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Rich gifts wax poor when givers prove unkind
William Shakespeare, Hamlet, Prince of Denmark (3.1.101)

I. INTRODUCTION

A. WHAT ARE NUPTIAL GIFTS?

Nuptial arrangements in many human cultures include gift-giving tradi-
tions (Cronk and Dunham, 2007; Mehdi, 2003), and this behavior plays an
important role in the mating systems of other creatures as well (Boggs,
1995; Fabre, 1918; Gwynne, 2008; Lack, 1940; Thornhill, 1976; Vahed, 1998,
2007; Zeh and Smith, 1985). In species widely distributed across the animal
kingdom, males transfer many different non-gametic materials to females
during courtship and mating. Such materials can include lipids, carbo-
hydrates, proteins, peptides, amino acids, uric acid, minerals, water, anti-
predator defensive compounds, anti-aphrodisiac pheromones, and
neuroendocrine modulators of recipient physiology. These nuptial gifts
are an important aspect of reproductive behavior and animal mating sys-
tems (Andersson, 1994; Thornhill and Alcock, 1983). However, when com-
pared to more conspicuous sexually selected traits such as male weaponry
or ornamentation, such gifts have received relatively little attention from
behavioral, ecological, and evolutionary research. Nuptial gifts heighten
male reproductive investment, thus limiting male mating rates and altering
courtship sex roles and sexual size dimorphism (Boggs, 1995; Gwynne and
Simmons, 1990; Leimar et al., 1994). Selection acts on both gift-givers and
receivers to shape nuptial gift structure and biochemical composition, as
well as gift-giving behaviors. Not only do nuptial gifts form the basis for
dynamic coevolutionary interactions between the sexes, but they also link
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together male and female resource budgets (Boggs, 1990). Because they are
thus strategically poised at the intersection of nutritional ecology, sexual
selection, and life-history evolution (Boggs, 2009), understanding the evo-
lutionary origins and maintenance of nuptial gifts is of fundamental
importance.

Animal nuptial gifts come in multitudinous forms (Fig. 1), including food
offerings, various male body parts, hemolymph, salivary gland secretions,
seminal fluid, spermatophores (sperm-containing packages manufactured
by male reproductive glands), and love darts. Many birds engage in court-
ship feeding, during which males provide prey to their own pair-bond
partner or to extra-pair females (Lack, 1940; Mougeot et al., 2006).
Scorpionfly males offer females dead insects or secretions from their
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Fig. 1. A sampler illustrating the extraordinary diversity of animal nuptial gifts: (A) During
mating, a female dance fly (Diptera: Empididae) feeds upon a dead insect provided by her mate
(Photo by Rob Knell). (B) Sperm rings are released from a spermatophore manufactured by
male accessory glands in Photinus fireflies (Coleoptera: Lampyridae). (C) During mating,
hermaphroditic land snails (Gastropoda: Achatinidae) shoot their partner with a love dart
that delivers mucus gland secretions (Photo by James Koh). (D) A male scorpionfly (Mecop-
tera: Panorpodidae) secretes a white salivary mass that will be consumed by a female during
mating (Photo by Arp Kruithof).
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enlarged, sexually dimorphic salivary glands (Liu and Hua, 2010; Thornhill,
1981). In some ground crickets, females imbibe hemolymph from a specia-
lized spur located on their mate’s hindleg (Gwynne, 1997; Piascik et al.,
2010). In numerous animals (including salamanders, molluscs, crustaceans,
annelids, leeches, and most insects), males transfer biochemically diverse
spermatophores to females during mating (Mann, 1984). Nuptial gifts are
not limited to animals with separate sexes, as during copulation many
hermaphrodites inject chemicals that induce a physiological response in
their partner (Koene and Schulenburg, 2005; Koene and Ter Maat, 2001;
Michiels and Koene, 2006; Schilthuizen, 2005). Neither is gift-giving an
exclusively male behavior: in heteropteran Zeus bugs, males feed upon
glandular secretions provided by the female (Arnqvist et al., 2003).

Clearly, if we intend to move beyond merely describing these traits to
begin formulating and answering questions about how animal nuptial gifts
have evolved, we will need to start with a carefully articulated, coherent
definition that encompasses this remarkable diversity. In this review, we
begin by proposing such a definition, and then offer a conceptual frame-
work for systematically classifying nuptial gifts. We go on to discuss some
ecological conditions and life-history traits that might favor the evolution of
nutritive nuptial gifts, that is, those that contribute to female resource
budgets. From the male perspective, gift-giving behavior will usually (but
not always) provide a net benefit. We analyze these potential benefits by
describing how nuptial gifts can increase male reproductive fitness over
multiple selection episodes that take place before, during, and after copula-
tion. As a case study, we describe previous work on the katydid Requena
verticalis that has elucidated how gift-giving males benefit from this beha-
vior. Rigorously testing the many scenarios that have been proposed about
nuptial gift evolution requires a comparative phylogenetic approach, and
we discuss results from three insect groups where such an approach has
been applied: crickets and katydids, fireflies, and Drosophila fruitflies.
We also summarize work on rates of evolutionary change in an important
constituent of Drosophila nuptial gifts known as seminal fluid proteins.
Finally, we suggest several directions for future research that promise to
deepen our understanding of nuptial gift evolution.

B. TOWARD A BROADER VIEW OF NUPTIAL GIFTS

Before considering how nuptial gifts might have evolved, it is essential to
clarify some relevant terminology. Previous studies have most often relied
on ad hoc definitions of nuptial gifts, an approach reminiscent of the
infamous ‘‘I know it when I see it’’ definition of hard-core pornography
that Justice Potter Stewart used in his written opinion on the US Supreme
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Court case Jacobellis v. Ohio (1964). TheOxford English Dictionary (1989)
provides a legal definition of gift as ‘‘the transference of property or a thing
by one person to another, voluntarily.’’ Further, in colloquial English, the
term ‘‘gift’’ generally implies some benefit for the recipient. However,
because coevolutionary interactions between the sexes can continually
alter costs and benefits for both givers and receivers, we contend that a
broader view is essential for understanding the evolution of animal nuptial
gifts. Within the scientific community, some researchers have limited the
scope of nuptial gifts to encompass only ‘‘nutritive’’ gifts, that is, those that
contain male-derived substances used by females to sustain metabolic
activities (e.g., Andersson, 1994; Boggs, 1995; Gwynne, 2008; Thornhill,
1976). Others have excluded from consideration any gifts that are not
contained within a consolidated package (e.g., Thornhill and Alcock,
1983). Again, we suggest that such restrictions may hinder progress toward
the ultimate goal of understanding nuptial gift evolution.

As an alternative to this disjointed approach, we advocate the following
definition (modified from South et al., 2011b; Lewis et al., 2011): Nuptial
gifts are materials beyond the obligatory gametes that are transferred from
one sex to another during courtship or mating. Importantly, this definition
makes no assumptions concerning either: (1) how the gift currently affects
fitness; thus, at certain times during its evolutionary trajectory, a gift might
be beneficial, neutral, or detrimental to either sex, or (2) the presence or
absence of gift-wrapping: thus, we include soluble proteins and other mate-
rials that are transmitted in seminal fluid or mucus as gifts, albeit unpack-
aged. In articulating this broad definition, we hope to unify what have
previously been disconnected lines of investigation. For example, the pro-
tein content of insect spermatophores is often used as a measure of gift
quality (Bissoondath and Wiklund, 1996; Cratsley et al., 2003; Wedell,
1994). This reasonable inference is based on female vitellogenesis being
protein-limited (Wheeler, 1996), coupled with evidence that male-derived
amino acids are incorporated into female eggs and soma (e.g., Boggs and
Gilbert, 1979; Rooney and Lewis, 1999). However, male seminal fluid in
Drosophila melanogaster contains soluble proteins secreted by reproduc-
tive accessory glands and the male ejaculatory duct (Chapman, 2008). Many
of these reproductive proteins have been identified and demonstrated to
alter female reproduction by stimulating ovulation and oviposition, increas-
ing sperm storage, and lengthening females’ latency to remate (Avila et al.,
2011; Wolfner, 2009). However, because these proteins are transmitted in
seminal fluid and are not encapsulated within a discrete package, tradition-
ally they have not been considered as nuptial gifts (but see Markow, 2002;
Simmons and Parker, 1989; Vahed, 1998). Yet it is becoming clear that male
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spermatophores contain many of the same protein classes (Andres et al.,
2006, 2008; Braswell et al., 2006; Sonenshine et al., 2011; South et al., 2011a)
and these components may produce similar effects on females. It could
perhaps be argued that including seminal fluid makes our nuptial gift defini-
tion overly broad. However, because various constituents of seminal fluid
have been shown to exert diverse effects on both male and female fitness
(Gillott, 2003; Leopold, 1976; Poiani, 2006), such inclusion seems appropri-
ate. Thus, we argue that drawing an arbitrary distinction between seminal
products encased within a discrete package versus unpackaged seminal pro-
ducts transferred in a liquid ejaculate may have inadvertently obscured basic
similarities in gift composition and function, as well as similarities in the
evolutionary origin and maintenance of male reproductive accessory glands,
the main gift-producing structures.

A key point is that this broad perspective on nuptial gifts allows for
possible changes over evolutionary time in how gifts will affect the recipi-
ent’s net fitness. While some degree of cooperation is required for sexual
reproduction to occur, males and females have distinct reproductive inter-
ests (Arnqvist and Rowe, 2005; Parker, 1979; Trivers, 1972). As a result,
coevolutionary interactions between the sexes will cause nuptial gifts to
evolve dynamically in a manner that alters the cost/benefit ratio of nuptial
gifts for each sex. Thus, a nuptial gift that originates because it provides
mutual fitness benefits to both sexes may evolve into a gift that reduces the
recipient’s net fitness, and vice versa.

