ¼ 3.4 and v̄ ¼ 0.08 in the conductance-based model) and
compute the expected synaptic strength as a function of K
[lines in Fig. 5(a)]. Our analysis shows that the perfor-
mances of the current-based and the conductance-based
model in describing the data, over the range of K explored
in the experiment, are similar, with the former being
slightly better than the latter (root mean square 2.2 vs

2.4 mV). This result is consistent with the observation
made in Ref. [63] that, when fitted with a power law
J ∼ K−β, data are best described by β ¼ 0.59 but are
compatible with a broad range of values (95% confidence
interval [0.47:0.70]). Note that, even though both models
give similar results for PSP amplitudes in the range of
values of K present in cultures (approximately 50–10 00),
they give significantly different predictions for larger
values of K. For instance, for K ¼ 10 000, JE is expected
to be approximately 0.2 mV in the current-based model
and approximately 0.7 mV in the conductance-based
model.
In Fig. 5(b), we plot the distance between the equilibrium

membrane potential μ and threshold θ in units of input
fluctuations and v̄=

ffiffiffi
a

p
as a function of K using the value of

v̄ obtained above and find that the expected value in vivo,
where K ∼ 103–104, is in the range 2–3. In Figs. 5(c)
and 5(d), we plot how total synaptic excitatory conductance
and the effective membrane time constant change as a
function of K. Both quantities change significantly faster
using the conductance-based scaling [gE=gL ∼ K= logðKÞ;
τ=τL ∼ logðKÞ=K] than expected by the scaling of the
current-based model (gE=gL ∼

ffiffiffiffi
K

p
; τ=τL ∼ 1=

ffiffiffiffi
K

p
). For K

in the range 103–104 and mean firing rates in the range
1–5 spk/s, the total synaptic conductance is found to be in a
range from about 2 to 50 times the leak conductance, while
the effective membrane time constant is found to be smaller
than the membrane time constant by a factor of 2–50. We
compare these values with available experimental data
in Sec. IX.

FIG. 5. Comparison of predictions given by current-based and the conductance-based models in describing experimental data from
cultures. (a) Strength of excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials recorded in Ref. [63] are compared with best fits
using scaling relationships derived from networks with current-based synapses (dashed line) and conductance-based synapses
(continuous line). Root mean square (rms) and best fit parameters are rms ¼ 2.2 mV, g ¼ 1.1, and J0 ¼ 20 mV for the current-based
model and rms ¼ 2.4 mV, g ¼ 3.4, and v̄ ¼ 0.08 for the conductance-based model. (b) Value of v̄=

ffiffiffi
a

p
predicted by the conductance-

based model as a function of K. (c) Ratio between excitatory and leak conductance as a function of K, for νE ¼ νI ¼ νX ¼ 1 spk=s
(black) and νE ¼ νI ¼ νX ¼ 5 spk=s (gray) obtained with a rescaled as Eq. (14) (continuous line) and as 1=

ffiffiffiffi
K

p
(dashed line). (d) Ratio

between τ and τL as a function of K; parameters and scaling as in (c).
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VIII. EFFECTS OF FINITE SYNAPTIC
TIME CONSTANTS

Results discussed in previous sections show that the
effective membrane time constant τ decreases with pre-
synaptic activity and with coupling strength. This obser-
vation raises the question whether the assumption of
negligible synaptic time constants we have made in our
analysis is reasonable. Synaptic decay time constants of
experimentally recorded postsynaptic currents range from
a few milliseconds (for AMPA and GABAA receptor-
mediated currents) to tens of milliseconds (for GABAB
and NMDA receptor-mediated currents; see, e.g., Ref. [64]);
i.e., they are comparable to the membrane time constant
already at weak coupling, where τ ∼ τL is typically in the
range 10–30 ms [65]. Interestingly, experiments suggest that
synaptic dynamics might be faster in physiological con-
ditions (e.g., Ref. [66] finds a 0.5 ms decay time constant for
the AMPA receptor at 35°C). Nonetheless, in the strong-
coupling limit, the effective membrane time constant goes to
zero, and so our assumption of negligible synaptic time
constant clearly breaks down in that limit. In this section,
we analyze models with finite coupling strength and show
that synaptic dynamics modifies the drift-diffusion balance
characteristic of conductance-based models, making it input
dependent. At the end of the section, we discuss how this
input-dependent drift-diffusion balance can be preserved in
the strong-coupling limit.
With finite synaptic time constants, the temporal evolu-

tion of conductances in Eq. (2) is replaced by

τE;I
dgjE;I
dt

¼ −gjE;I þ gjLτE;I
X
m

ajm
X
n

δðt − tnmÞ; ð23Þ

where τE=τI are the decay time constant of E=I synaptic
conductances, respectively. The single-neuron membrane
potential dynamics is described by Eqs. (1) and (23). Here,
for simplicity, we take excitatory and inhibitory synaptic
currents to have the same decay time constant: τE ¼ τI ¼ τS.
Figure 6(a) shows how the synaptic time constant modifies
the mean firing rate of single integrate-and-fire neurons in
response to K (γK) excitatory (inhibitory) inputs with
synaptic strength a (ga) and frequency νX (ηνX). The figure
shows that, though themean firing rate is close to predictions
obtained with instantaneous synapses for low νX, deviations
emerge as input increases and firing is strongly suppressed
for large νX. To understand these numerical results, we resort
again to the diffusion approximation [67,68], together with
the effective time constant approximation [11,69], to derive a
simplified expression of the single-neuron membrane poten-
tial dynamics with finite synaptic time constant (details in
Appendix G):

τ
dV
dt

¼ −ðV − μÞ þ σ

ffiffiffiffiffi
τ

τS

r
z; ð24Þ

where τ, μ, and σ are as in the case of negligible synaptic time
constant [Eq. (5)] while z is an Ornstein-Uhlenbeck process
with correlation time τS. Thus, compared to the instantaneous
synapse case [Eq. (4)], input fluctuations with frequency
larger than 1=τS are suppressed, and, for large τS=τ, the
membrane potential dynamics is given by

VðtÞ ¼ μþ σ

ffiffiffiffiffi
τ

τS

r
zðtÞ; ð25Þ

i.e., the membrane potential is essentially slaved to a time-
dependent effective reversal potential given by the rhs of
Eq. (25) [14]. Note that Eq. (25) is valid only in the
subthreshold regime. When the rhs of Eq. (25) exceeds
the threshold, the neuron fires a burst of action potentials
whose frequency, in the strong-coupling limit, is close to the
inverse of the refractory period [70]. As νX increases, the
equilibrium value μ remains constant while τ decreases,
leading to a suppression ofmembrane fluctuations [Figs. 6(a)
and 6(c)] and, in turn, to the suppression of response
observed in Fig. 6(a). Therefore, the filtering of synaptic
input induced by synaptic dynamics breaks the drift-
diffusion balance which supports firing in conductance-
based neurons. In AppendixH, we show that the suppression
of the single-neuron firing rate described here cannot be
prevented by short-term synaptic plasticity.
We next examine the effect of a finite synaptic time

constant on network response. Numerically computed
responses in networks of neurons with a finite synaptic
time constant are shown in Fig. 6(b). The network response
is close to the prediction obtained with instantaneous
synapses for small τS=τ, and deviations emerge for
τS=τ ∼ 1. Hence, analogously to the single-neuron case,
network properties discussed in the case of instantaneous
synapses remain valid for low inputs. However, unlike the
single-neuron case, no suppression appears for larger τS=τ.
This lack of suppression in the network response, analo-
gously to the one we discuss in networks with instanta-
neous synapses and a ∼ K−α, is a consequence of the fact
that, to have stable dynamics when K is large, inhibition
must dominate recurrent interactions [9]. In this regime, any
change which would produce suppression of single-neuron
response (e.g., increase of νX) lowers recurrent inhibition and
increases the equilibrium value of the membrane potential μ
[Figs. 6(b) and 6(d)]. The balance between these two
effects determines the network firing rate and, when
τS=τ ≫ 1, generates a response which (see the derivation
in Appendix G), up to corrections of the order of 1=

ffiffiffiffi
K

p
τS, is

given by Eq. (21) [dashed line in Fig. 6(b)]. Similarly towhat
happens in networks with instantaneous synapses and
a ∼ K−α, this finite response emerges because recurrent
interactions set μ very close to threshold, at a distance
θ − μ ∼ 1=

ffiffiffiffi
K

p
that matches the size of the membrane

potential fluctuations [Eq. (25), σ
ffiffiffiffiffiffiffiffiffi
τ=τS

p
∼ 1=

ffiffiffiffi
K

p
]. Hence,

as the input to the network increases, recurrent interactions
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restore the drift-diffusion balance by adjusting themembrane
potential mean μ close to threshold, so that fluctuations can
sustain firing.Moreover, the single-neuronmembrane poten-
tial correlation approaches τS and firing becomes bursty, with
periods of regular spiking randomly interspersed in time.
We next discuss the effects of the values of τS and

coupling strength on how the model response evolves with
inputs; this discussion is relevant for both the single-neuron
and the network model. In Appendix G, using existing
analytical expansions [67,68,70,72] and numerical simu-
lations, we show that neural responses obtained with finite
τS are in good agreement with predictions obtained using a
short synaptic time constant approximation for τS=τ ≲ 0.1
and are captured by predictions obtained with a large
synaptic time constant approximation for τS=τ ≳ 1. The
input value at which τS=τ ∼ 1, i.e., νX ∼ 1=aKτS, deter-
mines the input range over which the model expresses one
of the two behaviors. Therefore,models with larger (smaller)

τS or coupling strength have a smaller (larger) region of
inputs in which their response is captured by results obtained
with instantaneous synapses (Figs. 6 and 7). Importantly,
when biologically relevant parameters are considered (e.g.,
Fig. 6), both the small and the large τS=τ behaviors are
expected to appear. In fact, biological synapses span a wide
range of parameters, andmost neuron types typically express
both fast and slow synaptic receptors; in this condition, fast
synapses (characterized by τS of a few milliseconds) are the
ones that drive rapid membrane potential fluctuations and,
hence, firing. Assuming aK ∼ 10, we find that the transition
from small to large τ=τS in the cortex is expected to appear for
inputs νX ∼ 1=aKτS ∼ 10–100 spk=s, which is compatible
with experimentally observed firing rates [23,46–54].
We next investigate if and under which conditions the

input-dependent behavior described in this section is
preserved in the strong-coupling limit. For large inputs,
the membrane potential dynamics of Eq. (25) becomes

