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The Fermi-Dirac-type or Bose-Einstein-type integrals can be transformed into two convergent real-convolution integrals. The
transformation simplifies the integration process andmay ultimately produce a complete analytical solutionwithout recourse to any
mathematical approximations. The real-convolution integrals can either be directly integrated or be transformed into the Laplace
Transform inversion integral in which case the full power of contour integration becomes available. Which method is employed is
dependent upon the complexity of the real-convolution integral. A number of examples are introduced which will illustrate the
efficacy of the analytical approach.

1. Introduction

This article presents an extension to themethod developed by
J. A. Selvaggi and J. P. Selvaggi [1] for analytically evaluating
Fermi-Dirac-type andBose-Einstein-type integrals.TheFermi-
Dirac and Bose-Einstein integrals occupy an important role
in areas such as solid-state physics and statistical mechanics.
There exists numerous approximate analytical methods for
evaluating these integrals, but none of the publishedmethods
give a general technique for analytically evaluating these
integrals valid for the full range of the degeneracy parameter.
This article illustrates a general method for attacking these
integrals using real convolution.

The right-hand side of (1) and (2) will be defined as
Fermi-Dirac-type integral and the Bose-Einstein-type integral,
respectively.

𝐹 (𝜉) = ∫∞
0

𝑓 (𝑥)
1 + 𝑒𝑥−𝜉 𝑑𝑥, (1)

𝐵 (𝜉) = ∫∞
0

𝑓 (𝑥)
−1 + 𝑒𝑥−𝜉 𝑑𝑥. (2)

Analytical evaluation of these integrals yields the functions𝐹(𝜉) and 𝐵(𝜉). These functions will be defined as the Fermi-
Dirac function and the Bose-Einstein function, respectively.
The parameter, 𝜉, is called the degeneracy parameter, a term
encountered in statistical mechanics. However, as far as the
integrals in (1) and (2) are concerned, 𝜉 represents any real
number. In general, integrals of this type do not allow for
closed-form solutions in terms of elementary functions. This
article introduces a generalmethod for analytically evaluating
the integrals given in (1) and (2) for various functions,𝑓(𝑥). The denominator of the integrands in (1) or (2) is
exactly that found in the familiar Fermi-Dirac [2–4] or Bose-
Einstein integrals [5, 6].These integrals are often encountered
in statistical and quantum statistical mechanics [7–9]. The
authors will mainly consider the Fermi-Dirac functions and
Bose-Einstein functions within that domain for which 𝜉 ∈
R ≥ 0. If 𝜉 ∈ R < 0, (1) and (2) may be solved by elementary
methods.

Numerous techniques have been employed to analytically
approximate and numerically evaluate the half-order Fermi-
Dirac functions [2, 10–18] and half-order Bose-Einstein func-
tions [5, 17, 18] (see Appendix). A relatively new representation
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for these integrals, for 𝑓(𝑥) = 𝑥𝜐 ∀𝜐 > −1, is the Poly-
logarithm function [19–22]. This function has been studied
extensively in the literature. In fact, mathematical software
such as Mathematica [23] uses a Polylogarithm algorithm
to numerically compute the Fermi-Dirac and Bose-Einstein
integrals. However, the authors will illustrate that the appli-
cation of real convolution allows for the complete analytical
evaluation of the integrals in (1) and (2) for a wide range
of functions, 𝑓(𝑥). The authors have already employed this
technique [1] to analytically evaluate the integral in (1) for
the well-known and important case of the half-order Fermi-
Dirac functions where 𝑓(𝑥) = 𝑥𝑚−1/2 ∀𝑚 ∈ Z≥. A few
examples will be considered which will help to illustrate
the efficacy of the method. Each solution was numerically
checked by employingMathematica [23] and other numerical
algorithms.

2. Theoretical Development

Rewrite the integrals given in (1) and (2) in terms of two
convergent real-convolution integrals [24]. The observation
that real convolution can be employed is the main focus of
this article. In fact, once the integrals are transformed into
the proper real-convolution form, the difficulty in analytically
evaluating (1) and (2) may be substantially reduced.