In summary, even though some may find fault with our definition, there is
an undeniable need for a more systematic approach to defining what exactly
constitutes a nuptial gift. Furthermore, a broader definition such as the one
we propose here will allow us to better track the changes in nuptial gift costs
and benefits that are certain to occur over evolutionary time.

C. CLASSIFYING NUPTIAL GIFT DIVERSITY

In any contest, insects would surely emerge as the undisputed champions
of gift diversity. For comprehensive insight into this fascinating diversity,
readers are referred to excellent reviews by Boggs (1995) and Vahed
(1998). Here, we highlight just a few notable patterns observed among
insects before proposing a classification scheme that will encompass animal
nuptial gifts.

First, gifts are conspicuously diverse, not only between different insect
groups, but also within particular clades. For example, spermatophores
are ubiquitous within the insect order Lepidoptera, yet they are absent in
the Diptera and occur only sporadically within the Coleoptera (Davey,
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1960; Mann, 1984). Within the beetle family Lampyridae (fireflies), some
males pass elaborate spermatophores while firefly males of other species
transfer free (unpackaged) ejaculates (Lewis and Cratsley, 2008; South
et al., 2011b). Beyond spermatophores, orthopteran nuptial gifts have
flowered into an especially impressive display of diversity (described in
Section IV.A).

A second notable pattern is that some groups show surprising plasticity
in their gift-giving behavior. For example, male Panorpa scorpionflies
(Mecoptera: Panorpidae) pursue alternative mating tactics using different
gift types (Sauer et al., 1998; Thornhill, 1981). In P. cognata, gift-giving
behavior depends on a male’s nutritional state: well-fed males secrete sali-
vary masses that females consume during copulation, while low-nutrition
males instead offer females a dead arthropod (Engqvist, 2007b). Similarly,
in several empidid dance flies (Diptera: Empididae), males optionally offer
females either a dead prey insect or inedible tokens such as silk balloons or
seed tufts (Preston-Mafham, 1999; Vahed, 2007).

Here we propose a taxonomy for animal gifts that we hope will facilitate
mapping the landscape of nuptial gift evolution (for other classification
schemes see Gwynne, 2008; Simmons and Parker, 1989; Vahed, 1998).
Table I presents four nuptial gift categories, with examples of relevant
structures and behaviors from various taxa. One key distinction is based
on the method of gift production. Thus, we distinguish between endogen-
ous gifts that are manufactured by males themselves and exogenous gifts
that consist of externally procured food items such as seeds or prey that
males gather and then transfer to females. Another important distinction
is based on how gifts are absorbed by the recipient. Gwynne (2008)
distinguished oral gifts that are taken in through the female digestive
system (e.g., food items, spermatophylaces, hindwing secretions), from
gifts we term genital gifts that are absorbed through the female reproduc-
tive tract: this includes both unpackaged secretions from male reproduc-
tive glands (conveyed in liquid seminal fluid) as well as those encased in
discrete packages (spermatophores). We propose here another category
consisting of transdermal gifts that are injected through the skin into the
partner’s body (e.g., snail love darts, intradermally implanted squid sper-
matophores, hypodermic insemination in leeches and bedbugs). Although
nuptial gifts are often commingled together into a single category (e.g.,
Arnqvist and Nilsson, 2000), we believe the distinctions drawn here will
prove useful as a basis for future studies of the evolution of nuptial gift
structure and composition. The primary reason for proposing this classifi-
cation scheme is because, as discussed below, very different predictions
can be made about how various gift types might affect fitness of both sexes
(see also Simmons and Parker, 1989 and Section III).
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TABLE I
A Classification Scheme For Nuptial Gifts

Gift production Gift absorption Nuptial gift examples Taxonomic group and references

Endogenous Oral Hemolymph from tibial
spurs

Ground crickets (Piascik et al., 2010)

Spermatophylax Katydids and crickets (Gwynne, 1997)
Salivary secretions Panorpa scorpionflies (Engqvist, 2007a)
Anal secretions Drosophila nebulosa (Steele, 1986)
Metanotal secretions Tree crickets (Brown, 1997; Bussiére et al., 2005)
Male body (sexual

cannibalism)
Red-backed spider, mantids (Elgar and Schneider, 2004)

Endogenous Genital Spermatophores Salamanders, lepidopterans, molluscs, copepods, crabs, spiders (Mann, 1984)
Seminal fluid proteins Drosophila spp. (Chapman, 2008; Markow, 2002; Wolfner, 2007)

Endogenous Transdermal Love darts Land snails (Koene and Schulenburg, 2005)
Setal gland injection Earthworms (Koene et al., 2005)
Intradermal spermato-

phore implantation
Squid (Hoving and Laptikhovsky, 2007), leeches (Mann, 1984)

Hemocoelic injection of
seminal fluid

Bedbugs (Stutt and Siva-Jothy, 2001)

Exogenous Oral Courtship feeding Birds: kestrels, shrikes (Lack, 1940; Mougeot et al., 2006)
Seeds Lygaeid bugs (Carayon, 1964)
Insect prey Hangingflies, scorpionflies (Thornhill, 1981), empidid flies (Cumming, 1994),

Pisaura spiders (Austad and Thornhill, 1986)



1. Exogenous Oral Gifts

These consist of food items that males capture or collect, so these are
most likely to contain nutritive materials (defined as substances that con-
tribute to female metabolic reserves). Thus, most exogenous oral gifts are
predicted to deliver net fitness benefits to females, measured as increased
lifetime fecundity. From the male perspective, these gifts are generally
predicted to increase male fitness across several selection episodes
(reviewed in Gwynne, 2008; Vahed, 1998, 2007). First, because they can
be assessed (visually or by gustation) prior to mating, exogenous oral gifts
should affect a male’s ability to attract and successfully mate with females.
Second, because females remain stationary while feeding, food gifts may
make it easier for males to initiate copulation. Third, because females feed
on these gifts while copulating, such gifts are expected to increase both
copulation duration and the quantity of sperm transferred.

2. Endogenous Oral Gifts

This category includes diverse materials that are secreted by male sali-
vary, reproductive, and other glands, as well as parts or the whole of the
male’s body; these materials are then consumed by females before, during,
or after copulation (reviewed by Boggs, 1995; Elgar and Schneider, 2004;
Vahed, 1998). Thus, in Oecanthus nigricans tree crickets (Orthoptera),
females feed upon proteinaceous secretions produced by dorsally located
male glands, while females of some true flies (Diptera) and scorpionflies
(Mecoptera) consume male salivary secretions, and female Allonemobius
ground crickets drink hemolymph from male hindleg spurs (Bidochka and
Snedden, 1985). Females in many katydids and crickets (Orthoptera) con-
sume a spermatophylax, a gelatinous portion of the spermatophore pro-
duced by male reproductive glands. Many mantids and orb-weaving spiders
engage in sexual cannibalism, where females kill and consume males either
before or after insemination (Elgar and Schneider, 2004); in both cases, the
male body represents an endogenous oral gift under our definition, even
when it is given involuntarily (i.e., gifts can have a negative effect on male
fitness).

Since they derive from such diverse sources, endogenous oral gifts are
likely to have quite varied effects on females. Some endogenous oral gifts,
such as hemolymph or male body parts, may closely resemble exogenous
gifts of prey or other food items in contributing to females’ nutrient budgets
(Boggs, 1995; Gwynne, 2008). Rather than replicating whatever nutritional
mixtures are available in the diet, however, glandular gifts have the poten-
tial to provide more targeted dietary supplements. These specialized gland-
ular gifts might supply nutrients which are otherwise absent or limited in
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female diets, such as macronutrients (proteins, lipids, carbohydrates), micro-
nutrients (sodium, zinc), or defensive compounds (cantharidin, pyrrolizidine
alkaloids, cyanogenic glycosides). In cockroaches (Dictyoptera: Blattidae),
males provide endogenous oral gifts that constitute an important nitrogen
source for females and their eggs (reviewed by Boggs, 1995; Vahed, 1998).
In many cockroaches, males accumulate uric acid in their accessory glands
before packaging it into their spermatophore; after mating, females expel
and eat the spermatophore. In other roaches, females feed directly on uric
acid as it is secreted from male glands.

On the other hand, sexual conflict theory predicts the evolution of male
glandular gifts that benefit males even though they may adversely affect
female net fitness (Arnqvist and Nilsson, 2000; Arnqvist and Rowe, 2005;
Rice, 1998). Through reciprocal sexual coevolution, an escalating arms race
might then ensue in which females evolve the ability to metabolize
or otherwise counteract manipulative male substances (Arnqvist and
Nilsson, 2000; Eberhard, 1996). However, it has been pointed out
(Gwynne, 2008) that such oral gifts might be less likely to contain manip-
ulative substances because those would be subject to degradation while
passing through the digestive tract. Thus, the category of endogenous oral
gifts is diverse and includes nuptial gifts that may have positive, negative, or
no effects on female fitness.

From the male perspective, when endogenous oral gifts (such as secreted
salivary masses) can be inspected by females, they could resemble exogen-
ous gifts that increase male mating success, copulation duration, and possi-
bly sperm quantity transferred during copulation. For example in spiders,
sexual cannibalism that takes place after insemination can benefit the
sacrificed male by prolonging copulation duration, thus increasing sperm
transfer andmale paternity share, in addition to increasing female fecundity
and offspring survival (Andrade, 1996; Elgar and Schneider, 2004;
Herberstein et al., 2011; Welke and Schneider, 2012). For orally ingested
glandular gifts, such as the orthopteran spermatophylax, males may be
selected to incorporate phagostimulants that increase their gifts’ gustatory
appeal for females (Sakaluk, 2000; Vahed, 2007). Selection may also alter
male gift composition to slow female consumption rates if this allows more
time for males to transfer sperm. For example, in many crickets and katy-
dids (Orthoptera: Ensifera), the male spermatophylax has a sticky, gelati-
nous consistency that prevents rapid ingestion by females (Vahed, 2007).

