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Abstract

Background:With the recent advent of inductive charging systems all major
automotive manufacturers develop concepts to wirelessly charge electric vehicles.
Efficient designs require virtual prototyping that accounts for electromagnetic and
thermal fields. The coupled simulations can be computationally very costly. This is
because of the high frequencies in the electromagnetic part. This paper derives a
mixed frequency-transient model as approximation to the original problem. We
propose a co-simulation such that the electromagnetic part is simulated in the
frequency domain while the thermal part remains in time domain.

Results: The iteration scheme for the frequency-transient model is convergent for
high frequency excitation. The error bound improves quadratically with increasing
frequency.

Conclusions: The frequency-transient model is very efficient for coupled
heat-electromagnetic simulations since the time scales typically differ by several
orders of magnitude. The time steps of the full system can be chosen according to
the heat subsystem only.
MSC: 35K05; 35Q61; 65Z05; 78A25; 78M12; 80M25
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1 Introduction
With the recent advent of inductive power charging systems and wireless power transmis-
sion in consumer and mobile phone technology, [], all major automotive manufacturers
develop concepts to wirelessly charge electric vehicles, both plug-in and pure electric ve-
hicles (EV). For example the prototype from the Leopold Kostal GmbH & Co. KG of such
an inductive charging station is shown in Figure . The necessity to charge EVs with to-
day’s battery technology after every prolonged use - at least every night - is seen as one of
the major drawbacks in the usability of EVs. A system to automate the charging process
would reduce the burden on the driver; it could increase the acceptance of EVs, and, in
the case of plug-in hybrid EVs, it could help to further reduce the CO footprint since the
battery of the plug-in hybrid could always be considered fully charged. This is important
for the calculation of the fleet CO emission.
A future inductive charging system does not necessarily exhibit a lower efficiency than

a comparable conductive charging system, since there are only a few additional compo-
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(a) Charge station. (b) Charging of a electric vehicle.

Figure 1 Prototype of an inductive charging station that charges the vehicle through its number
plate (Images from Leopold Kostal GmbH & Co. KG).

nents; in a simplified view, the inductive charging system could be considered as a con-
ductive charging system that has been cut in half in the middle of the transformer. There
are, however, certain aspects that require attention and detailed design and optimization.
These include positioning tolerances of the stationary (‘primary’) and car-mounted (‘sec-
ondary’) coils, magnetic stray fields, and thermal aspects.
The efficiency of both conductive and inductive charging systems is aimed well above

%, measured from the primary AC connection to the drive train battery. But even with
this high efficiency, at . kW of first generation systems charging power there is a non-
negligible amount of heat to be dissipated. Later generations with even higher power will
further increase the heat load on the components. This heat load is the result of several
different processes, namely resistance losses due to DC resistance and proximity effects,
ferrite core losses and switching losses in the active semiconductor switching components.
The main effects appear at the same frequency range as the magnetic field, which is of
the order of - kHz. The resulting temperature however changes on much slower
timescales, in the order of minutes, determined by the heat capacity and the (relatively
large) mass of the involved components. This electromagnetic-thermal problem is fully
coupled, as many of the material parameters show a significant thermal dependence. Typ-
ical ferrite core losses, for instance, areminimal at temperatures around ◦C and increase
below and above this temperature. This drives the equilibrium temperature of the ferrite
material always close to this temperature, if the dissipated power is small enough, ormakes
the system thermally unstable, if the heat power is too high.
Engineering samples of such systems are expensive, heavy, possibly dangerous to oper-

ate, and take a lot of time to build and optimize. Virtual prototyping using efficient sim-
ulation methods accelerates this process. There are different methodologies and models
available, [].
The paper is structured as follows: In Section , we propose a particular frequency-

transient model for electromagnetic-thermal problems. The electromagnetic (EM) field
is considered at high frequencies, where the time scale of the heat conduction is signifi-
cantly lower than the time scale of the EM field. This can be exploited in the modeling.
We propose a co-simulation scheme, similar to dynamic iteration [], and analyze its con-
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vergence properties in Section . The analysis exhibits interesting results, especially for
high frequencies. Possibilities to generalize this model are also discussed. Section  vali-
dates the results by a numerical simulation of a simplified model of the inductive charging
system shown in Figure .
In contrast to [], where the different ways of co-simulation are discussed, we focus here

on modeling and analysis of the frequency-transient model.

2 Modeling
In this section, we derive a model, which describes the electromagnetic field coupled to
the temperature in the materials. For that, in Section . Maxwell’s equations are intro-
duced with temperature dependent material parameters. The conduction of the heat is
described in Section . by the heat equation together with an electromagnetic power
term as source to describe the Joule losses of the EM field. Finally, in Section . assump-
tions and approximations lead to the frequency-transient model [].

