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METRICS ON A CLOSED SURFACE OF GENUS TWO WHICH

MAXIMIZE THE FIRST EIGENVALUE OF THE LAPLACIAN

SHIN NAYATANI AND TOSHIHIRO SHODA

Abstract. In this paper, we settle in the affirmative the Jakobson-Levitin-

Nadirashvili-Nigam-Polterovich conjecture, stating that a certain singular metric

on the Bolza surface, with area normalized, should maximize the first eigenvalue

of the Laplacian.

Introduction

LetM be a closed surface, that is, a compact surface without boundary. Through-

out this paper, we assume that M is orientable. For a Riemannian metric ds2 on

M , let

Λ(ds2) := λ1(ds
2) · Area(ds2),

where λ1(ds
2) is the first positive eigenvalue of the Laplacian and Area(ds2) is the

area of M , both with respect to ds2. Regarding the upper bound of the quantity

Λ(ds2), the following results are well-known.

Fact. (i) (Hersch [6]) For any metric ds2 on the sphere S2, Λ(ds2) ≤ 8π holds.

(ii) (Yang-Yau [16]) IfM admits a nonconstant meromorphic function (M, ds2) →
C = C ∪ {∞} of degree d, then Λ(ds2) ≤ 8π · d holds. In particular, if γ is the

genus of M , then for any metric ds2 on M , we have

(1) Λ(ds2) ≤ 8π ·
[
γ + 3

2

]
.

The inequality of (i) is sharp as equality holds for the standard metric of S2.

On the other hand, Nadirashvili [9] found the sharp bound 8π2/
√
3 of Λ(ds2) for

metrics ds2 on the torus T 2. Thus the inequality (1) is not sharp when γ = 1.

When γ = 2, the inequality (1) becomes Λ(ds2) ≤ 16π. Jakobson-Levitin-

Nadirashvili-Nigam-Polterovich [7] focused their attention on the following metric.
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Let B be the closed Riemann surface of genus two, called the Bolza surface, defined

as the smooth completion of the affine complex algebraic curve w2 = z(z4 + 1).

Topologically, B is the one-point compactification of the affine curve:

B = {(z, w) ∈ C
2 | w2 = z(z4 + 1)} ∪ {(∞,∞)}.

Let gB : B → C be the meromorphic function of degree two given by gB(z, w) = z.

If we set ds2B = gB
∗ds2S2, where ds2S2 is the standard metric of S2 = C, then ds2B is

a singular Riemannian metric which degenerates exactly at the ramification points

of gB. Since the map gB : B → C is a two-sheeted branched covering, we have

Area(ds2B) = 8π.

Conjecture (Jakobson et al. [7]). λ1(ds
2
B) = 2 should hold. Therefore, Λ(ds2B) =

16π.

For 0 < θ < π/2, let Bθ be the Riemann surface of genus two defined as the

smooth completion of the affine complex algebraic curve w2 = z(z4+2 cos 2θ·z2+1):

Bθ = {(z, w) ∈ C
2 | w2 = z(z4 + 2 cos 2θ · z2 + 1)} ∪ {(∞, ∞)}.

Note that Bπ/4 = B. Let ds2θ denote the pull-back of the standard metric of S2 = C

by the meromorphic function gθ : Bθ ∋ (z, w) 7→ z ∈ C.

In this paper, we prove the following theorem, and thereby settle the above

conjecture in the affirmative.

Main Theorem. There exists θ1 ≈ 0.65 so that for θ1 ≤ θ ≤ π/2 − θ1, we have

λ1(ds
2
Bθ
) = 2 and therefore Λ(ds2θ) = 16π.

Note that 16π is a degenerate maximum for Λ in the genus two case as predicted

in [7]. It is also remarked in [7] that the conjecture implies that the inequality

Λ(ds2) ≤ 16π is sharp in the class of smooth metrics, although the equality may

not be attained. It is worth mentioning that the Lawson minimal surface of genus

two in S3 has λ1 = 2 [2] and Area ≈ 21.91 [5], and therefore Λ ≈ 43.82 < 16π.

For recent progress on the existence of Λ-maximizing metrics on a closed surface,

see [10, 14].

In §1, we explain the relation of the above conjecture to the problem of com-

puting the Morse index of a minimal surface in Euclidean three-space. After that,

in §2, we prove the Main Theorem, assuming two technical lemmas, whose proofs

are postponed to §3 and §4. The paper concludes with two appendices.

Acknowledgement. The authors would like to thank Rick Schoen [15] for bringing
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the referee for careful reading of the manuscript and many invaluable suggestions.
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1. Index and nullity of a meromorphic function

The problem of estimating and computing the Morse (instability) index of a

complete minimal surface in R3 (and other flat three-spaces) has been studied by

various authors. In this section, we explain that the conjecture of Jakobson et

al. is closely related to this problem.

Let M be an orientable complete minimal surface in R
3. M is said to be stable

if the second variation of area for any compactly supported variation of M is

nonnegative, and the plane is the only stable one. For non-planarM , we define the

Morse index of M , Ind(M), as follows: For a relatively compact domain Ω ⊂ M ,

Ind(Ω) is defined as the maximal dimension of a subspace V ⊂ C∞
0 (Ω) satisfying

∫

Ω

(|du|2 + 2Ku2) da < 0, ∀u ∈ V \ {0},

where K and da are the Gaussian curvature and the area element of M , respec-

tively. Note that Ind(Ω) is necessarily finite. We then define

Ind(M) = sup
Ω

Ind(Ω),

where the supremum is taken over all relatively compact domains Ω ⊂ M . While

Ind(M) so defined may become infinity, it was proved by Fischer-Colbrie [4] that

Ind(M) <∞ ⇔
∫

M

(−K) da <∞.

Therefore, in studying Ind(M) quantitatively, we may assume that

∫

M

(−K) da <

∞. In this case, M is conformally equivalent to a compact Riemann surface M

with finitely many punctures and the Gauss map of M , g : M → C, extends to

a meromorphic function g : M → C. (This is a classical result due to Osserman

[13].)