FIG. 6. Effects of synaptic time constant on single-neuron and network response. (a) Single-neuron response as a function of input rate
νX , computed numerically from Eqs. (1) and (23). Different colors correspond to different values of τS (purple, 1 ms; blue, 2 ms; red,
5 ms). Firing rates (first row) match predictions obtained for instantaneous synapses (lines) for small τS=τ; significant deviations and
response suppression emerge for larger τS=τ. The effective membrane time constant (τ, second row) decreases with the input rate and
reaches the value τS=τ ∼ 1 (dashed line) for lower levels of external drive when τS is larger. The equilibrium value of the membrane
potential (μ, third row) increases with the input rate and is independent of τS (black dotted line represents the spiking threshold). The
magnitude of fluctuations of the membrane potential (σV , fourth row) has a nonmonotonic relationship with the input rate and peaks at a
value of νX for which τ is of the same order as τS. (b) Analogous to (a) but in the network case. Firing rates are no longer suppressed as
τS=τ increases but approach the response scaling predicted by Eq. (21) (dashed line). As discussed in the text, high firing rates are
obtained by increasing the value of μ toward threshold. (c) Examples of membrane potential dynamics for a single neuron in the absence
of spiking mechanisms and for two different values of τS. Colors correspond to increasing νX ¼ 5 (blue), 40 (orange), and 100 spk/s
(green), respectively. High-frequency fluctuations are suppressed as νX increases. (d) Analogous to (c) but in the network case and for
νX ¼ 5, 40, and 100 spk/s. Increasing νX reduces recurrent inhibition and produces membrane potential trajectories which are
increasingly closer to the firing threshold. Simulations parameters are K ¼ 103, a ¼ 0.01, g ¼ 12, η ¼ 1.4, and γ ¼ 1=4 (single
neuron); K ¼ 103, a ¼ 0.002, g ¼ 22, and γ ¼ 1=4 (network). Simulations are performed with the simulator BRIAN2 [71], with neurons
receiving inputs from independent Poisson units firing at rates KνX and γKηνX, in the single-neuron case, or KνX, in the network case.
Network simulations use NE;I ¼ 10K excitatory and inhibitory neurons.
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independent of a for large K, and, hence, the model
behavior is independent of the scaling relation used. For
low inputs and finite coupling, the model behaves as in the
case of instantaneous synapses, and, therefore, response
properties can be preserved in the strong-coupling limit
only if a ∼ 1= logðKÞ. With this scaling, the value of νX
separating the low and large input regimes decreases with
coupling strength as logðKÞ=KτS. This is problematic
because, as coupling increases, the model loses its low input
behavior and converges to a pathological state in which, for
all inputs, membrane potential fluctuations become small,
the single-neuron response is suppressed, and, in the network
case, the membrane potential is squeezed close to threshold.
Thus, to preserve the input-dependent behavior in the strong-
coupling limit, the synaptic time constant should decrease
with coupling strength as

τS ¼
τ�S
aK

∼
logðKÞ

K
; ð26Þ

where τ�S is a constant independent of a and K. In Fig. 7,
we show that the scaling of Eq. (26) preserves the input-
dependent response as coupling increases.
The activity-dependent drift-diffusion balance described

here produces features that are not present in models with
instantaneous synapses and that can be tested experimentally
(see Table I for a summary). First, the increase of μ with
inputs is absent in strongly coupled networks with instanta-
neous synapses and is consistent with the increased mem-
brane potential observed in cortical circuits with the strength
of sensory stimuli [23,49]. Second, with instantaneous
synapses, the decay time constant of the autocorrelation of

FIG. 7. Single-neuron and network response with finite syn-
aptic time constants, when both a and τS are rescaled with K.
(a) Single-neuron response as a function of input rate νX,
computed numerically from Eqs. (1) and (23). Different colors
correspond to different values of K (103, purple; 104, light blue;
105, yellow; 106, red) with a and τS scaled as in Eqs. (14) and
(26); for K ¼ 103, a ¼ 0.01 and τS ¼ 1 ms (i.e., τ�S ¼ 10 ms).
The scaling relation described in the main text preserves the
response properties observed in Fig. 6. (b) Analogous to (a) but in
the network case; colors correspond to K ¼ 500, 103, 2 × 103,
and 4 × 103. For K ¼ 103, a ¼ 0.002 and τS ¼ 1 ms.

TABLE I. Overview of networks of current-based and conductance-based neurons. The synaptic time constant strongly affects
response properties in networks of conductance-based neurons. Properties similar to what is observed in the cortex emerge in these
networks if a ∼ 1= logK and input rates are lower than or comparable to 1=τ�S [defined in Eq. (26)]. The model predicts that response
properties should gradually mutate as the input to the network increases and, for large inputs, should coincide with those indicated in the
last line of the table. In the table, the different quantities related to the membrane potential represent the mean distance from threshold
(θ − μ), the size of temporal fluctuations (σV), and the membrane potential correlation time constant (τV).

Synaptic model

Ratio of synaptic and
membrane time
constant (τS=τ)

Synaptic
strength

Membrane potential
statistics

Activity
structure

Heterogeneity
of in-degree

supported (CV�
K)

Current-based
(balanced
state model)

Constant, independent
of νX, a, and K

J ∼ ð1= ffiffiffiffi
K

p Þ θ − μ ∼ σV ∼ 1;
τV ∼ τL

Irregular firing,
CV of ISI ∼ 1

∼ð1= ffiffiffiffi
K

p Þ

Conductance-
based

≪ 1 for νX ≪ ð1=τS�Þ;
always satisfied for

instantaneous
synapses (τ�S ¼ 0)

a ∼ ð1= logKÞ θ − μ ∼ 1;
σV ∼ ð1= ffiffiffiffiffiffiffiffiffiffiffi

logK
p Þ;

τV ∼ logðKÞ=K

Irregular firing,
CV of ISI ∼ 1

∼ð1= logKÞ

a ∼ K−α,α > 0 θ − μ ∼ σV ∼ Kð−α=2Þ;
τV ∼ Kα−1

Irregular firing,
CV of ISI ∼ 1

∼K−α

≫ 1 for νX ≫ ð1=τS�Þ Any scaling θ − μ ∼ σV ∼ ð1= ffiffiffiffi
K

p Þ;
τV ∼ τS

Irregular bursting ∼ð1= ffiffiffiffi
K

p Þ
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the membrane potential is of the order of τ and, hence,
decreases, without bounds, as 1=νX with inputs. The finite
synaptic time constant modifies the input dependence of the
autocorrelation time constant—it decreases with τ for low
inputs and becomes constant (of the order of τS) for larger
inputs. Third, with a finite synaptic time constant, firing
becomesmore bursty as input increases; this effect should be
more prominent in networks with stronger coupling
(e.g., prefrontal cortex). Fourth, synaptic dynamics makes
the robustness of network response to connection hetero-
geneity input dependent: For small inputs, τS=τ ≪ 1 and
CV�

K ∼ 1= logðKÞ; for large inputs, τS=τ ≫ 1 and CV�
K ∼

1=
ffiffiffiffi
K

p
(derivation in Appendix G). Therefore, the model

predicts that networks of neurons with heterogeneous con-
nections and a log-normal distribution of rates for low inputs
(e.g., Refs. [52–54]) should show an increasing number of
silent and regular spiking cells as the input strength increases.

IX. DISCUSSION

In this work, we analyzed networks of strongly coupled
conductance-based neurons. The study of this regime is
motivated by the experimental observation that in cortexK is
large, with single neurons typically receiving inputs from
thousands of presynaptic cells. We showed that the classical
balanced state idea [5,6], which was developed in the context
of current-based models and features synaptic strength of the
order of 1=

ffiffiffiffi
K

p
[7,8], results in current fluctuations of very

small amplitude, which can generate firing in networks only if
the mean membrane potential is extremely close to threshold.
This is inconsistent with intracellular recordings in the cortex
that show large membrane potential fluctuations (see, e.g.,
Refs. [21,46–51]). To overcome this problem,we introduced a
new scaling relation which, in the case of instantaneous
synaptic currents, maintains firing by preserving the balance
of input drift and diffusion at the single-neuron level.
Assuming this scaling, the network response automatically
showsmultiple features that are observed in the cortex in vivo:
irregular firing, wide distribution of rates, membrane potential
with non-negligible distance from threshold, and fluctuation
size. When finite synaptic time constants are included in the
model, we showed that these properties are preserved for low
inputs but are gradually modified as inputs increase: The
membrane mean approaches threshold, while its fluctuations
decrease in size and develop non-negligible temporal corre-
lations. These properties, which are summarized in Table I,
provide a list of predictions that could be tested experimentally
by analyzing the membrane potential dynamics as a function
of the input strength in cortical neurons.
When synaptic time constants are negligible with respect

to the membrane time constant, our theory shows properties
that are analogous to those of the classical balanced
state model: linear transfer function, CV of the order of
one, and distribution of membrane potentials with finite
width. However, these properties emerge from a different

underlying dynamics than in the current-based model. In
current-based models, the mean input current is at a
distance of the order of one from threshold in units of
input fluctuations. In conductance-based models, this dis-
tance increases with coupling strength, and firing is
generated by large fluctuations at strong coupling. The
different operating mechanism manifests itself in two ways:
the strength of synapses needed to sustain firing and the
robustness to connection heterogeneity, as we discuss in the
next paragraphs.
The scaling relation determines how strong synapses

should be to allow firing at a given firing rate, for a given
value of K. In current-based neurons, irregular firing is
produced as long as synaptic strengths are of the order of
1=

ffiffiffiffi
K

p
. In conductance-based neurons, stronger synapses

are needed, with a scaling which approaches 1= logðKÞ for
large K. We showed that both scaling relations are in
agreement with data obtained from culture preparations
[63], which are limited to relatively small networks, and
argued that differences might be important in vivo, where K
should be larger.
In current-based models, the mean input current must be

set at an appropriate level to produce irregular firing; this
constraint is realized by recurrent dynamics in networks with
random connectivity and strong enough inhibition [7–9].
However, in networks with structural heterogeneity, with
connection heterogeneity larger than1=

ffiffiffiffi
K

p
, thevariability in

mean input currents produces significant departures from the
asynchronous irregular state, with large fractions of neurons
that become silent or fire regularly [56]. This problem is
relevant in cortical networks [56], where significant hetero-
geneity of in-degrees has been reported [50,57–62], and
different mechanisms have been proposed to solve it [56].
Here, we showed that networks of conductance-based
neurons also generate irregular activity without any need
for fine-tuning and, furthermore, can support irregular
activity with substantial structural heterogeneity, up to the
order of 1= logðKÞ. Therefore, these networks are more
robust to connection heterogeneity than the current-based
model and do not need the introduction of additional
mechanism to sustain the asynchronous irregular state.
When the synaptic time constant is much larger than the

effective membrane time constant, we showed that, regard-
less of synaptic strength, the size of membrane potential
fluctuations decreases and firing in the network is pre-
served by a reduction of the distance from threshold of the
mean membrane potential. Moreover, the robustness to
heterogeneity in connection fluctuations decreases substan-
tially (the maximum supported heterogeneity becomes of
the order of 1=

ffiffiffiffi
K

p
), and the membrane potential dynamics

becomes correlated over a timescale fixed by the synaptic
time constant. The network response at low rates is well
approximated by that of networks with instantaneous
synapses, and the regime of large synaptic time constant
is reached gradually, as the input to the network increases

EMERGENCE OF IRREGULAR ACTIVITY IN NETWORKS OF … PHYS. REV. X 12, 011044 (2022)

