
Accelerating Weather Prediction using

Near-Memory Reconfigurable Fabric

GAGANDEEP SINGH, ETH ZÃĳrich, Switzerland

DIONYSIOS DIAMANTOPOULOS, IBM Research Europe, ZÃĳrich Lab, Switzerland

JUAN GÓMEZ-LUNA, ETH ZÃĳrich, Switzerland

CHRISTOPH HAGLEITNER, IBM Research Europe, ZÃĳrich Lab, Switzerland

SANDER STUIJK, Eindhoven Univesity of Technology, The Netherlands

HENK CORPORAAL, Eindhoven Univesity of Technology, The Netherlands

ONUR MUTLU, ETH ZÃĳrich, Switzerland

Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather
prediction simulations, state-of-the-art CPU and GPU implementations sufer from limited performance and high energy
consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic
intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use
of near-memory acceleration using a reconigurable fabric with high-bandwidth memory (HBM). We focus on compound
stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop
NERO, an FPGA+HBM-based accelerator connected through OCAPI (Open Coherent Accelerator Processor Interface) to an
IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 5.3× and
12.7× when running two diferent compound stencil kernels. NERO reduces the energy consumption by 12× and 35× for the
same two kernels over the POWER9 system with an energy eiciency of 1.61 GFLOPS/Watt and 21.01 GFLOPS/Watt. We
conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to
achieve both high performance and high energy eiciency.

CCS Concepts: · Hardware→ Hardware-software codesign; · Computer systems organization→ Reconigurable

computing; Heterogeneous (hybrid) systems.

Additional Key Words and Phrases: FPGA, Near-Memory Computing, Weather Modeling, High-Performance Computing,
Processing in Memory

1 Introduction

Accurate weather prediction and climate modeling using detailed weather models is essential to make weather-
dependent and climate-related decisions in a timely manner. These models are based on physical laws that
describe various components of the atmosphere [137]. The Consortium for Small-Scale Modeling (COSMO) [59]
built one such weather model to meet the high-resolution forecasting requirements of weather services. The

Authors’ addresses: Gagandeep Singh, gagan.gagandeepsingh@safari.ethz.ch, ETH ZÃĳrich, Switzerland; Dionysios Diamantopoulos, did@
zurich.ibm.com, IBM Research Europe, ZÃĳrich Lab, Switzerland; Juan Gómez-Luna, juan.gomez@safari.ethz.ch, ETH ZÃĳrich, Switzerland;
Christoph Hagleitner, hle@zurich.ibm.com, IBM Research Europe, ZÃĳrich Lab, Switzerland; Sander Stuijk, s.stuijk@tue.nl, Eindhoven
Univesity of Technology, The Netherlands; Henk Corporaal, h.corporaal@tue.nl, Eindhoven Univesity of Technology, The Netherlands; Onur
Mutlu, omutlu@ethz.ch, ETH ZÃĳrich, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1936-7406/2022/2-ART $15.00
https://doi.org/10.1145/3501804

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3501804

2 • Singh, et al.

COSMO model is a non-hydrostatic atmospheric prediction model currently being used by a dozen nations for
meteorological purposes and research applications.
The central part of the COSMO model (called dynamical core or dycore) solves the Euler equations on a

curvilinear grid and applies implicit discretization in the vertical dimension (i.e., parameters are dependent
on each other at the same time instance [42]) and explicit discretization in the horizontal dimension (i.e., a
solution is dependent on the previous system state [42]). The use of diferent discretizations leads to three
computational patterns [161]: 1) horizontal stencils, 2) tridiagonal solvers in the vertical dimension, and 3) point-
wise computation. These computational kernels are compound stencil kernels that operate on a three-dimensional
grid [79]. Vertical advection (vadvc) and horizontal difusion (hdiff) are such compound kernels found in the
dycore of the COSMO weather prediction model. These kernels are representative of the data access patterns
and algorithmic complexity of the entire COSMO model. They are similar to the kernels used in other weather
and climate models [97, 125, 177]. Their performance is dominated by memory-bound operations with unique
irregular memory access patterns and low arithmetic intensity that often results in <10% sustained loating-point
performance on current CPU-based systems [165].

Figure 1 shows the rooline plot [173] for an IBM 16-core POWER9 CPU (IC922).1 After optimizing the vadvc
and hdiff kernels for the POWER architecture2 by following the approach in [175], they achieve 29.1 GFLOP/s
and 58.5 GFLOP/s, respectively, for 64 threads. Our rooline analysis indicates that these kernels are constrained
by the host DRAM bandwidth. Their low arithmetic intensity limits their performance, which is one order of
magnitude smaller than the peak performance, and results in a fundamental memory bottleneck that standard
CPU-based optimization techniques cannot overcome.

Heterogeneous computing has emerged as an answer to improve the system performance in an energy-eicient
way. Heterogeneous computing entails complementing processing elements with diferent compute capabilities,
each to perform the tasks to which it is best suited. In the HPC domain, coupling specialized compute units with
general-purpose cores can meet the high-performance computing demands with the ability to realize exascale
systems needed to process data-intensive workloads [123]. The graphics processing unit (GPU) is one of the
most popular acceleration platforms. GPUs have been used to accelerate workloads like computer graphics
and linear algebra [166] because of their many-core architecture. However, GPUs are power-hungry due to
high transistor density and, depending on the power constraints, may not always be the ideal platform for
implementation. Recently, the use of ield-programmable gate array (FPGA) in accelerating machine learning
workloads with high energy eiciency has inspired researchers to explore the use of FPGAs instead of GPUs for
various high-performance computing applications [48, 61]. FPGAs provide a unique combination of lexibility
and performance without the cost, complexity, and risk of developing custom application-speciic integrated
circuits (ASICs). Modern FPGAs show four key trends.

• The advancements in the stacking technology with high-bandwidth memory (HBM) [7, 8, 10, 22, 104]
blends DRAM on the same package as an FPGA. This integration allows us to implement our accelerator
logic in close proximity to the memory with a lower latency and much higher memory bandwidth than the
traditional DDR4-based FPGA boards. Memory-bound applications on FPGAs are limited by the relatively
low DDR4 bandwidth (72 GB/s for four independent dual-rank DIMM interfaces [21]). HBM-based FPGAs
can overcome this limitation with a peak bandwidth of 410 GB/s [95].

1IBM and POWER9 are registered trademarks or common lawmarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies.
2We use single instruction, multiple data (SIMD) [38, 65], and simultaneous multithreading (SMT) [164] techniques to ill the hardware
pipelines. We use the same tiling size for both CPU and FPGA-based designs. While compiling these kernels, we use the IBM XLC [9] 16 C/C++
compiler that is optimized for IBM POWER [134] machines with the following lags: qarch=pwr9, qtune=pwr9, O3, q64, qprefetch=aggressive,
qsmp=omp, and qsimd=auto.

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 3

10
-1

10
0 10

1
10

2

Arithm et ic Intensity [flop/byte]

10
0

10
1

10
2

10
3

10
4

A
tt

a
in

a
b

le
 P

e
rf

o
rm

a
n

c
e

 [
G

F
lo

p
/s

e
c
]

58.5GFlop/s

5.13GFlop/s

29.1GFlop/s

3.3GFlop/s

DRAM

110GBps experim
ental B

W on STREAM

L3-cache

(208.57)x16= 3337GBps

486.4 GFLOP/s/socket (3.8GHz x 16 cores x 8 flops/cycle)

AD9V3 FPGA (0.97 TFLOP/s, 32GBps DRAM, 1.62 TBps BRAM, 200MHz)

AD9H7 FPGA (3.6 TFLOP/s, 410GBps HBM, 7.26 TBps BRAM, 400MHz)

At tainable perform ance is const ra-
ined by m em ory bandwidth, as
CPU m icro-architecture features
becom e ineffect ive for a given
arithm et ic intensity and access
pat terns do not favor the m em ory
hierarchy.

Roofline for POWER9 (16-core, SMT4) & [AD9V3,AD9H7] FPGAs

hdiff (P9 64 threads)

hdiff (P9 1 thread)

vadvc (P9 64 threads)

vadvc (P9 1 thread)

Arithm et ic Intensity for hdiff

Arithm et ic Intensity for vadvc

Fig. 1. Roofline [173] for POWER9 (1-socket) showing vertical advection (vadvc) and horizontal difusion (hdiff) kernels for
single-thread and 64-thread implementations. The plot shows also the rooflines of the FPGAs used in our work with peak
DRAM and on-chip BRAM bandwidth.

• New cache-coherent interconnects, such as Open Coherent Accelerator Processor Interface (OCAPI) [156],
Cache Coherent Interconnect for Accelerators (CCIX) [39], and Compute Express Link (CXL) [145], allow
tight integration of FPGAs with CPUs at high bidirectional bandwidth (on the order of tens of GB/s). This
integration reduces programming efort and enables us to coherently access the host system’s memory
through a pointer rather than having multiple copies of the data.
• The introduction of UltraRAM (URAM) [17] along with the BlockRAM (BRAM) that ofers massive scratch-
pad-based on-chip memory next to the logic. URAM is more denser than BRAM, but is not as distributed in
the FPGA layout as the BRAM.
• FPGAs are being manufactured with an advanced technology node of 7-14nm FinFET technology [67] that
ofers higher performance.

These above trends suggest that modern FPGA architectures with near-memory compute capabilities can
alleviate the memory bottleneck of real-world data-intensive applications [148]. However, a study of their ad-
vantages for real-world memory-bound applications is still missing. In this work, our goal is to overcome the
memory bottleneck of weather prediction kernels by exploiting near-memory computation capability on FPGA
accelerators with high-bandwidth memory (HBM) [7, 104, 105] that are attached to the host CPU. Figure 1 shows
the rooline models of the two FPGA cards (AD9V3 [2] and AD9H7 [1]) used in this work. FPGAs can handle
irregular memory access patterns eiciently and ofer signiicantly higher memory bandwidth than the host CPU
with their on-chip URAMs (UltraRAM), BRAMs (block RAM), and on-package HBM (high-bandwidth memory
for the AD9H7 card). However, taking full advantage of FPGAs for accelerating a workload is not a trivial task.

ACM Trans. Reconig. Technol. Syst.

4 • Singh, et al.

To compensate for the higher clock frequency of the baseline CPUs, our FPGAs must exploit at least one order of
magnitude more parallelism in a target workload. This is challenging, as it requires suicient FPGA programming
skills to map the workload and optimize the design for the FPGA microarchitecture.
We aim to answer the following research question: Can FPGA-based accelerators with HBM mitigate

the performance bottleneck of memory-bound compound weather prediction kernels in an energy-

eicient way? As an answer to this question, we present NERO, a near-HBM accelerator for weather prediction.
We design and implement NERO on an FPGA with HBM to optimize two kernels (vertical advection and
horizontal difusion), which notably represent the spectrum of computational diversity found in the COSMO
weather prediction application. We co-design a hardware-software framework and provide an optimized API to
interface eiciently with the rest of the COSMO model, which runs on the CPU. Our FPGA-based solution for
hdiff and vadvc leads to performance improvements of 5.3× and 12.7× and energy reductions of 12× and 35×,
respectively, with respect to optimized CPU implementations [175].

The major contributions of NERO are as follows:

• We perform a detailed rooline analysis to show that representative weather prediction kernels are con-
strained by memory bandwidth on state-of-the-art CPU systems.
• We propose NERO, the irst near-HBM FPGA-based accelerator for representative kernels from a real-world
weather prediction application.
• We optimize NERO with a data-centric caching scheme with precision-optimized tiling for a heterogeneous
memory hierarchy (consisting of URAM, BRAM, and HBM).
• We evaluate the performance and energy consumption of our accelerator and perform a scalability analysis.
We show that an FPGA+HBM-based design outperforms a complete 16-core POWER9 system (running
64 threads) by 5.3× for the vertical advection (vadvc) and 12.7× for the horizontal difusion (hdiff) kernels
with energy reductions of 12× and 35×, respectively. Our design provides an energy eiciency of 1.61
GLOPS/Watt and 21.01 GFLOPS/Watt for vadvc and hdiff kernels, respectively.