In general, for a nonconstant meromorphic function g : M → C on a compact

Riemann surface M , we pull back the standard metric of C = S2 by g and obtain

a singular metric ds2g (as we did to get ds2B). Let ∆g denote the Laplacian defined

with respect to ds2g, and Ind(g) (resp. Nul(g)) the number of eigenvalues of −∆g

less than 2 counted with multiplicity (resp. the multiplicity of eigenvalue 2 of

−∆g).

Proposition 1 (Fischer-Colbrie [4], Ejiri-Kotani [3], Montiel-Ros [8]). The Morse

index Ind(M) of a complete minimal surface M in R3 of finite total curvature

coincides with the index Ind(g) of the extended Gauss map g. The nullity Nul(g)

equals the dimension of the vector space of all bounded Jacobi fields on M .

Since constant functions are necessarily eigenfunctions of the eigenvalue 0 of

−∆g, we have Ind(g) ≥ 1. The conjecture of Jakobson et al. asserts that when
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g = gB, the second least eigenvalue of −∆gB should equal 2, and so it is equivalent

to asserting that Ind(gB) = 1.

2. Proof of the Main Theorem

In this section, we prove the Main Theorem, assuming two technical Lemmas 3

and 5. The proofs of these lemmas are contained in §3 and §4. Note that the

equation of Bθ can be rewritten as

w2 = z(z − ei(π/2−θ))(z − ei(π/2+θ))(z − e−i(π/2−θ))(z − e−i(π/2+θ)).

Let gθ and ds2θ be as in the introduction, and ∆θ the Laplacian corresponding to

ds2θ. The meromorphic function gθ : Bθ → C gives a two-sheeted branched covering

which ramifies at the six points (0, 0), (e±i(π/2±θ), 0), (∞, ∞). ds2θ is a singular

metric which degenerates precisely at the six ramification points of gθ. Define three

great circular arcs C1, C2, C3 on S2 = C by

C1 = {t | t ≥ 0} ∪ {∞}, C2 = {ei(π/2+t) | −θ ≤ t ≤ θ},
C3 = {e−i(π/2+t) | −θ ≤ t ≤ θ}.

Then (Bθ, ds
2
θ) can be represented as the gluing of two copies of (S2, ds2S2) along

C1, C2, C3. As θ → 0, the two arcs C2, C3 collapse to points, and by neglecting

the contact at these two points, we obtain the metric which is the gluing of two

copies of (S2, ds2S2) along C1. The last metric, denoted by ds20, is nothing but the

pull-back of ds2S2 by the degree two rational function g0 : C ∋ z 7→ z2 ∈ C. Let ∆0

be the Laplacian defined with respect to ds20. Then we have the following lemma

regarding the eigenvalues of −∆θ and −∆0:

Lemma 2. For every positive integer k, the k-th eigenvalue λk(ds
2
θ) of −∆θ is

continuous in θ, and as θ → 0 it converges to the k-th eigenvalue λk(ds
2
0) of −∆0.

This lemma may be proved by arguments similar to those in the proof of [12,

Theorem 1].

In [11], by computing all the eigenvalues of −∆0 explicitly, it is shown that

Ind(g0) = 3 and Nul(g0) = 3. On the other hand, it is known that Nul(g) ≥
3 for any nonconstant meromorphic function g. In fact, the pull-back of three

independent eigenfunctions of the eigenvalue 2 of−∆S2 , the Laplacian with respect

to ds2S2, by g give eigenfunctions of the eigenvalue 2 of −∆g. From these facts and

Lemma 2, it follows that Ind(gθ) = 3 and Nul(gθ) = 3 for θ sufficiently close to 0.

We now observe the change of Nul(gθ) as θ increases up to π/4. To do this, we use

the work of Ejiri-Kotani [3] and Montiel-Ros [8]. If g is a nonconstant meromorphic

function such that Nul(g) > 3, then there exists an extra eigenfunction, that is,

an eigenfunction of the eigenvalue 2 of −∆g which is not the pull-back of an
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eigenfunction of the eigenvalue 2 of −∆S2 by g. As shown in [3, 8], any extra

eigenfunction can be written as the support function (that is, the inner product of

the position vector field and the unit normal vector field) of a complete branched

minimal surface of finite total curvature whose extended Gauss map is g and whose

ends are contained in the ramification locus of g and are all planar. By using

Weierstrass representation, we can express such a minimal surface as follows. Let

P and B =
∑l

j=1 ejpj be the polar and ramification divisors of g, respectively,

where ej is the multiplicity with which g takes its value at pj . Set D = B − 2P .

Suppose that there exists a non-zero ω ∈ H0(M, KM ⊗D) satisfying

(2) Respjω = 0, 1 ≤ ∀j ≤ l,

and

(3) ℜ
∫

ℓ

t(1− g2, i(1 + g2), 2g)ω = o, ∀ℓ ∈ H1(M, Z),

where KM is the canonical divisor of M . Then for any such ω,

Xω(p) = ℜ
∫ p

p0

t(1− g2, i(1 + g2), 2g)ω

gives a minimal surface with the above properties.

We now apply the general result as above to (Bθ, gθ). We can determine the

values of θ for which there exists a non-zero ω ∈ H0(Bθ, KBθ
⊗D) satisfying (2)

and (3). In fact, we have

Lemma 3. Set

A =

∫ ∞

0

dt√
t(t4 + 2 cos 2θ · t2 + 1)

, B =

∫ ∞

0

dt√
t(t4 − 2 cos 2θ · t2 + 1)

,

C =

∫ ∞

0

t3 dt
√
t(t4 + 2 cos 2θ · t2 + 1)

3 , D =

∫ ∞

0

t3 dt
√
t(t4 − 2 cos 2θ · t2 + 1)

3 .