3. Endogenous Genital Gifts

This category includes materials that are produced by secretory tissue in
the male reproductive tract, transferred in seminal fluid or spermatophores,
and absorbed through the female genital tract. Although spermatophores
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may have originated to prevent sperm loss or desiccation (Davey, 1960;
Khalifa, 1949), in many animals these structures have become vastly elabo-
rated (Mann, 1984; Thornhill, 1976). Many ideas have been proposed about
the evolutionary origin of elaborated male ejaculates such as spermato-
phores. Wickler (1985) proposed that spermatophores originated as a way
for males to prevent females from digesting sperm, as an adaptation sec-
ondary to intrasexual selection for greater sperm quantity. It has also been
suggested that female choice, based on the quality or quantity of nonsperm
ejaculate components, might have favored the elaboration of male ejacu-
lates (Cordero, 1996). Arnqvist and Nilsson (2000) proposed that elabo-
rated male ejaculates represent ‘‘manipulative and sinister superstimuli’’
that evolved through sexual conflict over female remating rates. However,
given the wide taxonomic distribution and diversity of endogenous genital
gifts, it is unrealistic to expect a single explanation for their evolution.
Rather, even a brief overview of gift constituents indicates that endogenous
genital gifts have probably had multiple evolutionary origins and diverse
trajectories.

Like orally ingested glandular gifts, the products of male reproductive
glands can also supply nutrients that are absent or limited within female
diets. The geometric framework in nutritional ecology may provide a useful
perspective for thinking about the evolution of nutritive nuptial gifts. This
framework is based on locating an organism’s nutritional requirements and
dietary choices within a multidimensional resource space (Raubenheimer,
2011; Raubenheimer et al., 2009). Importantly, rather than replicating
nutritional mixtures that are available in the female diet, nuptial gifts
could provide a vector that targets the female-specific requirements for
vitellogenesis (Boggs, 1990). Thus, selection may shape male glandular
products to augment females’ resources by providing them with entirely
different nutritional mixtures compared to those gained through feeding.
Empirical studies of numerous Orthoptera, Lepidoptera, and Coleoptera
have demonstrated that diverse substances derived from endogenous geni-
tal gifts are incorporated into female somatic tissue and eggs; these sub-
stances include amino acids, zinc, phosphorus, and sodium transferred in
male spermatophores (reviewed by Boggs, 1995; Vahed, 1998). For exam-
ple, many lepidopteran males engage in puddling behavior on damp soil,
dung, or carrion where they obtain sodium, which is a scarce nutrient for
most folivores (Molleman, 2010). Males accumulate this element in their
reproductive glands and transfer sodium-rich spermatophores during mating;
in the moth Gluphisia septentrionis, a single spermatophore contains >50%
of the male’s total body sodium content (Smedley and Eisner, 1996). Females
pass sodium along to their eggs, and in the skipper, Thymelicus lineola, such
gifts enhance larval survivorship (Pivnick and McNeil, 1987, but see
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Molleman et al., 2004). In addition, reproductive glands can serve as a reser-
voir for defensive compounds that males derive from dietary sources, and
these compounds are later transferred to females within spermatophores or
seminal fluid (reviewed by Vahed, 1998). Thus, endogenous genital gifts can
contain defensive compounds that protect the female or her eggs against
predators or microbial attack; such gifts include cantharidin inNeopyrochroa
flabellata beetles (Eisner et al., 1996), pyrrolizidine alkaloids in Utetheisa
ornatrixmoths (Eisner andMeinwald, 1995), cyanogenic glycosides in several
Heliconius butterflies (Cardoso and Gilbert, 2007), and vicilin-derived pep-
tides in Callosobruchus maculatus cowpea beetles (Alexandre et al., 2011).

On the other hand, some components of endogenous genital gifts may
reduce female fitness. In some male insects, reproductive accessory glands
manufacture compounds that have diverse effects on female reproductive
physiology and behavior (Eberhard, 1996; Gillott, 2003). In D. melanoga-
ster, for example, seminal fluid proteins have been shown to heighten
female oogenesis and oviposition, increase sperm storage and utilization,
and to reduce female remating rates and life span (reviewed by Chapman,
2008; Chapman and Davies, 2004; Ravi Ram and Wolfner, 2007a,b;
Wolfner, 2007). For most taxa, little is known concerning the nature of
these secretions, although recent work has elucidated seminal fluid compo-
sition in Aedes mosquitoes (Sirot et al., 2008), Gryllus and Allonemobius
crickets (Andres et al., 2006; Braswell et al., 2006), Heliconius butterflies
(Walters and Harrison, 2010), Tribolium flour beetles (South et al., 2011a),
and honeybees (Baer et al., 2009; Collins et al., 2006). In many species, male
gifts contain anti-aphrodisiacs that reduce a female’s likelihood of remating
(Tenebrio beetles, Happ, 1969; Pieris napi butterflies, Andersson et al.,
2004; Heliconius butterflies, Estrada et al., 2011). Selection on males to
reduce sperm competition risk favors inclusion of such substances, yet anti-
aphrodisiacs can lower female net fitness if they depress remating rates
below some female optimum.

Thus, endogenous genital gifts are complex mixtures that have likely
been shaped by multiple selective forces. While it has been argued that
male ejaculate composition will be selected primarily to manipulate female
reproductive physiology and should carry a net fitness cost borne by gift
recipients (Arnqvist and Nilsson, 2000; Arnqvist and Rowe, 2005), it is clear
that understanding the complex effects that male ejaculates have on
females will require a broad and balanced perspective.

4. Endogenous Transdermal Gifts

These nuptial gifts include male seminal and glandular products that are
transferred and absorbed outside the female’s digestive or reproductive
systems. This happens during extragenital insemination in bedbugs (Stutt
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and Siva-Jothy, 2001) and intradermal spermatophore implantation in
deep-sea squid (Hoving and Laptikhovsky, 2007). In the bedbug, Cimex
lectularius, male ejaculates include (in addition to sperm) antioxidants,
micronutrients, and antibacterial compounds (Reinhardt et al., 2009).
Hypodermic injection of seminal products is particularly widespread
among simultaneous hermaphrodites such as leeches, sea slugs, and poly-
clad flatworms (Michiels and Koene, 2006). Another type of transdermal
gift consists of allohormones, substances that induce a direct physiological
response in the recipient (Koene and Ter Maat, 2001). These can be
injected through the skin of a mating partner during copulation while
sperm are being passed to the reproductive organs. This mode of delivery
allows male products to bypass both digestive and reproductive tracts,
where various gift components might get broken down. During copulation,
hermaphroditic earthworms Lumbricus terrestris use their ventral copula-
tory setae to inject their partner with setal gland products that induce sperm
uptake and storage (Koene et al., 2005). A similar benefit for male function
occurs in Helix aspersa land snails, which penetrate their partners with a
calcareous dart coated with allohormones produced by a mucus gland;
these substances inhibit sperm digestion and enhance sperm storage by
the recipient (Koene and Schulenburg, 2005; Schilthuizen, 2005). As in
other endogenous gifts, selection on transdermal gift production may
favor the inclusion of compounds that benefit males yet are detrimental
to female fitness.

II. EFFECTS ON RECIPIENT FITNESS

Empirical studies in numerous taxa have documented how male gifts
affect several different female fitness components (including egg and clutch
size, rate and timing of offspring production, longevity), as well as female
net fitness (lifetime fecundity measured as the total number of eggs or
offspring produced). Many studies have found that nuptial gifts can provide
females with direct material benefits measured as an increase in the reci-
pient’s net fitness. Such evidence has been compiled and summarized by
previous literature reviews for arthropod nuptial gifts (Boggs, 1995;
Gwynne, 2008; Rooney and Lewis, 1999; Vahed, 1998, 2007) and for sexual
cannibalism (Elgar and Schneider, 2004), as well as by some meta-analyses
(Arnqvist and Nilsson, 2000; South and Lewis, 2011).

Rather than recapitulating these synopses here, we simply advocate that
the term nuptial gift be used in its broadest sense, that is, independently of
whether such materials currently exert a positive, a negative, or no effect on
recipient net fitness (Fig. 2). Others have used narrower terminology, using
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nuptial gifts to mean only nutritive gifts or those that increase female fitness
(i.e., those falling within the upper-right cell of Fig. 2). On the other hand,
because male and female reproductive interests are not perfectly aligned,
sexual conflict may drive the evolution of nuptial gifts that provide fitness
benefits to males while reducing female net fitness. Arnqvist and Nilsson
(2000) and Arnqvist and Rowe (2005) suggested that the term ‘‘Medea gift’’
(named after a mythological Greek sorceress who used a beautifully
embroidered, poisonous robe to murder a rival) should be used for any
gifts that reduce female net fitness (i.e., those falling within the upper-left
cell of Fig. 2). However, because coevolutionary interactions are expected
to create dynamic changes over time in gifts’ cost/benefit ratios for their
recipients, we believe such restrictive terminology is counterproductive to
the goal of understanding nuptial gift evolution. One example of this shift-
ing balance of costs and benefits is seen in the bedbug C. lectularius.
Although traumatic insemination through the abdominal wall causes
wounding that reduces female life span (Stutt and Siva-Jothy, 2001), male
ejaculates contain compounds that increase female net fitness via increased
lifetime fecundity and oviposition rate, and delayed reproductive senes-
cence (Reinhardt et al., 2009). One evolutionary scenario proposed by
these authors is that male ejaculates were originally detrimental and that
subsequent female counteradaptations evolved to neutralize, and even-
tually reverse, these harmful effects. Alternatively, they suggest, male
ejaculates may have positively affected female net fitness when they origi-
nated. While distinguishing between these evolutionary trajectories must
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Fig. 2. Our nuptial gift definition encompasses a range of possibilities for how nuptial gifts
might influence male and female net fitness (benefit minus cost). Gifts that provide a net fitness
benefit to males can have negative, positive, or no effects on female fitness (top row). When
gifts provide a net fitness benefit for females, they can be maintained whether or not males
derive a fitness benefit; thus, sexual cannibalism would fall into the rightmost column (e.g.,
cases when the male is consumed before insemination would fall into the bottom right cell).
The position of any gift is likely to shift over evolutionary time, as sexual interactions modify
costs and benefits for each sex. (Gray areas indicate that evolutionary maintenance is unlikely
as these gifts carry net fitness costs for one or both sexes.)
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await future phylogenetic studies coupled with ancestral trait reconstruc-
tion, it is clear that a more holistic framework will be required to under-
stand the evolution of nuptial gifts.