This work extends our previous work [152] as follows. First, we add new results using a state-of-the-art
OpenCAPI (OCAPI) interface [156]. OCAPI provides two key opportunities compared to our previous CAPI2
implementation: (1) OCAPI has double the bitwidth (1024-bit) of our previously used CAPI2 interface, and (2) the
memory coherency logic has been moved to the host CPU side, which provides more area and allows us to run
our design at a higher frequency. Our implementation and evaluation with state-of-the-art OCAPI improves the
performance for our two main workloads from weather modeling (vadvc and hdif) by 37% and 44%, respectively,
compared to a CAPI-based HBM design [152]. All the functions in our design now operate on a 1024-bit per
clock rather than 512-bit per clock, utilizing the maximum processing throughput of OCAPI (POWER9 cache line
is 1024-bit). Thus, we can build a datalow accelerator with wide AXI streams of 1024-bit. Second, we develop
HBM_multi+OCAPI-based versions of our workloads that make use of multiple channels per processing element
(PE). This multi-channel implementation allows the PEs to exploit signiicantly higher bandwidth. As a result,
the workloads achieve an average speedup of 1.5x over the single-channel version for a single PE. Third, we
provide a discussion section (Section 5) that provides various insights and takeaways while designing HBM-based
FPGA accelerators, which we believe would be useful for future FPGA architects and programmers. Fourth, we
implement and evaluate the copy stencil [161] (Figure 3), a stencil from the COSMO model to benchmark the
peak performance on a platform. Fifth, we use the OC-Accel framework3 instead of the SNAP framework for
OCAPI accelerator development and deployment. Sixth, we provide a comparison of state-of-the-art works in
stencil acceleration (Table 4).

3https://github.com/OpenCAPI/oc-accel

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 5

2 Background

In this section, we irst provide an overview of the vadvc and hdiff compound stencils, which represent a
large fraction of the overall computational load of the COSMO weather prediction model. Second, we introduce
the OC-Accel (OpenCAPI Acceleration) framework that we use to connect our NERO accelerator to an IBM
POWER9 system.

2.1 Representative COSMO Stencils

A stencil operation updates values in a structured multidimensional grid based on the values of a ixed local
neighborhood of grid points. In weather and climate modeling, several stencil operations are compounded together
that operate on multiple input elements to generate one or more output results. Vertical advection (vadvc) and
horizontal difusion (hdiff) from the COSMO model are two such compound stencil kernels, which represent
the typical code patterns found in the dycore of COSMO. Algorithm 1 shows the pseudo-code for vadvc and
hdiff kernels. The horizontal difusion kernel iterates over a 3D grid, performing Laplacian and lux to calculate
diferent grid points, as shown in Figure 2a. A single Laplacian stencil accesses the input grid at ive memory
ofsets, the result of which is used to calculate the lux stencil. hdiff has purely horizontal access patterns and
does not have dependencies in the vertical dimension. Thus, it can be fully parallelized in the vertical dimension.
Figure 2b shows the memory layout for the horizontal difusion kernel. We observe that the indirect memory
accesses of the input grid domain can severely impact cache eiciency on our current CPU-based systems.

Laplacian
Stencil

Flux
Stencil Output

(a)

Read Array

Write Array

Laplace

Results

Laplace

Flux

Flux Results

(b)

Fig. 2. (a) Horizontal difusion kernel composition using Laplacian and flux stencils in a two dimensional plane [153]. (b)
Memory layout of horizontal difusion from 3D grid onto 1D array.

Vertical advection has a higher degree of complexity since it uses the Thomas algorithm [162] to solve a
tridiagonal matrix of weather data (called ields, such as air pressure, wind velocity, and temperature) along
the vertical axis. vadvc consists of a forward sweep that is followed by a backward sweep along the vertical
dimension. vadvc requires access to the weather data, which are stored as array structures while performing
forward and sweep computations. Unlike the conventional stencil kernels, vertical advection has dependencies
in the vertical direction, which leads to limited available parallelism and irregular memory access patterns. For
example, when the input grid is stored by row, accessing data elements in the depth dimension typically results in
many cache misses [175].
Such compound kernels are dominated by memory-bound operations with complex memory access patterns

and low arithmetic intensity. This poses a fundamental challenge to acceleration. CPU implementations of these
kernels [175] sufer from limited data locality and ineicient memory usage, as our rooline analysis in Figure 1
exposes. In Figure 3 we implement a copy stencil from the COSMO weather model to evaluate the performance
potential of our HBM-based FPGA platform for the weather prediction application. A copy stencil performs an
element-wise copy operation over the complete input grid. It is the simplest stencil found in the COSMO model

ACM Trans. Reconig. Technol. Syst.

6 • Singh, et al.

and, hence, serves as a benchmark to characterize the achievable peak performance on a platform for weather
kernels. To implement a copy stencil, we divide the 3D grid data among the processing elements (PEs), where each
PE performs an element-wise copy operation. We were able to enable only 24 HBM memory channels because
adding more HBM channels leads to timing constraint violations. From the igure, we make two observations.
First, as we increase the number of processing elements (PEs), we can exploit data-level parallelism because of
dedicated HBM channels serving data to a PE. Second, the maximum achievable performance tends to saturate
after 16 PEs. Since we implement our design in a datalow pipeline manner, all the functions run in parallel, and
the overall latency is equal to the maximum latency out of all the functions. After 16 PEs, for copy, we observe
that most of the time is spent in the FPGA computation logic rather than the transfer of data from an HBM
memory channel.

1 2 4 8 16 20 24
Number of PEs

0

R
un

tim
e

(m
se

c)

2.81

1.44

0.81
0.38

0.19 0.18

copy stencil

Fig. 3. Performance of copy stencil on our HBM-based FPGA platform.

2.2 OC-Accel Framework

The OpenPOWER Foundation Accelerator Workgroup [14] created the OC-Accel framework, an open-source
environment for FPGA programming productivity. OC-Accel provides three key beneits [172]: (i) it enables an
improved developer productivity for FPGA acceleration and eases the use of CAPI’s cache-coherence mechanism,
(ii) it places FPGA-accelerated compute engines, also known as FPGA actions, closer to relevant data to achieve
better performance, and (iii) access to FPGA memory via user-level DMA (Direct Memory Access) semantics.
OC-Accel provides a simple API to invoke an accelerated action and provides programming methods to instantiate
customized accelerated actions on the FPGA side. These accelerated actions can be speciied in C/C++ code that is
then compiled to the FPGA target using the Xilinx Vivado High-Level Synthesis (HLS) tool [20].
The beneits of employing such cache-coherent interconnect links for attaching FPGAs to CPUs, as opposed

to the traditional DMA-like communication protocols (e.g., PCIe), are not only the ultra lower-latency and
the higher bandwidth of the communication, but most importantly, the ability of the accelerator to access the
entire memory space of the CPU coherently, without consuming excessive CPU cycles. Traditionally, the host
processor has a shared memory space across its cores with coherent caches. Attached devices such as FPGAs,
GPUs, network, and storage controllers are memory-mapped and use a DMA to transfer data between local
and system memory across an interconnect such as PCIe. The attached devices can not see the entire system
memory but only a part of it. Communication between the host processor and attached devices requires an
ineicient software stack, including user-space software, drivers, and kernel-space modules, in comparison to the
communication scheme between CPU cores using shared memory. Especially when DRAM memory bandwidth

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 7

becomes a constraint, requiring extra memory-to-memory copies to move data from one address space to another
is cumbersome and low performance [62, 139]. This is the driving force of the industry to push for coherency and
shared memory across CPU cores and attached devices, like FPGAs. This way, the accelerators act as peers to the
processor cores. Note that CAPI2 is built on top of PCIe. However, CAPI2 provides the following two advantages.
First, a CAPI-attached device, unlike a PCIe device, can perform Direct Memory Access (DMA) to application
memory without calls to a device driver or underlying operating system kernel, resulting in a reduction in latency.
Avoiding these unnecessary memory calls improves performance signiicantly compared to the traditional PCIe
I/O model [157]. Second, CAPI2 provides cache-coherent access to the CPU memory, allowing the FPGA to
directly access the host memory. Such direct cache-coherent access reduces the FPGA developer’s burden and
debugging time by overcoming read after write (RAW) and write and read (WAR) dependencies, which is typically
the FPGA developerâĂŹs responsibility. OCAPI is a new technology built from the ground up. It includes a faster
PHY layer (BlueLink 25Gb/s x8 lanes [156]) than its CAPI predecessors, providing double the bitwidth between
the host and an accelerator.

3 Design Methodology

3.1 NERO, A Near HBM Weather Prediction Accelerator

The low arithmetic intensity of real-world weather prediction kernels limits the attainable performance on current
multi-core systems. This sub-optimal performance is due to the kernels’ complex memory access patterns and
their ineiciency in exploiting a rigid cache hierarchy, as quantiied in the rooline plot in Figure 1. These kernels
cannot fully utilize the available memory bandwidth, which leads to high data movement overheads in terms of
latency and energy consumption. We address these ineiciencies by developing an architecture that combines
fewer of-chip data accesses with higher throughput for the loaded data. To this end, our accelerator design takes
a data-centric approach [24, 25, 43, 44, 71, 85, 86, 100, 118, 120, 121, 147, 150] that exploits near high-bandwidth
memory acceleration.

Figure 4a shows a high-level overview of our integrated system. An HBM-based FPGA is connected to a server
system based on an IBM POWER9 processor using the Open Coherent Accelerator Processor Interface (OCAPI).
The FPGA consists of two HBM stacks4, each with 16 pseudo-memory channels [3]. A channel is exposed to the
FPGA as a 256-bit wide port, and in total, the FPGA has 32 such ports. The HBM IP provides 8 memory controllers
(per stack) to handle the data transfer to and from the HBM memory ports. Our design consists of an accelerator
functional unit (AFU) that interacts with the host system through the TLx (Transaction Layer) and the DLx (Data
Link Layer), which are the OCAPI endpoint on the FPGA. An AFU comprises of multiple processing elements
(PEs) that perform compound stencil computation. Figure 5 shows the architecture overview of NERO. As vertical
advection is the most complex kernel, we depict our architecture design low for vertical advection. We use a
similar design for the horizontal difusion kernel.

The weather data, based on the atmospheric model resolution grid, is stored in the DRAM of the host system
(1 in Figure 5). We employ the double bufering technique between the CPU and the FPGA to hide the PCIe
(Peripheral Component Interconnect Express [114]) transfer latency. By coniguring a bufer of 64 cache lines,
between the AXI4 interface of OCAPI/TLx-DLx and the AFU, we can reach the theoretical peak bandwidth of
OCAPI (i.e., 32 GB/s). We create a specialized memory hierarchy from the heterogeneous FPGA memories (i.e.,
URAM, BRAM, and HBM). By using a greedy algorithm, we determine the best-suited hierarchy for our kernel.
The memory controller (shown in Figure 4a) handles the data placement to the appropriate memory type based
on the programmer’s directives.

On the FPGA, following the initial bufering (2), the transferred grid data is mapped onto the HBM memory
(3). As the FPGA has limited resources, we propose a 3D window-based grid transfer from the host DRAM to the

4In this work, we enable only a single stack based on our resource and power consumption analysis for the vadvc kernel.

ACM Trans. Reconig. Technol. Syst.

8 • Singh, et al.

TLx

DLx

IBM

Power9

O
C

A
P

I

HBM IP

M
e
m

o
ry

 C
o
n
tr

o
lle

r

DRAM

P9

Core

256-bit
AXI3

Accelerator Functional Unit

BRAM

PE

FF

URAM LUT

1
0
2
4
-b

it

HBM2

Stack 2

....16x

....

HBM2

Stack 1

....16xFPGA

LUT BRAM

PE

FF

URAM LUT

LUT

(a)

POWER9

Host

OCAPI

DMA

HBM

Memory

PE1

Time

Data Packing/Unpacking

 Address Translation & Coherency by TLx and DLx

POWER9 cacheline transfer 1024-bit=128B

AXI Full Bus
Transaction

Cacheline buffering

Shared mem.
start notify

Shared mem.
completion notify

Host execution

A
X

I lite
 c

o
n

ro
l flo

w

Dataflow execution

MC1* MC1

FPGA
Execution

*MC= memory channel

(b)

Fig. 4. (a) Heterogeneous platform with an IBM POWER9 system connected to an HBM-based FPGA board via OCAPI.
We also show components of an FPGA: flip-flop (FF), lookup table (LUT), UltraRAM (URAM), and Block RAM (BRAM). (b)
Execution timeline with data flow sequence from the host DRAM to the onboard FPGA memory.

