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1. Introduction and preliminaries

In this paper we consider the R-analytic continuation of functions of several real variables
that admit R-analytic continuation along parallel sections. Regarding to holomorphic functions,
the first result in this direction is due to Hartogs [1]: if a holomorphic function f (′z, zn) in the
domain ′U × {|zn| < r} ⊂ Cn

′z × Czn , where ′z = (z1, z2, . . ., zn−1), for each fixed ′z ∈ (′U) by
zn extends holomorphically to the disk |zn| < R, R > r > 0, then it is holomorphic with respect
to all variables in the domain ′U × {|zn| < R} .

The following Forelli’s theorem [2] is also directly related to Hartogs theorem: if f is infinitely
smooth at a point 0 ∈ Cn, f ∈ C∞ {0} , and the restrictions f |l are holomorphic in the disc
U (0, 1) = l

∩
B (0, 1) for all complex lines l∋0, then f can be holomorphically extended to the

ball B (0, 1) ⊂ Cn.

In a recent paper [3] A. Sadullaev proved the following analogue of Forelli’s theorem for R-
analytic functions.

Theorem 1. Let a function f (x) , x = (x1, x2, . . . , xn) be smooth in some neighborhood of the
origin 0 ∈ Rn, f (x) ∈ C∞{0} and let for any real line l : x = λt, λ = (λ1, λ2, . . . , λn) ∈ S(0, 1) ⊂
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Rn, t ∈ R is a parameter, the restriction f |l = f(λt) is real-analytic (R-analytic) in the interval
t ∈ (−1, 1). Then there is a closed pluripolar set S ⊂ B (0, 1) such that f (x) is R-analytic in
B (0, 1) \S, where B (0, 1) ⊂ Rn is the unit ball and S (0, 1) = ∂B (0, 1) is the unit sphere.

Note that the well-known terminology is used here, a set S ⊂ Rn
x is called pluripolar if

it is pluripolar in the ambient complex space Cn
z , Rn

x ⊂ Cn
z , z = x + iy. An example of

a function f (x1, x2) =
xk+1
1

(x2 − 1)
2
+ x2

1

shows that exact analogues of Forelli’s Theorem and

Hartogs’ Theorem for R-analytic functions are not true. The function f (x1, x2) is real-analytic
in the domain R ×

{
|x2| < 1

2

}
, the restriction f

(
x0
1, x2

)
is real-analytic on the whole line R.

However, f is not real-analytic at the point (0, 1) .

The main result of this work is

Theorem 2. Let a function f(x) = f (′x, xn) satisfy the following conditions:
1) The function f (′x, xn) is R-analtic in a polycylinder U = (′U) × {|xn| < rn} , rn > 0,

where ′x = (x1, x2, . . . , xn−1) and

′U =
{′x ∈ Rn−1 : |x1| < r1, |x2| < r2, . . . , |xn−1| < rn−1

}
=

=
{′x ∈ Rn−1 : −r1 < x1 < r1,−r2 < x2 < r2, . . . ,−rn−1 < xn−1 < rn−1

}
.

2) For each fixed (′x0) ∈ (′U) the function f
(′x0, xn

)
that is R-analytic in the interval

|xn| < rn, R-analytically continues into a larger interval |xn| < Rn, Rn > rn.
Then there exists a closed pluripolar set ′S ⊂ (′U) such that the function f (′x, xn)

R-analytically with respect to all variables (′x, xn) continues into the domain (′U ×
{|xn| < Rn})\(′S × {|xn| > rn}).

The proof of Theorem 2 essentially uses the method of proving Theorem 1 proposed by
A. Sadullaev, namely, the embedding of a real space Rn

x ⊂ Cn
z , z = x + iy, and the natural

holomorphic continuation of R-analytic functions into Cn, the holomorphic continuation of the
Hartogs series and methods of pluripotential theory (see [4–5]).

Note that using the local transformation of the pencil of lines l ∋ 0, into parallel ones, from
Theorem 2 one can obtain a proof of Theorem 1.

Real analytic functions were also studied in the work of J. Sichak [6], where he proved
that if the function f(x) is smooth in a domain D ⊂ Rnf ∈ C∞(D) and for each real line
l : x = x0 + λt, x0 ∈ D, λ ∈ Rn, |λ| = 1, t ∈ R, the restriction f |ℓ is R-analytic by t in some
neighborhood of zero, then f(x) is R-analytic in D.