In order to see that (1) and (2) can each be transformed
into two convergent real-convolution integrals requires that
each integral be put into the proper form. To this end, rewrite
(1) and (2) as follows:

𝐹 (𝜉) = ∫𝜉
0

𝑓 (𝑥)
1 + 𝑒−(𝜉−𝑥) 𝑑𝑥 + ∫∞

𝜉

𝑓 (𝑥) 𝑒−(𝑥−𝜉)
1 + 𝑒−(𝑥−𝜉) 𝑑𝑥, (3)

𝐵 (𝜉) = −∫𝜉
0

𝑓 (𝑥)
1 − 𝑒−(𝜉−𝑥) 𝑑𝑥 + ∫∞

𝜉

𝑓 (𝑥) 𝑒−(𝑥−𝜉)
1 − 𝑒−(𝑥−𝜉) 𝑑𝑥, (4)

valid ∀𝜉 ∈ R ≥ 0.
The denominators in each of the integrals in (3) and (4)

can be expanded in a binomial expansion. Each expansion
results in a convergent integral within its limits of integration.
Employing (3) and expanding the denominator of both
integrals in their appropriate binomial expansion yields

𝐹 (𝜉) = ∫𝜉
0
𝑓 (𝑥) 𝑑𝑥 + ∞∑

𝑝=1

(−1)𝑝

⋅ [∫𝜉
0
𝑓 (𝑥) 𝑒−𝑝(𝜉−𝑥)𝑑𝑥 − ∫∞

𝜉
𝑓 (𝑥) 𝑒−𝑝(𝑥−𝜉)𝑑𝑥] .

(5)

Likewise, (4) can be rewritten as

𝐵 (𝜉) = −∫𝜉
0
𝑓 (𝑥) 𝑑𝑥

− ∞∑
𝑝=1

[∫𝜉
0
𝑓 (𝑥) 𝑒−𝑝(𝜉−𝑥)𝑑𝑥 − ∫∞

𝜉
𝑓 (𝑥) 𝑒−𝑝(𝑥−𝜉)𝑑𝑥] .

(6)

Depending upon the complexity of the function, 𝑓(𝑥),
direct integration may be possible. However, the authors will

develop the necessary mathematical machinery employing
the Laplace Transform inversion integral and contour inte-
gration of complex variable theory in order to analytically
evaluate (5) and (6). The two integrals within the summation
in (5), for example, are real-convolution integrals [24] defined
as follows:

∫𝜉
0
𝑓 (𝑥) 𝑒−𝑝(𝜉−𝑥)𝑑𝑥 = 12𝜋𝑖 ∫

𝜎+𝑖∞

𝜎−𝑖∞

F (𝑠) 𝑒𝜉𝑠(𝑠 + 𝑝) 𝑑𝑠,
∫∞
𝜉

𝑓 (𝑥) 𝑒−𝑝(𝑥−𝜉)𝑑𝑥 = 12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

F (𝑠) 𝑒𝜉𝑠(−𝑠 + 𝑝)𝑑𝑠,
(7)

where F(𝑠) is defined as the Laplace Transform of 𝑓(𝑥). Both
expressions are valid for∀𝜉 ∈ R > 0.One can eventually relax
the restriction on 𝜉 to include ∀𝜉 ∈ R ≥ 0. Substituting (7)
into (5) yields the following:

𝐹 (𝜉) = ∫𝜉
0
𝑓 (𝑥) 𝑑𝑥

+ 2 ∞∑
𝑝=1

(−1)𝑝 12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑠F (𝑠) 𝑒𝜉𝑠(𝑠2 − 𝑝2)𝑑𝑠.
(8)

Equation (8) represents an exact alternative expression for
(1). The only restriction put upon 𝑓(𝑥) is that it must be a
function which allows the integral in (1) to be convergent.
Of course, 𝑓(𝑥) must have a Laplace Transform. The same
procedure illustrated above yields the following expression
for the Bose-Einstein-type integral.

𝐵 (𝜉) = −∫𝜉
0
𝑓 (𝑥) 𝑑𝑥 − 2 ∞∑

𝑝=1

12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑠F (𝑠) 𝑒𝜉𝑠(𝑠2 − 𝑝2)𝑑𝑠. (9)

The first integral, shown in (8) or (9), may be quite simple
for practical problems if 𝑓(𝑥) is an analytically integrable
function. The second integral, shown in (8) or (9), is the
inverse Laplace Transform [24–26] defined as follows:

𝑔 (𝜉, 𝑝) = L
−1 [𝐺 (𝑠)] = 12𝜋𝑖 ∫

𝜎+𝑖∞

𝜎−𝑖∞

𝑠F (𝑠) 𝑒𝜉𝑠(𝑠2 − 𝑝2)𝑑𝑠, (10a)

where

𝐺 (𝑠) = 𝑠F (𝑠)(𝑠2 − 𝑝2) . (10b)

The contour defined by the limits of integration in (10a)
is called the Bromwich Contour [24–26]. Of course, there is
no guarantee that the analytical evaluation of the inversion
integral of (10a) will be an easy task. However, for many
practical problems found in the literature, this appears not to
be a problem.