POWER9

Host System

Virtual address
translation by
TLx and DLx FPGA AXI Register

1024-bit x 1 reads

FPGA Cacheline Buffer

32 x float32

HBM2 Stack

256-bit AXI3

256-bit to 1024-bit 1024-bit to 256-bit

.......16x

Software-defined FPGA

data (un)packing

Single

output

stream

2D partitioned BRAM or URAM

3D window gridding/degridding

Fields Stream Splitter

Backward Sweep

Intermediate
FIFO

...

VADVC
Engine

1 POWER9 Cache-line

1024-bit = 128B -> 32 x float32

1024-bit
wcon

stream

...
Multiple fields

to represent
atmospheric

components

1024-bit

upos

stream

1024-bit
OCAPI

1024-bit

output

stream

Weather data
 in the host

DRAM

Stream Converter1

2

3

4

5

6

7

8

Precision-aware

auto-tuning for

window size
Forward Sweep

Fig. 5. Architecture overview of NERO with data flow sequence from the host DRAM to the on-board FPGA memory via
POWER9 cachelines. We depict a single processing element (PE) fetching data from a dedicated HBM port. The number of
HBM ports scales linearly with the number of PEs. Heterogeneous partitioning of on-chip memory blocks reduces read and
write latencies across the FPGA memory hierarchy.

FPGA, facilitating a smaller, less power-hungry deployment. The window size represents the portion of the grid
a processing element (PE in Figure 4a) would process. Most FPGA developers manually optimize for the right
window size. However, manual optimization is tedious because of the huge design space, and it requires expert
guidance. Further, selecting an inappropriate window size leads to sub-optimal results. Our experiments (in
Section 4.3) show that: (1) inding the best window size is critical in terms of the area vs. performance trade-of,

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 9

and (2) the best window size depends on the datatype precision. Hence, instead of pruning the design space
manually, we formulate the search for the best window size as a multi-objective auto-tuning problem taking into
account the datatype precision. We make use of OpenTuner [34], which uses machine-learning techniques to
guide the design-space exploration [151].

Our design consists of multiple PEs (shown in Figure 4a) that exploit data-level parallelism in COSMO weather
prediction kernels. A dedicated HBM memory port is assigned to a speciic PE; therefore, we enable as many
HBM ports as the number of PEs. This allows us to use the high HBM bandwidth efectively because each PE
fetches from an independent port. In our design, we use a switch, which provides the capability to bypass the
HBM, when the grid size is small, and map the data directly onto the FPGA’s URAM and BRAM. The HBM port
provides 256-bit data, which is a quarter of the size of the OCAPI bitwidth (1024-bit). Therefore, to match the
OCAPI bandwidth, we introduce a stream converter logic (4) that converts a 256-bit HBM stream to a 1024-bit
stream (OCAPI compatible) or vice versa. From HBM, a PE reads a single stream of data that consists of all the
ields5 that are needed for a speciic COSMO kernel computation. The PEs use a ields stream splitter logic (5)
that splits a single HBM stream to multiple streams (1024-bit each), one for each ield.
To optimize a PE, we apply various optimization strategies. First, we exploit the inherent parallelism in a

given algorithm through hardware pipelining. Second, we partition on-chip memory to avoid the stalling of our
pipelined design, since the on-chip BRAM/URAM has only two read/write ports. Third, all the tasks execute in a
datalow manner that enables task-level parallelism. vadvc is more computationally complex than hdiff because
it involves forward and backward sweeps with dependencies in the z-dimension. While hdiff performs only
Laplacian and lux calculations with dependencies in the x- and y-dimensions. Therefore, we demonstrate our
design low by means of the vadvc kernel (Figure 5). Note that we show only a single port-based PE operation.
However, for multiple PEs, we enable multiple HBM ports.

We make use of memory reshaping techniques to conigure our memory space with multiple parallel BRAMs
or URAMs [58]. We form an intermediate memory hierarchy by decomposing (or slicing) 3D window data into a
2D grid. This allows us to bridge the latency gap between the HBM memory and our accelerator. Moreover, it
allows us to exploit the available FPGA resources eiciently. Unlike traditionally-ixed CPU memory hierarchies,
which perform poorly with irregular access patterns and sufer from cache pollution efects and cache miss
latency, application-speciic memory hierarchies are shown to improve energy and latency by tailoring the cache
levels and cache sizes to an application’s memory access patterns [163].
The main computation pipeline (7) consists of a forward and a backward sweep logic. The forward sweep

results are stored in an intermediate bufer to allow for backward sweep calculation. Upon completion of the
backward sweep, results are placed in an output bufer that is followed by a degridding logic (6). The degridding
logic converts the calculated results to a 1024-bit wide output stream (8). As there is only a single output stream
(both in vadvc and hdiff), we do not need extra logic to merge the streams. The 1024-bit wide stream goes
through an HBM stream converter logic (4) that converts the stream bitwidth to HBM port size (256-bit).
Figure 4b shows the execution timeline from our host system to the FPGA board for a single PE. The host

oloads the processing to an FPGA and transfers the required data via DMA (direct memory access) over the
OCAPI interface. The OC-Accel framework allows for parallel execution of the host and our FPGA PEs while
exchanging control signals over the AXI lite interface [4]. On task completion, the AFU notifies the host system
via the AXI lite interface and transfers back the results via DMA.

3.2 NERO Application Framework

Figure 6 shows the NERO application framework to support our architecture. Our previous work [152, 153]
describes the corresponding application framework using SNAP-CAPI2. A software-deined COSMO API (1)

5Fields represent atmospheric components like wind, pressure, velocity, etc. that are required for weather calculation.

ACM Trans. Reconig. Technol. Syst.

10 • Singh, et al.

handles oloading jobs to NERO with an interrupt-based queuing mechanism. This allows for minimal CPU
usage (and, hence, power usage) during FPGA operation. NERO employs an array of processing elements to
compute COSMO kernels, such as vertical advection or horizontal difusion. Additionally, we pipeline our PEs to
exploit the available spatial parallelism. By accessing the host memory through the OCAPI cache-coherent link,
NERO acts as a peer to the CPU. This is enabled through the TLx (Transaction Layer) and the DLx (Data Link
Layer) (2). OC-Accel (3) allows for seamless integration of the COSMO API with our OCAPI-based accelerator.
The job manager (4) dispatches jobs to streams, which are managed in the stream scheduler (5). The execution
of a job is done by streams that determine which data is to be read from the host memory and sent to the PE
array through DMA transfers (6). The pool of heterogeneous on-chip memory is used to store the input data
from the main memory and the intermediate data generated by each PE.

OCAPI TLx (Transaction Layer)

 DLx (Data Link Layer)

Job

Manager

Stream

Scheduler
AXI DMA

OCAPI

OC-Accel

FPGA

AXI Lite Bus
MMIO Control registers

AXI Full Bus
Burst Transactions

PE PE

NERO

Partitioned On-chip Memory

PEPE

Host POWER

System
TL (Transaction Layer)

DL (Data Link Layer)

COSMO API libOCXLCOSMO WEATHER

MODEL

BlueLink

25Gb/s x8

HBM Memory Controller

HBM2 Stack 1

16x......

HBM2 Stack 2

16x......

2

3

4 5 6

1

.....

Fig. 6. NERO application framework. We co-design our sotware and hardware using the OC-Accel framework. COSMO API
allows the host to ofload kernels to our FPGA platform.

4 Results

4.1 Experimental Setup

We evaluate our accelerator designs for vadvc, and hdiff in terms of performance, energy consumption, and
FPGA resource utilization on two diferent FPGAs, and two diferent external data communication interfaces
between the CPU and the FPGA board. We implement our accelerator designs for vadvc, and hdiff on both 1)
an Alpha-Data ADM-PCIE-9H7 card [1] featuring the Xilinx Virtex Ultrascale+ XCVU37P-FSVH2892-2-e [19]
with 8GiB HBM2 [7] and 2) an Alpha-Data ADM-PCIE-9V3 card [2] featuring the Xilinx Virtex Ultrascale+
XCVU3P-FFVC1517-2-i with 8GiB DDR4 [19], connected to an IBM POWER9 host system. For the external data
communication interface, we use both CAPI2 [157] and the state-of-the-art OCAPI (OpenCAPI) [156] interface.
We compare these implementations to execution on a POWER9 CPU with 16 cores (using all 64 hardware threads).

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 11

Table 1 provides our system parameters. We co-design our hardware and software interface around the OC-Accel
framework [13] while using the HLS design low. Our development machine is x86 Intel® Xeon®7.9.2009 [5]
distribution with GNU Compiler Collection (GCC) version 4.8.5 [6]. We use Xilinx Vivado 2019.2 [23] suite to
develop our accelerator designs.

4.2 Performance Tuning

We run our experiments using a 256 × 256 × 64-point domain similar to the grid domain used by the COSMO
weather prediction model. We employ an auto-tuning technique to determine a Pareto-optimal solution (in
terms of performance and resource utilization) for our 3D window dimensions. The auto-tuning with OpenTuner
exhaustively searches for every tile size in the x- and y-dimensions for vadvc.6 For hdiff, we consider sizes in
all three dimensions. We deine our auto-tuning as a multi-objective optimization with the goal of maximizing
performance with minimal resource utilization. Section 3 provides further details on our design. We evaluate
frequency values between 50-400MHz, with an increment of 50MHz, utilizing the complete spectrum of compatible
frequency conigurations supported by the OC-Accel framework [13]. Figure 7 shows hand-tuned and auto-tuned
performance and FPGA resource utilization results for vadvc, as a function of the chosen tile size. From the
igure, we draw two observations.

12 14 16 18 20
Resource utilization (%)

2

4

6

8

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

4x4
8x8 16x16 32x32 64x64

64x2

(a)

hand-tuned
auto-tuned

5 6 7 8 9 10
Resource utilization (%)

4

6

8

10

12

14

16

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

4x4
8x816x16 32x32 64x6432x16

64x2

(b)

hand-tuned
auto-tuned

Fig. 7. Performance and FPGA resource utilization of single vadvc PE, as a function of tile-size, using hand-tuning and
auto-tuning for (a) single-precision (32-bit) and (b) half-precision (16-bit). We highlight the Pareto-optimal solution that we
use for our vadvc accelerator (with a red circle). Note that the Pareto-optimal solution changes with precision.

First, by using the auto-tuning approach and our careful FPGA microarchitecture design, we can get Pareto-
optimal results with a tile size of 64 × 2 × 64 for single-precision vadvc, which gives us a peak performance of
8.49 GFLOP/s. For half-precision, we use a tile size of 32× 16× 64 to achieve a peak performance of 16.5 GFLOP/s.
We employ a similar strategy for hdiff to attain a single-precision performance of 30.3 GFLOP/s with a tile size
of 16 × 64 × 8 and a half-precision performance of 77.8 GFLOP/s with a tile size of 64 × 8 × 64.
Second, in FPGA acceleration, designers usually rely on expert judgement to ind the appropriate tile-size

and often adapt the design to use homogeneous tile sizes. However, as shown in Figure 7, such hand-tuned
implementations lead to sub-optimal results in terms of either resource utilization or performance.

6vadvc has dependencies in the z-dimension; therefore, it cannot be parallelized in the z-dimension.

ACM Trans. Reconig. Technol. Syst.

12 • Singh, et al.

We conclude that the Pareto-optimal tile size depends on the data precision used: a good tile-size for single-
precision might lead to poor results when used with half-precision.

4.3 Performance Analysis

Figure 8 shows single-precision performance results for the (a) vertical advection (vadvc) and (b) horizontal
difusion kernels (hdiff). For both kernels, we implement our design on an HBM- and a DDR4-based FPGA
board. For the DDR4-based design, we use CAPI2 (DDR4+CAPI2 in Figure 8. For the HBM-based design, we use
CAPI2 (HBM+CAPI2) and OCAPI. We evaluate two versions of the HBM-based design with OCAPI: (1) one with
a single channel per PE (HBM+OCAPI), and (2) one with multiple channels (i.e., 4 HBM pseudo channels) per
PE (HBM_multi+OCAPI). To compare the performance of these four versions, we scale the number of PEs and
analyze the change in execution time. We also tested diferent domain sizes, varying from 64 × 64 × 64-point to
1024 × 1024 × 64-point and observe that the runtime scales linearly and the overall performance (GLOP/s) remain
constant. This shows the scalability of our accelerator design.