Let θ1 (≈ 0.65) be the unique solution of

A(B2 + 16D2 sin2 2θ) + 8(AD +BC)(B cos 2θ − 4D sin2 2θ) = 0,

and set θ2 = π/2−θ1 (≈ 0.91). Then there exists a non-zero ω ∈ H0(Bθ, KBθ
⊗D)

satisfying (2) and (3) if and only if θ = θ1, θ2. If θ = θ1, then any such ω is given
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by a real linear combination of

ω1 := − AD + 3BC

4(AD +BC)

dz

w
− AD + 3BC

4(AD +BC)

dz

w3
+

z

w3
dz

+
AB + (AD −BC) cos 2θ

2(AD +BC)

z2

w3
dz +

AB + 2(AD +BC) cos 2θ

2(AD + BC)

z3

w3
dz

+
3AD +BC

4(AD +BC)

z4

w3
dz,

ω2 := i

(
− AD + 3BC

4(AD +BC)

dz

w
+

AD + 3BC

4(AD +BC)

dz

w3
+

z

w3
dz

− AB + (AD − BC) cos 2θ

2(AD +BC)

z2

w3
dz +

AB + 2(AD +BC) cos 2θ

2(AD +BC)

z3

w3
dz

− 3AD +BC

4(AD +BC)

z4

w3
dz

)
.

(We can obtain a similar assertion for θ = θ2.)

The lemma implies that there are two independent extra eigenfunctions when

θ = θ1, θ2. Thus we obtain

Proposition 4.

(4) Nul (gθ) =




5, θ = θ1, θ2,

3, θ 6= θ1, θ2.

To see how Ind (gθ) changes as θ increases and passes θ1, we use symmetries of

Bθ. Let j : Bθ → Bθ be the hyperelliptic involution given by j(z, w) = (z,−w),
and s1, s2, s3 : Bθ → Bθ the anti-holomorphic involutions given by s1(z, w) =

(z, w), s2(z, w) = (−z, i w), s3(z, w) = (1/z, w/z3). We have

s1 ◦ s2 = j ◦ s2 ◦ s1, s2 ◦ s3 = s3 ◦ s2, s3 ◦ s1 = s1 ◦ s3.

Thus the three involutions j, s1, s3 of Bθ commute with one another, and the

group of symmetries, H , generated by them is an abelian group of order eight. A

fundamental domain for the action of H on Bθ is given by the intersection of the

upper half plane and the unit disk, denoted by Ω. (See Figure 1.)

Recall that Bθ is the gluing of two copies of C. The fixed point sets of the

anti-holomorphic involutions s1, j ◦ s1, s3, j ◦ s3 are as follows. (See Figure 2.)

• The fixed point set of s1 is the red half-line on the real axis,

• The fixed point set of j ◦ s1 is the blue half-line on the real axis,

• The fixed point set of s3 is the union of the red arcs on the unit circle,

• The fixed point set of j ◦ s3 is the union of the blue arcs on the unit circle.
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For example, s1(z, w) = (z, w) if and only if z (=: x), w (=: y) are real. Since

y2 = x(x4 + 2 cos 2θ · x2 + 1) = x{(x2 + cos 2θ)2 + sin2 2θ} ≥ 0

and (x2 + cos 2θ)2 + sin2 2θ > 0, one must have x ≥ 0.

Ω

ei(π/2−θ)
ei(π/2+θ)

O
✲

✻

Figure 1. The fundamental domain Ω for H

ei(π/2−θ)
ei(π/2+θ)

e−i(π/2−θ)e−i(π/2+θ)

O
✲

✻

Figure 2. Fixed point sets of s1, j ◦ s1, s3, j ◦ s3

Since H is abelian and preserves ds2θ, each eigenspace of −∆θ is invariant under

the action of H and spanned by simultaneous eigenvectors for all s ∈ H . Let ui,

i = 1, 2, be the support functions of the branched minimal immersions Xωi
, in

whose definition we choose p0 = (1,
√
2 + 2 cos 2θ) as the base point. They are

extra eigenfunctions for θ = θ1. The following lemma shows how H acts on u1, u2.

Lemma 5.

s∗1u1 = u1, s∗3u1 = u1, j∗u1 = −u1 + 〈c1, N〉,
s∗1u2 = −u2, s∗3u2 = u2, j∗u2 = −u2 + 〈c2, N〉,

where ci ∈ R3, i = 1, 2, and N is the unit normal vector field of Xωi
.

In order to get extra eigenfunctions which behave properly with respect to the

actions of j ◦ s1 and j ◦ s3, we set

v1 = u1 − (j ◦ s1)∗u1 − (j ◦ s3)∗u1 + (j ◦ s1)∗ ◦ (j ◦ s3)∗u1,
v2 = u2 + (j ◦ s1)∗u2 − (j ◦ s3)∗u2 − (j ◦ s1)∗ ◦ (j ◦ s3)∗u2.

7



By Lemma 5, we have

s∗1v1 = v1, (j ◦ s1)∗v1 = −v1, s∗3v1 = v1, (j ◦ s3)∗v1 = −v1,
s∗1v2 = −v2, (j ◦ s1)∗v2 = v2, s∗3v2 = v2, (j ◦ s3)∗v2 = −v2.

Henceforth, we regard v1 and v2 as functions on Ω. (See Figure 3.) Then the

preceding observations mean that v1 satisfies the Dirichlet (resp. Neumann) condi-

tion on the blue (resp. red) segments in the unit circle and on the blue (resp. red)

segment in the real axis. As θ increases, the blue (resp. red) segment in the unit

circle becomes longer (resp. shorter). Hence, by the variational characterization

of eigenvalues, the eigenvalues of the Laplacian in Ω under the boundary condi-

tions as above monotonically increase. Similarly, v2 satisfies the Dirichlet (resp.

Neumann) condition on the blue (resp. red) segment in the unit circle and on

the red (resp. blue) segment in the real axis, and therefore the eigenvalues of the

Laplacian in Ω under the boundary conditions of v2 also monotonically increase.