3. Application of Real Convolution

3.1. Example 1. This simple example is used to verify the
method developed in Section 2. Let 𝑓(𝑥) = 𝑥𝑚 ∀𝑚 ∈ Z≥
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and evaluate the expression for the Fermi-Dirac function by
employing (8). The result is as follows:

𝐹𝑚 (𝜉)
= 𝜉𝑚+1𝑚 + 1

+ 2 (𝑚!) ∞∑
𝑝=1

(−1)𝑝 12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠𝑠𝑚 (𝑠2 − 𝑝2)𝑑𝑠.
(E.1.1)

Evaluate the inversion integral in (E.1.1) by applying
the theory of residues of complex variable theory. This is
accomplished by choosing the appropriate contour in the
complex plane. Figure 1 represents just one possible contour
chosen to evaluate the integral in (E.1.1). The contour is
closed in the left-hand plane in order to ensure convergence.

Employing the contour of Figure 1 yields the following:

12𝜋𝑖 � 𝑒𝜉𝑠𝑠𝑚 (𝑠2 − 𝑝2)𝑑𝑠
= 12𝜋𝑖 ∫

𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠𝑠𝑚 (𝑠2 − 𝑝2)𝑑𝑠
= 𝑒𝜉𝑠𝑠𝑚 (𝑠 − 𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑝𝑒𝜋𝑖
+ 1(𝑚 − 1)! 𝑑

𝑚−1

𝑑𝑠𝑚−1 ( 𝑒𝜉𝑠𝑠2 − 𝑝2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=0

= − 𝑒−𝜉𝑝2𝑝𝑚+1𝑒𝑚𝜋𝑖 + 1(𝑚 − 1)! 𝑑
𝑚−1

𝑑𝑠𝑚−1 ( 𝑒𝜉𝑠𝑠2 − 𝑝2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=0 .

(E.1.2)

The integral around path 2 for the contour of Figure 1
contributes zero due to Jordan’s Lemma [25]. We now have
the following expression valid ∀𝜉 ∈ R ≥ 0:

𝐹𝑚 (𝜉) = 𝜉𝑚+1𝑚 + 1 − ∞∑
𝑝=1

(−1)𝑝

⋅ [ 𝑚!𝑒−𝜉𝑝𝑝𝑚+1𝑒𝑚𝜋𝑖 − 2𝑚 𝑑𝑚−1𝑑𝑠𝑚−1 ( 𝑒𝜉𝑠𝑠2 − 𝑝2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=0] .

(E.1.3)

Case 1 (𝑚 = 0).
𝐹0 (𝜉) = 𝜉 − ∞∑

𝑝=1

(−1)𝑝 𝑒−𝜉𝑝𝑝 = ln (1 + 𝑒𝜉) . (E.1.3.a)
Case 2 (𝑚 = 1).

𝐹1 (𝜉) = 𝜋26 + 𝜉22 + ∞∑
𝑝=1

(−1)𝑝 𝑒−𝜉𝑝𝑝2 . (E.1.3.b)
Case 3 (𝑚 = 2).

𝐹2 (𝜉) = 𝜋2𝜉3 + 𝜉33 − 2 ∞∑
𝑝=1

(−1)𝑝 𝑒−𝜉𝑝𝑝3 . (E.1.3.c)

1

x

iy
2

Brom
w

ich Contour

1 2−2 −1−3
0

Figure 1: Contour used for Examples 1 and 2.

The Fermi-Dirac function,𝐹𝑚(𝜉), for any value of𝑚 ∈ Z≥ can
easily be evaluated. Employing (5), instead of (8), for 𝑚 = 0
yields the following:

𝐹0 (𝜉)
= ∫𝜉
0
𝑑𝑥

+ ∞∑
𝑝=1

(−1)𝑝 [∫𝜉
0
𝑒−𝑝(𝜉−𝑥)𝑑𝑥 − ∫∞

𝜉
𝑒−𝑝(𝑥−𝜉)𝑑𝑥]

= 𝜉 + ∞∑
𝑝=1

(−1)𝑝𝑝 (1 − 𝑒−𝑝𝜉) − ∞∑
𝑝=1

(−1)𝑝𝑝
= ln (1 + 𝑒𝜉) .