Possible evolutionary trajectories leading to manipulative male gifts have
been presented in detail by others (e.g., Arnqvist andRowe, 2005; Eberhard,
1996; Rice, 1998; Sakaluk, 2000). Here we focus on circumstances that might
lead to the evolution of nutritive nuptial gifts, that is, those providing
material benefits that directly increase fitness for the gift recipient.

Among the ways that nuptial gifts might increase a male’s fitness relative
to other males in the same population is by enhancing female fecundity
relative to other females in the population. The enhanced fecundity hypoth-
esis for paternal investment was proposed by Tallamy (1994), who sug-
gested that male investment will evolve whenever males can provide
materials whose availability constrains female reproductive output. While
he mainly focused on postzygotic male investment (e.g., paternal brood
care), Tallamy pointed out that this hypothesis should also apply to the
evolution of nuptial gifts (i.e., prezygotic male investment). In addition,
recent theoretical work has shown that depending on the degree of fecund-
ity enhancement, male nuptial gifts can alter intersexual coevolutionary
dynamics and lead to a stable evolutionary equilibrium with mutual fitness
benefits for both sexes (Alonzo and Pizzari, 2010).

In general, female reproduction will be resource-constrained because of
the higher gametic investment by this sex (Trivers, 1972); in oviparous
organisms, all the nutritional resources required for embryogenesis must
be contained within each egg. Female egg production is most often limited
by protein availability (Wheeler, 1996). In insects, as in most oviparous
animals, oocyte development is fueled mainly by vitellogenin, a female-
specific glycolipoprotein; insect eggs also contain lipids and some carbohy-
drates in the form of glycogen (Klowden, 2007). Females need to obtain
these macronutrients from larval feeding, from adult feeding, or from male
nuptial gifts (Boggs, 1990). Thus, the enhanced fecundity hypothesis pre-
dicts that selection for nuptial gifts will be influenced by the availability and
quality of specific nutritional resources needed for female reproduction.
Resource availability will in turn depend on organismal life-history traits, as
well as on temporal and habitat variation within a particular species. Below
we consider some combinations of ecological conditions and life-history
traits that are expected to favor the evolution of nutritive gifts that enhance
female fecundity through male contributions to female resource budgets
(Boggs, 1990, 1995). We do not discuss mating systems; while several
studies have explored the relationship between nuptial gifts and polyandry
(e.g., Karlsson, 1995; Karlsson et al., 1997), it is difficult to determine causal
relationships between these two highly correlated features.
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First we discuss some life-history features that are expected to lead to
female-specific resource limitation. These include location of a species
along the continuum between income and capital breeding, temporal
dynamics of female oogenesis, and requirements for female dispersal and
flight. Income breeders are those that fuel reproduction using current
energetic income, while capital breeders support their reproduction with
energy stores accumulated at an earlier life stage (Houston et al., 2007;
Stearns, 1992). In purely capital breeders, male nuptial gifts could provide
resources to supplement reserves that otherwise would be depleted over a
female’s reproductive life span. One such example is Photinus ignitus firefly
beetles (reviewed by Lewis and Cratsley, 2008; Lewis et al., 2004), which are
capital breeders that entirely lack adult feeding. Both sexes mate repeat-
edly over their 2-week adult life span. Males manufacture a complex
spermatophore from several reproductive glands, and spermatophore-
derived proteins are allocated to females’ developing oocytes. Females
that receive multiple spermatophores gain increased lifetime fecundity.
In addition, a seasonal reversal in courtship roles occurs: late in the mating
season when both sexes face depleted resource stores, females compete for
access to gift-providing males and males selectively mate with more fecund
females (Cratsley and Lewis, 2005).

Nuptial gift evolution may also depend on interspecific life-history differ-
ences in the temporal dynamics of female oogenesis (Boggs, 1990, 1995,
2009). In some insect taxa, adult females emerge with their entire comple-
ment of eggs already matured (e.g., mayflies), while in others (e.g., P. ignitus
fireflies) females will continue to mature eggs throughout their reproduc-
tive lives (Jervis and Ferns, 2004; Jervis et al., 2005 compiled relevant data for
many parasitoid wasps). When egg maturation is distributed over time,
selection should favor male nuptial gifts that could enhance female repro-
ductive output by replenishing resources.

A final life-history trait that may alter selection for nuptial gifts relates to
female mobility. If females must fly in order to locate food, mates or
suitable oviposition sites, to disperse, or to escape predators, then wing-
loading constraints may restrict how many mature eggs a female can carry
at any point in time. In addition, females face a trade-off between allocating
resources to flight or to oogenesis (Boggs, 2009; Wheeler, 1996). Lewis and
Cratsley (2008) presented a conceptual model proposing that because
flightless (wingless) females can devote all their resources to egg produc-
tion, selection for nuptial gifts will be relaxed due to limited scope for any
further increases in females fecundity. A recent evolutionary trait analysis
in fireflies supported this predicted intersexual correlation between female
flight ability and male nuptial gifts (South et al., 2011b; see Section V.B
below). Females of ancestral fireflies most likely were fully winged and
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received male nuptial gifts in the form of spermatophores. In several
lineages, after females lost their flight ability (possibly driven by fecundity
selection), males subsequently lost the ability to produce these nuptial gifts.

Selection for nuptial gifts should also be influenced by within-species
variation in the availability and quality of specific resources required for
female reproduction. When such resources are limited, females may increase
their mating activity to gain access to nutritive nuptial gifts (Boggs, 1990;
Gwynne, 1990). For example, in the pollen katydid Kawanaphila nartee
(Orthoptera: Tettigonidae), scarcity of pollen (a protein-rich food source
for both sexes) generates intersexual competition among females for access
to endogenous oral gifts in the form of the male spermatophylax (Simmons
and Bailey, 1990). In the pollen-feeding butterfly Heliconius cydno, pollen
load varies among females and is negatively correlated with number of
matings, and thus nuptial gifts, that females acquire (Boggs, 1990). In addi-
tion, many experimental studies have found that nuptial gifts provide larger
fecundity increases when females are food-limited (Gwynne and Simmons,
1990; reviewed by Boggs, 1990; Gwynne, 1991, 2008). Finally, Leimar et al.
(1994) provided comparative data from butterflies suggesting that variation
in available resources (rather than average) will increase selection for nuptial
gifts. Similarly, another comparative study across butterfly species found
increased polyandry with greater variation in female body size, again indir-
ectly suggesting that species with more variable larval food resources might
experience increased selection for nuptial gifts (Karlsson, 1995).

Thus, several ecological conditions and life-history traits linked to female
resource allocation are predicted to favor the evolution of fecundity-
enhancing male gifts. Indeed, an entire suite of correlated life-history traits
seems likely to select for fecundity-enhancing nuptial gifts. Based on the
connections outlined here between nuptial gifts, life-history traits, and nutri-
tional ecology, testing hypotheses about trait combinations that favor the
evolution of nutritive nuptial gifts seems like an important and relatively
unexplored research area. As Boggs (1995) pointed out nearly 20 years ago,
we still need rigorous comparative phylogenetic studies focused on testing
for evolutionary associations between nuptial gift presence (and type) and
interspecific variation in resource conditions and life-history traits.

III. POTENTIAL GIFT BENEFITS FOR MALES

Considerable evidence indicates that the collection and manufacture of
nuptial gifts is costly for males (reviewed by Boggs, 1995). In addition,
males have been shown to strategically allocate their gifts depending on
female reproductive status or age (e.g., Simmons et al., 1993; Sirot et al.,
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2011; Wedell, 1992). While colloquial usage views gifts as something given
voluntarily, in the case of sexual cannibalism there may also be involuntary
gift-giving that carries a net fitness cost for males (Elgar and Schneider,
2004, lower-right cell of Fig. 2). Yet as mentioned above, in some species
cannibalized males gain posthumous benefits through increased paternity
share and decreased likelihood of the female remating (Andrade, 1996;
Herberstein et al., 2011: upper-right cell of Fig. 2). In most cases, however,
the male structures that produce nuptial gifts and the various behaviors
associated with gift-giving will only be maintained if they confer a net
fitness benefit on males; that is, the gift-giving males must be able to sire
more offspring compared to other males in the same population. These
fitness advantages could accrue across different reproductive episodes,
including through higher mating success, increased paternity share relative
to other males mating with the same female, and/or enhanced female
fecundity compared to other females in the population.

In determining what specific benefits a male might derive from his gift-
giving behavior, much previous work has been caught up in a largely
unproductive semantic debate. For several decades many attempts were
made to distinguish between two particular hypotheses for the origin and
maintenance of male gifts (Alexander and Borgia, 1979; Gwynne, 1984;
Sakaluk, 1986; Simmons and Parker, 1989; Vahed, 1998). The mating effort
hypothesis suggested that gifts function to ensure mating and sperm trans-
fer, while the paternal investment hypothesis suggested that gifts function
to increase the number or quality of the gift-giver’s own offspring. How-
ever, attempts to sort nuptial gifts neatly into these two categories were
unsuccessful, and a fatal terminological quagmire gradually developed (see
also Gwynne, 2008; Simmons, 1995; Simmons and Parker, 1989; Vahed,
1998; Wickler, 1985). Among the reasons for this failure was that these two
hypotheses represent two nonindependent gift functions (i.e., the latter
depends on the former), and also that the paternity data necessary for
empirical tests of the paternal investment hypothesis were lacking.