011044-13



(Fig. 6). This observation provides a list of predictions on
how properties of cortical networks should evolve with
input strength (summary in Table I.) that are testable
experimentally. While some of these predictions require
new experiments to be validated, we point out that one of
them—that the equilibrium value of the membrane poten-
tial should increase with inputs—is consistent with the
increased membrane potential observed in cortical circuits
with the strength of sensory stimuli [23,49].
In conductance-based models, we showed that response

properties observed at finite coupling survive in the strong-
coupling K → ∞ limit only if unitary conductances obey a
specific scaling law [Eq. (14)], and synaptic time constants
also obey a scaling law [Eq. (26)]. While there is evidence
in cortical cultures that average synaptic strengths do decay
with increasing connectivity [63], no such evidence exists
to our knowledge to support decreasing synaptic time
constants with increasing connectivity. However, it is well
known that synaptic decay time constants depend on
subunit composition of the receptors (see, e.g., Ref. [73]
for GABA receptors, Ref. [74] for NMDA receptors, and
Ref. [75] for AMPA receptors), and subunit composition
can depend on synaptic activity (e.g., Ref. [76]). It is thus
tempting to speculate that both scaling laws could be
implemented in neurobiological circuits. If such plasticity
exists, our theory predicts that it should produce smaller
synaptic time constants in networks with larger K.
In our analytical calculations, we have neglected corre-

lations between neurons and assumed the network operates
in the asynchronous regime. This assumption is consistent
with observations that correlations between cells in cortex
in vivo can in some cases be small, i.e., of the order of
0.01 [77,78]. It is also consistent with the results of our
numerical simulations, which show good agreement with
the calculations in networks with connection probabilities
of 0.1, on the same order of magnitude as observed
connection probabilities in cortex. However, correlations
between neurons can vary significantly between cortical
state, layer, and firing rate, with many studies finding
average correlation coefficients of the order of 0.1 or more
(e.g., Ref. [79]). Intriguingly, weak but nonzero correla-
tions between inputs, on the order of 0.1, have been argued
to be necessary to quantitatively capture the amplitude of
membrane potential fluctuations observed in the cat cortex
[21]. Understanding how correlations affect the results
obtained in our work is an important problem which should
be addressed in the future.
Experimental evidence suggests that the response to

multiple inputs in cortex is nonlinear (for an overview, see
Ref. [80]). Such nonlinearities, which are thought to be
fundamental to perform complex computations, cannot be
captured by the classical balanced state model, as it features a
linear transfer function [7,8]. Several studies have shown how
relaxing assumptions underlying the classical balanced state
model can lead to nonlinear responses. In particular,moderate

coupling and power-law single-neuron input-output function
[80–82], short-term plasticity [83], and differential inputs to
subsets of excitatory neurons [84] can lead to nonlinearities.
We have recently shown [85] that nonlinear responses appear
in networks of current-based spiking neurons when coupling
is moderate and only at response onset or close to single-
neuron saturation. Here, we have shown that response onset
and saturation nonlinearities appear also in networks of
conductance-based neurons when coupling is moderate. In
addition, we have found that synaptic time constants provide
an additional source of nonlinearity, with nonlinear responses
emerging as the network transitions between the response
onset and saturation. A full classification of the nonlinearities
generated in these networks is outside the scope of this work
but could be performed by generalizing the approach devel-
oped in Ref. [85].
The strength of coupling in a network, both in the

current-based model [81,85] and in the conductance-based
model (e.g., Fig. 3), determines the structure of its response
and, hence, the computations it can implement. Recent
theoretical work, analyzing experimental data in the frame-
work of current-based models, has suggested that the cortex
operates in a regime of moderate coupling [82,86], where
response nonlinearities are prominent. In conductance-
based models, the effective membrane time constant can
be informative on the strength of coupling in a network, as
it decreases with coupling strength. Results from in vivo
recordings in the cat parietal cortex [21] showed evidence
that single-neuron response is sped up by network inter-
actions. In particular, measurements are compatible with
inhibitory conductance approximately 3 times larger than
leak conductance and support the idea that the cortex
operates in a “high-conductance state” [22]. This limited
increase in conductance supports the idea of moderate
coupling in cortical networks, in agreement with what was
found in previous work [82,86]. More recent studies have,
however, obtained results that seem at odds with the high-
conductance state idea. Recent whole cell recordings have
reported that an intrinsic voltage-gated conductance, whose
strength decreases with membrane potential, contributes to
the modulation of neuronal conductance of cells in the
primary visual cortex of awake macaques and anesthetized
mice [23]. For spontaneous activity, this intrinsic conduct-
ance is the dominant contribution to the cell conductance
and drives its (unexpected) decrease with increased depo-
larization. For activity driven by sensory stimuli, on the
other hand, modulations coming from synaptic interactions
overcome the effect of the intrinsic conductance, and
neuronal conductance increases with increased depolariza-
tion. The decrease in conductance observed during sponta-
neous activity in Ref. [23] seems incompatible with
previous experimental results [22], and it is still unclear
which differences between experimental preparations
underlie these differences. While a resolution of this
discrepancy will require additional experimental work, we
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point out that our work is relevant for both scenarios. In fact,
our analysis shows that voltage-dependent currents, such as
that produced by the voltage-gated channels [23] or during
spike generation [44], affect quantitatively, but not qualita-
tively, the single-neuron response. Moreover, our theory
explains the mechanisms shaping response properties at
finite coupling and identifies a scaling relation that preserves
these properties in the strong-coupling limit. Therefore,
results described in this contribution seem to be a general
property of networks of spiking neurons with conductance-
based synapses, and they should be relevant for a wide range
of single-neuron models and coupling strengths.
Understanding the dynamical regime of operation of the

cortex is an important open question in neuroscience, as it
constrains which computations can be performed by a
network [81]. Most of the theories of neural networks have
been derived using rate models or current-based spiking
neurons. Our work provides theoretical tools to investigate
the dynamics of strongly coupled conductance-based neu-
rons, and it suggests predictions that could be tested
experimentally.
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APPENDIX A: CALCULATIONS IN THE
MULTIPLICATIVE NOISE CASE

In the main text, we analyze the distribution of membrane
potential, firing rate, and CV using the effective time
constant approximation, which neglects the dependence of
the noise amplitude on the membrane potential. This
approximation is motivated by the fact that corrections to
this approximation are of the same order of shot noise
corrections to the diffusion approximation used to describe
synaptic inputs [87]. In this section, we derive results without
resorting to the effective time constant approximation (i.e.,
keeping the voltage dependence of the noise term) and show
that the results derived in the main text remain valid, even
though it complicates the calculations. The inclusion of shot
noise corrections is outside the scope of this contribution.

1. Equations for arbitrary drift and diffusion terms

In this section, we compute the probability distribution
of the membrane potential, the firing rate, and the CVof ISI
of a neuron whose membrane potential follows the equation

dV
dt

¼ AðVÞ þ BðVÞζ: ðA1Þ

Equation (4) of the main text is a special form of Eq. (A1)
with

AðVÞ ¼ μ − V
τ

; BðVÞ ¼ σðVÞffiffiffi
τ

p : ðA2Þ

The Fokker-Plank equation associated to Eq. (A1), in the
Stratonovich regularization scheme, is given by

dP
dt

¼ −
∂J
∂V ;

where P is the probability of finding a neuron with
membrane potential V and J is the corresponding proba-
bility current given by

J ¼
�
Aþ 1

2
B
∂B
∂V
�
P −

1

2

∂B2P
∂V : ðA3Þ

We are interested in the stationary behavior of the system
in which P does not depend on time and the current J is
piecewise constant. In particular, for V between the
activation threshold θ and the resting potential Vr, J is
equal to the neuron firing rate ν, and the normalization
condition implies

Z
θ

Vr

PðVÞdV þ ντrp ¼ 1;

where τrp is the refractory period.
To derive the probability distribution of the neuron

potential, we introduce in Eq. (A3) the integrating factor

WðVÞ ¼ exp

�
−2
Z

V
du

AðuÞ þ 1
2
BðuÞ ∂BðuÞ∂u

BðuÞ2
�

and obtain

−2νWðVÞθðV − VrÞ ¼
∂
∂V ½WðVÞBðVÞ2PðVÞ�:

Using the boundary condition PðθÞ ¼ 0, we find

PðVÞ ¼ 2ν

WðVÞBðVÞ2
Z

θ

V
duWðuÞθðu − VrÞ ðA4Þ

and

1

ν
¼ τrp þ 2

Z
θ

−∞
dx

1

WðxÞBðxÞ2
Z

θ

x
duWðuÞθðu − VrÞ:

Integrating by parts, we obtain
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1

ν
¼ τrp þ 2

Z
θ

Vr

dvWðvÞ
Z

v

−∞
dx

1

WðxÞBðxÞ2 : ðA5Þ

This solution is obtained in general form in Ref. [41] and
for the specific form of Eq. (A2) in Ref. [11].
We now compute the coefficient of variation of the

interspike interval. The moments Tk of the interspike
intervals of the stochastic process defined by Eq. (A1)
are given by (see Ref. [43])

BðxÞ2
2

d2TkðxÞ
dx2

þ
�
AðxÞ þ 1

2
BðxÞ ∂BðxÞ∂x

�
dTkðxÞ
dx

¼ −kTk−1ðxÞ

with boundary conditions

TkðθÞ ¼ 0;
dTkðbÞ
dx

¼ 0;

i.e., θ is an absorbing boundary and b is a reflective
boundary (we then consider the limit b → −∞). The
general solution of an equation of the form

d2fðxÞ
dx2

þ PðxÞ dfðxÞ
dx

¼ QðxÞ ðA6Þ

is

fðxÞ ¼
Z

x

θ
dt
Z

t

−∞
dzQðzÞ exp

�Z
z

t
dwPðwÞ

�
:

For T1ðxÞ, we have

PðxÞ ¼ 2AðxÞ þ BðxÞ ∂BðxÞ∂x
BðxÞ2 ; QðxÞ ¼ −

2

BðxÞ2 :

For T2ðxÞ, we look for a solution of the form

T2ðxÞ ¼ T1ðxÞ2 þ RðxÞ

and find that R obeys an equation of the form of Eq. (A6)
with

PðxÞ ¼ 2AðxÞ þ BðxÞ ∂BðxÞ∂x
BðxÞ2 ; QðxÞ ¼ −2

�
dT1ðxÞ
dx

�
2

:

Combining the previous results, the CVof ISI is obtained as

CV2 ¼ RðxÞ
T1ðxÞ2

; ðA7Þ

the explicit expression of the CV is given in the following
section.

Equations (17), (10), and (15) of the main text are
obtained from Eqs. (A4), (A5), and (A7), respectively,
using Eq. (A2).