(E.1.4)

Alternatively, (5) can be employed to evaluate 𝐹𝑚(𝜉) for any𝑚 ∈ Z≥. However, employing contour integration avails
one of all the mathematical machineries of complex variable
theory and allows one to tackle a wide range of integrals
that may otherwise be rather complicated to evaluate by
alternative methods. The same analysis can be employed to
analytically evaluate the Bose-Einstein function, 𝐵(𝜉), for𝑓(𝑥) = 𝑥𝑚 ∀𝑚 ∈ Z≥.

3.2. Example 2. As a second example, consider a slightlymore
complicated function. Let 𝑓(𝑥) = sin(𝑎𝑥) ∀𝑎 ∈ R, and find
the expression for the Fermi-Dirac function. Employing (8)
and using the contour of Figure 1 yield the following:

𝐹 (𝜉) = ∫𝜉
0
sin (𝑎𝑥) 𝑑𝑥 + 2𝑎 ∞∑

𝑝=1

(−1)𝑝 12𝜋𝑖
⋅ ∫𝜎+𝑖∞
𝜎−𝑖∞

𝑠𝑒𝜉𝑠(𝑠2 + 𝑎2) (𝑠2 − 𝑝2)𝑑𝑠
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= 1 − cos (𝑎𝜉)𝑎 + 2𝑎 ∞∑
𝑝=1

(−1)𝑝𝑝2 + 𝑎2 12𝜋𝑖 � [ 𝑠𝑒𝜉𝑠(𝑠2 − 𝑝2)
− 𝑠𝑒𝜉𝑠(𝑠2 + 𝑎2)] 𝑑𝑠

= 1𝑎 − 𝜋 cos (𝜉𝑎)
sinh (𝜋𝑎) + 𝑎 ∞∑

𝑝=1

(−1)𝑝 𝑒−𝑝𝜉𝑝2 + 𝑎2 .
(E.2.1)

The same analysis can be used to compute the Bose-Einstein
function by employing (6) or (9).

3.3. Example 3. Consider an even more difficult problem.
Substituting 𝑓(𝑥) = √𝑥 into (1) and (2) yields the well-
known half-order Fermi-Dirac function, 𝐹1/2(𝜉), and the
half-order Bose-Einstein function, 𝐵1/2(𝜉), respectively (see
Appendix). The half-order Fermi-Dirac function has already
been analytically evaluated by J. A. Selvaggi and J. P. Selvaggi
[1]. Let us attempt to analytically evaluate the half-order Bose-
Einstein function, ∀𝜉 ∈ R ≥ 0, and use the result to
find an alternative expression for the half-order Fermi-Dirac
function not discussed in J. A. Selvaggi and J. P. Selvaggi [1].
The half-order Bose-Einstein function is given by

𝐵1/2 (𝜉) = ∫∞
0

√𝑥−1 + 𝑒𝑥−𝜉 𝑑𝑥, (E.3.1)
valid ∀𝜉 ∈ R ≥ 0.The Laplace Transform of √𝑥 is √𝜋/2𝑠3/2.
Employ (9) to evaluate the integral in (E.3.1) as follows:

𝐵1/2 (𝜉) = −23𝜉3/2

− √𝜋 ∞∑
𝑝=1

12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠√𝑠 (𝑠2 − 𝑝2)𝑑𝑠.
(E.3.2)

The analytical evaluation of the inversion integral given
in (E.3.2) is expedited by employing the contour shown
in Figure 2. The authors call this the Fermi-Dirac contour
because of its utility in aiding in the analytical evaluation of
the half-order Fermi-Dirac functions, 𝐹−1/2(𝜉) and 𝐹1/2(𝜉).
Once again, the Fermi-Dirac contour is closed in the left-
hand plane in order to ensure convergence.