Moving forward, we suggest that a more constructive approach will be to
think about nuptial gifts as selection targets during several sequential
episodes that occur before, during, and after mating (Fig. 3). A similar
approach was suggested by Gwynne (1997; his Table 6-1). For example,
nuptial gifts may enhance a male’s mating success by increasing his ability
to attract females (episode 1) and to successfully copulate with them (epi-
sode 2). During copulation, nuptial gifts may improve a male’s insemination
success (episode 3, measured as whether or not any sperm transfer occurs),
or increase the number of sperm transferred (episode 4). After mating,
nuptial gifts may increase the viability and storage of male sperm within the
female reproductive tract (episode 5). In competitive mating situations
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(polyandry or polygamy), providing a nuptial gift may increase male pater-
nity share (proportion of offspring sired by the gift-giving male) relative to
other males mating with the same female (episode 6); this may occur
through cryptic female choice favoring certain male or gift traits, or by
increased sperm defense or offense. As discussed in Section II, nuptial gifts
may also increase a male’s fitness by enhancing overall female fecundity
(episode 7), as well as egg and offspring survival (episode 8), relative to that
of other females in the population. Numerous experimental or observa-
tional studies of nuptial gift function have demonstrated that larger or more
nuptial gifts lead to higher male fitness during one or more of these sequen-
tial selection episodes; we provide just a few examples below.

Many oral nuptial gifts (both exogenous and endogenous) provide a benefit
to males by attracting females and also by increasing the likelihood that
females will copulate once they have been attracted. Among such gifts are

Episodes of selection for male gifts

Total # offspring
sired by gift-giver

1. Mate attraction

2. Copulation

3. Insemination

4. # Sperm tranferred

5. Sperm storage

7. Female fecundity

8. Egg and offspring survival

6. Paternity share
(cryptic female choice,

sperm defense,
sperm offense)

Fig. 3. Potential fitness benefits gained by males from nuptial gifts across sequential selec-
tion episodes. Nuptial gifts may increase mate attraction, copulation, or insemination success,
quantity of sperm transferred or stored, and paternity share in competitive mating situations
(gained through cryptic female choice, protecting paternity share when the female remates,
and/or when the female has previously mated). Nuptial gifts may also provide fitness benefits to
males by increasing overall female fecundity, egg or offspring survival, if on average such gifts
increase the production and survival of the gift-giving male’s own offspring.
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the edible and inedible gifts offered by male empidid dance flies (Lebas and
Hockham, 2005; Preston-Mafham, 1999), prey and salivary secretions pro-
vided by Panorpa scorpionflies (Engqvist, 2007a), and food regurgitated by
Drosophila subobscura males (Steele, 1986). Some oral gifts, such as male
hindwings and hemolymph inCyphoderris hump-winged crickets (Eggert and
Sakaluk, 1994), also facilitate successful insemination, as males can more
readily accomplish sperm transfer when females hold still while feeding.

Oral nuptial gifts (both exogenous and endogenous) also function during
mating to increase the quantity of sperm transferred to the female repro-
ductive tract; these include the spermatophylax in several crickets and
bushcrickets (Sakaluk, 1984; reviewed by Gwynne, 1997; Vahed, 1998,
2007), prey gifts in Bittacus hangingflies (Thornhill, 1976), and salivary
secretions in Panorpa scorpionflies (Engqvist, 2007a).

Other nuptial gifts benefit males during postcopulatory episodes of selec-
tion, including enhancing female storage of sperm that will later fertilize
eggs. Acp36DE is a seminal fluid protein (endogenous genital) transferred
by D. melanogaster males that causes an increase in sperm numbers stored
within the female reproductive tract (Qazi and Wolfner, 2003). Similarly,
hermaphroditic H. aspersa garden snails penetrate their partner with a
mucus-coated dart (endogenous transdermal gift) that increases sperm
storage (Rogers and Chase, 2001).

Many endogenous gifts (both oral and genital) also include materials that
inhibit the female’s mating receptivity (thus reducing the risk of sperm
competition) and/or increase her latency to remate (thus increasing sperm
defense). Such receptivity-inhibiting materials include Drosophila sex pep-
tide, unknown ejaculate components in R. verticalis katydids (Gwynne,
1986), nonfertilizing apyrene sperm in Lepidoptera (Wedell, 2005), and
salivary secretions of Panorpa scorpionflies (Engqvist, 2007a). In addition,
many spermatophores (endogenous genital) contain anti-aphrodisiacs that
deter other males from approaching a mated female (e.g., Estrada et al.,
2011; Happ, 1969).

Although we lack information on male paternity share for most gift-
giving taxa, nuptial gifts can also influence what proportion of offspring
produced by a multiply-mated female gets sired by the gift-giving male. For
example, larger salivary secretions (endogenous oral gifts) offered by male
Panorpa scorpionflies increase male paternity share by increasing copula-
tion duration (Engqvist et al., 2007; Sauer et al., 1998). Also, larger sper-
matophores (endogenous genital gifts) increase the paternity share of male
Photinus greeni fireflies (South and Lewis, 2012a). Many nuptial gifts
(including exogenous oral, endogenous oral, and endogenous genital gifts)
have been demonstrated to play a role in increasing female fecundity, either
through nutritive contributions or allohormones that stimulate female
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ovulation or oviposition (see Arnqvist and Nilsson, 2000; Boggs, 1995;
Eberhard, 1996; Gwynne, 2008; South and Lewis, 2011). A central concern
is that these gifts will provide a fitness benefit tomales only if they increase the
total number of offspring sired by the gift-giving male, yet the requisite
information on offspring paternity is often not gathered.

As described in Section I.C.3, endogenous genital gifts can contain che-
mical defenses that protect a female and/or her eggs against predators, thus
increasing offspring survival (e.g., cantharidin in spermatophore of male
Neopyrochroa beetles [Eisner et al., 1996], pyrrolizidine alkaloids in
U. ornatrix moths [reviewed by Eisner and Meinwald, 1995]).

Thus, male costs incurred in manufacturing or procuring nuptial gifts are
apparently outweighed by fitness benefits that can accrue during multiple
selection episodes before, during, and after mating. Endogenous nuptial
gifts are especially likely to contain complex mixtures that will operate
across multiple selection episodes to increase male fitness. Also, nuptial
gift composition and the associated male fitness benefits will shift dynami-
cally over time due to coevolutionary interactions between the sexes.

IV. A CASE STUDY OF MALE BENEFITS: REQUENA VERTICALIS

A. ORTHOPTERAN NUPTIAL GIFTS

Orthopteran insects (grasshoppers, crickets, and katydids) display a daz-
zling array of endogenously produced nuptial gifts (Fig. 4); these include
male body parts and glandular secretions that females absorb orally, geni-
tally, or in some cases, both. Female Pteronemobius and Allonemobius
(Gryllidae: Nemobiinae) ground crickets receive an endogenous oral gift
by chewing on a modified hindleg spur and drinking the male’s hemolymph
(Fedorka and Mousseau, 2003; Mays, 1971). Similarly, female Cyphoderris
hump-winged crickets (Tettigonioidea: Haglidae) drink hemolymph after
feeding on the male’s fleshy hindwings (Dodson et al., 1983; Morris, 1979).
In Oecanthus tree crickets (Gryllidae: Oecanthinae), females consume
secretions produced by dorsal glands on the male’s thorax (Brown, 1997);
such metanotal gland feeding also occurs in many other orthopterans (see
Vahed, 1998). Many species with endogenous oral nuptial gifts also transfer
a genital gift during mating in the form of a spermatophore (Gwynne, 2001;
Vahed, 1998). In most species within the suborder Ensifera (katydids,
crickets, and wetas), males produce spermatophores that can comprise
between 2% and 40% of their total body weight. These two-part structures
are produced by two distinct accessory glands: the smooth glands produce
the small, sperm-containing ampulla, while the rough glands produce the
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larger, gelatinous spermatophylax (Gwynne, 1997, 2001). During copula-
tion, the ampulla tube is inserted into the female’s genital opening, while
the remainder of the gift is deposited externally. When the male departs
after coupling, the female ingests the spermatophylax while sperm and
associated seminal fluid drain from the ampulla into the female’s reproduc-
tive system. Once the female finishes consuming the spermatophylax, she
removes and consumes whatever remains of the ampulla (Gwynne, 1984;
Gwynne et al., 1984; Sakaluk, 1984).

The Australian katydid R. verticalis (family Tettigoniidae) has been
extensively studied as a model system for understanding the costs and
benefits of nuptial gifts for both sexes. Thus, this species provides an
excellent case study for illustrating the episodes of selection framework
presented in Section III. Like other tettigonids, R. verticalis males pro-
duce a two-part spermatophore that is approximately 15–20% of total
male body weight (Davies and Dadour, 1989). The spermatophylax

A B

C

Fig. 4. Diverse endogenous oral gifts are produced by males within the insect order
Orthoptera (crickets, katydids, grasshoppers and their allies): (A) After mating, a female
Mormon cricket (Anabrus simplex) consumes the gelatinous spermatophylax portion of the
male’s spermatophore (photo by Darryl Gwynne). (B) A female tree cricket (Oecanthus
quadripunctatus) feeds on the secretions from a male’s metanotal gland (photo by Kevin
Judge). (C) A female hump-winged cricket (Cyphoderris) feeds on a male’s hindwings
(photo by David Funk).

NUPTIAL GIFT EVOLUTION 73



alone (without the sperm-containing ampulla) comprises 78% of total
spermatophore weight (Bowen et al., 1984). The spermatophylax is com-
posed of 13.5% protein (Bowen et al., 1984). In this species, both sexes
mate multiple times and both courtship and mating are costly to males.
The chirping acoustic signals that males use to attract females require an
energetic investment that averages 3.2 kJ/h (Bailey et al., 1993) and sper-
matophore production requires 1.1 kJ (Simmons et al., 1992); together
these two components make up approximately 70% of a male’s daily
energy budget (Simmons et al., 1992). Nuptial gift costs also limit male
mating frequency. After mating, males require 2.5–5 days (depending on
diet quality) to manufacture another spermatophore before they are able
to mate again (Davies and Dadour, 1989; Gwynne, 1990). Furthermore,
when male diet is restricted, males invest less energy into courtship signals
but nuptial gift production remains constant (Simmons et al., 1992).