1 2 3 4 8 14

Number of PEs

0

4

8

12

16

R
u

n
ti
m

e
 (

m
s
e
c
)

12.09

6.01

2.78
1.27 0.81

10.92

5.51
3.4

16.12

8.06

4.03 2.02 1.11

15.39

8.98

6.34

POWER9 socket (64 threads)

(a) HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI2

DDR4+CAPI2

1 2 3 4 8 16

Number of PEs

0

2

4

6

R
u

n
ti
m

e
 (

m
s
e
c
)

4.07

2.03

1.08

0.54 0.27

6.3

2.21

1.16
0.82

3.1

1.67
0.84

0.39

4.17

2.36
1.72 1.39

POWER9 socket (64 threads)

(b) HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI2

DDR4+CAPI2

Fig. 8. Single-precision performance for (a) vadvc and (b) hdiff, as a function of accelerator PE count on the HBM- and
DDR4-based FPGA boards. We also show the single socket (64 threads) performance of an IBM POWER9 host system
for both vadvc and hdiff. For HBM-based design, we implement our accelerator with both the CAPI2 interface and the
state-of-the-art OpenCAPI (OCAPI) interface (with both single channel and multiple channels per PE).

We draw ive observations from the igure.
First, the maximum number of PEs that we can it on the FPGA boards varies for diferent versions of our design.

For the DDR4-based design, we can accommodate only 4 PEs/8 PEs for vadvc/hdiff on the 9V3 board. For the
HBM-based design, we can it 14 PEs/16 PEs for vadvc/hdiff for both HBM+CAPI2 and HBM+OCAPI versions before
exhausting the on-board resources. The HBM_multi+OCAPI version can only it 3 PEs (i.e., 12 HBM channels) for
both vadvc and hdiff because adding more HBM channels leads to timing constraint violations.
Second, the full-blown HBM+OCAPI versions (i.e., with the maximum number of PEs) of vadvc and hdiff

outperform the 64-thread IBM POWER9 CPU version by 5.3×, and 12.7×, respectively. We achieve 37% and 44%
higher performance for vadvc and hdiff, respectively, with HBM+OCAPI than HBM+CAPI2 due to the following
two reasons: (1) OCAPI provides double the bitwidth (1024-bit) of the CAPI2 interface (512-bit), which provides a
higher bandwidth to the host CPU, i.e., 22.1/22.0 GB/s R/W versus 13.9/14.0 GB/s; and (2) with OCAPI, memory
coherency logic is moved onto the IBM POWER CPU, which provides more FPGA area and allows us to run our
accelerator logic at a higher clock frequency (250MHz for OCAPI versus 200MHz for CAPI2). We observe that

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 13

when implementing our accelerator designs with targets above those frequencies, the respective timing report
results in the worst negative slack (WNS) higher than 200ps, which OC-Accel developers regard as dangerous
for system stability. At lower frequencies, we achieved lower performance, regardless of the number of PEs.
Our single-precision HBM+OCAPI-based FPGA implementations provide 157.1 GFLOP/s and 608.4 GFLOP/s for
vadvc and hdiff, respectively. For half-precision, if we use the same amount of PEs as in single precision, our
accelerator reaches a performance of 329.9 GFLOP/s for vadvc (2.1× the single-precision performance) and
1.5 TFLOP/s for hdiff (2.5× the single-precision performance).

Third, for a single PE, DDR4-CAPI2 is faster than HBM-CAPI2 for both vadvc and hdiff. This higher performance
is because the HBM-based design uses one HBM channel per PE, and the bus width of the DDR4 channel (512 bits)
is larger than that of an HBM channel (256 bits). Therefore, the HBM channel has a lower transfer rate of 0.8-2.1
GT/s (Gigatransfers per second) than a DDR4 channel (2.1-4.3 GT/s), resulting in a theoretical bandwidth of 12.8
GB/s and 25.6 GB/s per channel, respectively. One way to match the DDR4 bus width is to have a single PE fetch
data from multiple HBM channels in parallel. In Figure 8, our multi-channel setting (HBM_multi+OCAPI) uses 4
HBM pseudo channels per PE to match the bitwidth of the OCAPI interface. We observe that by fetching more
data from multiple channels, compared to the single-channel-single PE design (HBM+OCAPI), HBM_multi+OCAPI
achieves 1.2× and 1.8× performance improvement for vadvc and hdiff, respectively.

Fourth, as we increase the number of PEs, we divide the workload evenly across PEs. As a result, we observe
linear scaling in the performance of HBM-based designs, where each PE reads and writes through a dedicated
HBM channel. For multi-channel designs, we observe that the best-performing multi-channel-single PE design
(i.e., using 3 PEs with 12 HBM channels for both workloads) has 4.7× and 3.1× lower performance than the
best-performing single-channel-single PE design (i.e., 14 PEs for vadvc and 16 PEs for hdiff, respectively). This
observation shows that there is a tradeof between (1) enabling more HBM pseudo channels to provide each
PE with more bandwidth, and (2) implementing more PEs in the available area. For both vadvc and hdiff, data
transfer and computation take a comparable amount of time. Therefore, we are able to achieve a linear execution
time reduction with the number of PEs.

Fifth, the performance of the DDR-based designs scales non-linearly for vadvc and hdiff with the number of
PEs, as all PEs access memory through the same channel. Multiple PEs compete for a single memory channel,
which causes frequent memory stalls due to contention in the memory channel.

4.4 Energy Eficiency Analysis

We compare the energy consumption of our accelerator to a 16-core POWER9 host system. We use the AMESTER7

tool to measure the active power8 consumption. We measure 99.2 Watts for vadvc and 97.9 Watts for hdiff by
monitoring built power sensors in the POWER9 system. For vadvc and hdiff on the HBM- and DDR4-based
designs, Figure 9 and Figure 10 shows the active power consumption and the energy eiciency (GFLOPS per
Watt), respectively.

We make ive observations from Figure 9 and Figure 10.
First, the full-blown HBM+OCAPI designs (i.e., 14 PEs for vadvc and 16 PEs for hdiff) achieve energy ei-

ciency values of 1.61 GFLOPS/Watt and 21.01 GFLOPS/Watt for vadvc and hdiff, respectively. These represent
improvements of 12× and 35× compared to the IBM POWER9 system for vadvc and hdiff, respectively.
Second, the DDR4-CAPI2 designs for vadvc and hdiff are slightly more energy-eicient (1.1× to 1.5×) than

the HBM-CAPI2 designs when the number of PEs is small. This observation is in line with our discussion about

7https://github.com/open-power/amester
8Active power denotes the diference between the total power of a complete socket (including CPU, memory, fans, I/O, etc.) when an
application is running compared to when it is idle.

ACM Trans. Reconig. Technol. Syst.

14 • Singh, et al.

1 2 3 4 8 14

Number of PEs

0

20

40

60

80

100

P
o
w

e
r

(W
a
tt
) HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI

DDR4+CAPI

1 2 3 4 8 16

Number of PEs

0

10

20

30

40

P
o
w

e
r

(W
a
tt
) HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI

DDR4+CAPI

(a) (b)

Fig. 9. Active Power Consumption for (a) vadvc and (b) hdiff on HBM- and DDR4-based FPGA boards. For HBM-based
design, we implement our accelerator with both the CAPI2 interface and the state-of-the-art OpenCAPI (OCAPI) interface
(with both single channel and multiple channels per PE).

1 2 3 4 8 14

Number of PEs

0

1

2

3

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

G
F

L
O

P
S

/W
a
tt
)

1.86

2.1
2.28

2.32

1.61
1.91

2.15

2.3

1.37

1.65
1.78 1.71

1.45
1.44 1.61

1.31

POWER9 socket (64 threads)

(a)

HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI2

DDR4+CAPI2

(b)

1 2 3 4 8 16

Number of PEs

0

5

10

15

20

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

G
F

L
O

P
S

/W
a
tt
)

7.29

12.51

18.2

20.47 21.01

11.49

14.58
15.49

6.5

10.8

15.17

17.33 17.34

9.75

13.24 14.8 14.58

POWER9 socket (64 threads)

HBM+OCAPI

HBM_multi+OCAPI

HBM+CAPI2

DDR4+CAPI2

Fig. 10. Energy eficiency for (a) vadvc and (b) hdiff on HBM- and DDR4-based FPGA boards. We also show the single
socket (64 threads) energy eficiency of an IBM POWER9 host system for both vadvc and hdiff. For HBM-based design, we
implement our accelerator with both the CAPI2 interface and the state-of-the-art OpenCAPI (OCAPI) interface (with both
single channel and multiple channels per PE).

performance with small PE counts in Section 4.3. However, as we increase the number of PEs, the HBM-CAPI2
designs provide higher energy eiciency since they make use of multiple HBM channels.

Third, the energy eiciency of the HBM-based designs (HBM+CAPI2, HBM+OCAPI) for hdiff increases with the
number of PEs until a saturation point (8 PEs). This trend is because every additional HBM channel increases

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 15

power consumption by ∼1 Watt (for the HBM AXI3 interface operating at 250MHz with a logic toggle rate of
∼12.5%).

Fourth, HBM+OCAPI, HBM+CAPI2, and DDR4+CAPI2 versions of vadvc achieve their highest energy eiciency at
a number of PEs that is smaller than the maximum possible. There is a large amount of control low in vadvc,
which leads to large resource utilization. As a result, as shown in Figure 9, increasing the PE count increases
power consumption dramatically, causing lower energy eiciency.
Fifth, the multi-channel-single PE designs (HBM_multi+OCAPI) are more energy-eicient than the single-

channel-single PE designs (HBM+OCAPI) for the same number of PEs. However, HBM+OCAPI designs achieve higher
energy eiciency for higher numbers of PEs, which are not afordable for HBM_multi+OCAPI designs.

4.5 FPGA Resource Utilization

Table 2 shows the resource utilization of vadvc and hdiff on the AD9H7 board. We draw two observations. First,
there is a high BRAM consumption compared to other FPGA resources. This is because we implement input,
ield, and output signals as hls::streams. In high-level synthesis, by default, streams are implemented as FIFOs
that make use of BRAM. Second, vadvc has a much larger resource consumption than hdiff because vadvc
has higher computational complexity and requires a larger number of ields to perform the compound stencil
calculation. Note that for hdiff, we can accommodate more PEs, but in this work, we make use of only a single
HBM stack. Therefore, we use 16 PEs because a single HBM stack ofers up to 16 memory channels.

5 Discussion and Key Takeaways

A wide range of application domains have emerged with the ubiquity of computing platforms in every aspect of
our daily lives. These modern workloads (e.g., machine learning, graph processing, and bioinformatics) demand
high compute capabilities within strict power constraints [71]. However, today’s computing systems are getting
constrained by current technological capabilities, making them incapable of delivering the required performance.
This paper presents our recent eforts to leverage near-memory computing capable FPGA-based accelerators to
accelerate two major kernels from the weather prediction application in an energy-eicient way. We summarize
the most important insights and takeaways as follows.

First, our evaluation shows that High-Bandwidth Memory-based near-memory FPGA accelerator designs can
improve performance by 5.3×-12.7× and energy eiciency by 12×-35× over a single-socket high-end 16-core IBM
POWER9 CPU.
Second, our HBM-based FPGA accelerator designs employ a dedicated HBM channel per PE. Such a design

avoids memory access congestion, which is typical in DDR4-based FPGA designs, and ensures memory bandwidth
scaling with the number of PEs. As a result, in most of the data-parallel applications, performance scales linearly
with the number of PEs. Therefore, HBM provides an attractive solution for scale-out computation.

Third, the data needs to be adequately mapped to each HBM channel’s address space. A data mapping scheme
should map data in such a way that the data required by the processing unit is readily available in the vicinity (data
and code co-location). An ineicient data mapping mechanism can severely hamper the beneits of processing
close to memory.

Fourth, we make use of OCAPI in a coarse-grained way, since we oload the entire application to the FPGA. In
this case, OCAPI ensures that the FPGA accelerators access the entire CPU memory with the minimum number
of memory copies between the host and the FPGA, e.g., avoiding the intermediate bufer copies that a traditional
PCIe-based DMA invokes [52]. However, depending on the application, the CAPI protocol can be employed in
iner-grained algorithm-hardware co-design, like the ExtraV [106], where the authors aggressively utilize the
ine-grained communication capability of OCAPI to boost graph analytics performance.

ACM Trans. Reconig. Technol. Syst.

16 • Singh, et al.