2. Domain of holomorphy of Hartogs series

Let U = (′U) × Un be a domain in Cn−1
′z × Czn , where Un is a disc centered at the point

zn = 0 and with a radius δ > 0. If the function f(′z, zn) is holomorphic in U, then it can be
expanded in a Hartogs series:

f (′z, zn) =
∞∑
k=0

ck (
′z) zkn, (1)

where, the coefficients ck (
′z) are holomorphic in ′U and determined by the formula

ck (
′z) =

1

2πi

∫
|ξ|=δ′

f (′z, ξ)

ξk+1
dξ, 0 < δ′ < δ, k = 0, 1, 2, . . . . (2)
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Then, it is known that if R (′z) is the radius of convergence of series (1), then the function
u∗(′z) = − lnR∗ (

′z) is plurisubharmonic in ′U , and the set {′z ∈ (′U) : R∗ (
′z) < R (′z)} is

pluripolar. Here R∗ (
′z) = lim

′w→′z
R (′w) is the lower regularization. Moreover, the series (1)

converges uniformly on any compact subset K ⊂⊂ (′U) × {|zn| < R∗ (
′z) }. The proof of this

fact can be found, for example, in [7, 8].
The following lemma, which plays the key role in the proof of Theorem 2, is widely used in

the theory of analytic continuation.

Lemma 1. Let a function f(′z, zn) be holomorphic in the domain ′U × {zn ∈ C : |zn| < δ},
′U ⊂ Cn−1. If for each fixed ′z0 ∈ (′U0) from some non-pluripolar set ′U0 ⊂ (′U)
the function f(′z0, zn) of variable zn, extends holomorphically to the larger disc
{zn ∈ C : |zn| < ∆}, ∆ > δ > 0, then the function f(′z, zn) holomorphically extends to the do-
main

{
′z ∈′ U, |zn| < δω

∗(′z,′U0,
′U) ·∆1−ω∗(′z,′U0,

′U)
}
, where ω∗(′z,′ U0,

′ U) is the well-known
plurisubharmonic measure of the set ′U0 with respect to the domain ′U, that is defined by the
following

ω∗(′z,′ U0,
′ U) =

(
sup

{
u(′z) ∈ psh(′U) : u(z)|′U < 1, u(z)|′U0

6 0
})∗

.

Indeed, if we expand the function f(′z, zn) in a Hartogs series of the form (1) in the domain
′U×{zn ∈ C : |zn| < δ}, then the function u(′z) = − lnR∗(

′z) is plurisubharmonic in the domain
′U and by the conditions of the lemma u(′z)|′U 6 − ln δ, u(z)|′U0

6 − ln∆. According to the
theorem on two constants (see [9], p. 103), we obtain the inequality

u(′z) 6 (1− ω∗(′z,′ U0,
′ U)) · (− ln∆) + ω∗(′z,′ U0,

′ U) · (− ln δ).

Hence it follows that

lnR∗(
′z) > (1− ω∗(′z,′ U0,

′ U)) · ln∆ + ω∗(′z,′ U0,
′ U) · ln δ,

or R∗(z) > δω
∗(′z,′U0,

′U) ·∆1−ω∗(′z,′U0,
′U). Thus in accordance with above mentioned, the function

f(′z, zn) extends holomorphically to the domain
′U × {|zn| < R∗(

′z)} ⊃ (′U)×
{
|zn| < δω

∗(′z,′U0,
′U) ·∆1−ω∗(′z,′U0,

′U)
}
.

3. Proof of the main result

Without loss of generality we assume that for each fixed ′x ∈ (′U) the function f(′x, xn) is
R-analytic in the interval (−Rn−ε,Rn+ε), ε > 0. The proof of the theorem will be implemented
in several steps.

Step 1. We embed the real space Rn
x into the complex space Cn

z , Rn
x ⊂ Cn

z , z = x + iy. Then,
by definition of R-analyticity of a function f (′x, xn), there exists a domain Û ⊂ Cn, Û ⊃ U and
a holomorphic function F (z) = F (′z, zn) ∈ O

(
Û
)

such that F (′z, zn) |U = f(′x, xn).

It follows that from the conditions of the theorem the function F (z) = F (′z, zn) satisfies the
following conditions:

1) F (z) ∈ O
(
Û
)
.

2) For each fixed ′z = (′x) ∈ (′U) the function F (′x, zn) of the variable zn, can be extended

holomorphically into the ellipse of type Ej :
(Rezn)

2

R2
n

+ j2(Imzn)
2 < 1, j ∈ N, such that

Ej ⊃⊃ {|xn| 6 Rn} ∀j ∈ N.
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We put ′Û = Û ∩ Cn−1
′z and fix a subdomain ′V̂ ⊂⊂ (′Û) such that ′V = (′V̂ ) ∩ (′U) ̸= ∅.