What fitness benefits might balance out these well-established costs of
nuptial gifts for R. verticalis males? Below we expand on Gwynne’s (1997)
analysis of current gift function to examine the fitness benefits that males
derive from spermatophylax production across multiple selection episodes
that occur before, during, and after mating.

B. FITNESS BENEFITS TO R. VERTICALIS MALES

1. Male Insemination Success and Number of Sperm Transferred

When R. verticalis females are deprived of a spermatophylax they will
remove and eat the ampulla, effectively halting sperm transfer (Gwynne
et al., 1984). Gwynne et al. (1984) demonstrated that while sperm drainage
from the ampulla is completed within 3 h, females take !5 h to eat the
spermatophylax before moving on to consume the ampulla. In some other
orthopteran species, in contrast, male spermatophylax size attains only the
minimum necessary to ensure complete sperm drainage (e.g., the cricket
Gryllodes supplicans; Sakaluk, 1984). Thus, the R. verticalis spermatophy-
lax serves to protect male ejaculates by insuring insemination and maximiz-
ing the number of sperm transferred (Fig. 3, selection episodes 3 and 4).

2. Paternity Share

Male nuptial gifts in R. verticalis also affect male paternity share postmat-
ing (Fig. 3, episode 6). Laboratory studies indicate that R. verticalis generally
show complete first-male sperm precedence; that is, the first male that mates
with a virgin female will sire all of her offspring even when the female
remates (Gwynne, 1988a; Simmons and Achmann, 2000). When females
were given a longer intermating interval and allowed to oviposit between
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matings, second males gained!20% paternity share (Gwynne and Snedden,
1995). In addition, first males that had greater spermatophore mass retained
higher paternity share. Radiolabeling studies show that amino acids derived
from second males become incorporated into eggs that were fertilized by the
first male; thus, second male gifts are allocated to offspring sired by another
male. However, such cuckoldry may happen infrequently under natural
conditions, as field estimates of female polyandry suggest that females in
nature remate less frequently than in the lab (Simmons et al., 2007).

The high degree of first-male paternity seen in R. verticalis suggests that
males should be selected to preferentially mate with virgin females, but
males appear incapable of discriminating females’ mating status (Lynam
et al., 1992; Simmons et al., 1993, 1994). This may represent sexual conflict,
with selection acting on females to hide their mating status to obtain the
benefits provided by additional spermatophores (Simmons et al., 1994).
However, Simmons et al. (1994) did find that males are able to discriminate
among potential mates based on female age. By preferentially mating with
younger females, males may increase their chance of mating with virgins
and may thus gain higher paternity share.

Sperm competition theory predicts that males should strategically allo-
cate their ejaculates depending on female mating status (Simmons, 2001);
when mating with a previously mated female, males should maximize sperm
number in the ampulla (to increase their sperm offense ability), but mini-
mize spermatophylax investment due to their the low probability of siring
offspring. Instead, Simmons et al. (1993) found that when mating with
young females,R. verticalismales transfer identical spermatophores regard-
less of female mating status; however, males transfer spermatophores with
50% more sperm and 25% less spermatophylax material when mating with
older compared to younger females. Thus, R. verticalis males appear to
strategically allocate their ejaculates when mating with older females to
increase their sperm offense ability, and thus their potential paternity share.

Nuptial gifts produced by R. verticalis also affect male postcopulatory
fitness by increasing sperm defense. Given the high cost of producing nuptial
gifts, males should be selected to increase female latency to remate as a
mechanism of reducing sperm competition. By experimentally manipulating
ampulla attachment times, Gwynne (1986) demonstrated that the ampulla
contains receptivity-reducing substances that act in a dose-dependent fash-
ion, normally rendering females non-receptive for approximately 4 days.
Substances in the ampulla also appear to negatively affect female longevity.
Wedell et al. (2008) found that when females received the contents of three
male ampullas (each without a spermatophylax), they had significantly
shorter life spans, and this negative effect was not counteracted by sperma-
tophylax consumption.
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3. Female Fecundity and Egg/Offspring Survival

Finally, nuptial gifts can also increase male fitness through effects on
female fecundity and the survival of offspring sired by the gift-giving male
(Fig. 3, selection episodes 7 and 8). Radiolabeling experiments demon-
strated that male protein derived from the R. verticalis spermatophore is
incorporated into the female’s eggs (Bowen et al., 1984; Gwynne, 1988a).
Furthermore, females that consume more spermatophylaces produce more
and heavier eggs (Gwynne, 1984), and offspring from larger eggs had
greater overwintering survival (Gwynne, 1988b). If receiving spermatophy-
lax nutrients directly benefits female fitness, nutrient-limited females would
be expected to seek out matings to obtain additional nuptial gifts. Indeed,
female R. verticalis females kept on a low-quality diet remate more often
than females kept on a high-quality diet (Gwynne, 1990).

By applying this framework in R. verticalis, we see that nuptial gifts
increase male fitness across several episodes of selection, ultimately
increasing the number of offspring sired by the gift-giving male. A complete
spermatophore (ampullaþ spermatophylax) is necessary for insemination
to occur (i.e., ejaculate protection), as otherwise the ampulla will be
removed and eaten before sperm transfer. Presence of a spermatophylax
increases the duration of ampulla attachment, and spermatophylax size
exceeds that required for complete sperm transfer. Unidentified substances
present in the male ampulla act to reduce female receptivity to additional
matings, helping to ensure a male’s paternity share relative to his rivals.
Additionally, males discriminate against older females that have likely
already mated as a mechanism to reduce incidence of cuckoldry. Sperma-
tophylax consumption increases female fecundity and has the potential to
enhance fitness by increasing the number of offspring sired by the gift-
giving male. Paternity success of second mating males increases if they
mate with a female after she has had an opportunity to oviposit. Finally,
spermatophylax consumption increases egg size, which enhances survival of
a male’s offspring. Thus, this work on R. verticalis clearly illustrates how
costly nuptial gifts might provide males with demonstrable fitness benefits
measured across several sequential episodes of selection.

V. PHYLOGENETIC INSIGHTS INTO THE EVOLUTION OF NUPTIAL GIFTS

Despite the key role that nuptial gifts play in the reproductive ecology of
so many animals, surprisingly few studies have rigorously examined the
evolution of nuptial gifts using a comparative phylogenetic approach. To
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thoroughly test the various evolutionary scenarios that have been proposed
for nuptial gifts, it will be essential to map gifts and other relevant traits
onto robust phylogenies developed for particular taxa. Using this approach
will provide insight into the evolutionary sequence of gift trait transitions
and will also allow tests of correlated evolution between nuptial gifts, life-
history, and ecological traits. To date, however relatively few studies have
applied these methods. Here we review work from three insect taxa where a
comparative phylogenetic approach has provided insight into nuptial gift
evolution: 1) endogenous oral gifts within katydids and crickets (Ensifera:
Orthoptera), 2) correlated evolution of wingless females and male nuptial
gifts in fireflies (Lampyridae: Coleoptera), and 3) patterns of male ejaculate
incorporation, as well as rates of seminal fluid protein evolution, in the
genus Drosophila (Drosophilidae: Diptera).

A. ENDOGENOUS ORAL GIFTS IN KATYDIDS AND CRICKETS

The first comparative phylogenetic study of nuptial gift evolution was
presented by Gwynne (1995, 1997, 2001), who examined the origins and
elaboration of edible glandular gifts within the orthopteran suborder Ensi-
fera (katydids, crickets and their allies). Gwynne’s (1995) phylogenetic
reconstruction was based upon morphological characters and suggested
that the ancestral trait in this group was an exposed spermatophore (essen-
tially a naked sperm-containing ampulla) that was deposited externally on
the female genitalia (Fig. 5). Female consumption of this unprotected
spermatophore was hypothesized to be ancestral for all ensiferans, followed
in the superfamily Tettigonioidea by the origin of the spermatophylax as an
edible addition to the spermatophore. In the evolutionary branch leading to
the family Gryllidae (true crickets), there were numerous origins of diverse
glandular gifts consumed by females before and after mating, along with
male spermatophylaces.

A more detailed analysis (Gwynne, 1995, 1997) showed a total of 11
origins of males producing endogenous oral gifts within the Ensifera;
these included 3 origins of a spermatophylax, 4 origins of metanotal glands,
1 tibial gland, and 3 others instances where females feed on other male body
parts. This work also indicated several independent spermatophylax losses
or size reductions; these occurred in some wetas (Stenopelmatidae; loss in
Deinacrida, size reduction in Hemideina) and katydids (Tettigoniidae; loss
in Tympanophora, Decticita, size reduction in Neoconocephalus). Interest-
ingly, such losses were often associated with origins of other endogenous
gifts, such as secretions from metanotal or tibial glands. Within the Gryl-
loidea, Gwynne’s analysis reveals that there were also seven likely losses of
nuptial gifts and three origins of postcopulatory mate guarding.
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This analysis supports an evolutionary scenario in which males first used
a simple, externally attached ampulla to transfer their sperm (for review see
Gwynne, 2001). Food limitation may have initially driven females to con-
sume this proteinaceous package, leading to sexual conflict over ampulla
attachment times. Selection on males to maximize sperm transfer could
have lead to the origin of male reproductive glands that produced an
additional spermatophore component, the edible spermatophylax. Thus,
the spermatophylax likely originated as an ejaculate protection mechanism,
prolonging ampulla attachment times and allowing sufficient time for sperm
to fully drain from the ampulla into the female reproductive tract. Further
elaboration of the spermatophylax might have occurred if male gifts
increased the number of offspring sired by increasing female fecundity
and/or offspring survival. As females increased their mating rates to obtain
nutritional supplements from these oral gifts, male ejaculates (genital gifts)
would have undergone selection to include compounds that suppress
female receptivity to further matings, thus reducing sperm competition risk.

