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1. Introduction and preliminaries

In this paper we consider the R-analytic continuation of functions of several real variables
that admit R-analytic continuation along parallel sections. Regarding to holomorphic functions,
the first result in this direction is due to Hartogs [1]: if a holomorphic function f ('z, z,) in the
domain 'U x {|z,| <r} C C", x C,,, where 'z = (21, 22, ..., 2n—1), for each fixed 'z € ('U) by
zn, extends holomorphically to the disk |z,| < R, R > r > 0, then it is holomorphic with respect
to all variables in the domain ‘U x {|z,| < R}.

The following Forelli’s theorem [2] is also directly related to Hartogs theorem: if f is infinitely
smooth at a point 0 € C", f € C* {0}, and the restrictions f|; are holomorphic in the disc
U(0,1) =1 B(0,1) for all complex lines {30, then f can be holomorphically extended to the
ball B(0,1) c C™.

In a recent paper [3] A.Sadullaev proved the following analogue of Forelli’s theorem for R-
analytic functions.

Theorem 1. Let a function f (z), z = (x1,22,...,2,) be smooth in some neighborhood of the
origin 0 € R™, f (z) € C*°{0} and let for any real linel : x = Xt, A= (A, A2,..., \n) € S(0,1) C
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R™, t € R is a parameter, the restriction f|; = f(A\t) is real-analytic (R-analytic) in the interval
t € (=1,1). Then there is a closed pluripolar set S C B (0,1) such that f (x) is R-analytic in
B(0,1)\S, where B(0,1) C R™ is the unit ball and S (0,1) = 0B (0,1) is the unit sphere.

Note that the well-known terminology is used here, a set S C R is called pluripolar if
it is pluripolar in the ambient complex space C7?, R? C C7, z = x + iy. An example of
2t
(w2 —1)° + a2
Hartogs’ Theorem for R-analytic functions are not true. The function f (z1,x2) is real-analytic
in the domain R x {|z2| < 1}, the restriction f (29, ;) is real-analytic on the whole line R.

However, f is not real-analytic at the point (0,1).

a function f(x1,29) = shows that exact analogues of Forelli’s Theorem and

The main result of this work is

Theorem 2. Let a function f(x) = f ('x,x,) satisfy the following conditions:
1) The function f('x,x,) is R-analtic in a polycylinder U = ('U) x {|zn| <Tn}t, rm > 0,
where 'x = (x1,22,...,Zp—1) and

,U = {Ix € Rn71 : |.’E1| < 1, |$2| < 7127"'7|xn71| < rnfl} -
= {’a: ERML: —p <2y <1, =T <X < Tayeeey—Tpg < Tp_1 < 7”n—1}-

2) For each fized ('z°) € ('U) the function f('z°,z,) that is R-analytic in the interval
|xn| < 7, R-analytically continues into a larger interval |x,| < Ry, Ry > rp.

Then there exists a closed pluripolar set 'S C ('U) such that the function f('x,x,)
R-analytically with respect to all wvariables ('x,x,) continues into the domain (‘U X

{lzn| < BaPN('S X {lan| = 70}).

The proof of Theorem 2 essentially uses the method of proving Theorem 1 proposed by
A.Sadullaev, namely, the embedding of a real space R? C C7, z = z + iy, and the natural
holomorphic continuation of R-analytic functions into C™, the holomorphic continuation of the
Hartogs series and methods of pluripotential theory (see [4-5]).

Note that using the local transformation of the pencil of lines [ 5 0, into parallel ones, from
Theorem 2 one can obtain a proof of Theorem 1.

Real analytic functions were also studied in the work of J. Sichak [6], where he proved
that if the function f(z) is smooth in a domain D C R"f € C°°(D) and for each real line
l:x=2"+ X, 2% € D, AeR", |\l =1,t€ R, the restriction f|, is R-analytic by ¢ in some
neighborhood of zero, then f(x) is R-analytic in D.

