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Dear Editor,

Next-generation sequencing (NGS) is widely used in clinical ge-

netic diagnosis and provides large amounts of genetic informa-

tion. Efforts have to be made to interpret unrevealed variants si-

multaneously [1]. Besides the ±1, 2 canonical regions, many 

variants in introns are interpreted as “variants of uncertain sig-

nificance” (VUS) because of insufficient evidence of their clini-

cal significance [1]. The best way to confirm variant pathogenic-

ity is RNA sequencing, which can provide evidence of RNA splic-

ing by intronic variants [1, 2]. Using RNA sequencing, we con-

firmed that a novel intronic variant (c.314+3A>T) in SDHD in-

duces exon 3 skipping; this case demonstrates the significance 

of confirming RNA splicing, especially when intronic variants 

are detected in splice site consensus sequences (ssCSs) [1].

A 41-year-old female patient with a family history of hyperten-

sion and paraganglioma was diagnosed as having right carotid 

paraganglioma in 2001. Multifocal metastases had developed 

for 21 years. After obtaining informed consent for genetic test-

ing, we performed an NGS hereditary cancer panel testing in 

2021 using a MiSeqDx instrument (Illumina, San Diego, CA, USA) 

and a target enrichment kit (Dxome, Seongnam, Korea). The 

mean coverage depth was 384.0×. In total, 310 likely benign/

benign variants and a single VUS in SDHD (NM_003002.3: c.314+ 

3A>T, heterozygous) were detected (Fig. 1).

The VUS has not been detected in the normal population (Ge-

nome Aggregation Database; not reported, PM2) and is not re-

ported in ClinVar, the Human Gene Mutation Database, and other 

databases. Using the splicing computational tool Splicing Site 

Finder-like (change threshold of –5% at donor sites), this variant 

had a negative score (–13.6%), indicating disturbance of nor-

mal splicing binding at the donor site (c.314G). The conserva-

tion scores in PhastCons (1.0; range, 0–1.0) and GERP (1.0; 

range, 0–1.0) for the variant were very high.

We used RNA sequencing to confirm whether the variant would 

cause aberrant RNA splicing. Total RNA was extracted from leu-

kocytes of a healthy volunteer and the patient using High Pure 

RNA Isolation Kit (Roche, Indianapolis, IN, USA) and reverse-

transcribed to cDNA using the RevertAid First Strand cDNA Syn-

thesis kit (Thermo Fisher Scientific, Waltham, MA, USA). Direct 

sequencing was performed using target-specific in-house prim-

ers (5´-GCTCTGTTGCTTCGAACTCC-3´ and 5´-ATGGCATGACA

AAGCAGAGG-3´).

Exon 3 was skipped in the patient, causing a 145-nucleotide 

deletion in exon 3 (r.170_314del) (Fig. 2). This caused a frame-
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shift (p.Ser57TrpfsTer30) that was strongly predicted to have a 

loss-of-function effect in SDHD. The variant was reclassified as 

a likely pathogenic variant (PM2, PS3) [3].

The variant c.314+3A>T is detected in highly conserved do-

nor ssCSs recognized by the spliceosomal U1-snRNA complex 

for splicing (Fig. 1) [4, 5]. Canonical sites at this exon–intron junc-

tion have GC sequences (U2 type) instead of the predominant 

GT sequences at donor splicing sites (U1 type; 5´-GTRAGT-3´, 

where R is a purine [A and/or G]), and interact with the spliceo-

somal U1-snRNA, similar to U1-type sequences [6]. This nucle-

otide alteration from a purine to pyrimidine is presumed to cause 

exon skipping due to inappropriate donor splice site recognition. 

Disease-causing spliceogenic variants are reported in canonical 

sites and adjacent ssCSs of several hereditary cancer genes [1, 

2, 7-10]. This suggests the importance of the functional inter-

pretation of intronic variants that cause RNA splicing changes in 

hereditary cancers. The frequency of intronic variants affecting 

RNA splicing confirmed by RNA sequencing near acceptor sites, 

and especially donor sites, is high [1]. RNA sequencing of these 

sites could reveal valuable information to confirm the pathoge-

nicity of such variants.

A significant number of variants interpreted as VUSs have been 

Fig. 1. Representations of genomic alterations in SDHD identified by NGS hereditary cancer panel test (A) Integrative Genomics Viewer 
(Broad Institute and the Regents of the University of California, https://software.broadinstitute.org/software/igv/home) snapshot of the c.314+3 
A>T variant in SDHD (Chr11:111959738, hg19), with a VAF of 47.88%. (B) Schematic diagram of the donor ssCS in exon 2 in SDHD.
Abbreviations: NGS, Next generation sequencing; ssCS, splice site consensus sequence; VAF, variant allele frequency.
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Fig. 2. Schematic diagram of the transcript analysis and sequencing pattern of the control and patient PCR products. (A) RNA sequencing 
chromatograms (forward sequence) for the patient and control revealing heterozygous exon 3 skipping in the patient. (B) Schematic dia-
gram of transcript analysis of the RNA sequencing results for the patient and control.
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reclassified as pathogenic variants via additional RNA sequenc-

ing [1, 5, 9, 10]. However, many intronic variants tend to be un-

derestimated as VUSs, even if they affect normal RNA splicing 

[10]. RNA sequencing, when intronic variants are detected in 

essential ssCSs, could reduce the number of VUSs in intronic 

regions, enabling more accurate genetic diagnosis and patient 

management.
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