Fifth, the maximum performance of our HBM-based design is reached using the maximum PE count that we
can it in the reconigurable fabric, with each PE having a dedicated HBM channel. However, adding more PEs
could lead to timing constraint violations for HBM-based designs. As shown with our multi-channel setting
(Section 4.3), where we can it only 3 PEs for both vadvc and hdiff, enabling more HBM channels leads to
timing constraint violations. HBM-based FPGAs consist of multiple super-logic regions (SLRs) [18], where an
SLR represents a single FPGA die. All HBM channels are connected only to SLR0, while other SLRs have indirect
connections to the HBM channels. Therefore, if a PE is implemented in a non-SLR0 region for a large design, it
might make timing closure diicult. A possible way to alleviate timing issues is by running the AFU at a lower
frequency, which eases the place and route.
Sixth, the energy eiciency of our HBM-based designs tends to saturate (or even reduces) as we increase the

number of PEs beyond some point. The highest energy eiciency is achieved with a PE count that is smaller
than the highest-performing PE count. The major reason for a decrease in the energy eiciency is the increase in
power consumption with every additional HBM channel.
Seventh, the emerging cache-coherent interconnects standards like CXL [145], CCIX [39], and OCAPI [156]

could be vital in improving the performance and energy eiciency of big data workloads running on FPGA-based
devices because they avoid having multiple data copies. However, a very small number of works, such as [106],
leverage the coherency aspect of these interconnects. More quantitative exploration is required to analyze the
advantages and disadvantages of using these interconnects.
Eighth, we are witnessing an enormous amount of data being generated across multiple application do-

mains [123, 151] like weather prediction modeling, radio astronomy, bioinformatics, material science, chemistry,
health sciences, etc. The processing of the sheer amount of generated data is one of the biggest challenges to
overcome. In this paper, we demonstrate the capabilities of near-memory reconigurable accelerators in the
domain of weather prediction, however, there are many other high-performance computing applications where
such near-memory architectures can alleviate the data movement bottleneck.

6 Related Work

To our knowledge, this is the irst work to evaluate the beneits of using FPGAs equipped with high-bandwidth
memory (HBM) to accelerate real-world weather modeling stencils. We exploit the near-memory capabilities
of such FPGAs to accelerate important weather prediction kernels. Exploiting the high-bandwidth memory in
FPGAs, we answer the following questions with our work. First, do real-world weather prediction applications
beneit from HBM-based FPGAs? Second, how can we scale the processing in terms of not only run-time but also
energy eiciency? Third, what does the system look like regarding computation and data movement with an
HBM-enabled FPGA when integrating accelerators for real-world weather prediction workloads?

Modern workloads exhibit limited locality and operate on large amounts of data, which causes frequent data
movement between the memory subsystem and the processing units [43, 44, 71, 118ś121]. This frequent data
movement has a severe impact on overall system performance and energy eiciency. For example, in the domain
of climate and weather modeling, there is a data avalanche due to large atmospheric simulations [137]. Major
eforts are currently underway towards reining the resolution grid of climate models that would generate
zettabytes of data [137]. These high-resolution simulations are useful to predict and address events like severe
storms. However, the sheer amount of generated data is one of the biggest challenges to overcome. We ind
another relevant example in radio astronomy. The irst phase of the Square Kilometre Array (SKA) aims to
process over 100 terabytes of raw data samples per second, yielding of the order of 300 petabytes of SKA data
produced annually [91, 149]. Recent biological disciplines such as genomics have also emerged as one of the most
data-intensive workloads across all diferent sciences wherein just a single human genome sequence produces

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 17

hundreds of gigabytes of raw data. With the rapid advancement in sequencing technology, the data volume in
genomics is projected to surpass the data volume in all other application domains [124].
A way to alleviate this data movement bottleneck [43, 44, 71, 80, 118ś121, 121, 144, 150] is near-memory

computing (NMC), which consists of placing processing units closer to memory. NMC is enabled by new memory
technologies, such as 3D-stacked memories [7, 43, 99, 102, 104, 105, 108, 118, 121, 130], and also by cache-coherent
interconnects [39, 145, 156], which allow close integration of processing units and memory units. Depending
on the applications and systems of interest (e.g., [24ś26, 33, 36, 37, 40, 43, 44, 46, 47, 50, 63, 64, 68, 69, 73, 75,
76, 81, 82, 86, 93, 96, 98, 107, 109, 111, 113, 117, 118, 121, 121, 122, 126, 128, 138, 140ś143, 146, 158, 174]), prior
works propose diferent types of near-memory processing units, such as general-purpose CPU cores [24, 27, 44ś
46, 60, 75, 78, 101, 109, 112, 123, 126, 132, 136], GPU cores [72, 85, 129, 176], reconigurable units [70, 89, 92, 153],
or ixed-function units [25, 43, 78, 81, 82, 86, 100, 112, 122].

FPGA accelerators are promising to enhance overall system performance with low power consumption. Past
works [28ś32, 49, 57, 74, 87, 90, 92, 94, 106] show that FPGAs can be employed efectively for a wide range of
applications. FPGAs provide a unique combination of lexibility and performance without the cost, complexity, and
risk of developing custom application-speciic integrated circuits (ASICs). The researchers at CERN, for example,
are using FPGAs to accelerate physics workload in CERN’s exploration of dark matter [61]. Microsoft’s Project
Catapult [48] is another example of how FPGAs can be used in the data center infrastructure. Driven by Catapult’s
promising research results, Microsoft further deployed the architecture on the Azure cloud marketplace [116].
Such integration for certain workloads can even ofer more energy eiciency than CPU or GPU-based systems.
The recent addition of HBM to FPGAs presents an opportunity to exploit high memory bandwidth with the
low-power FPGA fabric. The potential of high-bandwidth memory [7, 104] has been explored in many-core
processors [72, 131] and GPUs [72, 178]. Recent benchmarking works [95, 171] show the potential of HBM for
FPGAs.
NERO is the irst work to accelerate a real-world HPC weather prediction application using the FPGA+HBM

fabric. Compared to a previous work [153] that optimizes only the horizontal difusion kernel on an FPGA with
DDR4 memory, our analysis reveals that the vertical advection kernel has a much lower compute intensity
with little to no regularity. Therefore, our work accelerates both kernels that together represent the algorithmic
diversity of the entire COSMO weather prediction model. Our current work difers from [152] in the following
aspects. First, we design and evaluate both horizontal difusion and vertical advection stencils. Vertical advection
is the most complex stencil in the entire COSMO application. Second, we integrate and implement our accelerator
design with an HBM-based FPGA. The bus width of the DDR4 channel (512 bits) is larger than that of an HBM
channel (256 bits). Therefore, the HBM channel has a lower transfer rate of 0.8-2.1 GT/s (Gigatransfers per
second) than a DDR4 channel (2.1-4.3 GT/s), resulting in a theoretical bandwidth of 12.8 GB/s and 25.6 GB/s
per channel, respectively. However, HBM exposes 32 memory channels that provide 4x more bandwidth (410
GB/s for HBM [95]) compared to traditional DDR4 bandwidth (72 GB/s for four independent dual-rank DIMM
interfaces [21]). Therefore, the use of HBM imposes an architectural shift. We evaluate and demonstrate the use
of HBM for scaling an accelerator design with diferent channels provided by HBM. Third, we use an auto-tuning
framework to ind the right window size (Figure 6) that demonstrates the importance of inding the right window
size. Fourth, we provide new results using a state-of-the-art OpenCAPI (OCAPI) interface with the OC-Accel
framework. OCAPI provides two key opportunities compared to our previous CAPI2 implementation: (1) OCAPI
has double the bitwidth of our previously used CAPI2 interface, (2) a major component of the memory coherency
logic is moved to the host CPU side, which provides more FPGA area and enables designs with higher frequency.
Due to the above optimizations, we improve the performance for horizontal difusion by 1.2x on a DDR4-based
board and 4.7x on an HBM-based board compared to our previous work NARMADA [153].
Enabling higher performance for stencil computations has been a subject of optimizations across the whole

computing stack [35, 51, 53ś55, 66, 77, 79, 83, 115, 135, 155, 160, 168, 169, 179]. Stencil computation is essential

ACM Trans. Reconig. Technol. Syst.

18 • Singh, et al.

for numerical simulations of inite diference methods (FDM) [127] and is applied in iterative solvers of linear
equation systems. We use stencil computation in a wide range of applications, including computational luid
dynamics [88], image processing [84], weather prediction modeling [59], etc.

Unlike stencils found in the literature [51, 55, 56, 135, 154, 168, 169], real-world compound stencils consist of a
collection of stencils that perform a sequence of element-wise computations with complex interdependencies.
Such compound kernels have complex memory access patterns and low arithmetic intensity because they have
limited operations per loaded value. Our work is the irst work to accelerate both horizontal difusion and vertical
advection stencils, which are representative of data access patterns and the algorithmic complexity found in the
entire COSMO weather model.
Table 4 lists recent works (including NERO) that use FPGA to accelerate stencil-based application. We also

mention works that accelerate elementary stencils (7-point, 25-point Jacobi, Hotspot, and Diffusion). We
make the following three observations. First, the elementary stencils can achieve much higher performance
on comparable FPGA devices than complex weather stencils (such as hdiff) even without using HBM. This
high performance is because elementary stencils have a higher arithmetic intensity than weather stencils. Due
to their data-parallel nature, these elementary stencils can further take advantage of the increased bandwidth
provided by HBM in an energy-eicient way. Second, weather stencils can reach only 2%-17% of the peak
theoretical performance of an FPGA board. This low peak performance is because weather stencils have several
elementary stencils cascaded together with data interdependencies that lead to complex memory access patterns.
Third, compared to NARMADA [153], which uses a DDR4-based design, our HBM-based design achieves 4.7×
performance improvement by exploiting the high bandwidth provided by the HBM.
Szustak et al. accelerate the MPDATA advection scheme on multi-core CPU [159] and computational luid

dynamics kernels on FPGA [133]. Singh et al. [154] explore the applicability of diferent number formats and
exhaustively search for the appropriate bit-width for memory-bound stencil kernels to improve performance and
energy eiciency with minimal loss in the accuracy. Bianco et al. [41] optimize the COSMO weather prediction
model for GPUs. Thaler et al. [161], in a collaboration work between the Swiss National Supercomputing Centre
(CSCS) and the Federal Institute of Meteorology and Climatology (MeteoSwiss), discuss the importance of
horizontal difusion and vertical advection kernels in the entire COSMO model. These kernels together represent
the algorithmic diversity of the entire COSMO weather prediction model [41, 79, 161]. They port COSMO to a
many-core system. Compared to their Intel KNL [11] (or NVIDIA P100 [12]) implementation, we observe that
our FPGA-based vadvc and hdiff design provides 1.5× (or 1.4×) and 3.2× (or 2.1×) performance improvements,
respectively. Several works [56, 103, 110, 170] propose frameworks for generating optimized stencil code for
FPGA-based platforms. Wahib et al. [167] develop an analytical performance model for choosing an optimal
GPU-based execution strategy for various scientiic applications, including COSMO. Gysi et al. [79] provide
guidelines for optimizing stencil kernels for CPUśGPU systems.

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 19

7 Conclusion

We introduce NERO, the irst design and implementation on a reconigurable fabric with high-bandwidth memory
(HBM) to accelerate representative weather prediction kernels, i.e., vertical advection (vadvc) and horizontal
difusion (hdiff), from a real-world weather prediction application. These kernels are compound stencils that
are found in various weather prediction applications, including the COSMO model. We show that compound
kernels do not perform well on conventional architectures due to their complex data access patterns and low
data reusability, which make them memory-bounded. Therefore, they greatly beneit from our near-memory
computing solution that takes advantage of the high data transfer bandwidth of HBM. We use a heterogeneous
system comprising of IBM POWER9 CPU with ield-programmable gate array (FPGA) as our target platform. We
create a heterogeneous domain-speciic memory hierarchy using on-chip URAMs and BRAMs, and on-package
HBM on an FPGA. Unlike conventional ixed CPU memory hierarchies, which perform poorly with irregular
access patterns and sufer from cache pollution efects, application-speciic memory hierarchies are shown to
improve both energy and latency by tailoring the cache levels and cache sizes to an application’s memory access
patterns.

NERO’s implementations of vadvc and hdiff outperform the optimized software implementations on a 16-core
POWER9 with 4-way multithreading by 5.3× and 12.7×, with 12× and 35× less energy consumption, respectively.
We conclude that hardware acceleration on an FPGA+HBM fabric is a promising solution for compound stencils
present in weather prediction applications. We hope that our reconigurable near-memory accelerator inspires
developers of diferent high-performance computing applications that sufer from the memory bottleneck.