2. Domain of holomorphy of Hartogs series

Let U = ('U) x U, be a domain in (C?z_l x C,,,, where U, is a disc centered at the point

» = 0 and with a radius ¢ > 0. If the function f('z,z,) is holomorphic in U, then it can be
expanded in a Hartogs series:

("2, 2n) Z ek ( (1)

where, the coefficients ¢y, (/ z) are holomorphic in U and determined by the formula

e
Ck / g,m df, 0<d <6, k=0,1,2,.... (2)
|s| &
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Then, it is known that if R ('z) is the radius of convergence of series (1), then the function

u*('z) = —In R, ('z) is plurisubharmonic in ‘U, and the set {z € (U): R.('2) < R('2)} is
pluripolar. Here R, ('z) = lim R (‘w) is the lower regularization. Moreover, the series (1)
'w—'z

converges uniformly on any compact subset K CC ('U) x {|z,| < R« ('z) }. The proof of this
fact can be found, for example, in |7, §].

The following lemma, which plays the key role in the proof of Theorem 2, is widely used in
the theory of analytic continuation.
Lemma 1. Let a function f('z, z,) be holomorphic in the domain 'U x {z, € C: |z,| < 0},
'U ccrl If for each fized '2° € ('Uy) from some mnon-pluripolar set 'Uy C ('U)
the function f('2°,z,) of wariable z,, extends holomorphically to the larger disc
{zn € C: |z| < A}, A =d>0, then the function f('z,z,) holomorphically extends to the do-

main {’Z €' U, |zy| < 6« ('U0'U) . Alfw*(,z’/UﬂxU)}, where w*('z, Uy,’ U) is the well-known
plurisubharmonic measure of the set 'Uy with respect to the domain 'U, that is defined by the
following

w*('z) Up,! U) = (sup {u('z) € psh('U) : w(z)|,; < 1, u(z)],yy, <0})".

Indeed, if we expand the function f('z,z,) in a Hartogs series of the form (1) in the domain
'Ux{z, € C:|z,| < 4}, then the function u('z) = —In R.('2) is plurisubharmonic in the domain
'U and by the conditions of the lemma u('z)|,;; < —Ind, u(z)|,;;, < —InA. According to the
theorem on two constants (see [9], p. 103), we obtain the inequality

w('2) < (1 —w ("2, Uo,/U)) - (=InA) +w* ("2, Uy, U) - (= Ind).
Hence it follows that
InR.('z) > (1 —w (2, Uy, U)) - InA +w*("z,/ Uy, U) - Iné,

or R.(2) > §w (200, U) A1=w" ("2, U0,'U) " Thys in accordance with above mentioned, the function

f('z, z,) extends holomorphically to the domain

/U X {‘Zn| < R*(/Z)} D (IU) X {|Zn| < 6w*(/z’/U0’/U) . Al_w*(/z’/UO’/U)} .

3. Proof of the main result

Without loss of generality we assume that for each fixed 'z € ('U) the function f('z,z,) is
R-analytic in the interval (—R,, —¢, R, +¢), € > 0. The proof of the theorem will be implemented
in several steps.

Step 1. We embed the real space R? into the complex space C?, R? C C7, z = x + iy. Then,
by definition of R-analyticity of a function f ('z,z,), there exists a domain UccC", U>U and
a holomorphic function F (z) = F ('z,2,) € O (U) such that F' ('z,z,) v = f('z, zy).

It follows that from the conditions of the theorem the function F' (z) = F ('z, z,,) satisfies the

following conditions:

1)F(z)€0(()’).

2) For each fixed 'z = ("z) € ('U) the function F ('z, z,) of the variable z,, can be extended
(Rez,)?

holomorphically into the ellipse of type Ej; : I + 3%2(Imz,)? < 1, j € N, such that

E; 55 {|2n] < Ra} ¥j €N,

- 196 -



Alimardon A. Atamuratov... An Analogue of the Hartogs Lemma for R-analytic Functions

We put /U = UNCYL ! and fix a subdomain 'V cC ('U) such that 'V = ('V) N ('U) # 0.
Then there is a circle {|z,,| <o}, o > 0, such that 'V x {|z,| <o} C U, ie. the function
F(z) = F('z, zy,) is holomorphic with respect to the ('z,z,) in 'V x {|z,| < o}. We fix the

number j € N and denote by 'V} the set of points 'z from 'V = ("V) N ('U) for which the function
F ('z, zy,) of variable z, extends holomorphically into the ellipse E;, i.e.