Employing contour integration in the complex plane and
applying the theory of residues yield the following:

12𝜋𝑖 � 𝑒𝜉𝑠√𝑠 (𝑠2 − 𝑝2)𝑑𝑠
= 12𝜋𝑖 ∫

𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠√𝑠 (𝑠2 − 𝑝2)𝑑𝑠
+ 12𝜋𝑖 ∫

0

∞

𝑒𝑖𝜉𝑦
√𝑦𝑒𝜋𝑖/2 [(𝑦𝑒𝜋𝑖/2)2 − 𝑝2] 𝑖𝑑𝑦

+ 12𝜋𝑖 ∫
∞

0

𝑒𝑖𝜉𝑦
√𝑦𝑒−3𝜋𝑖/2 [(𝑦𝑒−3𝜋𝑖/2)2 − 𝑝2] 𝑖𝑑𝑦.

(E.3.3)
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Figure 2: Fermi-Dirac contour.

Only the line integrals along paths 1 (Bromwich Contour), 3,
and 5 in Figure 2 contribute a nonzero quantity to the closed
line integral on the left-hand side of (E.3.3). The closed line
integral on the left-hand side of (E.3.3) encloses only simple
poles since the branch point at the origin has been excluded
from the contour of integration.Themathematical details are
found in J. A. Selvaggi and J. P. Selvaggi [1]. The result is as
follows:

− 𝑖𝑒−𝑝𝜉2𝑝3/2 = 12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠√𝑠 (𝑠2 − 𝑝2)𝑑𝑠
+ 𝑒−𝜋𝑖/42𝜋 ∫∞

0

𝑒𝑖𝜉𝑦
√𝑦 [𝑦2 + 𝑝2]𝑑𝑦

− 𝑒3𝜋𝑖/42𝜋 ∫∞
0

𝑒𝑖𝜉𝑦
√𝑦 [𝑦2 + 𝑝2]𝑑𝑦.

(E.3.4)

After simplifying the algebra, the Inverse Laplace Transform
becomes

12𝜋𝑖 ∫
𝜎+𝑖∞

𝜎−𝑖∞

𝑒𝜉𝑠√𝑠 (𝑠2 − 𝑝2)𝑑𝑠
= − 12𝑝3/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉) + 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] .

(E.3.5)

Once again, the mathematical details used in obtaining(E.3.5) are given in J. A. Selvaggi and J. P. Selvaggi [1].
Employing (E.3.5) and (E.3.2) yields the following half-order
Bose-Einstein function.

𝐵1/2 (𝜉) = −23𝜉3/2 + √𝜋2
∞∑
𝑝=1

1𝑝3/2
⋅ [𝑒𝑝𝜉Erfc(√𝑝𝜉) + 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] .

(E.3.6)
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The functions Erfc(∙) and Erfi(∙) are the Complimentary and
Imaginary Error functions, respectively. The evaluation of𝐵1/2(𝜉) ∀𝜉 ∈ R < 0 is solved by elementary methods and will
not be discussed in this article. The half-order Fermi-Dirac
function is found by employing the following duplication
formula:

𝐹𝜐 (𝜉) = 𝐵𝜐 (𝜉) − 12𝜐𝐵𝜐 (2𝜉) . (E.3.7)
This expression is discussed in Clunie [5] and Dingle [6],
and it links the Bose-Einstein functions to the Fermi-Dirac
functions. When 𝑓(𝑥) = 𝑥𝜐 and 𝜐 = 1/2, the following
expression is found:

𝐹1/2 (𝜉) = 𝐵1/2 (𝜉) − 1√2𝐵1/2 (2𝜉) . (E.3.8)
Employing (E.3.8) and (E.3.6) yields the half-order Fermi-
Dirac function as follows:

𝐹1/2 (𝜉) = 23𝜉3/2 + √𝜋2
∞∑
𝑝=1

1𝑝3/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉)
− 1√2𝑒2𝑝𝜉Erfc(√2𝑝𝜉) + 𝑒−𝑝𝜉Erfi(√𝑝𝜉)
− 1√2𝑒−2𝑝𝜉Erfi(√2𝑝𝜉)] .

(E.3.9)

Equation (E.3.9) can easily be checked by the application of
(8). In doing so, one obtains [1]

𝐹1/2 (𝜉) = 23𝜉3/2 − √𝜋2
∞∑
𝑝=1

(−1)𝑝𝑝3/2
⋅ [𝑒𝑝𝜉Erfc(√𝑝𝜉) + 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] .

(E.3.10)

Equations (E.3.9) and (E.3.10) yield different-looking
results but are actually identities. Either (E.3.9) or (E.3.10) can
be used to define the half-order Fermi-Dirac function. Alter-
natively, (5) and (6) could be used to analytically evaluate
the half-order Fermi-Dirac function or the half-order Bose-
Einstein function, respectively, without employing contour
integration.