2. Equations for conductance-based LIF neurons

Starting from Eqs. (4) and (5) of the main text, we write
the different terms as

τ−1 ¼ τL
−1 þ aKω−1;

μ ¼ τfEL=τL þ aK½rEEE þ rIgγEI�g;
σ2 ¼ a2K

τ

χ
½ðV − ESÞ2 þ ED

2�; ðA8Þ

where, to shorten the expressions, we introduce two
auxiliary variables with time dimension:

ω−1 ¼ rE þ rIgγ; χ−1 ¼ rE þ rIg2γ; ðA9Þ

as well as two variables with voltage dimensions:

ES ¼ χðrEEE þ rIg2γEIÞ;

ED ¼ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rErIg2γ

q
ðEE − EIÞ: ðA10Þ

The terms −ðV − μÞ=τ and σðVÞζ= ffiffiffi
τ

p
in Eq. (4) represent

the input drift and noise to the membrane dynamics,
respectively. The voltage dependence of these terms is
sketched in Fig. 8.
In the large K limit, the different terms in Eq. (4) scale as

τ ∼
ω

aK
; μ ∼ ωðrEEE þ rIgγEIÞ;

σ
ffiffiffi
τ

p
∼

ωffiffiffiffiffiffi
χK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − ESÞ2 þ ED

2

q
; ðA11Þ

while the values of ω, μ, ES , and ED are independent of K.
It follows that the noise term σ

ffiffiffi
τ

p
and the time constant τ in

Eq. (4) become small in the strong-coupling limit. This
result is analogous to what we obtain in the main text
with the effective time constant approximation, since this
approximation does not change how these terms scale with
a and K.
We now insert the drift and diffusion terms of the

conductance-based LIF neuron in Eqs. (A4), (A5),
and (A7) and obtain

PðVÞ¼ 2νχEDe−F ðVÞ=a

a2K½ðV−ESÞ2þED
2�
Z

vmax

uðVÞ
dxθ½x−uðVrÞ�eF ðxÞ=a;

ðA12Þ

1

ν
¼ τrpþ

2χ

a2K

Z
vmax

vmin

dv
Z

v

−∞
dx

1

x2þ1
exp

�
F ðvÞ−F ðxÞ

a

�
;

ðA13Þ
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and

CV2¼ 8χ2ν2

a4K2

Z
vmax

vmin

dv
Z

v

−∞
dzexp

�
F ðvÞ−F ðzÞ

a

�

×

�Z
z

−∞
dw

1

w2þ1
exp

�
F ðzÞ−F ðwÞ

a

��
2

; ðA14Þ

where

F ðxÞ ¼ 2χ

aKτ

�
1

2

�
1 −

a2Kτ

2χ

�
logðx2 þ 1Þ − α arctanðxÞ

�
;

uðVÞ ¼ V − ES

ED
; vmin ¼ uðVrÞ;

vmax ¼ uðθÞ; α ¼ uðμÞ: ðA15Þ

Equations (A12) and (A13) are analogous to those derived
in Ref. [11]. To simplify the following analysis, we neglect
the contribution of the term a2Kτ=2χ, which derives from
the regularization scheme. This assumption is justified by
the fact that, for large K, τ ∼ 1=aK and the factor a2Kτ=2χ
is of the order of a ≪ 1.

APPENDIX B: CALCULATIONS
IN THE STRONG-COUPLING
REGIME—SINGLE NEURONS

In the main text, we derive a simplified expression for the
single-neuron response neglecting the dependency of noise
on membrane potential. In this section, we generalize this
result to the case in which the full noise expression is
considered. We compute simplified expressions of the
single-neuron transfer function and CV, in both the sub-
threshold regime μ < θ and the suprathreshold regime
μ > θ. These expressions are validated numerically in
Fig. 9 and used in the last part of this section to define
a scaling relation between a and K which preserves single-
neuron firing in the strong-coupling limit.

1. Single-neuron transfer function at strong coupling

The starting point of our analysis is the observation that
the integrand in Eq. (A13) depends exponentially on
1=a ≫ 1. This suggests to perform the integration with a
perturbative expansion of the exponent. We show below
that, since the exponent has a stationary point at x ¼ v ¼ α
(see Fig. 10), the integration gives two qualitatively differ-
ent results if α is larger or smaller than the upper bound of
the integral vmax. Moreover, since the condition α ≶ vmax
corresponds to θ ≶ μ, the two behaviors correspond to
supra- and subthreshold regimes, respectively.

FIG. 8. Drift and diffusion terms of Eq. (4) as a function of the voltage. (a) Input drift as a function of membrane potential V produced
with both inhibitory and excitatory inputs (black line), excitatory inputs only (red dotted line), or inhibitory inputs only (blue dotted
line). The drift term decreases monotonically with V, and it is zero at V ¼ μ, which is a stable fixed point of the deterministic dynamics.
(b) The noise variance is quadratic in V. Its minimum at V ¼ ES is equal to ED

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2K=χ

p
. Note that the minimum amplitudes of drift and

variance are obtained at different values of V.
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a. Suprathreshold regime vmax < α (θ < μ)

The exponent in Eq. (A13) is negative for every value
of x, except for x ¼ v, in which it is zero. The integral in x
can be written as

I ¼
Z

v

−∞
dxgðxÞefvðxÞ=a

¼
Z

v

−∞
dxgðxÞeð1=aÞ½f0vðvÞðx−vÞþf00vðvÞ=2ðx−vÞ2þ����: ðB1Þ

With a change of variable z ¼ ðx − vÞ=a, we obtain

I ¼ a
Z

0

−∞
dzgðvþ azÞef0vðvÞzþaf00vðvÞðz2=2Þþ���: ðB2Þ

Neglecting all the terms of the order of a, we get

I ¼ a
gðvÞ
f0vðvÞ

: ðB3Þ

Performing the integration in v, we obtain

FIG. 9. Response of a single conductance-based neuron to noisy inputs. Estimates of firing rate [(a),(b),(e),(f)], μ [(c),(g)], and CV
[(d),(h)] obtained with numerical integration of Eqs. (A13), (13), and (A14) for different values of a and K (colored dots). For the two
regimes μ < θ (first row) and μ > θ (second row), the transfer function saturates as K increases. Note that the same change in a has a
more drastic effect if μ < θ; this is due to the exponential dependence that appears in Eq. (B6). The approximated expressions
(continuous lines) capture the properties of the transfer function [(a) Eq. (B6) and (e) Eq. (B4)] and CV [(c) Eq. (B17) and (g) Eq. (B9)].
For small inputs (f), Eq. (B4) fails to describe the transfer function for some values ofK, because the corresponding μ is below threshold.
Simulations parameter are g ¼ 12, γ ¼ 1=4, and η ¼ 1.5 (top) or 0.6 (bottom).

FIG. 10. Graphical representation of the exponent in Eq. (A13).
The function F ðvÞ − F ðxÞ is stationary at x ¼ v ¼ α; this point
is a maximum for x and a minimum for v. Parameters are as in
Fig. 8. In this figure, α ¼ 1.2 (black diamond).
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1

ν
¼ τrp þ τ log

�
μ − Vr

μ − θ

�
: ðB4Þ

Equation (B4) is the transfer function of a deterministic
conductance-based neuron with the addition of the refrac-
tory period. This is not surprising, since the noise term
becomes negligible compared to mean inputs in the small a
limit. In Fig. 9(b), we show that Eq. (B4) gives a good
description of the transfer function predicted by the mean
field theory in the suprathreshold regime.

b. Subthreshold regime vmax > α (θ > μ)

First, we consider α < vmin (μ < Vr). For every value of
v, the integral in x in Eq. (A13) has a maximum in the
integration interval; hence, it can be performed through the
saddle-point method and gives

1

ν
−τrp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πχτ

a2Kðα2þ1Þ

s Z
vmax

vmin

dvexp

�
F ðvÞ−F ðαÞ

a

�
: ðB5Þ

In the last equation, the exponent in the integrand has a
minimum for v ¼ α and is maximum at v ¼ vmax; we
expand the exponent around v ¼ vmax and, keeping term up
to the first order, obtain

1

ν
− τrp ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πa2Kτ

χðα2 þ 1Þ

s
v2max þ 1

jvmax − αj exp
�
F ðvmaxÞ − F ðαÞ

a

�
:

ðB6Þ

In the regime vmin < α < vmax, the integral in v of
Eq. (A13) can be divided into three parts:Z

vmax

vmin

dv ¼
Z

α−ϵ

vmin

dvþ
Z

αþϵ

α−ϵ
dvþ

Z
vmax

αþϵ
dv; ðB7Þ

the third integral is analogous to the case α < vmin, and,
hence, it has an exponential dependency on the parameters
and dominates the other terms. In Fig. 9(a), we show that
Eq. (B6) gives a good description of the transfer function
predicted by the mean field theory for μ < θ.

2. Single-neuron CV of ISI at strong coupling

In this section, we provide details of the derivation of
the approximated expressions of the response CV. Starting
from the mean field result of Eq. (A14), we compute
integrals using the approach discussed above.

a. Suprathreshold regime vmax < α (θ < μ)

The inner integral in Eq. (A14) yields in the small a limit

Z
z

−∞
dw

1

w2 þ 1
exp

�
F ðzÞ − F ðwÞ

a

�
¼ a

z2 þ 1

1
dF ðzÞ
dz

; ðB8Þ

from which we obtain

CV2 ¼ a
ν2ðaKτÞ3
a2K2χ

�
log

�
vmin − α

vmax − α

�

þ −3α2 þ 4αvmax þ 1

2ðα − vmaxÞ2
−
−3α2 þ 4αvmin þ 1

2ðα − vminÞ2
�
;

ðB9Þ

hence, the rescaling needed to preserve the deterministic
component a ∼ 1=K produces CV2 ∼ a ≪ 1. We validate
this result numerically in Figs. 9(h) and 11(f).

b. Subthreshold regime vmax > α (θ > μ)

The integral defining the CV [Eq. (A14)] can be
expressed as

Z
v

−∞
dz exp

�
F ðvÞ − F ðzÞ

a

�
gðzÞ

¼
Z

v�

−∞
dz exp

�
F ðvÞ − F ðzÞ

a

�
gðzÞ

þ
Z

v

v�
dz exp

�
F ðvÞ − F ðzÞ

a

�
gðzÞ ðB10Þ

with

gðzÞ ¼
�Z

z

−∞
dw

1

w2 þ 1
exp

�
F ðzÞ − F ðwÞ

a

��
2

;

v� ¼ α − ϵ: ðB11Þ

The first integral gives

Z
v�

−∞
dz exp

�
F ðvÞ − F ðzÞ

a

�
gðzÞ ¼ a3

ðv� þ 1Þ2½dF ðv�Þ
dz �3

:

ðB12Þ

In the second integral,

gðzÞ ¼ aπ

ðα2 þ 1Þ2 d2F ðαÞ
dz2

exp

�
2F ðzÞ − 2F ðαÞ

a

�
; ðB13Þ

from which we get

Z
v

v�
dz exp

�
F ðvÞ þ F ðzÞ − 2F ðαÞ

a

�
aπ

ðα2 þ 1Þ2 d2F ðαÞ
dz2

:

ðB14Þ

Integrating in z, we obtain
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Z
v

v�
dz exp

�
F ðzÞ
a

�
¼ a

dF ðvÞ
dz

exp

�
F ðvÞ
a

�
: ðB15Þ

Integrating in v, we obtain

CV2 ¼ 8χ2ν2π

ðα2 þ 1Þ2 d2F ðαÞ
dz2 ðdF ðvmaxÞ

dz Þ2
 
exp
h
F ðvmaxÞ−F ðαÞ

a

i
ffiffiffi
a

p
K

!2

:

ðB16Þ

Using Eq. (B6), we obtain

CV ¼ 1 − ντrp; ðB17Þ

which corresponds to the CVof the ISI of a Poisson process
with dead time, with rate ν and refractory period τrp. We
validate this result numerically in Figs. 9(d) and 11(c).

3. Scaling relations preserving firing
in the strong-coupling limit

In this section, we use the simplified expressions derived
above to define scaling relations of awithK which preserves
neural response in the strong-coupling limit. Importantly, the
scaling defined here depends on the operating regime of the
neuron, i.e., on the asymptotic value of μ.