While this analysis provides considerable insight into the evolution of
orthopteran nuptial gifts, additional work could increase taxon coverage
and incorporate more detailed information on species’ life-history and
ecological traits. Further studies could also help elucidate what conditions
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Fig. 5. Proposed evolution of spermatophylax nuptial gifts within the orthopteran suborder
Ensifera (two superfamilies indicated), with gift-related traits mapped onto the most parisi-
monious tree based on morphological characters (figure modified from Gwynne, 2001).
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led to the spermatophylax loss seen across several ensiferan lineages, and
what factors underlie the explosion of nuptial gift diversity seen among
modern day Orthoptera.

B. FIREFLY SPERMATOPHORES: COEVOLUTION WITH FEMALE FLIGHT

Recent work on fireflies (Coleoptera: Lampyridae) also shows the power
of a comparative phylogenetic approach and offers new insights into how
nuptial gift evolution is linked to other life-history traits (South et al.,
2011b). This analysis also allowed reconstruction of ancestral character
states as well as the sequence of evolutionary transitions, and demonstrated
trait coevolution between the sexes.

Based upon Tallamy’s (1994) enhanced fecundity hypothesis and Boggs’
(1990) female allocation model, Lewis and Cratsley (2008) developed a
conceptual model to explore the evolution of nuptial gifts in lampyrids as a
function of female allocation trade-offs between flight and reproduction.
Because nuptial gifts can link together male and female resource budgets,
they have the potential to alter the allocation strategies used by both sexes.
Thus, selection for nuptial gifts might depend on female reproductive
allocation, which in turn depends on allocation to other activities, including
flight. If females do not require flight, fecundity selection can act to max-
imize female reproductive allocation. In this case, because female repro-
ductive output is already at its maximum (Emax in Boggs, 1990), male
nuptial gifts will have limited scope to further enhance female fecundity.
On the other hand, when female reproductive allocation is constrained by
the energetic and biomechanical demands of flight, nuptial gifts could
provide larger proportional fecundity increases for females. Therefore,
this model predicts that nuptial gifts would not be selected in species with
flightless females. Fireflies present an opportunity to test this relationship,
as they demonstrate variation in not only nuptial gift-giving, but also in
female flight ability.

As fireflies are capital breeders and both sexes mate multiply, nuptial
gifts can have major fitness consequences for both sexes (Lewis and
Cratsley, 2008). Firefly nuptial gifts consist of spermatophores (endogen-
ous genital gifts) that are manufactured by several accessory glands and
transferred to females during mating (Lewis et al., 2004). Some female
fireflies possess a specialized reproductive sac to receive and break down
the spermatophore after sperm are released into the female spermatheca
(van der Reijden et al., 1997). Radiolabeling experiments in Photinus
fireflies have shown that spermatophore-derived proteins are incorpo-
rated into the female’s developing oocytes (Rooney and Lewis, 1999),
and male gifts benefit females by increasing their lifetime fecundity
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(Rooney and Lewis, 2002) and longevity (South and Lewis, 2012b). Gift
production is costly for males, as spermatophore size declines across succes-
sive matings in Photinus (Cratsley et al., 2003). Among the 2000 extant
species of firefly worldwide, spermatophores are present in some, yet absent
in others (Hayashi and Suzuki, 2003; Lewis et al., 2004; South et al., 2008,
2011b; van der Reijden et al., 1997). Those species that lack spermatophores
show reduced male accessory glands and females do not have a spermato-
phore-receiving sac (Demary and Lewis, 2007; South et al., 2011b). What
accounts for such interspecific variation in nuptial gifts?

Fireflies also exhibit extensive interspecific variation in life-history
traits. In some fireflies, females have greatly reduced wings and as a result
are flightless, while in other species both sexes have normal wings and can
fly (Jeng, 2008). Hayashi and Suzuki (2003) first proposed that female
wing reduction might be negatively associated with male nuptial gifts in
Japanese fireflies. Thus, the existing variation in both spermatophore
production and female flight within the Lampyridae provided an opportu-
nity to test Lewis and Cratsley’s (2008) model and to examine whether this
life-history trait could help explain how nuptial gifts are distributed across
fireflies.

South et al. (2011b) performed a phylogenetic analysis of the relationship
between spermatophore production and female flightlessness within the
Lampyridae (Fig. 6). These two traits were measured in 32 taxa andmapped
onto a lampyrid molecular phylogeny constructed by Stanger-Hall et al.
(2007). Ancestral state reconstruction revealed it was highly likely that
firefly males originally produced spermatophores, but these nuptial gifts
were subsequently lost in four separate lineages (Fig. 6, right). This recon-
struction also revealed that ancestral fireflies had flight-capable females,
and females then lost their flight ability at least five times (Fig. 6, left).
Furthermore, this work revealed a remarkably congruent pattern between
male nuptial gifts and female flight, with the correlated loss of both female
flight and male gifts occurring in many lineages. This congruence (statisti-
cally confirmed by Pagel’s test of correlated evolution) demonstrated coe-
volution between two traits expressed in different sexes. Finally,
transitional probability analysis demonstrated that first females lost their
flight ability, subsequently followed by male spermatophore loss.

Thus, female flight ability provides a compelling explanation for
observed patterns of nuptial gifts in fireflies, but what selected for female
flight loss in the first place? Based upon considerable evidence demonstrat-
ing that flightless females can allocate more to reproduction, the most likely
explanation for female-specific flight loss is selection for increased fecund-
ity. Thus, these results strongly support the conclusion that male nuptial
gifts are co-adapted with patterns of female reproductive allocation, at least
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in fireflies. These results could be broadly applicable to other capital bree-
ders and could help explain patterns of nuptial gift evolution in other taxa.
Further studies are needed to see whether variation in other ecological and
life-history traits associated with resource allocation can provide additional
insights into nuptial gift evolution.

C. FEMALE INCORPORATION OF EJACULATE-DERIVED PROTEINS IN

DROSOPHILA FRUITFLIES

In our taxonomy of nuptial gifts, the category of endogenous genital gifts
explicitly includes seminal products that are transferred in a liquid ejacu-
late; this occurs in many Diptera, including Drosophila fruitflies. Droso-
phila species vary widely in several aspects of their mating systems,
including female remating latency, male ejaculate composition, mating
behavior, and the degree to which substances from male ejaculates are
incorporated into female tissue (Markow, 2002; Markow and Ankney,
1984; Markow and O’Grady, 2005; Pitnick et al., 1997). Studies mapping
reproductive traits onto a Drosophila phylogeny provide insight into the
evolutionary history of these unpackaged nuptial gifts.

For 34 species of Drosophila, Pitnick et al. (1997) used radiolabeled
amino acids to determine how much protein transferred in male ejaculates
was incorporated into female ovarian or somatic tissue. Drosophila species
showed dramatic variation in the degree to which females incorporated
male-derived proteins (Fig. 7). Females in most species, including those in
the melanogaster group, showed no incorporation into their ovarian tissue
and about half showed no incorporation into somatic tissue. However,
Drosophila species within the subpalustris group showed substantial incor-
poration into somatic tissue, and those within the mojavensis cluster
showed substantial incorporation of male-derived protein into both somatic
tissue and oocytes.

By mapping these data onto a molecular phylogeny, Pitnick et al. (1997)
showed that incorporation of male-derived protein into female somatic
tissue has independently evolved multiple times (Fig. 7). In the mojavensis
cluster, high levels of ovarian incorporation were also seen to accompany
high incorporation into somatic tissue. This phylogeny also reveals some
degree of lability, as incorporation into both tissue types seems to have
been subject to both gains and losses. Thus, this work provides evidence
that multiple Drosophila groups have evolved male ejaculates that contri-
bute to female somatic maintenance or reproduction.

As pointed out by Pitnick et al. (1997), these patterns of female ejacu-
late incorporation might be related to differences among species in their
nutritional ecology, as the host resources exploited by Drosophila vary
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Fig. 7. Phylogenetic distribution of nutritive male ejaculates in 34 species of Drosophila
fruitflies (Diptera: Drosophilidae). Shading indicates the degree to which females have incor-
porated 14 C-labeled proteins derived from male ejaculates into their somatic tissue (shown on
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DPM), and black bars indicate substantial incorporation of male-derived protein by females
(>100). Figure from Pitnick et al. (1997).
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widely in quality (Markow and O’Grady, 2008). Species in the mojavensis
group (D. mojavensis, D. navojoa, D. straubae, D. parisiena, D. mayaguana,
and D. arizonae) all breed and feed on necrotic cactus (see Markow and
O’Grady, 2005, 2008), which contains lower levels of both nitrogen and
phosphorus compared to the fruit hosts used by the melanogaster group
(Markow et al., 1999). In addition, by manipulating nutritional content of
the cactus host, Brazner et al. (1984) showed thatD. mojavensis are likely to
undergo frequent nutritional stress. Markow et al. (1990) showed that
D. mojavensis females kept on low-quality diets experienced enhanced
fecundity from the receipt of male ejaculate, and suggested that nutritive
ejaculates are more likely to evolve when adults are subject to nutrient
limitation. Consistent with the enhanced fecundity hypothesis (Tallamy,
1994), females in some cactophilic, and presumably nutrient-limited, Droso-
phila species show a high degree of male ejaculate incorporation (Pitnick
et al., 1997). In addition, Markow et al. (2001) found that in Drosophila
nigrospiracula, a cactophilic species subject to larval phosphorus limitation,
mated females incorporate phosphorus derived from male ejaculates into
oocytes. Therefore, variation in resource availability among Drosophila
species may be one factor in the evolution of nutritive male ejaculates that
contribute to female somatic maintenance and reproduction.