3.4. Example 4. As a final example, and the most difficult of
the four examples discussed in this article, the authors will
analytically evaluate the incomplete half-order Fermi-Dirac
function [27] defined as follows:

𝐹1/2 (𝜉, 𝑢) = ∫𝑢
0

√𝑥1 + 𝑒𝑥−𝜉 𝑑𝑥, (E.4.1)
valid ∀𝜉 ∈ R and ∀𝑢 ∈ R ≥ 0. Rewrite (E.4.1) as follows:

𝐹1/2 (𝜉, 𝑢) = ∫∞
0

√𝑥1 + 𝑒𝑥−𝜉 𝑑𝑥 − ∫∞
𝑢

√𝑥1 + 𝑒𝑥−𝜉 𝑑𝑥 (E.4.2)
= 𝐹1/2 (𝜉) − 𝐺1/2 (𝜉, 𝑢) . (E.4.3)

To evaluate 𝐺1/2(𝜉, 𝑢), let 𝑦 = 𝑥 − 𝑢 in the second integral of(E.4.2). The result is as follows:

𝐺1/2 (𝜉, 𝑢) = ∫∞
0

√𝑦 + 𝑢
1 + 𝑒𝑦−(𝜉−𝑢) 𝑑𝑦. (E.4.4)

Some care must be taken when considering (E.4.4). There are
three cases which need to be considered. These cases are as
follows.

Case 1. Find 𝐺1/2(𝜉, 𝑢) ∀𝜉 ∈ R ≥ 0, ∀𝑢 ∈ R ≤ 𝜉.
Case 2. Find 𝐺1/2(𝜉, 𝑢) ∀𝜉 ∈ R ≥ 0, ∀𝑢 ∈ R ≥ 𝜉.
Case 3. Find 𝐺1/2(𝜉, 𝑢) ∀𝜉 ∈ R ≤ 0, ∀𝑢 ∈ R ≥ 0.

The authors will only analyze Case 1 since the other
cases follow the same procedure. One can rewrite (E.4.2),
employing (E.4.4), as follows:

𝐹1/2 (𝜉, 𝑢) = 𝐹1/2 (𝜉) − ∫∞
0

√𝑦 + 𝑢
1 + 𝑒𝑦−(𝜉−𝑢) 𝑑𝑦. (E.4.5)

An expression for the half-order Fermi-Dirac function is
given by (E.3.10). Evaluate𝐺1/2(𝜉, 𝑢) using (8) with F(𝑠) given
by

F (𝑠) = 2√𝑠𝑢 + √𝜋𝑒𝑠𝑢Erfc (√𝑠𝑢)
2𝑠3/2 . (E.4.6)

Employing (E.4.5), (E.4.6), and (8) yields the following
expression for 𝐺1/2(𝜉, 𝑢):

𝐺1/2 (𝜉, 𝑢) = 23 (𝜉3/2 − 𝑢3/2)
+ √𝜋 ∞∑
𝑝=1

(−1)𝑝 𝐼 (𝑢, 𝑝) , (E.4.7)

where

𝐼 (𝑢, 𝑝)
= 12𝜋𝑖 ∫

𝜎+𝑖∞

𝜎−𝑖∞

2√𝑠𝑢/𝜋 + 𝑒𝑠𝑢Erfc (√𝑠𝑢)
√𝑠 (𝑠2 − 𝑝2) 𝑒(𝜉−𝑢)𝑠𝑑𝑠. (E.4.8)

Take note that 𝜉 in (8) has been replaced by 𝜉 − 𝑢 in the
evaluation of 𝐺1/2(𝜉, 𝑢). This is true because the effective
degeneracy parameter in (E.4.5) is 𝜉 − 𝑢. Evaluate 𝐼(𝑢, 𝑝)
by employing the Fermi-Dirac contour and substituting the
result in (E.4.7). This yields the following:

𝐺1/2 (𝜉, 𝑢) = 23 (𝜉3/2 − 𝑢3/2) + √𝑢 ln [1 + 𝑒−(𝜉−𝑢)]
− √𝜋2

∞∑
𝑝=1

(−1)𝑝𝑝3/2 {𝑒𝜉𝑝Erfc(√𝑝𝜉)
− 𝑒−𝜉𝑝 [Erfi (√𝑢𝑝) − Erfi(√𝜉𝑝)]} .