In the limit of largeK, terms in Eq. (A8) can be written as

τ−1 ¼ aKνXð1þ ηgγÞ; ω−1 ¼ νXð1þ ηgγÞ;
χ−1 ¼ νXð1þ ηg2γÞ; ðB18Þ

while μ, ED, ES , vmax, α, and the function F ðxÞ are
independent of K, a, and νE. We show in the previous
section that the single-neuron transfer function is given by

1

ν
¼ τrp þ

Q
νE

ðB19Þ

with

Q¼
8<
:
	

1ffiffi
a

p
Kexp

F ðvmaxÞ−F ðαÞ
a


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þηg2γÞ

ð1þηgγÞ3ðα2þ1Þ

q
v2maxþ1
jvmax−αj forμ<θ;

1
aKð1þηgγÞlog

	
μ−θ
μ−Vr



forμ>θ:

ðB20Þ

For μ > θ, the parameters a and K in Eq. (B20) appear
only in the combination aK. It follows that a rescaling

a ∼
1

K
ðB21Þ

(a) (b) (c)

(d) (e) (f)

FIG. 11. Scaling relationships preserving firing in the large K limit. Colored dots represent mean field transfer function [(a),(b)], CV
[(c),(d)], and membrane potential [(e),(f)] obtained from Eqs. (A13), (A14), and (A8), respectively. Different colors correspond to
different values of a and K which are scaled according to Eqs. (B22) (first row) and (B21) (second row). Mean field predictions are well
described by the relevant approximated expressions (continuous lines). For μ < θ, the transfer function and CV are described by
Eqs. (B22) (a) and (B17) (c); both quantities are invariant as K increases. For μ > θ, the transfer function and CV are described by
Eqs. (B21) (a) and (B9) (c); note that, as explained in the text, the firing is preserved while the CV becomes smaller as K increases
(different line colors correspond to different values of K). Parameters: g ¼ 12 and γ ¼ 1=4.
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leaves invariant the neural response for large K. For μ < θ,
Eq. (B20), and hence the transfer function, is invariant
under the rescaling

K ∼
1ffiffiffi
a

p exp

�
F ðvmaxÞ − F ðαÞ

a

�
: ðB22Þ

In Figs. 11(a) and 11(d), we show neural responses
computed for different values of K with a rescaled
according to Eqs. (B21) or (B22); as predicted, the network
transfer function remains invariant asK increases. Note that
the response remains nonlinear in the limit of large K; we
show in the next section that, in the network case, because
of the self-consistency relation, nonlinearities are sup-
pressed by the scaling relation.
Finally, from Figs. 11(c) and 11(f), we see that the

rescaling preserves the CV for μ < θ and suppresses it for
μ > θ. In the case μ < θ, the CV is given by Eq. (B17). This
expression shows that the scaling relation of Eq. (B22) also
leaves invariant the CV. Interestingly, in some parameter
regime, the CV in Figs. 9(d) and 11(c) shows a non-
monotonic behavior with νX which is not captured by
Eq. (B17). In particular, a CVabove one is observed when μ
is below the reset Vr. As pointed out in Ref. [88], this
supra-Poissonian firing is explained by the fact that, when
μ < Vr, spiking probability is higher just after firing that it
is afterward. In agreement with this interpretation, we find
that the nonmonotonic behavior of the CV disappears in the
large K limit, where the region of inputs for which μ < Vr
becomes negligible. Thus, our analysis shows that the
irregularity of firing is preserved in the strong-coupling
limit of a single neuron with μ < θ.
In the case μ > θ, the CV is given by Eq. (B9). This

expression shows that the scaling relation of Eq. (B21)
produces a CV which decreases as 1=K in the strong-
coupling limit. It follows that, in a single neuron with
μ > θ, the strong-coupling limit produces finite firing that
is regular.
Starting from the next section, we focus our attention to a

network of conductance-based neurons. Since we are
interested in describing the irregular firing observed in
the cortex, we focus our study on networks with μ < θ.

APPENDIX C: FIRING RATE AND SCALING
RELATION IN LEAKY INTEGRATE-AND-FIRE

NEURON MODELS WITH VOLTAGE-
DEPENDENT CURRENTS

In the main text, we show that, when coupling is strong
and a ≪ 1, the response of a single LIF neuron with
conductance-based synapses is well approximated by
Eq. (12), i.e., the Kramers escape rate. Using this expres-
sion, we show that the scaling relation of Eq. (14) allows
finite firing in a single neuron and in networks of neurons.
Here, we show that the first-order approximation of
this scaling, i.e., a ∼ 1= logðKÞ, appears also in neuron

models with additional biophysical details, such as spike-
generating currents [44] and voltage-gated subthreshold
currents [23], as long as coupling is strong, a is small, and
synapses are conductance based.
We consider integrate-and-fire models featuring voltage-

dependent currents, indicated here as ϕðVÞ, and conduct-
ance-based synapses. In these models, the membrane
potential dynamics can be written as

Cj
dVj

dt
¼ −

X
A¼L;E;I

gjAðVj − EAÞ þ ψðVÞ: ðC1Þ

In the LIF, ψðVÞ ¼ 0 and Eq. (C1) reduces to Eq. (1)
analyzed in the main text. In the exponential integrate-and-
fire model (EIF) [44], the function ψðVÞ ¼ ΔTgL exp½ðV −
θÞ=ΔT� describes the spike generation current; in this
model, once the membrane potential crosses the threshold
θ, it diverges to infinity in finite time. The current generated
by inward-rectifier voltage-gated channels, such as the one
recently reported in Ref. [23], is captured by an expression
of the form ψðVÞ ¼ −ginðVÞðV − EinÞ, where ginðVÞ and
Ein represent the conductance and the reversal potential of
the channels, respectively; in the case of Ref. [23], 1=ginðVÞ
is shown to be well approximated by a linear increasing
function of V.
The dynamics Eq. (C1), following an approach analo-

gous to the one we use for the derivation of Eq. (4), can be
approximated by

τ
dV
dt

¼ −
∂HðVÞ
∂V þ σ

ffiffiffi
τ

p
ζ;

HðVÞ ¼ 1

2
ðV − μÞ2 − τ

τLgL

Z
V
ψðxÞdx; ðC2Þ

where ζ is a white noise term, with zero mean and unit
variance density, while τ, μ, and σðVÞ are as in Eq. (5).
In what follows, as in the main text, we use the effective
time constant approximation [40]—i.e., we neglect the
multiplicative component of the noise term in Eq. (C2)—
and make the substitution σðVÞ → σðμ�Þ, where μ� is the
mean value of the membrane potential dynamics.
The firing rate of a neuron following Eq. (C2) can be

computed exactly using Eq. (A5) and is given by

ν¼
�
τrpþ

2τ

σ2

Z
∞

−∞
dx
Z

∞

maxðVr;xÞ
exp

�
HðzÞ−HðxÞ

σ2

�
dz

�
−1
:

ðC3Þ

In what follows, we provide a more intuitive derivation of
the single-neuron response, which is valid in the biologi-
cally relevant case of a ≪ 1. The function H in Eq. (C2)
can be thought of as an energy function which drives the
dynamics of the membrane potential. In the case of LIF
neurons, H is a quadratic function with a minimum at
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V ¼ μ. In neuron models with a spike generation current,
such as the EIF model [44], the shape of the functionH far
from threshold is qualitatively similar to that of the LIF
model (with a minimum at V ¼ μ�) but becomes markedly
different close to threshold, where the potential energy has
a maximum at V ¼ θ� and goes to −∞ for V > θ�. Here,
we focus on the case in which additional subthreshold
voltage-gated currents do not lead to additional minima of
the energy function, a scenario that can happen with
potassium inward-rectifier currents (e.g., see Ref. [89],
Chap. 4.4.3). In models in which H has a single minimum
in the subthreshold range at μ� and a maximum at θ�, the
firing rate of a neuron when input noise is small (i.e., when
a ≪ 1) can again be computed using the Kramers escape
rate, which gives the average time it takes for the membrane
potential to go from μ� to θ� (see Ref. [43], Sec. V.5.3):

1

ν
− τrp ¼ 2πτ̄ ϒ̄

aKνX
exp

�
Δ̄
a

�
; ðC4Þ

where

ϒ̄ ¼
�
d2H
dV2

����
θ�

d2H
dV2

����
μ�

�−1=2
; Δ̄ ¼ Hðθ�Þ −Hðμ�Þ

σ̄
;

τ̄ ¼ aKνXτ; σ̄ ¼ σffiffiffi
a

p ; ðC5Þ

while :̄ indicates quantities that remain of the order of 1 in
the small a limit, provided the external inputs νX are at least
of the order of 1=ðaKτLÞ. Equation (C4) is the generali-
zation of Eq. (12) to the case of integrate-and-fire neuron
models with voltage-dependent currents; it shows that, at
the dominant order, finite firing emerges if a ∼ 1= logðKÞ.
Moreover, Eq. (C4) shows that corrections to the loga-
rithmic scaling depend on the specific type of voltage-
dependent currents used in the model.

APPENDIX D: CALCULATIONS IN THE
STRONG-COUPLING REGIME—NETWORKS

In this section, we show how the results on the strong-
coupling limit of single-neuron response can be generalized
to the network case. First, we analyze the problem in the
case in which excitatory and inhibitory neurons have the
same biophysical properties (model A). In this model, we
start by discussing the results using the effective time
constant approximation and then discuss the full results.
Then, we study the case in which excitatory and inhibitory
neurons have different biophysical properties (model B).

1. Model A, effective time constant approximation

As discussed in the main text, the network response in
model A with the effective time constant approximation is
obtained by solving the self-consistency condition given by
Eqs. (19) and (10). At strong coupling, this condition can

be simplified to the form of Eq. (12). In the strong-coupling
limit, when νX ≫ 1=aKτL and ν ≫ 1=τrp, the right-hand
side of Eq. (10) depends on ν and νX only through their
ratio. Therefore, we look for solutions of the simplified
self-consistency condition with a Taylor expansion

ν

νX
¼
Xk¼∞

k¼1

ρkxk−1; x ¼ τrpνX: ðD1Þ

Keeping only terms up to first order in x, the self-
consistency condition becomes

1

ρ1
−
�
1þ ρ2

ρ21

�
x ¼ Qðρ1Þ þ ρ2

dQðyÞ
dy

����
y¼ρ1

x;

from which we find

ρ1 ¼
1

Qðρ1Þ
: ðD2Þ

The solution of Eq. (D2) provides the linear component of
the network response; this is preserved in the strong-
coupling limit with an expression analogous to Eq. (14)
but with

rE
νX

¼ 1þ ρ1;
rI
νX

¼ ρ1:

This uniquely defines a scaling between a and K [see
Fig. 3(a) for an example of the scaling function]. We test
the validity of our result in Fig. 3(b). The numerical analysis
shows that, as K increases, the scaling relation prevents
saturation and suppression of the network response.
However, unlike what happens in the single-neuron case,
the shape of the transfer function is not preserved and
becomes increasingly linear as K becomes larger. This is
analogous to what happens in the balanced state model
[7,8,10,85], where the network transfer function becomes
linear in the strong-coupling limit. For the case under
investigation here, we can understand this suppression of
nonlinearities by looking at the second-order terms in the
expansion of Eq. (D1). Keeping the dominant contribution
in a, we find

ρ2 ∼ a
ρ1σ̄

2

2v̄maxðσ̄ dμ
dy þ ðθ − μÞ dσ̄dyÞ

: ðD3Þ

Hence, ρ2 goes to zero as a decreases, producing a linear
transfer function. This follows directly from the self-
consistency relation and is not present in the single-neuron
case, where, in fact, a nonlinear transfer function is observed
in the largeK limit. Figure 3(b) shows that linearity is reached
really slowly with K; this follows directly from Eq. (D3),
where the suppression of nonlinear terms is controlled
by a, which slowly goes to zero with K (approximately
logarithmically).
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2. Model A, multiplicative noise