Acknowledgments

This workwas performed in the framework of theHorizon 2020 program for the project łNear-Memory Computing
(NeMeCo)ž. It is funded by the European Commission under Marie Sklodowska-Curie Innovative Training
Networks European Industrial Doctorate (Project ID: 676240). Special thanks to Florian Auernhammer and
Raphael Polig for providing support with the IBM systems. We appreciate valuable discussions with Kaan Kara
and Ronald Luijten. We would also like to thank Bruno Mesnet and Alexandre Castellane from IBM France for
help with the SNAP and OC-Accel framework. This work was partially supported by the H2020 research and
innovation programme under grant agreement No 732631, project OPRECOMP. We also thank Google, Huawei,
Intel, Microsoft, SRC, and VMware for their funding support to the SAFARI Research Group.

ACM Trans. Reconig. Technol. Syst.

20 • Singh, et al.

Algorithm 1: Pseudo-code for vertical advection and horizontal difusion kernels used by the COSMO [59]
weather prediction model.

1 Function verticalAdvection(loat* ccol, loat* dcol, loat* wcon, loat* ustage, loat* upos, loat* utens,
loat* utensstage)

2 for c ← 2 to column − 2 do
3 for r ← 2 to row-2 do
4 Function forwardSweep(loat* ccol, loat* dcol, loat* wcon, loat* ustage, loat* upos, loat*

utens, loat* utensstage)
5 for d ← 1 to depth do

/* forward sweep calculation */

6 end

7 end

8 Function backwardSweep(loat* ccol, loat* dcol, loat* wcon, loat* ustage, loat* upos, loat*
utens, loat* utensstage)

9 for d ← depth − 1 to 1 do
/* backward sweep calculation */

10 end

11 end

12 end

13 end

14 end

15 Function horizontalDiffusion(loat* src, loat* dst)
16 for d ← 1 to depth do

17 for c ← 2 to column − 2 do
18 for r ← 2 to row-2 do

/* Laplacian calculation */

19 lapCR = laplaceCalculate (c, r) /* row-laplacian */

20 lapCRm = laplaceCalculate (c, r − 1)
21 lapCRp = laplaceCalculate (c, r + 1) /* column-laplacian */

22 lapCmR = laplaceCalculate (c − 1, r)
23 lapCpR = laplaceCalculate (c + 1, r) /* column-flux calculation */

24 f luxC = lapCpR − lapCR
25 f luxCm = lapCR − lapCmR

/* row-flux calculation */

26 f luxR = lapCRp − lapCR
27 f luxRm = lapCR − lapCmR

/* output calculation */

28 dest[d][c][r] = src[d][c][r] − c1 ∗ (f luxCR − f luxCmR) + (f luxCR − f luxCRm)

29 end

30 end

31 end

32 end

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 21

Table 1. System parameters and hardware configuration for the CPU and the FPGA board.

Host CPU 16-core IBM POWER9 AC922 [134]
@3.2 GHz, 4-way SMT [164]

Cache-Hierarchy 16×32 KiB L1-I/D, 256 KiB L2, 10 MiB L3
System Memory 32GiB RDIMM DDR4 2666 MHz [15]

HBM-based

FPGA Board

Alpha Data ADM-PCIE-9H7 [1]
Xilinx Virtex Ultrascale+ XCVU37P-2 [19]
8GiB (HBM2 [7]) with PCIe Gen4 x8 [114]

DDR4-based

FPGA Board

Alpha Data ADM-PCIE-9V3 [2]
Xilinx Virtex Ultrascale+ XCVU3P-2 [19]
8GiB (DDR4) with PCIe Gen4 x8 [114]

OS details Ubuntu 20.04.3 LTS [16], GNU Compiler Col-
lection (GCC) version 9.3.0 [6], IBM XL C/C++
16 [9]

Table 2. FPGA resource utilization in our highest-performing HBM-based designs for vadvc and hdiff.

Algorithm BRAM DSP FF LUT URAM

vadvc 94% 39% 37% 55% 53%
hdiff 96% 4% 10% 15% 8%

Table 3. Prediction results for diferent CAPI 2.0 enabled boards across FPGA families.

2*FPGA Board 2*FPGA Device Utilization% 2*Window 2*AFU 2*
Performance
(GFLOP/s)

2*Energy Impr.

BRAM DSP FF LUT URAM
ADM-PCIE-9V3* XCVU3P-2 71 66 49 79 58 8 × 8 × 8 16 120.1 18.1×
ADM-PCIE-KU3* XCKU3P-2 70 33 61 96 70 16 × 16 × 16 4 48.9 9.3×
Semptian NSA121B XCKU060 55 49 73 79 - 8 × 8 × 8 8 83.5 20.6×
ADM-PCIE-8K5 XCKU115 59 58 81 77 - 8 × 8 × 8 16 162.7 19.2×

[para,lushleft] *URAM memory is available only in Ultrascale+ families
Table 4. Overview of the state-of-art stencil implementations on FPGAs. For each work, we mention the technology node
(Tech. node), DRAM memory technology (Mem. Tech.), theoretical peak floating-point performance (Peak Perf. (TFLOPS)),
available peak memory bandwidth (Peak B/W (GB/s)), frequency of the accelerator logic (Freq. (MHz)), overall logic utilization
(Logic Util.), overall memory utilization (Mem. Util.), achieved performance (Perf. (GOp/s)), and the percentage of achieved
peak roofline performance (Ach. Roof.).

Stencil Work Year Device Tech. node Mem. Tech. Peak Perf. (TFLOPS) Peak B/W (GB/s) Freq. (MHz) Logic Util. Mem. Util. Perf. (GOp/s) Ach. Roof.
Diffusion 3D [168] 2019 Arria 10 TSMC 20nm DDR3 1.4 34 276 32% 47% 628.0 44.9%
Hotspot 3D [168] 2019 Arria 10 TSMC 20nm DDR3 1.4 34 240 34% 81% 630 45.0%
7-point 3D [154] 2019 XCVU3P TSMC 16FF+ DDR4 0.97 25.6 180 23.5% 39% 228.4 23.7%

25-point 3D [154] 2019 XCVU3P TSMC 16FF+ DDR4 0.97 25.6 190 49% 39% 327.7 34.1%
3D Jacobi [56] 2021 Stratix 10 Intel 14nm FinFet DDR4 9.2 76.8 292-317 - - 568.2 6.2%
hdiff [153] 2019 XCVU3P TSMC 16FF+ DDR4 0.97 25.6 200 64.5% 64.1% 129.9 13.3%
hdiff [56] 2021 Stratix 10 Intel 14nm FinFet DDR4 9.2 76.8 292-317 26.0% 20% 145.0 [513.0†] 1.6% [5.5%]
hdiff [Ours] 2021 XCVU37P TSMC 16FF+ HBM 3.6 204.8§ [410] 250 12.5% 52% 608.4 16.9%

† When simulated using an ininite memory bandwidth. § Note that we use only a single HBM stack due to resource limitations.

ACM Trans. Reconig. Technol. Syst.

22 • Singh, et al.

References
[1] [n.d.]. ADM-PCIE-9H7-High-Speed Communications Hub, https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9h7 .
[2] [n.d.]. ADM-PCIE-9V3-High-Performance Network Accelerator, https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3.
[3] [n.d.]. AXI High Bandwidth Memory Controller v1.0, https://www.xilinx.com/support/documentation/ ip_documentation/hbm/v1_0/pg276-

axi-hbm.pdf .
[4] [n.d.]. AXI Reference Guide, https://www.xilinx.com/support/documentation/ ip_documentation/ug761_axi_reference_guide.pdf .
[5] [n.d.]. CentOS-7 (2009) Release Notes, https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2009 .
[6] [n.d.]. GCC, the GNU Compiler Collection, https://gcc.gnu.org/ .
[7] [n.d.]. High Bandwidth Memory (HBM) DRAM (JESD235), https://www.jedec.org/document_search?search_api_views_fulltext=jesd235.
[8] [n.d.]. High Bandwidth Memory (HBM) DRAM, https://www.jedec.org/ sites/default/iles/JESD235B-HBM_Ballout.zip.
[9] [n.d.]. IBM XL C/C++ for Linux, https://www.ibm.com/products/xl-cpp-linux-compiler-power .
[10] [n.d.]. Intel Stratix 10 MX FPGAs, https://www.intel.com/content/www/us/en/products/programmable/ sip/ stratix-10-mx.html.
[11] [n.d.]. IntelÂő Xeon PhiâĎć Processor 7230 (16GB, 1.30 GHz, 64 core), https://www.intel.com/content/www/us/en/products/ sku/94034/ intel-

xeon-phi-processor-7230-16gb-1-30-ghz-64-core/ speciications.html.
[12] [n.d.]. NVIDIAÂő TESLAÂő P100 GPU ACCELERATOR, https:// images.nvidia.com/content/ tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.

pdf .
[13] [n.d.]. OC-Accel, https://opencapi.github.io/oc-accel-doc/ .
[14] [n.d.]. OpenPOWER Work Groups, https://openpowerfoundation.org/ technical/working-groups.
[15] [n.d.]. RDIMM, https://www.micron.com/products/dram-modules/ rdimm.
[16] [n.d.]. Ubuntu 20.04.3 LTS (Focal Fossa), https:// releases.ubuntu.com/20.04/ .
[17] [n.d.]. UltraScale Architecture Memory Resources, https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-

resources.pdf .
[18] [n.d.]. Virtex UltraScale+ HBM FPGA: A Revolutionary Increase in Memory Performance, https://www.xilinx.com/support/documentation/

white_papers/wp485-hbm.pdf .
[19] [n.d.]. Virtex UltraScale+, https://www.xilinx.com/products/ silicon-devices/ fpga/virtex-ultrascale-plus.html.
[20] [n.d.]. Vivado High-Level Synthesis, https://www.xilinx.com/products/design-tools/vivado/ integration/esl-design.html.
[21] [n.d.]. Xilinx VCU1525, https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html.
[22] [n.d.]. Xilinx Virtex UltraScale+, https://www.xilinx.com/products/ silicon-devices/ fpga/virtex-ultrascale-plus.html.
[23] [n.d.]. Xilinx Vivado, https://www.xilinx.com/support/download.html.
[24] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A Scalable Processing-in-Memory Accelerator for

Parallel Graph Processing. In ISCA.
[25] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-Enabled Instructions: A Low-Overhead, Locality-Aware

Processing-in-Memory Architecture. In ISCA.
[26] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data Reorganization in Memory Using 3D-stacked DRAM. In ISCA.
[27] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang, T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,

W. Hwu, and N. S. Kim. 2018. Application-Transparent Near-Memory Processing Architecture with Memory Channel Network. In
MICRO.

[28] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu. 2020. Accelerating
Genome Analysis: A Primer on an Ongoing Journey. In IEEE Micro.

[29] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan. 2019. Shouji: A Fast and Eicient Pre-Alignment Filter
for Sequence Alignment. In Bioinformatics.

[30] Mohammed Alser, Hasan Hassan, Hongyi Xin, OÄğuz Ergin, Onur Mutlu, and Can Alkan. 2017. GateKeeper: A New Hardware
Architecture for Accelerating Pre-Alignment in DNA Short Read Mapping. In Bioinformatics.

[31] Mohammed Alser, Jeremy Rotman, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev,
Benjamin D Singer, Brunilda Balliu, et al. 2020. Technology Dictates Algorithms: Recent Developments in Read Alignment. In Genome
Biology.

[32] Mohammed Alser, Taha Shahroodi, Juan Gomez-Luna, Can Alkan, and Onur Mutlu. 2020. SneakySnake: A Fast and Accurate Universal
Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs. In Bioinformatics.

[33] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2019. AlignS: A Processing-In-Memory Accelerator for DNA Short Read
Alignment Leveraging SOT-MRAM. In DAC.

[34] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jefrey Bosboom, Una-May O’Reilly, and Saman Amaras-
inghe. 2014. OpenTuner: An Extensible Framework for Program Autotuning. In PACT.

[35] Adrià Armejach, Helena Caminal, Juan M Cebrian, Rekai González-Alberquilla, Chris Adeniyi-Jones, Mateo Valero, Marc Casas, and
Miquel Moretó. 2018. Stencil Codes on a Vector Length Agnostic Architecture. In PACT.