Then there is a circle {|zn| < σ} , σ > 0, such that ′V̂ × {|zn| < σ} ⊂ Û , i.e. the function
F (z) = F (′z, zn) is holomorphic with respect to the (′z, zn) in ′V̂ × {|zn| < σ}. We fix the
number j ∈ N and denote by ′Vj the set of points ′x from ′V = (′V̂ )∩ (′U) for which the function
F (′x, zn) of variable zn extends holomorphically into the ellipse Ej , i.e.

′Vj = {′x ∈ (′V ) : F (′x, zn) ∈ O(Ej)}

It is obvious that
Vj ⊂ Vj+1 ∀j ∈ N

and
∞∪
j=1

(′Vj) =
′V.

Step 2. Since an open non-empty subset ′V ⊂ Rn−1 is not pluripolar in Cn−1, then there exists
a number j0 ∈ N such that for all j > j0 the sets ′Vj ⊂ (′V ) will be non-pluripolar in Cn.

Let us fix j ∈ N, j > j0 and let the function w = gj (zn) conformally maps the ellipse
Ej into the unit circle {|w| < 1}, gj (0) = 0. Since the function F (′z, zn) is holomorphic in
the neighborhood ′V̂ × {|zn| < σ} , the function Φ(′z, w) = F (′z, g−1

j (w)) is holomorphic in the
domain ′V̂ × g−1

j ({|zn| < σ}) . Since gj (0) = 0. there is a number δj > 0 such that (′V̂ ) ×
{|w| < δj} ⊂ (′V̂ ) × g−1

j ({|zn| < σ}) , i.e. the function Φ (′z, w) is holomorphic in the domain
′V̂ × {|w| < δj}. In addition, for each fixed variable ′z = (′x) ∈ (′Vj), the function Φ(′x,w) of
the variable w extends holomorphically to the circle {|w| < 1}.

By Lemma 1, where δ = δj , ∆ = 1, the function Φ(′z, w) is holomorphic in the domain{
′z ∈′ V̂ , |zn| < δ

ω∗(8z,′Vj ,
′V̂ )

j

}
.

Thus, if we substitute into Φ(′z, w) the value w = gj(zn), then we obtain that the function
F (′z, zn) extends holomorphically to the domain

Gj =
{
(′z, zn) ∈ Cn : (′z) ∈ (′V̂ ), |gj(zn)| < δ

ω∗(′z,′Vj ,
′V̂ )

j

}
(3)

Note that if the point ′x ∈ (′Vj) is pluriregular, i.e. ω∗(′x,′ Vj ,
′ V̂ ) = 0, then, according to (3),

the ellipse {′x}×{|gj(zn)| < 1} ⊂ Gj . Consequently, the domain Gj contains some neighborhood
of the segment {′x} × [−Rn, Rn].

Step 3. By the construction of the domain Gj , F can be extended holomorphically to the
domain G′V =

∪∞
j=j0

Gj as well. Let us denote by Pj the set of irregular points ′x ∈ (′Vj) and
by P′V =

∪∞
j=j0

Pj the union of these sets P′V ⊂ (′V ). It is a pluripolar set in Cn−1
′z . For each

fixed point ′z = (′x) ∈ (′V )\P′V , the union G′V =
∪∞

j=j0
Gj contains a neighborhood of the

segment {′x} × [−Rn, Rn].

Step 4. We take a sequence of domains ′V̂k ⊂⊂′ V̂k+1 ⊂⊂′ Û :
∪∞

k=1(
′V̂k) =

′ Û and put P =

=
∪∞

k=1 P′Vk
. Then P ⊂ (′U) is pluripolar set in Cn−1

′z . According to Step 3, the function F ex-
tends holomorphically to the domain G =

∪∞
k=1 G′Vk

, and for each fixed point ′z = (′x) ∈ (′U)\P
the union G =

∪∞
k=1 G′Vk

contains a neighborhood of the segment {′x}×[−Rn, Rn]. Therefore, for
such points the given function f (′x, xn) is R-analytic in the set of variables in the neighborhood
of the segment {′x} × [−Rn, Rn].
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We note that the complement S = [′U × {|xn| < Rn}] \ [G
∩
Rn] is a closed pluripolar set, S ⊂

P ×{|xn| > rn} , and the function f (′x, xn) is R-analytically extended to [′U × {|xn| < Rn}] \S.
The theorem is proved. 2

The authors are grateful to Professor A. Sadullaev for useful advices and comments to the
article.
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Об аналоге леммы Гартогса для R-аналитических
функций
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Аннотация. Работа посвящена задачам R-аналитического продолжения функций многих дей-
ствительных переменных, допускающих R-аналитическое продолжение на параллельные сечения.
В ней доказывается аналог известной теоремы Гартогса для R-аналитических функций.

Ключевые слова: R-аналитические функции, голоморфные функции, плюрисубгармонические
функции, плюриполярные множества, ряды Гартогса.
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