In this section, we generalize the approach used above, relaxing the effective time constant approximation.
As discussed in Appendix B, Eq. (A13) in the strong-coupling limit becomes

1

ν
¼ τrp þ

Q
νX

ðD4Þ

with

Q ¼ 1ffiffiffi
a

p
K
exp
�
F ðvmaxÞ − F ðαÞ

a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π½1þ ν

νX
ð1þ g2γÞ�h

1þ ν
νX
ð1þ gγÞ

i
3ðα2 þ 1Þ

vuut v2max þ 1

jvmax − αj ðD5Þ

and

τ−1 ¼ aKω−1; ω−1 ¼ νX

�
1þ ν

νX
ð1þ gγÞ

�
; χ−1 ¼ νX

�
1þ ν

νX
ð1þ g2γÞ

�
;

μ ¼
EE þ ν

νX
ðEE þ gγEIÞ

1þ ν
νX
ð1þ gγÞ ; ES ¼

EE þ ν
νX
ðEE þ g2γEIÞ

1þ ν
νX
ð1þ g2γÞ ; ED ¼

ðEE − EIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ν

νX
Þ ν
νX
g2γ

q
1þ ν

νX
ð1þ g2γÞ : ðD6Þ

Here, we assume aK ≫ 1=τLνX so that the function Q
depends on ν and νX only through the combination ν=νX.
We show below that a scaling relation analogous to that
of single neurons holds; hence, for K large enough aK ≫
1=τLνX is automatically implemented. To solve the self-
consistency condition, we express the firing rate ν with a
Taylor expansion

τrpν ¼
Xk¼∞

k¼1

ρkxk; x ¼ τrpνX: ðD7Þ

Note that in Eq. (D7) we assume ρ0 ¼ 0; we come back to
this point at the end of the section. Under this assumption,
y ≔ ν=νX ¼Pk¼∞

k¼1 ρkxk−1 and the function Q depends
only on powers of the dimensionless variable x. Keeping
only terms up to first order in x, Eq. (D4) becomes

1

ρ1
−
�
1þ ρ2

ρ21

�
x ¼ Qðρ1Þ þ ρ2

dQðyÞ
dy

����
y¼ρ1

x; ðD8Þ

from which we find

ρ1 ¼
1

Qðρ1Þ
: ðD9Þ

The solution of Eq. (D9) provides the linear component of
the network response, i.e., its gain; we discuss this function
in more detail at the end of this section.
From Eq. (D9), we find that the network gain ρ1 is

preserved in the strong-coupling limit if the factor

1ffiffiffi
a

p
K
exp

�
F ðvmaxÞ − F ðαÞ

a

�
ðD10Þ

is constant. Equation (D10) uniquely defines a scaling
between a and K [see Fig. 12(c) for an example of the
scaling function]. We test the validity of the scaling in
Fig. 12 as follows: Given a set of parameters a, K, and ρ1,
we compute numerically the transfer function from
Eq. (A13); then we increase K, determine the correspond-
ing change in a using Eq. (D10), and compute again the
transfer function—results of this procedure are shown in
Fig. 12(a). The numerical analysis shows that, as K
increases, our scaling relation prevents saturation and the
network response remains finite.
As in the case with diffusion approximation, the shape of

the transfer function is not preserved by the scaling and an
increasing linear response is observed. We can understand
this suppression of nonlinearities by looking at the second-
order terms in the expansion of Eq. (D4); we find

ρ2 ¼
−ρ21

ρ1
d log ½QðyÞ�

dy þ 1
; ðD11Þ

and, keeping the dominant contribution in 1=a at the
denominator,

ρ2 ∼
−aρ1

dF ½vmaxðyÞ;y�
dy

���
ρ1
þ dF ½αðyÞ;y�

dy

���
ρ1

: ðD12Þ

Hence, ρ2 goes to zero as a decreases, producing a linear
transfer function. The nonlinearities at low rate in Fig. 12(a)
(e.g., see red and yellow lines) show that our assumption
ρ0 ¼ 0 is not valid, in general. However, it turns out that
the above-defined scaling relation suppresses also these
nonlinearities in the limit of strong coupling (e.g., blue
and cyan lines).
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We now characterize the dependency of the transfer
function gain, i.e., its slope, on network parameters. For
fixed network parameters, the network gain ρ1 is defined as
the solution of Eq. (D9); solutions as a function ofa and g are
shown in Fig. 12(e). At fixed values of a, the gain initially
decreases as g increases, and, for g large enough, the opposite
trend appears. This behavior is due to two different effects
which are produced by the increase of g: On one hand, it
increases the strength of recurrent inhibition; on the other
hand, it decreases the equilibriummembrane potential μ and
brings it closer to the inhibitory reversal potential Ei, which,
in turn, weakens inhibition [see Fig. 12(f)]. Figure 12(e)
shows that the gain is finite only for a finite range of
the parameter g; divergences appear because recurrent

inhibition is not sufficiently strong to balance excitation.
At small g, the unbalance is produced by weak efficacy of
inhibitory synapses; at large g, inhibition is suppressed by
the approach of the membrane potential to the reversal
point of inhibitory synapses. Increasing the value of a
produces an upward shift in the curve and, at the same
time, decreases the range of values in which the gain is
finite. The observed decrease in gain generated at low
values of g is observed also in networks of current-based
neurons [10], where the gain is found to be 1=ðgγ − 1Þ.
Finally, we note that the difference between conductance-
and current-based model decreases with a.
To conclude this analysis, we give an approximated

expression of the probability distribution of the membrane

FIG. 12. Strong-coupling limit of networks of conductance-based neurons in model A. Numerically computed network transfer
function (a), CV (b), and probability distribution of the membrane potential (d) obtained from Eqs. (D4), (A12), and (B17). Different
colors correspond to different values of a and K which are changed according to the scaling relation (D10) (c). As K increases the
network transfer function and CV converges to the expression derived in the main text (black lines). Note that, unlike the case of a single
neuron, the network transfer functions become linear. The probability distribution of the membrane potential becomes Gaussian and
slowly converges to a delta function. (e) and (f) show the network gain and membrane potential, respectively, for different values of a at
fixed K. Note that, unlike what happens in current-based networks (black dashed lines), the gain is not monotonic with g. Simulation
parameters are as in Fig. 9; in (a)–(d), g ¼ 20.
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potential of Eq. (A12) which, in the strong-coupling limit,
becomes

PðVÞ¼ νω

jvmax−μj
�
uðVmaxÞ2þ1

uðVÞ2þ1

�
e½F ðvmaxÞ−F ðVÞ�=a

aK
; ðD13Þ

where Vmax is the value of the membrane potential V which
maximizes the integrand of Eq. (A12) while the function
uðÞ is defined in Eq. (A15). Examples of the probability
distribution and the corresponding approximated expres-
sions are given in Fig. 12(d).

3. Model B, multiplicative noise

In this section, we generalize the results obtained so far
to the case of networks with excitatory and inhibitory
neurons with different biophysical properties.

a. Model definition

Here, we take into account the diversity of the two types
of neurons with

τj ¼ τE; ajm ¼ aEX; aEE; aEI; ðD14Þ

for excitatory neurons and

τj ¼ τI; ajm ¼ aIX; aIE; aEE; ðD15Þ

for inhibitory neurons. We use the parametrization

aEX ¼ aE; aEE ¼ aE; aEI ¼ gEaE;

aIX ¼ aI; aIE ¼ aI; aII ¼ gIaI; ðD16Þ

and

KEX ¼ KE; KEE ¼ KE; KEI ¼ γEKE;

KIX ¼ KI; KIE ¼ KI; KII ¼ γIKI: ðD17Þ

Equation (1) becomes

τE
dVE

dt
¼ −ðVE − μEÞ − σEðVEÞ ffiffiffiffiffi

τE
p

ζE;

τI
dVI

dt
¼ −ðVI − μIÞ − σIðVIÞ ffiffiffiffi

τI
p

ζI: ðD18Þ

The expressions for excitatory neurons are

τ−1E ¼ τ−1L;E þ aEKEω
−1
E ; ω−1

E ¼ νEX þ νE þ gEγEνI; μE ¼ τEfEL þ aEKEτL;E½νEXEE þ νEEE þ νIgEγEEI�g;
σ2E ¼ a2EKE

τE
χE

½ðV − ES;EÞ2 þ ED;E
2�; χ−1E ¼ νEX þ νE þ g2EγEνI;

ES;E ¼ χE½νEXEE þ νEEE þ νIg2EγEEIÞ�; ED;E ¼ χE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνEX þ νEÞg2EγEνI

q
ðEE − EIÞ; ðD19Þ

analogous expressions are valid for inhibitory neurons.
The firing rate is given by solving a system of two equations:

1

νE
− τrp ¼ 2χE

a2EKE

Z
vmax;E

vmin;E

dv
Z

v

−∞
dx

1

x2 þ 1
exp

�
FEðvÞ − FEðxÞ

aE

�
;

1

νI
− τrp ¼ 2χI

a2IKI

Z
vmax;I

vmin;I

dv
Z

v

−∞
dx

1

x2 þ 1
exp

�
F IðvÞ − F IðxÞ

aI

�
; ðD20Þ

with

FEðxÞ ¼
2χE

aEKEτE

�
1

2
logðx2 þ 1Þ − αE arctanðxÞ

�
;

vmin;E ¼ Vr − ES;E

ED;E
; vmax;E ¼ θ − ES;E

ED;E
; αE ¼ μE − ES;E

ED;E
; ðD21Þ

and analogous expressions for the inhibitory population. The probability distribution of the membrane potential and the CV
are straightforward generalizations of Eqs. (A12) and (A14).

b. Scaling analysis

We parametrize inputs to the two populations as νEX and νIX ¼ ηνEX. Using an analysis analogous to the one depicted
above, we obtain a simplified expression for the self-consistency Eq. (D20) that is
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1

νE
− τrp ¼ QEðνE=νEX; νI=νEXÞ

νEX
;

1

νI
− τrp ¼ QiðνE=νEX; νI=νEXÞ

νEX
; ðD22Þ

where

QE ¼
�

1ffiffiffiffiffiffi
aE

p
KE

exp
FEðvmax;EÞ − FEðαEÞ

aE

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π½1þ νE

νEX
þ g2EγE

νI
νEX

�
½1þ νE

νEX
þ gEγE

νI
νEX

�3ðα2E þ 1Þ

vuut v2max;E þ 1

jvmax;E − αEj
ðD23Þ

and

QI ¼
�

1ffiffiffiffiffi
aI

p
KI

exp
F Iðvmax;IÞ − F IðαIÞ

aI

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π½ηþ νE

νEX
þ g2I γI

νI
νEX

�
½ηþ νE

νEX
þ gIγI

νI
νEX

�3ðα2I þ 1Þ

vuut v2max;I þ 1

jvmax;I − αIj
: ðD24Þ

We investigate the solution in the strong-coupling limit
using an expansion:

τrpνE ¼
Xk¼∞

k¼1

ρEk x
k; τrpνI ¼

Xk¼∞

k¼1

ρIkx
k; x ¼ τrpνEX;

ðD25Þ

and obtain

ρE1 ¼ 1

QEðρE1 ; ρI1Þ
; ρI1 ¼

1

QIðρE1 ; ρI1Þ
: ðD26Þ

Equation (D26) defines the gain of the excitatory and
inhibitory populations. As for model A, requiring that
network gain is preserved in the large K limit is equivalent
to assuming the products

1ffiffiffiffiffiajp Kj
exp

F jðvmax;jÞ − F jðαjÞ
aj

ðD27Þ

constant; these constraints defines how synaptic strength
should scale with K to preserve the response gain. We note
that, since F jðvmax;jÞ − F jðαjÞ is different for the two
populations, in the general case there are two different

FIG. 13. Limit of largeK for networks, model B. The firing rate and CVof excitatory and inhibitory neurons in a network predicted by
the mean field model for different values of inputs and K; the expected asymptotic behavior is shown in black. On the left [(c),(f)], we
show the corresponding scaling relations with dots associated to the connectivity parameters. Simulations parameter: The two
populations have ge ¼ 20.0 and gi ¼ 19.0; for both populations, a ¼ 0.0005 for K ¼ 105; other parameters are as in Fig. 9.
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scalings for the two populations; in Fig. 13, we verify
this prediction.