Ω

ei(π/2−θ)
ei(π/2+θ)

O
✲

✻

Figure 3. Fixed point sets in ∂Ω

The two assertions we just made mean that there exist two independent eigen-

functions of −∆θ with the same type of symmetry as v1 and v2, respectively, such

that the corresponding eigenvalues increase monotonically and continuously. On

the other hand, for 0 < θ < θ2, extra eigenfunctions with the other types of symme-

try do not occur. Hence, the number of the eigenvalues of −∆θ less than 2, whose

eigenfunctions have the other types of symmetry, remains unchanged throughout

(0, θ2). (Here we use the continuity of eigenvalues in θ again.)

We may now conclude that as θ increases and passes θ1, two eigenvalues of −∆θ

will monotonically increase and pass 2 upward, and thus the number of eigenvalues

less than 2 decreases by two. One can also verify that if θ increases further and

passes θ2, then two eigenvalues of −∆θ will decrease and pass 2 downward, and

the number of eigenvalues less than 2 increases by two. To summarize, we have

proved the following

Theorem 6.

(5) Ind(gθ) =





3, 0 < θ < θ1,

1, θ1 ≤ θ ≤ θ2,

3, θ2 < θ < π/2.
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This theorem implies the Main Theorem.

3. Proof of Lemma 3

This section is devoted to the proof of Lemma 3.

Recall that KBθ
is the canonical divisor of Bθ and D = B − 2P , where P and

B =
∑l

j=1 ejpj are the polar and ramification divisors of gθ, respectively. Let

Ĥ(gθ) denote the set of all ω ∈ H0(Bθ, KBθ
⊗D) satisfying

(6) Respjω = 0, 1 ≤ ∀j ≤ l,

and H(gθ) the set of all ω ∈ Ĥ(gθ) satisfying

(7) ℜ
∫

ℓ

t
(
1− gθ

2, i(1 + gθ
2), 2gθ

)
ω = o, ∀ℓ ∈ H1(Bθ, Z).

Note that Ĥ(gθ) is a complex vector space. We should determine the values of θ

for which H(gθ) 6= {0}.
We first find a basis for Ĥ(gθ). The polar and ramification divisors of gθ are

given by

P = 2(∞, ∞), B = 2(0, 0) + 2(e±i(π/2±θ), 0) + 2(∞, ∞),

and therefore

D = 2(0, 0) + 2(e±i(π/2±θ), 0)− 2(∞, ∞).

By the Riemann-Roch theorem, H0(Bθ, KBθ
⊗D) has dimension nine, and

{
dz

w
,
dz

w2
,
z

w2
dz,

z2

w2
dz,

dz

w3
,
z

w3
dz,

z2

w3
dz,

z3

w3
dz,

z4

w3
dz

}

is a basis for it. It is easy to verify that
{
dz

w
,
dz

w3
,
z

w3
dz,

z2

w3
dz,

z3

w3
dz,

z4

w3
dz

}

is a basis for Ĥ(gθ). Therefore, ω ∈ Ĥ(gθ) has the form

(8) ω = α1
dz

w
+ α2

dz

w3
+ α3

z

w3
dz + α4

z2

w3
dz + α5

z3

w3
dz + α6

z4

w3
dz,

where α1, . . . , α6 are complex numbers.

We now consider the period condition (7). First, we express the above basis

elements of Ĥ(gθ) as linear combinations of the abelian differentials of the second

kind dz/w, zdz/w, z3dz/w3, z4dz/w3 up to exact forms. It is easy to show that

d(zpwq) =
1

2
zp−1wq−2{(2p+ 5q)w2 − 4q cos 2θ · z3 − 4qz}dz(9)

=
1

2
zpwq−2{(2p+ 5q)z4 + 2 cos 2θ · (2p+ 3q)z2 + 2p+ q}dz.(10)

9



For two meromorphic one-forms η1, η2 on Bθ, we write η1 ∼ η2 if there exists a

meromorphic function f on Bθ such that η1 = η2 + df . By using (9), (10) we

deduce the following relations:

z

w3
dz ∼ 3

4

dz

w
− cos 2θ · z

3

w3
dz,(11)

z2

w3
dz ∼ 1

4

z

w
dz − cos 2θ · z

4

w3
dz,(12)

dz

w3
∼ −3

2
cos 2θ · z

w
dz + (−5 + 6 cos2 2θ)

z4

w3
dz,(13)

z5

w3
dz ∼ 1

4

dz

w
− cos 2θ · z

3

w3
dz,(14)

z6

w3
dz ∼ 3

4

z

w
dz − cos 2θ · z

4

w3
dz,(15)

z2

w
dz ∼ − cos 2θ · dz

w
− 4 sin2 2θ · z

3

w3
dz.(16)

In fact, (11) and (12) follow immediately from (9) with choices (p, q) = (1,−1) and

(p, q) = (2,−1), respectively. (13) follows by using (10) with (p, q) = (0,−1) and

then applying (12). (14) and (15) follow by substituting z5 = w2− 2 cos 2θ · z3 − z

and then applying (11) and (12), respectively. Finally, (16) follows by using (9)

with (p, q) = (3,−1) and then applying (14).

For

ω = α1
dz

w
+ α2

dz

w3
+ α3

z

w3
dz + α4

z2

w3
dz + α5

z3

w3
dz + α6

z4

w3
dz

as in (8), we find by using the above relations

ω ∼︸︷︷︸
(11), (12), (13)

(
α1 +

3

4
α3

)
dz

w
+

(
−3

2
cos 2θ · α2 +

α4

4

)
z

w
dz(17)

+ (− cos 2θ · α3 + α5)
z3

w3
dz

+ ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)
z4

w3
dz,

zω ∼︸︷︷︸
(11), (12), (14)

(
3

4
α2 +

α6

4

)
dz

w
+
(
α1 +

α3

4

) z
w
dz(18)

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)
z3

w3
dz

+ (− cos 2θ · α3 + α5)
z4

w3
dz,

and

z2ω ∼︸︷︷︸
(12), (14), (15), (16)

(
− cos 2θ · α1 +

α5

4

) dz
w

+

(
α2

4
+

3

4
α6

)
z

w
dz(19)
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+ (−4 sin2 2θ · α1 + α3 − cos 2θ · α5)
z3

w3
dz

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)
z4

w3
dz.