"Vi={2e(V): F(x,z,) € O(Ej)}

It is obvious that
V; C Vi Vj€EN

and

s

(V) ="V.
1

J

Step 2. Since an open non-empty subset 'V C R™~! is not pluripolar in C"~!, then there exists
a number jo € N such that for all j > jo the sets 'V; C ('V') will be non-pluripolar in C".

Let us fix j € N, j > jo and let the function w = g; (z,) conformally maps the ellipse
E; into the unit circle {|jw| <1}, g;(0) = 0. Since the function F'('z,z,) is holomorphic in
the neighborhood 'V x {|z,| < o}, the function ® ('z,w) = F(’z,gj_l(w)) is holomorphic in the
domain 'V x g;l ({|zn] < @}). Since g; (0) = 0. there is a number §; > 0 such that ('V) x
{jw| < 8;} € (V) x gj_1 ({lzn| < 0}), i.e. the function ® ('z,w) is holomorphic in the domain
'V x {|w| < §;}. In addition, for each fixed variable 'z = ('z) € ('Vj), the function ®('z,w) of
the variable w extends holomorphically to the circle {|w| < 1}.

By Lemma 1, where 6 = §;, A = 1, the function ® ('z,w) is holomorphic in the domain

{1z€ Wzl < gy 02 0L

Thus, if we substitute into ® ('z,w) the value w = g;(2,), then we obtain that the function
F('z,z,) extends holomorphically to the domain

Gy ={('z20) €C": (2) € (V) lgs(z)| < 87 =Y (3)

Note that if the point 'z € ('V;) is pluriregular, i.e. w*('z,V}/ V) = 0, then, according to (3),
the ellipse {'z} x {|g;(zn)| < 1} C G;. Consequently, the domain G; contains some neighborhood
of the segment {'z} X [— Ry, Ry].

Step 3. By the construction of the domain G, F' can be extended holomorphically to the
domain Grv = (J;2; Gj as well. Let us denote by P; the set of irregular points ‘a € ('V;) and
by Py = U;ijo P; the union of these sets Py C ('V). It is a pluripolar set in C/%'. For each
fixed point 'z = ('z) € ('"V)\Pv, the union Gy = U;.)ijo G; contains a neighborhood of the
segment {'z} X [-R,, Ry].

Step 4. We take a sequence of domains 'V}, CC’ Vk;+1 cc' U : U;ozl(’f/k) =' U and put P =
= Up=; Pv,- Then P C ('U) is pluripolar set in (Cf’z_l. According to Step 3, the function F ex-
tends holomorphically to the domain G = | J;-, G'v,,, and for each fixed point 'z = ('z) € ('U)\P
the union G = (J,-; G'v, contains a neighborhood of the segment {'z} x[—R,,, R,]. Therefore, for
such points the given function f ('z,z,) is R-analytic in the set of variables in the neighborhood
of the segment {'z} x [— Ry, Ry].
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We note that the complement S = ['U x {|z,| < R,}]\ [G(R"]is a closed pluripolar set, S C
P x{|xn| > rn}, and the function f ('z,z,) is R-analytically extended to [U X {|z,| < R,}]\S.
The theorem is proved. O

The authors are grateful to Professor A.Sadullaev for useful advices and comments to the
article.
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Awnnoranusi. Pabora mocesimena 3amadaM R-aHAJIUTAYECKOTO MPOIOIXKEeHUsT (DYHKITUH MHOTHUX JIeii-
CTBHUTEJIbHBIX [IEPEMEHHBIX, JOIYCKAIOMKUX R-aHAJIUTHYIECKOE ITPOJIOJI>KEHNE Ha ITapaJsljie/IbHbIe CEIeHUsI.
B Heit 1oka3biBaeTCsl aHAJIOr M3BECTHON Teopembl ['aprorca mjst R-ananmutuyeckux yHKIHIA.

KuaroueBrbie cioBa: R-anamutndeckne GpyHKIUH, TOJOMOPQHBIE DYHKIWH, LIIOPUCYOrapMOHUIECKUE
dyHKIUY, IUIIOPUTIOJISPHBIE MHOXKECTBa, psajbl [aprorca.
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