ACM Trans. Reconig. Technol. Syst.

https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9h7
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2009
https://gcc.gnu.org/
https://www.jedec.org/document_search?search_api_views_fulltext=jesd235
https://www.jedec.org/sites/default/files/JESD235B-HBM_Ballout.zip
https://www.ibm.com/products/xl-cpp-linux-compiler-power
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
https://www.intel.com/content/www/us/en/products/sku/94034/intel-xeon-phi-processor-7230-16gb-1-30-ghz-64-core/specifications.html
https://www.intel.com/content/www/us/en/products/sku/94034/intel-xeon-phi-processor-7230-16gb-1-30-ghz-64-core/specifications.html
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://opencapi.github.io/oc-accel-doc/
https://openpowerfoundation.org/technical/working-groups
https://www.micron.com/products/dram-modules/rdimm
https://releases.ubuntu.com/20.04/
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/ vcu1525-a.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/support/download.html

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 23

[36] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. 2016. Chameleon: Versatile and Practical Near-DRAM
Acceleration Architecture for Large Memory Systems. In MICRO.

[37] Oreoluwatomiwa O Babarinsa and Stratos Idreos. 2015. JAFAR: Near-Data Processing for Databases. In SIGMOD.
[38] George H Barnes, Richard M Brown, Maso Kato, David J Kuck, Daniel L Slotnick, and Richard A Stokes. 1968. The ILLIAC IV Computer.

In TC.
[39] Brad Benton. 2017. CCIX, Gen-Z, OpenCAPI: Overview and Comparison. In OFA.
[40] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos,

Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, et al. 2021. SISA: Set-Centric Instruction Set Architecture for
Graph Mining on Processing-in-Memory Systems. In MICRO.

[41] M Bianco, T Diamanti, O Fuhrer, T Gysi, X Lapillonne, C Osuna, and T Schulthess. 2013. A GPU Capable Version of the COSMO
Weather Model. In ISC.

[42] Luca Bonaventura. 2000. A Semi-implicit Semi-Lagrangian Scheme using the Height Coordinate for a Nonhydrostatic and Fully Elastic
Model of Atmospheric Flows. In JCP.

[43] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu.
2021. Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks. In PACT.

[44] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks. In ASPLOS.

[45] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran
Hajinazar, Krishna T Malladi, Hongzhong Zheng, et al. 2019. CoNDA: Eicient Cache Coherence Support for Near-Data Accelerators.
In ISCA.

[46] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T Malladi, Hongzhong Zheng,
and Onur Mutlu. 2016. LazyPIM: An Eicient Cache Coherence Mechanism for Processing-in-Memory. In CAL.

[47] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun,
Mohammed Alser, Juan Gómez Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata
Ghose, and Onur Mutlu. 2020. GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for
Genome Sequence Analysis. In MICRO.

[48] A. M. Caulield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. 2016. A Cloud-Scale Acceleration Architecture. InMICRO.

[49] Li-Wen Chang, Juan Gómez-Luna, Izzat El Hajj, Sitao Huang, Deming Chen, and Wen-mei Hwu. 2017. Collaborative Computing for
Heterogeneous Integrated Systems. In ICPE.

[50] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-
in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory. In ISCA.

[51] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with Optimized Datalow Architecture. In ICCAD.
[52] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and Peng Wei. 2016. A Quantitative Analysis on

Microarchitectures of Modern CPU-FPGA Platforms. In DAC.
[53] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. PATUS: A Code Generation and Autotuning Framework for Parallel

Iterative Stencil Computations on Modern Microarchitectures. In IPDPS.
[54] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine Yelick. 2009. Optimization and Performance

Modeling of Stencil Computations on Modern Microprocessors. In SIAM review.
[55] Johannes de Fine Licht, Michaela Blott, and Torsten Hoeler. 2018. Designing scalable FPGA architectures using high-level synthesis. In

PPoPP.
[56] Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Dominic Hofer, and Torsten Hoeler. 2021. StencilFlow:

Mapping large stencil programs to distributed spatial computing systems. In CGO.
[57] Dionysios Diamantopoulos, Heiner Giefers, and Christoph Hagleitner. 2018. ecTALK: Energy Eicient Coherent Transprecision

Accelerators âĂŞ The Bidirectional Long Short-Term Memory Neural Network Case . In COOL CHIPS.
[58] Dionysios Diamantopoulos and Christoph Hagleitner. 2018. A System-Level Transprecision FPGA Accelerator for BLSTM Using

On-chip Memory Reshaping. In FPT.
[59] G Doms and U Schättler. 1999. The Nonhydrostatic Limited-Area Model LM (Lokal-model) of the DWD. Part I: Scientiic Documentation.

In DWD, GB Forschung und Entwicklung.
[60] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier Picorel, Babak Falsai, Boris Grot, and Dionisios

Pnevmatikatos. 2017. The Mondrian Data Engine. In ISCA.
[61] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan

Rivera, Nhan Tran, and Z Wu. 2018. Fast inference of deep neural networks in FPGAs for pinproceedings physics. In JINST.

ACM Trans. Reconig. Technol. Syst.

24 • Singh, et al.

[62] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee. 2020. In-memory database acceleration on FPGAs: a survey.
In VLDB.

[63] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. 2015. NDA: Near-DRAM Acceleration Architecture Leveraging Commodity
DRAM Devices and Standard Memory Modules. In HPCA.

[64] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, and Onur
Mutlu. 2020. NATSA: A Near-Data Processing Accelerator for Time Series Analysis. In ICCD.

[65] Michael J Flynn. 1966. Very High-Speed Computing Systems. In Proceedings of the IEEE.
[66] Haohuan Fu and Robert G Clapp. 2011. Eliminating the memory bottleneck: an FPGA-based solution for 3D reverse time migration. In

FPGA.
[67] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx Adaptive Compute Acceleration Platform: VersalâĎć

Architecture. In FPGA.
[68] Fei Gao, Georgios Tziantzioulis, and David Wentzlaf. 2019. ComputeDRAM: In-Memory Compute Using Of-the-Shelf DRAMs. In

MICRO.
[69] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical Near-Data Processing for In-Memory Analytics Frameworks. In

PACT.
[70] M. Gao and C. Kozyrakis. 2016. HRL: Eicient and Flexible Reconigurable Logic for Near-Data Processing. In HPCA.
[71] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna, and Onur Mutlu. 2019. Processing-in-memory: A workload-

driven perspective. In IBM JRD.
[72] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu. 2019. Demystifying Complex Workload-DRAM

Interactions: An Experimental Study. In POMACS.
[73] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa,

Nectarios Koziris, Georgios Goumas, and Onur Mutlu. 2021. SynCron: Eicient Synchronization Support for Near-Data-Processing
Architectures. In HPCA.

[74] Heiner Giefers, Raphael Polig, and Christoph Hagleitner. 2015. Accelerating arithmetic kernels with coherent attached FPGA
coprocessors. In DATE.

[75] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu. 2021. Benchmarking a
New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture. In arXiv.

[76] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F Oliveira, and Onur Mutlu. 2021. Benchmarking
Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware. In CUT.

[77] José González and Antonio González. 1997. Speculative Execution via Address Prediction and Data Prefetching. In ICS.
[78] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,

Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit: A Framework for Near-data Processing of Big Data Workloads. In
ISCA.

[79] Tobias Gysi, Tobias Grosser, and Torsten Hoeler. 2015. MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs
on Heterogeneous Architectures. In SC.

[80] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata
Ghose, Juan Gómez Luna, and Onur Mutlu. 2021. SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM. In
ASPLOS.

[81] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. 2016. Accelerating Dependent Cache Misses with an Enhanced
Memory Controller. In ISCA.

[82] Milad Hashemi, Onur Mutlu, and Yale N Patt. 2016. Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive
Workloads. In MICRO.

[83] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J Ramanujam, and P Sadayappan. 2011. Data Layout Transformation
for Stencil Computations on Short-Vector SIMD Architectures. In CC.

[84] Txomin Hermosilla, E Bermejo, A Balaguer, and Luis A Ruiz. 2008. Non-linear fourth-order image interpolation for subpixel edge
detection and localization. In IMAVIS.

[85] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W
Keckler. 2016. Transparent Oloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems.
In ISCA.

[86] KevinHsieh, Samira Khan, Nandita Vijaykumar, Kevin KChang, Amirali Boroumand, Saugata Ghose, andOnurMutlu. 2016. Accelerating
Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation. In ICCD.

[87] Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia de Gonzalo, Juan Gómez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy,
Dejan Milojicic, Onur Mutlu, Deming Chen, and Wen-mei Hwu. 2019. Analysis and Modeling of Collaborative Execution Strategies for
Heterogeneous CPU-FPGA Architectures. In ICPE.

ACM Trans. Reconig. Technol. Syst.

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 25

[88] HT Huynh, Zhi J Wang, and Peter E Vincent. 2014. High-order methods for computational luid dynamics: A brief review of compact
diferential formulations on unstructured grids. In Computers & Fluids.

[89] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelligent Distributed Storage. In VLDB.
[90] Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan, Qingxu Deng, Wei Zhang, and Onur Mutlu. 2020. Boyi: A Systematic

Framework for Automatically Deciding the Right Execution Model of OpenCL Applications on FPGAs. In FPGA.
[91] R. Jongerius, S. Wijnholds, R. Nijboer, and H. Corporaal. 2014. An End-to-End Computing Model for the Square Kilometre Array. In

Computer.
[92] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King, Shuotao Xu, et al. 2015. BlueDBM: An Appliance for

Big Data Analytics. In ISCA.
[93] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. 2013. Enabling Cost-efective Data Processing with Smart SSD. In

MSST.
[94] Kaan Kara, Dan Alistarh, Gustavo Alonso, Onur Mutlu, and Ce Zhang. 2017. FPGA-accelerated Dense Linear Machine Learning: A

Precision-Convergence Trade-of. In FCCM.
[95] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gustavo Alonso. 2020. High Bandwidth Memory

on FPGAs: A Data Analytics Perspective. In FPL.
[96] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril, A. Firoozshahian, K. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Maher, D. Mudigere,

M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang, B. Reagen, C. Wu, M. Hempstead, and X. Zhang. 2020. RecNMP: Accelerating
personalized recommendation with near-memory processing. In ISCA.

[97] Scott Kehler, John Hanesiak, Michelle Curry, David Sills, and Neil Taylor. 2016. High Resolution Deterministic Prediction System
(HRDPS) Simulations of Manitoba Lake Breezes. In Atmosphere-Ocean.

[98] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A Programmable Digital
Neuromorphic Architecture with High-Density 3D Memory. In ISCA.

[99] J. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J. Kim, H. Park, J. Ryu, K. Park, S. K. Kang, S. Kim, H. Kim, J.
Bang, H. Cho, M. Jang, C. Han, J. LeeLee, J. S. Choi, and Y. Jun. 2012. A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM With 4×128 I/Os
Using TSV Based Stacking. In JSSC.

[100] Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can
Alkan, and Onur Mutlu. 2018. GRIM-Filter: Fast seed location iltering in DNA read mapping using processing-in-memory technologies.
In BMC Genomics.

[101] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram.
2017. Summarizer: Trading Communication with Computing Near Storage. In MICRO.

[102] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, Seongil O, Hak-Soo Yu, Haesuk Lee, Soo
Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong
Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo
Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a
1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications. In ISSCC.

[103] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, JieWang, CodyHao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. HeteroCL: AMulti-Paradigm
Programming Infrastructure for Software-Deined Reconigurable Computing. In FPGA.

[104] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. 2016. Simultaneous Multi-Layer Access:
Improving 3D-Stacked Memory Bandwidth at Low Cost. In ACM TACO.

[105] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J.
Kim, J. Lee, K. W. Park, B. Chung, and S. Hong. 2014. 25.2 A 1.2V 8Gb 8-Channel 128GB/s High-Bandwidth Memory (HBM) Stacked
DRAM with Efective Microbump I/O Test Methods Using 29nm Process and TSV. In ISSCC.

[106] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H. Peter Hofstee, Gi-Joon Nam, Mark R. Nutter, and Damir Jamsek. 2017. ExtraV:
Boosting Graph Processing near Storage with a Coherent Accelerator. In VLDB.

[107] Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. 2015. BSSync: Processing Near Memory for Machine Learning Workloads with
Bounded Staleness Consistency Models. In PACT.

[108] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim,
Hyunsung Shin, Jinhyun Kim, Seongil O, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. 2021. Hardware Architecture
and Software Stack for FIM Based on Commercial DRAM Technology. In ISCA.

[109] Vincent T Lee, Amrita Mazumdar, Carlo C del Mundo, Armin Alaghi, Luis Ceze, and Mark Oskin. 2018. Application Codesign of
Near-Data Processing for Similarity Search. In IPDPS.