Let ϕ : Bθ → Bθ be the automorphism given by ϕ(z, w) = (−z, iw). Note that

ϕ2 = j, the hyperelliptic involution of Bθ. Define paths C4, C5 on Bθ by

C4 = {(z, w) = (t,
√
t(t4 + 2 cos 2θ · t2 + 1) ) | 0 ≤ t ≤ ∞},

C5 = {(z, w) = (it, eiπ/4
√
t(t4 − 2 cos 2θ · t2 + 1) ) | 0 ≤ t ≤ ∞}.

Then the four closed paths

C4 ∪ (−j(C4)), ϕ(C4 ∪ (−j(C4))), C5 ∪ (−j(C5)), ϕ(C5 ∪ (−j(C5)))

form a homology basis, as verified by integrating the holomorphic differentials

dz/w, zdz/w over them.

Straightforward calculations yield

∫

C4∪{−j(C4)}

dz

w
= 2

∫ ∞

0

dt√
t(t4 + 2 cos 2θ · t2 + 1)

= 2A,

∫

C4∪{−j(C4)}

z

w
dz = 2

∫ ∞

0

t dt√
t(t4 + 2 cos 2θ · t2 + 1)

=︸︷︷︸
s=1/t

2A,

∫

ϕ(C4∪{−j(C4)})

dz

w
= 2 iA,

∫

ϕ(C4∪{−j(C4)})

z

w
dz = −2 iA,

∫

C5∪{−j(C5)}

dz

w
= 2 e

π
4
iB,

∫

C5∪{−j(C5)}

z

w
dz = −2 e−

π
4
iB,

∫

ϕ(C5∪{−j(C5)})

dz

w
= −2 e−

π
4
iB,

∫

ϕ(C5∪{−j(C5)})

z

w
dz = 2 e

π
4
iB,

∫

C4∪{−j(C4)}

z3

w3
dz = 2

∫ ∞

0

t3 dt
√
t(t4 + 2 cos 2θ · t2 + 1)

3 = 2C,

∫

C4∪{−j(C4)}

z4

w3
dz = 2

∫ ∞

0

t4 dt
√
t(t4 + 2 cos 2θ · t2 + 1)

3 =︸︷︷︸
s=1/t

2C,

∫

ϕ(C4∪{−j(C4)})

z3

w3
dz = 2 i C,

∫

ϕ(C4∪{−j(C4)})

z4

w3
dz = −2 i C,

∫

C5∪{−j(C5)}

z3

w3
dz = −2 e

π
4
iD,

∫

C5∪{−j(C5)}

z4

w3
dz = 2 e−

π
4
iD,

∫

ϕ(C5∪{−j(C5)})

z3

w3
dz = 2 e−

π
4
iD,

∫

ϕ(C5∪{−j(C5)})

z4

w3
dz = −2 e

π
4
iD.
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Note that the period condition (7) can be rewritten as

(20)

∫

ℓ

ω =

∫

ℓ

g2θ ω, ℜ
∫

ℓ

gθ ω = o, ∀ℓ ∈ H1(Bθ, Z).

By using (17) – (19) and the calculation we have just made, one can express the

former relation of (20) for the above homology basis as

(
α1 +

3

4
α3

)
A+

(
−3

2
cos 2θ · α2 +

α4

4

)
A

(21)

+ (− cos 2θ · α3 + α5)C + ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)C

=
(
− cos 2θ · α1 +

α5

4

)
A+

(
α2

4
+

3

4
α6

)
A

+(−4 sin2 2θ · α1 + α3 − cos 2θ · α5)C + (− cos 2θ · α2 + α4 − cos 2θ · α6)C,

(
α1 +

3

4
α3

)
iA +

(
−3

2
cos 2θ · α2 +

α4

4

)
(−iA)

(22)

+ (− cos 2θ · α3 + α5)iC + ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)(−iC)

=
(
− cos 2θ · α1 +

α5

4

)
iA+

(
α2

4
+

3

4
α6

)
(−iA)

+(−4 sin2 2θ · α1 + α3 − cos 2θ · α5)i C + (− cos 2θ · α2 + α4 − cos 2θ · α6)(−iC),

(
α1 +

3

4
α3

)
(1 + i)B +

(
−3

2
cos 2θ · α2 +

α4

4

)
(−1 + i)B

(23)

+ (− cos 2θ · α3 + α5)(−1− i)D

+ ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)(1− i)D

=
(
− cos 2θ · α1 +

α5

4

)
(1 + i)B +

(
α2

4
+

3

4
α6

)
(−1 + i)B

+(−4 sin2 2θ · α1 + α3 − cos 2θ · α5)(−1 − i)D

+(− cos 2θ · α2 + α4 − cos 2θ · α6)(1− i)D,

(
α1 +

3

4
α3

)
(−1 + i)B +

(
−3

2
cos 2θ · α2 +

α4

4

)
(1 + i)B

(24)

+ (− cos 2θ · α3 + α5)(1− i)D

+ ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)(−1 − i)D
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=
(
− cos 2θ · α1 +

α5

4

)
(−1 + i)B +

(
α2

4
+

3

4
α6

)
(1 + i)B

+(−4 sin2 2θ · α1 + α3 − cos 2θ · α5)(1− i)D

+(− cos 2θ · α2 + α4 − cos 2θ · α6)(−1 − i)D.