(E.4.9)
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Finally, employing (E.3.10), (E.4.3), and (E.4.9) yields the
analytical solution for the incomplete half-order Fermi-Dirac
function valid ∀𝜉 ∈ R ≥ 0 and ∀𝑢 ∈ R ≤ 𝜉.

𝐹1/2 (𝜉, 𝑢) = 23𝑢3/2 − √𝑢 ln [1 + 𝑒−(𝜉−𝑢)]
− √𝜋2

∞∑
𝑝=1

(−1)𝑝𝑝3/2 𝑒−𝜉𝑝Erfi (√𝑢𝑝) . (E.4.10)

The result given by (E.4.10) is easily checked numerically
by employing Mathematica [23]. Also, it is in complete
numerical agreement with that published by Keller and
Fenwick [27].The authors believe that (E.4.10) exists nowhere
else in the published literature. It is a simple matter to repeat
the process to analytically evaluate the incomplete half-order
Bose-Einstein function.

We leave it to the interested reader to verify that the
incomplete half-order Fermi-Dirac functions for Cases 2 and
3, respectively, are as follows:

𝐹1/2 (𝜉, 𝑢) = 23𝜉3/2 − √𝑢 ln [1 + 𝑒−(𝑢−𝜉)] − √𝜋2
⋅ ∞∑
𝑝=1

(−1)𝑝𝑝3/2 {𝑒𝑝𝜉 [Erf (√𝑢𝑝) − Erf (√𝜉𝑝)]
+ 𝑒−𝑝𝜉Erfi(√𝑝𝜉)} ,

(E.4.11)

𝐹1/2 (𝜉, 𝑢) = −√𝑢 ln [1 + 𝑒−(𝑢+|𝜉|)] − √𝜋2
⋅ ∞∑
𝑝=1

(−1)𝑝𝑝3/2 𝑒−𝑝|𝜉|Erf (√𝑢𝑝) . (E.4.12)

4. Remarks and Conclusion

This article illustrates the utility of real convolution for ana-
lytically evaluating the Fermi-Dirac-type and Bose-Einstein-
type functions. These functions occupy a very important
role in statistical mechanics, quantum statistical mechanics,
solid-state physics, and others. The chosen technique is a
generalization of the method developed by the authors [1].
A few examples are used to illustrate the efficacy of the
method. In particular, the authors chose to look at the well-
known half-order Fermi-Dirac and half-order Bose-Einstein
functions because of their importance in a number of areas
of physics and engineering. However, the method developed
in this paper is quite general and may be employed to
analytically evaluate integrals given by (1) or (2) with an
arbitrary 𝑓(𝑥). Of course, the functional form of 𝑓(𝑥) may
be such that the integrals in (1) or (2) will be very difficult for
analytical evaluation.

It is emphasized that one may choose to directly integrate
the Fermi-Dirac-type or the Bose-Einstein-type functions by
employing a direct method as exhibited by (5) or (6), or by
contour integration as exhibited by (8) or (9). The method
that is chosen lies with the discretion of the practitioner.
However, the application of real convolution and contour
integration was the main focus of the article because the

Fermi-Dirac-type functions and Bose-Einstein-type func-
tions perfectly fit the form of real-convolution integrals.

Although this article focused on analytical solutions, a
few comments should be made concerning numerical anal-
ysis. For example, a recent article written by Mohankumar
and Natarajan [28] gives a very accurate method for numeri-
cally computing the Generalized Fermi-Dirac integrals. Also,
recent articles by Changshi [29] and Fukushima [30] give
excellent methods for numerically computing Fermi-Dirac-
type integrals. There are many other published methods that
work very well for numerically computing the Fermi-Dirac-
type and Bose-Einstein-type integrals. The authors of this
article employed the method developed by Chevillard and
Revol [31, 32] and achieved promising numerical results.
However, there will always be new and improved methods
of numerical computation and the authors simply cannot
predict with any certainty if the analytical solutions devel-
oped in this paper will be of greater or lesser utility than
any other method when it comes to its use in numerical
analysis. However, what the authors can state with certainty
is that a very simple procedure has been developed for
analytically evaluating Fermi-Dirac-type and Bose-Einstein-
type integrals for a wide range of functions, 𝑓(𝑥). The
technique employed for doing this may lead to new ideas for
numerical formulations as well as asymptotic formulations
and may provide new computational insight.