APPENDIX E: SIMULATIONS VS THEORY

All the results shown in the main text are based on the
mean field analysis of the network dynamics. In this
section, we investigate how the predictions of the mean

field theory compare to numerical simulations of networks
of conductance-based neurons.
Using the simulator Brian2 [71], we simulate the

dynamics of networks of spiking neurons defined by
Eq. (1). We investigate networks of NE excitatory and
NI inhibitory neurons; the two groups are driven by two
populations of Poisson units of size NEX and NIX,

FIG. 14. Comparison of mean field theory and numerical simulations. Network transfer function (first row), CV of ISI distribution
(second row), and probability distribution of the membrane potential at νE ¼ 0.05τrp (third row). In each, we show the mean field
prediction (green), results from numerical simulations (red), and the value expected in the strong-coupling limit (black). Different
columns correspond to different values of K and a which are scaled according to Eq. (D10). The agreement between network
simulations (red) and mean field predictions (green) improves as a decreases, as expected, since we use the diffusion approximation to
derive the results. Simulation parameters are g ¼ 20 and NE ¼ NI ¼ NEX ¼ NIX ¼ 100K.
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respectively. Simulations are performed for NE ¼ NI ¼
NEX ¼ NIX ¼ 10K and 100K, with no significant diffe-
rences between the two. We use uniformly distributed
delays of excitatory and inhibitory synapses. Delays are
drawn randomly and independently at each existing syn-
apse from uniform distributions in the range [0, 10] ms (E
synapses) and [0, 1] ms (I synapses). For fixed network
parameters, the dynamics is simulated for 10 s with a time
step of 10 μs. We perform simulations for different values
of K; the value of a is rescaled according to the scaling
relation of Eq. (D10). From the resulting activity, we
measure the firing rate, CV, and probability distribution
of the membrane potential; results are shown in Fig. 14.
Mean field predictions are in qualitative agreement with
numerical simulations, and the agreement improves as a
decreases. Deviations from mean field are expected to arise
potentially from three factors: (i) finite size of conductance
jumps due to presynaptic action potentials; (ii) correlations
in synaptic inputs to different neurons in the network due to
recurrent connectivity; (iii) temporal correlations in syn-
aptic inputs due to non-Poissonian firing behavior. In our
simulations, deviations due to (i) and (ii) become small
when both a and the connection probability are small.
Deviations due to (iii) become small when ν ≪ 1=τrp,
since, as shown in Eq. (B17) in Appendix B, the statistics
of presynaptic neurons firing tend to those of a Poisson
process. As predicted by the mean field analysis, with
increasing K (and decreasing a) the network response
becomes linear and approaches the asymptotic scaling; the
firing remains irregular, as shown by the CV, and the
membrane potential becomes Gaussian distributed.

APPENDIX F: EFFECTS OF HETEROGENEITY
IN THE CONNECTIVITY BETWEEN NEURONS

In this section, we describe how fluctuations in single
cell properties modify the expressions described above;
in particular, we investigate the effect of heterogeneities in
the number of connections per neuron in the simplified
framework of model A. The formalism described here is a
generalization to networks of conductance-based neurons
of the analysis done in Refs. [55,90] for networks of
current-based neurons.
We assume that the ith neuron in the network receives

projections from Ki
X, K

i
E, and Ki

I external, excitatory, and
inhibitory neurons, respectively. These numbers are drawn
randomly from Gaussian distributions with mean K (γK)
and variance ΔK2 (γ2ΔK2) for excitatory (inhibitory)
synapses. Note that ΔK2 is assumed to be sufficiently
small so that the probability to generate a negative number
can be neglected. Fluctuations in the number of connec-
tions are expected to produce a distribution of rates in the
population, characterized by mean and variance ν and Δν2.
As a result, the rates of incoming excitatory and inhibitory
spikes differ from cell to cell and become

Ki
Er

i
E ¼ KðrE þ ΔEziEÞ; Ki

Ir
i
I ¼ γKðrI þ ΔIziIÞ;

rE ¼ νþ νX; rI ¼ ν;

Δ2
E ¼ CV2

Kðν2 þ ν2XÞ þ
Δν2

K
≈ CV2

Kðν2 þ ν2XÞ;

Δ2
I ¼ CV2

Kν
2 þ Δν2

γK
≈ CV2

Kν
2; ðF1Þ

where rE;I are the average presynaptic rates and ziE;I are
realizations of a quenched normal noise with zero mean and
unit variance, fixed in a given realization of the network
connectivity. Starting from Eq. (F1), the rate νi of the cell is
derived as in the case without heterogeneities; the main
difference is that it is now a function of the particular
realizations of ziE and ziI . The quantities ν and Δν2
are obtained from population averages through the self-
consistency relations

ν ¼ hνðzE; zIÞi; Δν2 ¼ hνðzE; zIÞ2i − ν2; ðF2Þ

where h:i represents the Gaussian average over the vari-
ables zE and zI . Once ν and Δν2 are known, the probability
distribution of firing rate in the population is given by

PðνÞ ¼ 1

2π

Z
∞

−∞
dzEdzIe−z

2
E=2e−z

2
I =2δ½ν − νðzE; zIÞ�: ðF3Þ

As shown in the main text [Fig. 4(a)], Eq. (F3) captures
quantitatively the heterogeneity in rates observed in
numerical simulations.
In the large K (small a) limit, the mathematical expres-

sions derived above simplify significantly. First, as long as
the parameter μi of the ith neuron is below threshold, its
rate is given by an expression analogous to Eq. (12) which,
for small ΔE;I, can be written

Qi¼QexpðΓziÞ; Γ2¼
�∂v2max

∂rE ΔE

�
2

þ
�∂v2max

∂rI ΔI

�
2

;

ðF4Þ

where zi is generated from a Gaussian random variable with
zero mean and unit variance. Moreover, if responses are far
from saturation, the single rate can be written as

νi ¼
νX
Qi

¼ ν0 exp ð−ΓziÞ; Γ2 ¼ Ω2
CV2

K

a2
;

Ω2 ¼
��

a
∂v2max

∂ðrE=νXÞ
�

2

ðρ2 þ 1Þ2 þ
�
a

∂v2max

∂ðrI=νXÞ
�

2

ρ2
�
;

ðF5Þ

where ν0 is the rate in the absence of quenched noise
[i.e., Eq. (20) in the main text]. It is easy to show that, in
Eq. (F5), Ω2 is independent of a, K, and νX in the large K
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(small a) limit. Finally, as noted in Ref. [55], if the single-
neuron rate can be expressed as an exponential function of a
quenched variable z, Eq. (F3) can be integrated exactly and
the distribution of rates is log-normal and given by

PðνÞ ¼ 1ffiffiffiffiffiffi
2π

p
Γν

exp

�
−
½logðνÞ − logðν0Þ�2

2Γ2

�
: ðF6Þ

Therefore, when the derivation of Eq. (F5) is valid, rates in
the network should follow a log-normal distribution, with
parameters given by

ν ¼ ν0 exp

�
Γ2

2

�
; Δν2 ¼ ν2

�
exp

�
Γ2

2

�
− 1

�
: ðF7Þ

For Γ2 ≪ 1, we find Δν=ν ≈ Γ=2, which scales linearly
with CVK , consistent with numerical results shown in
Fig. 4(c).

APPENDIX G: FINITE SYNAPTIC TIME
CONSTANTS

In this section, we discuss the effect of the synaptic time
constant on single-neuron and network responses. First, we
derive an approximated expression for the single-neuron
membrane time constant; we then compute approximated
expressions which are valid for different values of the ratio
τS=τ; at the end of the section, we discuss the response of
networks of neurons with large τS=τ.
The single-neuron membrane potential dynamics is

given by

Cj _VjðtÞ ¼ −gjLðVj − ELÞ −
X
A¼E;I

gjAðtÞðVj − EAÞ;

τE _g
j
E ¼ −gjE þ gjLτE

X
m

ajm
X
n

δðt − tnm −DÞ;

τI _g
j
I ¼ −gjI þ gjLτI

X
m

ajm
X
n

δðt − tnm −DÞ: ðG1Þ

Using the effective time constant approximation [40],
we have

C _V ¼ −g0ðV − μÞ − gEFðμ − EEÞ − gIFðμ − EIÞ;
τE _gEF ¼ −gEF þ gLσE

ffiffiffiffiffi
τE

p
ζE;

τI _gIF ¼ −gIF þ gLσI
ffiffiffiffi
τI

p
ζI; ðG2Þ

where gAF represents the fluctuating component of the
conductance gA, i.e.,

gAðtÞ ¼ gA0 þ gAFðtÞ ðG3Þ

and

hζAðtÞζBðt0Þi ¼ δA;Bδðt − t0Þ; g0 ¼ gL þ gE0 þ gI0;

gA0 ¼ gLaAτARA; σ2A ¼ a2AτARA: ðG4Þ

We are interested in stationary response, so we introduce
the term

z ¼ ðμ − EEÞgEF þ ðμ − EIÞgIF ðG5Þ

with derivative

_z ¼ ðμ − EEÞ
−gEF þ gLσE

ffiffiffiffiffi
τE

p
ζE

τE

þ ðμ − EIÞ
−gIF þ gLσI

ffiffiffiffi
τI

p
ζI

τI
: ðG6Þ

Since we are interested in understanding the effect of an
additional timescale, we can simplify the analysis assuming
a unique synaptic timescale τE ¼ τI ¼ τS and obtain

τS _z ¼ −zþ σz
ffiffiffiffiffi
τS

p
ζ;

σ2z ¼ g2L

�
σ2Eðμ − EEÞ2 þ σ2I ðμ − EIÞ2

�
: ðG7Þ

To have the correct limit for τS → 0, we impose
aA ¼ aA0τL=τS, where aA0 is the value of the synaptic
efficacy in the limit of the instantaneous synaptic timescale.
With these assumptions, the system equation becomes

τ
dV
dt

¼−ðV−μÞ−σ

ffiffiffiffiffi
τ

τS

r
z; τs

dz
dt

¼−zþ ffiffiffiffiffi
τS

p
ζ: ðG8Þ

One can check that, in the limit τS → 0, the equations
become analogous to those of the main text with
η ¼ z=

ffiffiffiffiffi
τS

p
. In what follows, we provide approximated

expressions for the single-neuron transfer function in three
regimes: small time constant [67,68], large time constant
[70], and intermediate values [72]. We also note that a
numerical procedure to compute the firing rate exactly for
any value synaptic time constant was introduced recently,
using Fredholm theory [91].