Likewise, one expresses the latter relation of (20) for the homology basis as

ℜ
[(

3

4
α2 +

α6

4

)
A+

(
α1 +

α3

4

)
A(25)

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)C + (− cos 2θ · α3 + α5)C

]
= 0,

ℜ
[(

3

4
α2 +

α6

4

)
iA+

(
α1 +

α3

4

)
(−iA)(26)

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)iC + (− cos 2θ · α3 + α5)(−iC)
]
= 0,

ℜ
[(

3

4
α2 +

α6

4

)
(1 + i)B +

(
α1 +

α3

4

)
(−1 + i)B(27)

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)(−1 − i)D

+ (− cos 2θ · α3 + α5)(1− i)D

]
= 0,

ℜ
[(

3

4
α2 +

α6

4

)
(−1 + i)B +

(
α1 +

α3

4

)
(1 + i)B(28)

+ (− cos 2θ · α2 + α4 − cos 2θ · α6)(1− i)D

+ (− cos 2θ · α3 + α5)(−1− i)D

]
= 0.

(21), (22) are equivalent to

(
α1 +

3

4
α3

)
A+ (− cos 2θ · α3 + α5)C(29)

=

(
α2

4
+

3

4
α6

)
A + (− cos 2θ · α2 + α4 − cos 2θ · α6)C,

(
−3

2
cos 2θ · α2 +

α4

4

)
A+ ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)C(30)

=
(
− cos 2θ · α1 +

α5

4

)
A+ (−4 sin2 2θ · α1 + α3 − cos 2θ · α5)C.

(23), (24) are euivalent to

(
α1 +

3

4
α3

)
B + (− cos 2θ · α3 + α5)(−D)(31)
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= −
{(

α2

4
+

3

4
α6

)
B + (− cos 2θ · α2 + α4 − cos 2θ · α6)(−D)

}
,

(
−3

2
cos 2θ · α2 +

α4

4

)
B + ((−5 + 6 cos2 2θ)α2 − cos 2θ · α4 + α6)(−D)(32)

= −
{(

− cos 2θ · α1 +
α5

4

)
B + (−4 sin2 2θ · α1 + α3 − cos 2θ · α5)(−D)

}
.

(25), (26) are equivalent to

(
α1 +

α3

4

)
A+ (− cos 2θ · α3 + α5)C(33)

= −
{(

3

4
α2 +

α6

4

)
A+ (− cos 2θ · α2 + α4 − cos 2θ · α6)C

}
.

(27), (28) are equivalent to

(
α1 +

α3

4

)
B + (− cos 2θ · α3 + α5)(−D)(34)

=

(
3

4
α2 +

α6

4

)
B + (− cos 2θ · α2 + α4 − cos 2θ · α6)(−D).

The equations (29)–(34) are summarized as

(
X1 X2

)




α1

α5

α2

α4

α3

α6




=




0

0

0

0

0

0




,(35)

where

X1 =




A C 3
4A− C cos 2θ

B −D −3
4B −D cos 2θ

B −D B
4 +D cos 2θ

A C −A
4 + C cos 2θ

−
(
A cos 2θ + 4C sin2 2θ

)
A
4 − C cos 2θ 3

2A cos 2θ + (5− 6 cos2 2θ)C

B cos 2θ − 4D sin2 2θ −
(
B
4 +D cos 2θ

)
3
2B cos 2θ + (−5 + 6 cos2 2θ)D




,

X2 =




C A
4 − C cos 2θ A

4 − C cos 2θ

D B
4 +D cos 2θ −B

4 −D cos 2θ

−D 3
4B +D cos 2θ 3

4B +D cos 2θ

−C 3
4A− C cos 2θ −3

4A+ C cos 2θ

−A
4 + C cos 2θ C −C

−B
4 −D cos 2θ D D




.
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By applying elementary transformations as listed in Appendix A, it can be

verified that the above system of linear equations is equivalent to

(
Y1 Y2 Y3

)




α1

α5

α2

α4

α3

α6




=




0

0

0

0

0

0




,(36)

where

Y1 =




A(AD +BC)2 0 0 0

0 −(AD +BC)2 0 0

0 0 AD +BC 0

0 0 0 −2C(AD +BC)

0 0 0 0

0 0 0 0




,

Y2 =




1
2A(AD +BC)2 + 1

8A(−AD +BC)2

(AD +BC)2 cos 2θ + 1
4AB(−AD +BC)

1
2 (−AD +BC)

(AB + (AD −BC) cos 2θ)C
1
16AC(3AD +BC)[−B(A2 + 16C2 sin2 2θ) + 8(AD +BC)(A cos 2θ + 4C sin2 2θ)]

− 1
16BD(AD + 3BC)[A(B2 + 16D2 sin2 2θ) + 8(AD +BC)(B cos 2θ − 4D sin2 2θ)]




,

Y3 =




1
2A(AD +BC)(−AD +BC)

AB(AD +BC)

AD +BC

0
1
4AC(AD +BC)[B(A2 + 16C2 sin2 2θ)− 8(AD +BC)(A cos 2θ + 4C sin2 2θ)]

−1
4BD(AD +BC)[A(B2 + 16D2 sin2 2θ) + 8(AD +BC)(B cos 2θ − 4D sin2 2θ)]




.

It is easy to see that this system has a nontrivial solution if and only if the

matrix (
(Y2)5 (Y3)5
(Y2)6 (Y3)6

)

is not invertible, where (Yi)j is the j-th component of Yi. In conclusion, the

necessary and sufficient condition that (35) has a nontrivial solution is that either

(37) A(B2 + 16D2 sin2 2θ) + 8(AD +BC)(B cos 2θ − 4D sin2 2θ) = 0

or

(38) B(A2 + 16C2 sin2 2θ)− 8(AD +BC)(A cos 2θ + 4C sin2 2θ) = 0

holds.
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One can verify that the equation (37) has a unique solution θ1 ≈ 0.65 < π/4 in

the range 0 < θ < π/2. We shall give a proof of this fact in Appendix B. Note

that the change of variable θ 7→ π/2 − θ transforms (37) to (38) and vice versa.

Therefore, θ2 := π/2 − θ1 ≈ 0.91 > π/4 gives a unique solution of the equation

(38) in the range 0 < θ < π/2.