Analytical expressions can help aid in the development of
approximate solutions [33, 34] as well as in the development
of asymptotic solutions [35] which are used extensively for
numerical computation.Often, a complete analytical solution
can help to aid in the development of numerical algorithms as
well as to give the researcher insight into how the parameters
of an integral fit within the form of the solution. The authors
believe that when an analytical solution can be found, even
if mathematically complex, it can be of great utility. In fact,
the analytical solutions developed in this article coupled with
the methods developed by Chevillard and Revol [31, 32] have
aided the authors in the development of various algorithms
for numerically computing the half-order Fermi-Dirac and
half-order Bose-Einstein functions. Chevillard’s method is
based upon a set of algorithms for numerically computing
error functions with great accuracy. The results, as stated
earlier, appear to be quite promising. Further research is
ongoing.

Onemust be cognizant, however, that analytical solutions
are not necessarily used for high-precision numerical compu-
tations especially if the analytical solution is in the form of an
infinite series. Often the series may be slower to converge for
various values of its parameters, and this requires one to find
a more efficient numerical or asymptotic solution. As stated
earlier, many such algorithms currently exist in the literature.

One final point should be stressed.Themethod developed
in this paper has recently been employed for analytically
evaluating the Gauss-Fermi integral [36]. This integral was
previously known to not have a complete analytical solu-
tion [37]. This is one more indication of the efficacy of
the method for analytically evaluating Fermi-Dirac-type or
Bose-Einstein-type integrals for a variety of functions,𝑓(𝑥),
illustrated in (1) and (2).
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Appendix

Any one of the half-order Fermi-Dirac or half-order Bose-
Einstein functions enables any other half-order Fermi-Dirac
or half-order Bose-Einstein functions to be evaluated ∀𝑚 ∈
Z≥. This is illustrated in Dingle [3, 6] as follows:

F𝑚−1/2 (𝜉) = 1Γ (𝑚 + 1/2) ∫
∞

0

𝑥𝑚−1/21 + 𝑒𝑥−𝜉 𝑑𝑥
= 1Γ (𝑚 + 1/2)𝐹𝑚−1/2 (𝜉) ,

B𝑚−1/2 (𝜉) = 1Γ (𝑚 + 1/2) ∫
∞

0

𝑥𝑚−1/2−1 + 𝑒𝑥−𝜉 𝑑𝑥
= 1Γ (𝑚 + 1/2)𝐵𝑚−1/2 (𝜉) .

(A.1)

Employing (A.1), and the known recurrence relationships [3,
6] given by

F𝑚−1/2 (𝜉) = 𝑑𝑑𝜉F𝑚+1/2 (𝜉) ,
B𝑚−1/2 (𝜉) = 𝑑𝑑𝜉B𝑚+1/2 (𝜉) ,

(A.2)

yields all the half-order Fermi-Dirac functions or half-order
Bose-Einstein functions. For example, evaluate F−1/2(𝜉) and
F3/2(𝜉) as follows:

F−1/2 (𝜉) = 𝑑𝑑𝜉F1/2 (𝜉)

= 2√ 𝜉𝜋
− ∞∑
𝑝=1

(−1)𝑝𝑝1/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉) − 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] ,
(A.3)

F3/2 (𝜉) = ∫F1/2 (𝜉) 𝑑𝜉

= 𝜋√𝜋𝜉3 + 8𝜉215 √ 𝜉𝜋
− ∞∑
𝑝=1

(−1)𝑝𝑝5/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉) − 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] .
(A.4)

Likewise, evaluateB−1/2(𝜉) andB3/2(𝜉) as follows:
B−1/2 (𝜉) = 𝑑𝑑𝜉B1/2 (𝜉)

= −2√ 𝜉𝜋
+ ∞∑
𝑝=1

1𝑝1/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉) − 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] ,
(A.5)

B3/2 (𝜉) = ∫B1/2 (𝜉)

= 2𝜋√𝜋𝜉3 − 8𝜉215 √ 𝜉𝜋
+ ∞∑
𝑝=1

1𝑝5/2 [𝑒𝑝𝜉Erfc(√𝑝𝜉) − 𝑒−𝑝𝜉Erfi(√𝑝𝜉)] .
(A.6)

All half-order Fermi-Dirac and half-order Bose-Einstein
functions are easily evaluated using (A.1) and (A.2).
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