The presence of nutritive male ejaculates also shows strong phylogenetic
correlations with other features of Drosophila mating systems (Markow,
2002). Across 21 Drosophila species, Markow (2002) found strong congru-
ence between female mating frequency and exaggerated male ejaculates
(these include nutritive male ejaculates). Additionally, Markow (2002)
suggested that the evolution of nutritive male ejaculates may have been
preceded by higher female remating rates. However, because so many
reproductive traits covary with mating systems, additional work is needed
to test the sequence of these evolutionary transitions. The extensive knowl-
edge base for Drosophila concerning host use, life histories, and reproduc-
tive traits makes this a compelling system for examining specific factors that
promote the evolution of endogenous genital gifts.

In summary, in this section we present previous work that has taken a
comparative phylogenetic approach to describe and test hypotheses about
nuptial gift evolution. To rigorously test the various evolutionary scenarios
that have been proposed for nuptial gifts, it will be essential to map gifts and
other relevant traits onto robust phylogenies developed for particular taxa.
We emphasize how valuable it is to include life-history and ecological traits
in such evolutionary analyses. This approach should provide insight into the
evolutionary sequence of gift transitions and will also allow formal tests of
correlated evolution between male gifts and other traits that can influence
their evolutionary trajectory.
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D. EVOLUTIONARY RATES OF DROSOPHILA SEMINAL PROTEINS

Drosophila male ejaculates are certainly the most well-characterized of
all endogenous nuptial gifts. Their nonsperm components comprise a com-
plex cocktail of molecules produced by male accessory glands and secretory
tissues in the male ejaculatory duct. While many different types of mole-
cules are transferred within Drosophila male ejaculates, research has
focused on seminal fluid proteins (SFPs). Once transferred, these SFPs
engage in dynamic molecular interactions within the female reproductive
tract, and this sexual interplay is likely to influence SFP evolution. Because
these molecules have been so well-studied, research on SFP evolutionary
rates can contribute to a broader understanding of nuptial gift evolution.

Nearly 150 different SFPs have been identified from the ejaculate of
D. melanogaster males, and these proteins initiate many physiological and
behavioral changes within mated females (reviewed by Avila et al., 2011).
Significant changes in female gene expression are seen 1–3 h following the
receipt of ejaculate and are maximized at 6 h postmating. Conformational
changes of the female reproductive tract allow for sperm storage, and the
oviduct shows increased innervation and enhanced formation of myofibrils
(Adams andWolfner, 2007; Kapelnikov et al., 2008). Specific SFPs are neces-
sary for female sperm storage and release, while others improve sperm
survival (Ravi Ram and Wolfner, 2007a; Xue and Noll, 2000). Male SFPs
increase female egg production and ovulation (Heifetz et al., 2000; Ravi Ram
and Wolfner, 2007a,b), initiate the formation of a mating plug (a gelatinous
mass containing sperm; Bretman et al., 2010; Lung and Wolfner, 2001), and
cause females to actively reject courting males. Female activity levels also
increase followingmating, with increased foraging (Carvalho et al., 2006) and
70% less sleep (Isaac et al., 2010), possibly leading to shorter life spans for
mated females (Isaac et al., 2010; Wigby and Chapman, 2005).

Notably, rapid evolution of genes encoding male SFPs has been documen-
ted in Drosophila as well as in other taxa (Clark et al., 2006; Swanson and
Vacquier, 2002; Vacquier, 1998). Comparisons betweenD. melanogaster and
D. simulans demonstrated high rates of nonsynonymous nucleotide substitu-
tion in SFP genes compared to non-SFP genes (Swanson et al., 2001).
Sequence comparisons between D. melanogaster and D. pseudoobscura of
52 SFP-encoding genes from male reproductive accessory glands detected
only 58% conserved as true orthologs (Mueller et al., 2005). Such rapid and
dynamic evolution of SFPs is likely due to postcopulatory sexual selection
(Clark et al., 2006; Panhuis et al., 2006; Swanson and Vacquier, 2002). Sperm
competition (Birkhead and Moller, 1998), cryptic female choice (Eberhard,
1996), and sexual conflict (Parker, 1979)mayall contribute to a coevolutionary
arms race between and within sexes over control of reproductive outcomes.
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Comparisons between Drosophila species can be used to test the predic-
tion that SFP evolution will proceed more rapidly when postcopulatory
sexual selection is more intense. Mating systems and reproductive ecology
differ dramatically between species in the repleta group and those in the
melanogaster group. D. repleta males transfer a nutritive ejaculate, and
females remate more frequently (Markow, 2002; Markow and Ankney,
1984; Pitnick et al., 1997). In addition, many repleta species show an inse-
mination reaction, consisting of an opaque mass that develops within the
female vagina after mating. This is thought to prevent females from remat-
ing, thus protecting the male’s nutritional investment from cuckholdry by
rival males (Markow and Ankney, 1984, 1988). Based on these differences
in reproductive ecology, species in the D. repleta group appear subject to
more intense postcopulatory sexual selection and thus are predicted to
show faster rates of SFP evolution compared to D. melanogaster. Support-
ing this prediction, several studies have shown that SFP genes expressed by
male accessory glands in the repleta group evolve more rapidly than those in
the D. melanogaster group (Almeida and DeSalle, 2009; Wagstaff and
Begun, 2005, 2007). In the repleta group, SFP genes also show high rates
of gene duplication, which is suggested to facilitate adaptive protein evolu-
tion (Ohno, 1970; Walsh, 2003). Thus, repleta SFPs appear to be undergoing
rapid evolution, potentially due to differences in their reproductive
ecology.

Consistent with the prediction that sexual coevolution is responsible for
rapid evolutionary changes in male gifts, some female reproductive proteins
in the repleta group also show rapid adaptive evolution, and gene duplica-
tion has also been important in the evolution of these proteins (Kelleher
et al., 2007). Of particular interest are several digestive proteases, which
Kelleher et al. (2007) suggest might play a role in breaking down the
mating-induced insemination reaction. Interestingly, male ejaculates in
D. mojavensis contain protease inhibitors (Wagstaff and Begun, 2005),
two of which have also experienced lineage-specific gene duplication events
(Kelleher et al., 2009). The reproductive tract of femaleD. arizonae (a close
sister species to D. mojavensis) shows exceptionally high proteolytic activ-
ity that is negatively regulated by mating (Kelleher and Pennington, 2009).
Taken together, these results from different repleta species suggest active
sexually antagonistic coevolution around the insemination reaction, with
male protease inhibitors acting to prevent male ejaculate components
getting broken down by female proteases.

Thus, rapid evolution of Drosophila nuptial gifts appears to be driven by
a complex sexual interplay taking place at the molecular level. While some
male-derived proteins are incorporated into female oocytes and somatic
tissue, other SFPs may have evolved to counter defenses mounted by
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females to prevent male manipulation. Further exploration of these
dynamic sexual interactions should provide many insights into the con-
stantly shifting balance between the costs and benefits of nuptial gifts.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Animal nuptial gifts take multitudinous forms, and their evolutionary
stories promise to be just as diverse. In this overview, we have tried to offer
a fresh perspective on the evolution of animal nuptial gifts. We argue for a
broader definition of nuptial gifts that can accommodate anticipated lability
of nuptial gift structure and function arising from coevolutionary interac-
tions both between and within the sexes. By systematically classifying
nuptial gifts according to how they are produced (endogenous vs. exogen-
ous) and how they are absorbed by the recipient (oral, genital, or transder-
mal), we hope to establish a robust framework for testing predictions about
how gifts influence both male and female fitness. Rather than attempting to
place potential benefits gained by gift-giving males into the falsely dichot-
omous categories of parental investment versus mating effort, we illustrate
how nuptial gifts might enhance male fitness across multiple selection
episodes that occur before, during, and after mating. Finally, we highlight
some studies that have greatly advanced our understanding by using com-
parative phylogenetic methods to examine how nuptial gifts and associated
life-history traits have changed over evolutionary time.

We hope this foundation will inspire future research efforts to enhance
our understanding of nuptial gift evolution. Despite many advances, there
remain several areas that clearly call out for more focused research efforts:

# We have detailed morphological descriptions of the glands which are
responsible for manufacturing many endogenous gifts (e.g., Leopold,
1976; Liu and Hua, 2010). In many taxa, nuptial gifts are the combined
productions of multiple glands, yet much work remains to fully char-
acterize these glandular products. Transcriptome studies of gene
expression within gift-manufacturing glands will provide insight into
differences and similarities in their gene products and associated func-
tions. For example, to what extent has convergent evolution occurred
between those male reproductive glands that produce oral versus
genital gifts, or between reproductive and salivary glands?

# In considering selection for nutritive nuptial gifts, the geometric frame-
work developed for nutritional ecology (Raubenheimer, 2011;
Raubenheimer et al., 2009) provides a powerful tool for testing
whether male gifts evolved to support female reproduction. Does
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selection shape male glandular products to provide novel nutritional
mixtures that will supplement females’ dietary resources, that is, do
such gifts act as vectors that specifically target the requirements of
vitellogenesis? We need more detailed biochemical analyses of differ-
ent types of nuptial gifts to test many of the predictions laid out here.

# Most importantly, there is a compelling need for additional phyloge-
netic analyses of nuptial gift traits that can provide insight into the
evolutionary origin and maintenance of nuptial gifts across different
taxonomic groups. Continuing to examine evolutionary patterns within
the Orthoptera will be especially interesting, because their nuptial gift
types are so variable. Phylogenetic analysis would also be worthwhile
in the Lepidoptera, where reconstructing ancestral character states
could shed light on possible trajectories of spermatophore evolution.
Finally, because nuptial gifts lie at the intersection of nutritional ecol-
ogy, sexual selection, and life-history evolution, testing informed pre-
dictions concerning evolutionary associations between nuptial gifts and
relevant ecological and life-history traits is of fundamental importance.
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