If θ = θ1, then it is easy to verify that the corresponding nontrivial solutions are

given by real linear combinations of ω1 and ω2 as in the statement of Lemma 3.

4. Proof of Lemma 5

In this section, we shall prove Lemma 5.

Note that ui = 〈Xωi
, N〉, where N is the unit normal vector field of Xωi

, related

to gθ1 by

N = t

(
2ℜgθ1

|gθ1|2 + 1
,

2ℑgθ1
|gθ1|2 + 1

,
|gθ1|2 − 1

|gθ1|2 + 1

)
.

We have s∗1ω1 = ω1, s
∗
1ω2 = −ω2,

s∗1




1− g2θ1
i(1 + g2θ1)

2gθ1


 =



1 0 0

0 −1 0

0 0 1







1− g2θ1
i(1 + g2θ1)

2gθ1


, s∗1N =



1 0 0

0 −1 0

0 0 1


N.

Since s1(p0) = p0, it follows from these formulae that s∗1u1 = u1 and s∗1u2 = −u2.
Let ψ(z, w) = (1/z, w/z3). By straightforward calculation, we get

ψ∗

(
dz

w

)
= − z

w
dz, ψ∗

(
dz

w3

)
= − z7

w3
dz, ψ∗

( z

w3

)
dz = − z6

w3
dz,

ψ∗

(
z2

w3

)
dz = − z5

w3
dz, ψ∗

(
z3

w3

)
dz = − z4

w3
dz, ψ∗

(
z4

w3

)
dz = − z3

w3
dz.

Therefore,

ψ∗ω1 = z2
(
AD + 3BC

4(AD +BC)

z4 + 2 cos 2θ · z2 + 1

w3
dz +

AD + 3BC

4(AD +BC)

z5

w3
dz − z4

w3
dz

− AB + (AD − BC) cos 2θ

2(AD +BC)

z3

w3
dz − AB + 2(AD +BC) cos 2θ

2(AD +BC)

z2

w3
dz

− 3AD +BC

4(AD +BC)

z

w3
dz

)

= z2
(−3AD − BC

4(AD +BC)

z4

w3
dz +

−AB + (−AD +BC) cos 2θ

2(AD +BC)

z2

w3
dz

+
AD + 3BC

4(AD +BC)

dz

w3
− AB + 2(AD +BC) cos 2θ

2(AD +BC)

z3

w3
dz − z

w3
dz

16



+
AD + 3BC

4(AD +BC)

z5 + 2 cos 2θ · z3 + z

w3
dz

)

= −z2ω1.

Likewise, we obtain ψ∗ω2 = z2ω2. Since we also have

ψ∗




1− g2θ1
i(1 + g2θ1)

2gθ1


 =

1

z2



−1 0 0

0 1 0

0 0 1







1− g2θ1
i(1 + g2θ1)

2gθ1


 , ψ∗N =



1 0 0

0 −1 0

0 0 −1


N,

and ψ(p0) = p0, we find ψ
∗u1 = u1 and ψ

∗u2 = −u2. Since s3 = ψ◦s1, we conclude
that s∗3u1 = u1 and s∗3u2 = u2.

We have j∗ω1 = −ω1, j
∗ω2 = −ω2,

j∗




1− g2θ1
i(1 + g2θ1)

2gθ1


 =




1− g2θ1
i(1 + g2θ1)

2gθ1


 , j∗N = N,

from which it follows that

j∗u1(p) =

〈
ℜ
∫ j(p)

j(p0)




1− g2θ1
i(1 + g2θ1)

2gθ1


ω1, N(j(p))

〉
+

〈
ℜ
∫ j(p0)

p0




1− g2θ1
i(1 + g2θ1)

2gθ1


ω1, N(j(p))

〉

= −u1(p) + 〈c1, N(p)〉,

where c1 = ℜ
∫ j(p0)

p0
t(1− g2θ1, i(1 + g2θ1), 2gθ1)ω1, and j

∗u2 = −u2 + 〈c2, N〉.

Appendix A

As mentioned in the proof of Lemma 3, the system (35) of linear equations can be

reduced to an equivalent one of simpler form by applying elementary transforma-

tions. For the reader’s convenience, we shall list all the elementary transformations

explicitly.

We apply the following operations, where Rj (1 ≤ j ≤ 6) denotes the j-th row,

to the matrix
(
X1 X2

)
.

(i) R4 −→ R4− R1.

(ii) R5 −→ R5 + R1× cos 2θ.

(iii) R3 −→ R3− R2.

(iv) R6 −→ R6− R2× cos 2θ.

(v) R5 −→ R5× A+ R1× 4C sin2 2θ.

(vi) R6 −→ R6× B + R2× 4D sin2 2θ.

(vii) R2 −→ R2 + R3× 1/2.

(viii) R6 −→ R6 + R3× (−B cos 2θ + 2D sin2 2θ).

(ix) R1 −→ R1 + R4× 1/2.
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(x) R5 −→ R5 + R4× (A cos 2θ + 2C sin2 2θ).

(xi) R2 −→ R2× A+ R1× (−B).

(xii) R5 −→ R5× C + R4× (−A2/8).

(xiii) R6 −→ R6×D + R3× (−B2/8).

(xiv) R1 −→ R1× (AD +BC) + R2× C.

(xv) R3 −→ R3× C + R4× (−D).

(xvi) R5 −→ R5× (AD +BC) + R2× (A2C/4 + 4C3 sin2 2θ).

(xvii) R6 −→ R6× (AD +BC) + R2× (−B2D/4− 4D3 sin2 2θ).

(xviii) R1 −→ R1× (AD +BC) + R3×A(−AD +BC)/4.

(xix) R2 −→ R2× (AD +BC) + R3×AB/2.

(xx) R4 −→ R4× (AD +BC) + R3× (A− 2C cos 2θ).

(xxi) R5 −→ R5 × (AD + BC) + R3 × [−A2(A2D/8 + (AD + BC)C cos 2θ +

6C2D sin2 2θ)− 4ABC3 sin2 2θ].