1. Single-neuron transfer function
for different values of τS=τ

For τS=τ ≪ 1, as shown in Ref. [67,68], the firing rate
can be computed with a perturbative expansion and is
given by

1

ν
¼ τ

ffiffiffi
π

p Z
ṽmax

ṽmin

dx½1þ erfðxÞ�; ṽðxÞ ¼ x− μ

σ
− α̃

ffiffiffiffiffi
τS
τ

r
:

ðG9Þ
with ᾱ ¼ −ζð1=2Þ ≈ 1.46. As shown in Fig. 15, Eq. (G9)
generates small corrections around the prediction obtained
with instantaneous synapses and captures well the response
for values τS=τ ≲ 0.1.
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For τS=τ ≈ 1, as shown in Ref. [72] using the Rice
formula [92], the single-neuron firing rate is well approxi-
mated by the rate of upward threshold crossing of the
membrane potential dynamics without reset. Starting from
Eq. (G8) and using the results of Ref. [72], we obtain

ν ¼ 1

2π
ffiffiffiffiffiffiffi
ττS

p exp

�
−v2max

�
1þ τS

τ

��
: ðG10Þ

For τS=τ ≫ 1, as shown in Ref. [70], the neuron fires
only when fluctuations of z are large enough for V to be
above threshold; the corresponding rate is given by

ν ¼
Z

∞

vmax=ϵ
dw

e−w
2ffiffiffi
π

p 1

τrp þ τ logðvmin−ϵw
vmax−ϵw

Þ ; ϵ ¼
ffiffiffiffiffi
τ

τS

r
:

ðG11Þ

As shown in Fig. 15, Eq. (G11) captures the response for
values τS=τ ≳ 1 and predicts a strong suppression of
response at larger τS=τ.
Higher-order terms in the τS=τ expansion could be

computed using the approach described in Ref. [91].
However, Fig. 15 shows that Eqs. (G9)–(G11) are sufficient
to capture quantitatively responses observed in numerical
simulations for different regimes of τS=τ. Equations (G9)–
(G11) show that the single-neuron response is a nonlinear
function of input rates; this nonlinearity prevents a scaling
relation between a and K to rescue the suppression
observed in Figs. 15 and 6(a).

2. Network response for τS=τ larger than one

In this section, we study responses in networks of
neurons with large τS=τ. As in the case of instantaneous
synapses, the network response can be obtained by solving
the self-consistency relation given by the single-neuron
transfer function using input rates

rE ¼ νX þ ν; rI ¼ ν:

In particular, solutions of the implicit equation generated by
Eq. (G11) give the network response in the region of inputs
for which τS=τ ≫ 1. In this region of inputs, assuming
coupling to be strong, the implicit equation becomes

ν ¼
ffiffiffiffiffiffiffiffiffi
τ=τS

p
τrpvmax

ffiffiffi
π

p exp

�
−v2max

τS
τ

�
: ðG12Þ

Equation (G12), which is validated numerically in Fig. 16,
implies that firing is preserved if vmax

ffiffiffiffiffiffiffiffiffi
τS=τ

p
is of the order

of one, i.e., if

μ ∼ θ − σ

ffiffiffiffiffi
τ

τS

r
∼ θ −

1ffiffiffiffi
K

p σ=
ffiffiffi
a

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τS½νX þ νð1þ gγÞ�p : ðG13Þ

Combining the above equation with the definition of μ, we
obtain Eq. (21), which captures the behavior of network
response observed in numerical simulations for τS=τ ≫ 1
(Figs. 6 and 16).

FIG. 15. Synaptic time constant suppresses single-neuron response in the strong-coupling limit. Single-neuron response for different
values of K, with a rescaled according to Eq. (14). Rates are plotted as a function of K (first row) and τS=τ (second row); different
columns correspond to different synaptic time constant τS (title). AsK increases, because of the synaptic time constant τS non-negligible
compared to the membrane time constant τ, rates computed numerically from Eq. (G1) (black dots) depart from the prediction of
Eq. (10) (green). The dependency of the rate onK is captured by Eq. (G9) (blue) for small values of τS=τ and by Eq. (G11) (red) for large
values of τS=τ. This decay cannot be prevented by a new scaling relation of awithK and provides an upper bound to howmuch coupling
can be increased while preserving response. Simulations parameter: a ¼ 0.006 for K ¼ 103, g ¼ 12, and η ¼ 1.46.
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Equation (G12) can be used to understand the effect of
connection heterogeneity in networks with large τS=τ. In
particular, generalizing the analysis of Appendix F, we find
that rates in the network, in the limit of small CVK and large
K, are given by

νi ¼ ν0 exp

�
ΩS

CVKffiffiffiffi
K

p zi

�
; ðG14Þ

where ν0 is the population average in the absence of
heterogeneity [i.e., the solution of Eq. (G12)] and zi is a
Gaussian random variable of zero mean and unit variance.
The prefactor ΩS, which is independent of a and K, is
given by

Ω2
S ¼
��∂fðrE;rIÞ

∂rE
�

2

ðν2þν2XÞþ
�∂fðrE;rIÞ

∂rI
�

2

ν2
�
;

fðrE;rIÞ¼
v2maxτS
Kτ

: ðG15Þ

Equation (G15) is a generalization of Eq. (22) to the case
of large τS=τ. It shows that, in this limit, the state of the
network is preserved with connection fluctuations up to
CVK ∼ 1=

ffiffiffiffi
K

p
.

APPENDIX H: SHORT-TERM PLASTICITY

In the main text, we show that the finite synaptic time
constant generates suppression of single-neuron response
for large inputs. In this section, we investigate how this
suppression is modified when short-term plasticity is taken

FIG. 16. Approximation of network response for large τS=τ.
Plots analogous to Figs. 6(b) and 6(c) of the main text. Dots
represent network response as a function of input rate νX,
computed numerically from Eqs. (1) and (23) for τS ¼ 1 ms
(green) and τS ¼ 10 ms (red). Continuous lines correspond to the
prediction obtained with instantaneous synapses (black)
and for large synaptic time constant [Eqs. (G12), (5), and
(G13), colored lines]. As explained in the text, the latter
predictions are valid only for large τS=τ; because of this, we
plot only values obtained for τS=τ > 1. For τS=τ ≫ 1, the
network response is well described by Eq. (21) of the main text.

FIG. 17. Effect of short-term plasticity on single-neuron re-
sponse. (a) Dependence of depression variable xE on the pre-
synaptic rate given by Eq. (H4), for different values of U.
(b) Effective membrane time constant τX as a function of νX, with
depression variable as in (a). Short-term plasticity limits the
decrease of τ with inputs. (c) Firing rate of conductance-
based neurons computed numerically as in Fig. 6(a), but with
depression variable as in (a). Even with short-term plasticity,
single-neuron response is suppressed for large νX. Parameters are
τD ¼ 100 ms,K ¼ 103, a ¼ 0.01, τS ¼ 0.1 ms, g ¼ 12, η ¼ 1.4,
and γ ¼ 1=4.
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into account.We focus our analysis on short-termdepression,
since this type of plasticity is themost commonly observed in
cortical neuronswhen the presynaptic firing rate is large [93].
We consider a neuron receiving K (γK) excitatory

(inhibitory) inputs, each with synaptic time constant τS,
from cells firing with Poisson statistics with a rate rE ¼ νX,
rI ¼ ηνX. Following the approach of Refs. [94,95], we
include synaptic depression in Eq. (G1) by assuming that a
spike of the mth presynaptic neuron generates an input to
the jth postsynaptic neuron given by gLτSajmxjmðtÞ, where
xjmðtÞ ∈ ½0; 1� is the depression variable representing the
fraction of available neurotransmitter at the synapse. We
assume that xjmðtÞ evolves in time as

dxjm
dt

¼ 1 − xjm
τD

; ðH1Þ

in the absence of presynaptic spikes, and as

xjm → xjmð1 −UÞ; ðH2Þ

in response to a presynaptic spike. In the model, U ∈ ½0; 1�
describes the fraction of available resources used to
produce the postsynaptic input, while τD indicates the
timescale over which such resources are regenerated. As
shown in Refs. [94,95], xjm satisfies the recursive relation

xjmðtnþ1
m Þ ¼ 1þ ½xjmðtnmÞð1 −UÞ − 1�e−ðtnþ1

m −tnmÞ=τD; ðH3Þ

where xjmðtnþ1
m Þ and xjmðtnmÞ indicate the values of xjm

after the nþ 1th and nth presynaptic spike, respectively.
With such synaptic dynamics, the statistics of inputs to
single neurons are given by Eq. (G8) with the following
substitutions:

τ−1 → τ−1x ¼ τL
−1 þ aKðxErE þ xIrIgγÞ;

μ → μx ¼ τxfEL=τL þ aK½xErEEE þ xIrIgγEI�g;
σ2ðVÞ → σ2xðVÞ ¼ a2Kτx½yErEðV − EEÞ2

þ g2γyIrIðV − EIÞ2�;

xE;I ¼
1

1þ UrE;IτD
;

yE;I ¼
xE;I

1þ Uð1 −U=2ÞrE;IτD
: ðH4Þ

Equation (H4) shows that short-term depression affects
the single-neuron response for rates rE;I ∼ 1=τDU or larger.
In particular, the effective time constant τx decreases mono-
tonically with input firing rate and, for νX ≫ 1=τDU,
plateaus at

τ�x ¼
UτD

aKð1þ gγÞ : ðH5Þ

In the main text, we show that the ratio τ=τS determines
neural response: Activity increases (decreases) with inputs
for τ=τS ≫ 1 (τ=τS ≪ 1). In the absence of short-term
depression, τ ∼ 1=aKνX and the regime τ=τS ≪ 1 is always
reached for large inputs, regardless of the value of τS.
Equation (H5) shows that, with short-term depression and
for certain parameters, the regime τ=τS ≪ 1 is not reached;
this suggests that short-term depression might prevent
suppression of single-neuron response for large inputs. To
validate this intuition, we compute numerically the response
of conductance-based synapses neurons with a finite syn-
aptic time constant and short-term depression; results are
shown in Fig. 17. Simulations show that, for parameters in
which short-term depression prevents the regime τ=τS ≪ 1
to appear, the single-neuron response is still suppressed for
large νX. This numerical result can be understood by noticing
that, with short-term depression and for rE;I ≫ 1=τDU,
the equilibrium value of the membrane potential μx remains
constant, while the variance of the synaptic input σ2x
decreases with presynaptic input as 1=ðrXτDÞ2 [Eq. (H4)].
For parameters such that τ�x=τS ≫ 1, these properties lead
to an exponential suppression of the single-neuron firing
[Eq. (12)] when inputs are large.
Results described in this section show that short-term

plasticity suppresses neural response for large inputs. This
suppression, unlike that generated by a finite synaptic time
constant, emerges because synaptic current fluctuations
become small, while the effective time constant remains
finite. It follows that, in models with short-term plasticity,
the autocorrelation of the membrane potential can be of
the order of τ� for large inputs and can be larger than the
synaptic time constant. Finally, we point out that, analo-
gously to models without short-term plasticity, response
suppression does not appear in networks of neurons, as it is
prevented by recurrent interactions.
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