[110] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From image processing DSL to eicient FPGA acceleration. In FPGA.
[111] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A Processing-in-Memory Architecture for

Bulk Bitwise Operations in Emerging Non-volatile Memories. In DAC.

ACM Trans. Reconig. Technol. Syst.

26 • Singh, et al.

[112] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen Zhao. 2018. Processing-in-Memory for Energy-eicient Neural
Network Training: A Heterogeneous Approach. In MICRO.

[113] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent Data Structures for Near-Memory Computing. In SPAA.
[114] David Mayhew and Venkata Krishnan. 2003. PCI Express and Advanced Switching: Evolutionary Path to Building Next Generation

Interconnects. In HOTI.
[115] Jiayuan Meng and Kevin Skadron. 2011. A Performance Study for Iterative Stencil Loops on GPUs with Ghost Zone Optimizations. In

IJPP.
[116] Microsoft. [n.d.]. Deploy ML models to ield-programmable gate arrays (FPGAs) with Azure Machine Learning, https://docs.microsoft.com/

en-us/azure/machine-learning/how-to-deploy-fpga-web-service.
[117] Amir Morad, Leonid Yavits, and Ran Ginosar. 2015. GP-SIMD Processing-in-Memory. In ACM TACO.
[118] Onur Mutlu. 2021. Intelligent Architectures for Intelligent Computing Systems. In DATE.
[119] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. 2019. Enabling Practical Processing in and near Memory

for Data-Intensive Computing. In DAC.
[120] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. 2019. Processing Data Where It Makes Sense: Enabling

In-Memory Computation. In MicPro.
[121] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. 2021. A Modern Primer on Processing in Memor. In

Emerging Computing: From Devices to Systems-Looking Beyond Moore and Von Neumann. Springer.
[122] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. 2017. GraphPIM: Enabling Instruction-Level PIM Oloading in Graph Computing

Frameworks. In HPCA.
[123] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W.

Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien, M.
Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura. 2015.
Active Memory Cube: A Processing-in-Memory Architecture for Exascale Systems. In IBM JRD.

[124] Fábio CP Navarro, Hussein Mohsen, Chengfei Yan, Shantao Li, Mengting Gu, William Meyerson, and Mark Gerstein. 2019. Genomics
and data science: an application within an umbrella. In BMC.

[125] Richard B Neale, Chih-Chieh Chen, Andrew Gettelman, Peter H Lauritzen, Sungsu Park, David LWilliamson, Andrew J Conley, Rolando
Garcia, Doug Kinnison, Jean-Francois Lamarque, et al. 2010. Description of the NCAR Community Atmosphere Model (CAM 5.0). In
NCAR Tech. Note.

[126] Geraldo Francisco Oliveira, Juan GÃşmez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan Fernandez, Mohammad
Sadrosadati, and Onur Mutlu. 2021. DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks.
In IEEE Access.

[127] M Necati Özişik, Helcio RB Orlande, Marcelo J Colaço, and Renato M Cotta. 2017. Finite diference methods in heat transfer. CRC Press.
[128] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn. 2021. TRiM: Enhancing Processor-Memory

Interfaces with Scalable Tensor Reduction in Memory. In MICRO.
[129] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T Kandemir, Onur Mutlu, and Chita R Das. 2016.

Scheduling Techniques for GPU Architectures with Processing-in-Memory Capabilities. In PACT.
[130] J. T. Pawlowski. 2011. Hybrid Memory Cube (HMC). In HCS.
[131] Constantin Pohl, Kai-Uwe Sattler, and Goetz Graefe. 2019. Joins on high-bandwidth memory: a new level in the memory hierarchy. In

VLDB.
[132] Seth H Pugsley, Jefrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis,

and Feifei Li. 2014. NDC: Analyzing the Impact of 3D-Stacked Memory+Logic Devices on MapReduce Workloads. In ISPASS.
[133] Krzysztof Rojek et al. 2019. CFD Acceleration with FPGA. In H2RC.
[134] Satish Kumar Sadasivam, Brian W Thompto, Ron Kalla, and William J Starke. 2017. IBM POWER9 Processor Architecture. In IEEE

Micro.
[135] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. 2014. Multi-FPGA Accelerator for Scalable Stencil Computation with Constant

Memory Bandwidth. In TPDS.
[136] Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco AZ Alves, Eduardo C Almeida, and Luigi Carro. 2017. Operand Size

Reconiguration for Big Data Processing in Memory. In DATE.
[137] Christoph Schär, Oliver Fuhrer, Andrea Arteaga, Nikolina Ban, Christophe Charpilloz, Salvatore Di Girolamo, Laureline Hentgen, Torsten

Hoeler, Xavier Lapillonne, David Leutwyler, Katherine Osterried, Davide Panosetti, Stefan Rudishli, Linda Schlemmer, Thomas C.
Schulthess, Michael Sprenger, Stefano Ubbiali, and Heini Wernli. 2020. Kilometer-scale Climate Models: Prospects and Challenges. In
BAMS.

[138] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry.
2015. Fast Bulk Bitwise AND and OR in DRAM. In CAL.

ACM Trans. Reconig. Technol. Syst.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service

Accelerating Weather Prediction using
Near-Memory Reconfigurable Fabric • 27

[139] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, et al. 2013. RowClone: Fast and Energy-Eicient In-DRAM Bulk Data Copy and Initialization. In
MICRO.

[140] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu,
Phillip B Gibbons, and Todd C Mowry. 2016. Buddy-RAM: Improving the Performance and Eiciency of Bulk Bitwise Operations Using
DRAM. In arXiv.

[141] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu,
Phillip B Gibbons, and Todd C Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology. In MICRO.

[142] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2015.
Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses. In MICRO.

[143] Vivek Seshadri and Onur Mutlu. 2017. Simple operations in memory to reduce data movement. In Advances in Computers.
[144] Vivek Seshadri and Onur Mutlu. 2019. In-DRAM bulk bitwise execution engine. In arXiv.
[145] DD Sharma. 2019. Compute Express Link. In CXL Consortium White Paper.
[146] William Andrew Simon, Yasir Mahmood Qureshi, Marco Rios, Alexandre Levisse, Marina Zapater, and David Atienza. 2020. BLADE:

An in-Cache Computing Architecture for Edge Devices. In TC.
[147] Gagandeep Singh et al. 2019. NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning. In DAC.
[148] Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur

Mutlu. 2021. FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications. In IEEE Micro.
[149] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan

Boonstra. 2018. A Review of Near-Memory Computing Architectures: Opportunities and Challenges. In DSD.
[150] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan

Boonstra. 2019. Near-Memory Computing: Past, Present, and Future. In MicPro.
[151] Gagandeep Singh, Dionysios Diamantopolous, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. 2021. Modeling

FPGA-Based Systems via Few-Shot Learning. In FPGA.
[152] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal.

2020. NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling. In FPL.
[153] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Sander Stuijk, and Henk Corporaal. 2019. NARMADA: Near-

memory horizontal difusion accelerator for scalable stencil computations. In FPL.
[154] Gagandeep Singh, Dionysios Diamantopoulos, Sander Stuijk, Christoph Hagleitner, and Henk Corporaal. 2019. Low Precision Processing

for High Order Stencil Computations. In Springer LNCS.
[155] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Seidel. 2010. Cache Oblivious Parallelograms in Iterative Stencil

Computations. In ICS.
[156] Jefrey Stuecheli et al. 2018. IBM POWER9 opens up a new era of acceleration enablement: OpenCAPI. In IBM JRD.
[157] Jefrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. 2015. CAPI: A Coherent Accelerator Processor Interface. In IBM JRD.
[158] B. Sukhwani, T. Roewer, C. L. Haymes, K. Kim, A. J. McPadden, D. M. Dreps, D. Sanner, J. V. Lunteren, and S. Asaad. 2017. ConTutto

âĂŞ A Novel FPGA-based Prototyping Platform Enabling Innovation in the Memory Subsystem of a Server Class Processor. In MICRO.
[159] Lukasz Szustak, Krzysztof Rojek, and Pawel Gepner. 2013. Using Intel Xeon Phi Coprocessor to Accelerate Computations in MPDATA

Algorithm. In PPAM.
[160] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk, and Charles E Leiserson. 2011. The Pochoir Stencil

Compiler. In SPAA.
[161] Felix Thaler, Stefan Moosbrugger, Carlos Osuna, Mauro Bianco, Hannes Vogt, Anton Afanasyev, Lukas Mosimann, Oliver Fuhrer,

Thomas C Schulthess, and Torsten Hoeler. 2019. Porting the COSMO Weather Model to Manycore CPUs. In PASC.
[162] Llewellyn Thomas. 1949. Elliptic Problems in Linear Diferential Equations over a Network. InWatson Sci. Comput. Lab. Rept., Columbia

University.
[163] Po-An Tsai et al. 2017. Jenga: Software-Deined Cache Hierarchies. In ISCA.
[164] Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous Multithreading: Maximizing On-Chip Parallelism. In ISCA.
[165] Jan van Lunteren, Ronald Luijten, Dionysios Diamantopoulos, Florian Auernhammer, Christoph Hagleitner, Lorenzo Chelini, Stefano

Corda, and Gagandeep Singh. 2019. Coherently Attached Programmable Near-Memory Acceleration Platform and its application to
Stencil Processing. In DATE.

[166] Vasily Volkov and James W Demmel. 2008. Benchmarking GPUs to tune dense linear algebra. In SC.
[167] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fusion for Memory-Bound GPU Applications. In SC.
[168] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. 2019. Multi-FPGA accelerator architecture for stencil computation

exploiting spacial and temporal scalability. In IEEE Access.

ACM Trans. Reconig. Technol. Syst.

28 • Singh, et al.

[169] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama. 2017. OpenCL-Based FPGA-Platform for Stencil Computation and Its
Optimization Methodology. In TPDS.

[170] Shuo Wang and Yun Liang. 2017. A comprehensive framework for synthesizing stencil algorithms on FPGAs using OpenCL model. In
DAC.

[171] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. 2020. Shuhai: Benchmarking High Bandwidth Memory on FPGAs. In
FCCM.

[172] Lukas Wenzel, Robert Schmid, Balthasar Martin, Max Plauth, Felix Eberhardt, and Andreas Polze. 2018. Getting Started with CAPI
SNAP: Hardware Development for Software Engineers. In Euro-Par.

[173] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Rooline: An Insightful Visual Performance Model for Multicore
architectures. In CACM.

[174] Lingxi Wu, Rasool Sharii, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. 2021. Sieve: Scalable In-situ DRAM-based Accelerator
Designs for Massively Parallel k-mer Matching. In ISCA.

[175] Jingheng Xu, Haohuan Fu, Wen Shi, Lin Gan, Yuxuan Li, Wayne Luk, and Guangwen Yang. 2018. Performance Tuning and Analysis for
Stencil-Based Applications on POWER8 Processor. In ACM TACO.

[176] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:
Throughput-Oriented Programmable Processing in Memory. In HPDC.

[177] Jun A. Zhang, Frank D. Marks, Jason A. Sippel, Robert F. Rogers, Xuejin Zhang, Sundararaman G. Gopalakrishnan, Zhan Zhang, and
Vijay Tallapragada. 2018. Evaluating the Impact of Improvement in the Horizontal Difusion Parameterization on Hurricane Prediction
in the Operational Hurricane Weather Research and Forecast (HWRF) Model. In Weather and Forecasting.

[178] Maohua Zhu, Youwei Zhuo, Chao Wang, Wenguang Chen, and Yuan Xie. 2018. Performance Evaluation and Optimization of HBM-
Enabled GPU for Data-intensive Applications. In VLSI.

[179] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. Combined spatial and temporal blocking for high-performance
stencil computation on FPGAs using OpenCL. In FPGA.

ACM Trans. Reconig. Technol. Syst.

	Abstract
	1 Introduction
	2 Background
	2.1 dblackRepresentative COSMO Stencils
	2.2 OC-Accel Framework

	3 Design Methodology
	3.1 NERO, A Near HBM Weather Prediction Accelerator
	3.2 NERO Application Framework

	4 Results
	4.1 Experimental Setup
	4.2 Performance Tuning
	4.3 Performance Analysis
	4.4 Energy Efficiency Analysis
	4.5 dblackFPGA Resource Utilization

	5 Discussion and Key Takeaways
	6 Related Work
	7 Conclusion
	References