(xxii) R6 −→ R6× (AD +BC) + R3× [−B2(−B2C/8 + (AD + BC)D cos 2θ −
6CD2 sin2 2θ) + 4ABD3 sin2 2θ].

Then we finally obtain the matrix
(
Y1 Y2 Y3

)
as in the proof of Lemma 3.

Appendix B

In this appendix, we prove that the equation (37) has a unique solution θ1 < π/4

in the range 0 < θ < π/2.

We first prove that (37) has a unique solution in the range 0 < θ < π/4. Though

it is possible to verify this fact by a direct elementary argument, here we present

an indirect one, assuming that (37) has no solutions in the range π/4 ≤ θ < π/2,

which we will prove afterwards. Since the left-hand side of (37) is positive near

θ = 0 and negative at θ = π/4, (37) has at least one solution by the intermediate

value theorem. On the other hand, (38) has no solutions in the range 0 < θ < π/4

by the remark at the end of the proof of Lemma 3. Suppose that there is more

than one solution of (37), and let ϕ1 < ϕ2 be the first and second smallest ones.

Then, since the argument for proving Theorem 6 depends only on the fact that θ1
is a solution of (37), we deduce that the number of eigenvalues of −∆θ less than

2 decreases by two each time when θ passes ϕ1 and ϕ2. But this is impossible

because there are exactly three such eigenvalues for θ < ϕ1. Thus, the solutions

of (37) must be unique.

We now proceed to prove that the equation (37) has no solutions in the range

π/4 ≤ θ < π/2. We start by rewriting the integrals A,B,C,D using the complete

elliptic integrals

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

, E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ,
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defined for 0 < k < 1. Clearly, K(k) (resp. E(k)) is a monotone increasing (resp.

decreasing) function of k. Computing with the change of variable u =
√
t− 1/

√
t

and using 222 of [1], we obtain

A =
2√

2(1 + sin θ)
K(k), B =

2√
2(1 + cos θ)

K(l),

C =
1

4
√
2(1 + sin θ) sin2 θ(1− sin θ)

(E(k)− (1− sin θ)K(k)) ,

D =
1

4
√

2(1 + cos θ) cos2 θ(1− cos θ)
(E(l)− (1− cos θ)K(l)) ,

where k =
√

2 sin θ/(1 + sin θ) and l =
√
2 cos θ/(1 + cos θ).

The left-hand side of (37) can be rewritten as

cos 2θ(AB2 cos 2θ + 8ABD + 8B2C) + sin2 2θ(AB2 − 16AD2 − 32BCD).

Therefore, it suffices to verify that both

(39) AB2 cos 2θ + 8ABD + 8B2C > 0, AB2 − 16AD2 − 32BCD < 0

hold in the range π/4 ≤ θ < π/2.

We first reduce these inequalities to several simpler ones, with details discussed

later on. The former inequality of (39) follows from

(40) A cos 2θ + 8C > 0, π/4 ≤ θ < π/2.

For the latter inequality of (39), since

AB2 − 16AD2 − 32BCD

=





A
(
B − 192

25
D
) (
B + 25

12
D
)
+BD

(
1679
300

A− 32C
)
, π/4 ≤ θ ≤ 5π/16,

A(B − 10D)
(
B + 8

5
D
)
+BD

(
42
5
A− 32C

)
, 5π/16 ≤ θ ≤ 3π/8,

A(B − 16D)(B +D) +BD(15A− 32C), 3π/8 ≤ θ < π/2,

it suffices to show

25B − 192D < 0, π/4 ≤ θ ≤ 5π/16,(41)

1679A− 9600C < 0, π/4 ≤ θ ≤ 5π/16,(42)

B − 10D < 0, 5π/16 ≤ θ ≤ 3π/8,(43)

21A− 80C < 0, 5π/16 ≤ θ ≤ 3π/8,(44)

B − 16D < 0, 3π/8 ≤ θ < π/2,(45)

15A− 32C < 0, 3π/8 ≤ θ < π/2.(46)

We now present a detailed proof of (41). Since the proofs of (40) and (42)–(46)

are similar, they are left to the reader. We have

25B − 192D = f(l) [(49l4 − 96l2 + 96) (1− l2)K(l)− 12 (2− l2)3E(l)],
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where f(l) is a positive function of l. Therefore, one must show that

(49l4 − 96l2 + 96)(1− l2)K(l)− 12(2− l2)3E(l) < 0

in the range

0.7142 · · · = 2 cos 5
16
π

1 + cos 5
16
π
≤ l2 ≤ 2 cos π

4

1 + cos π
4

= 0.8284 · · · .

Using

d

dk
[(1− k2)K(k)] =

E(k)

k
− 1 + k2

k
K(k),

d

dk
E(k) =

E(k)−K(k)

k

(cf. [1, 710]), we obtain

d

dl
[(49l4 − 96l2 + 96)(1− l2)K(l)− 12(2− l2)3E(l)](47)

= l[−(257l4 − 507l2 + 336)K(l) + (84l4 − 311l2 + 336)E(l)].

Observe that 257l4−507l2+336 and 84l4−311l2+336 are positive and monotone

decreasing in the range 0.71 < l2 < 0.83. Then we can show that the right-

hand side of (47) is negative in the range 0.71 < l2 < 0.83 by estimating it in

0.71 < l2 ≤ 0.81 and 0.81 ≤ l2 < 0.83 separately. E.g., in 0.71 < l2 ≤ 0.81,

−(257l4 − 507l2 + 336)K(l) + (84l4 − 311l2 + 336)E(l)

≤ −(257 · 0.812 − 507 · 0.81 + 336)K
(√

0.71
)

+(84 · 0.712 − 311 · 0.71 + 336)E
(√

0.71
)

= −1.723 · · · < 0.

Therefore, (49l4− 96l2+96)(1− l2)K(l)− 12(2− l2)3E(l) is monotone decreasing.

Since its value at l2 = 0.714 is −0.033 · · · < 0, (41) is proved.
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