2.1 Maxwell’s equations
Maxwell’s equations read

∇ ·D = ρ, ()

∇ ·B = , ()

∇ × E = –
∂B
∂t

, ()

∇ ×H =
∂D
∂t

+ J, ()

where E and H are the electric and magnetic field strength, D and B are the electric and
magnetic flux densities, ρ and J are the electric charge and current densities. These laws
are supported by the constitutive relations

D = εE, B = μH and J = σ (T)E + Jsrc,

where the permittivity ε and permeability μ parameters depend only on space while the
conductivity σ may also depend on the temperature T . In this way the EM field solution
is a function of the temperature distribution (parameter coupling). However, the source
current density Jsrc describes an external excitation [, ]; it is assumed to be independent
of the temperature. Now to reduce the unknowns in Maxwell’s equations, we introduce
the magnetic vector potential A and the electric scalar potential ϕ as

E = –∇ϕ –
∂A
∂t

with B = ∇ ×A.

By using these potentials, () and () are fulfilled automatically. From () we get

∇ × (
μ–∇ ×A

)
+ ε

∂A
∂t

+ σ (T)
∂A
∂t

+ ε∇ ∂ϕ

∂t
+ σ (T)∇ϕ = Jsrc.

With Buchholz gauge transformation (∇ϕ = ) this reduces to

∇ × (
μ–∇ ×A

)
+ ε

∂A
∂t

+ σ (T)
∂A
∂t

= Jsrc. ()
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The so-called curl-curl equation will be treated in the following on a finite domain with
adequate boundary conditions (BC) and initial values (IV).
For the low frequency range, where inductive effects dominate, usually the displacement

current ∂D/∂t =̂ωεÂ can be disregarded. This is called magnetoquasistatic formulation.
For details on these formulations we refer to []. Here we are interested in the high fre-
quency range. Therefore our model is based on the full Maxwell formulation ()-().

2.2 Heat equation
The classical heat equation describes conduction of heat in materials:

ρc
∂T
∂t

= ∇ · (k∇T) +Q ()

with heat conductivity k, density ρ and specific heat capacity c, all constant in time and
again on a finite domain with BC and IV. The term Q represents the Joule losses of the
EM field. Hence we use a source coupling to connect the heat equation with the EM curl-
curl equation (). For simplicity we consider only eddy-current and Joule losses and thus
obtain

Q(A,T) = J · E = σ (T)E · E + Jsrc · E = σ (T)
∂A
∂t

· ∂A
∂t

– Jsrc · ∂A
∂t

. ()

The power term is further simplified in the next section.

2.3 Frequency-transient model
Now we aim at a model which allows an efficient simulation. The model consisting of ()
and () with () is defined in the time domain. A multirate co-simulation scheme could
simulate both equations with different time steps. However, for a fast varying source cur-
rent density the main part of the computational costs is caused by the simulation of ().
A discussion of single-rate andmultirate schemes can be found in [].Wewill reduce these
costs further by refining the model.
Since the temperature is only slowly varying in comparison to the EM field in () the

temperature T , where σ is evaluated at, can be averaged by

T̃i :=


τi+ – τi

∫ τi+

τi

T(t)dt.

Thus we use σ (T(t))≈ σ (T̃i) for t ∈ [τi, τi+] and then () can be approximated by

∇ × (
μ–∇ ×A

)
+ ε

∂A
∂t

+ σ (T̃i)
∂A
∂t

= Jsrc. ()

However, this is still in time domain. To allow a solution in frequency domain, we assume
a time harmonic source current density

Jsrc =


Ĵsrcejωt +



Ĵsrce–jωt , ()

where Ĵsrc is a complex phasor. It follows for μ and ε independent of A that

A(t) =


(
Âc(T̃i)ejωt + Âc(T̃i)e–jωt

)
, ()
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where the complex phasor Âc is the solution for Ĵsrc. This means the amplitude is constant
within the time interval [τi, τi+].
Let us look at () again, but now with the approximation σ (T(t))≈ σ (T̃i). The dot prod-

uct is the usual real inner product.

Q(A, T̃i) = σ (T̃i)
∂A
∂t

· ∂A
∂t

– Jsrc · ∂A
∂t

= –σ (T̃i)
ω


(
Âc · Âcejωt – Âc · Âc + Âc · Âce–jωt

)

– j
ω


(
Ĵsrc · Âcejωt – Ĵsrc · Âc + Ĵsrc · Âc – Ĵsrc · Âce–jωt

)
,

where Âc = Âc(T̃i). Now we are interested in the mean power loss in the time interval
[τi, τi+]:

Q̃i :=


τi+ – τi

∫ τi+

τi

Q
(
A(t), T̃i

)
dt ()

and thus all parts with e±jωt vanish (for interval length being a multiple of the half period
length, i.e. τi+ – τi = cπ

ω
, where c ∈N). Then we are left with

Q̃i = σ (T̃i)
ω


∥∥Âc(T̃i)

∥∥
c +

ω


Im

(
Ĵsrc · Âc(T̃i)

)
, ()

where ‖A‖c := A · A is the Euclidean norm for complex vectors A. Now the simplified
curl-curl equation () can be considered in frequency domain (with vector potential Âc =
Âc(T̃i)) along with the simplified heat equation () left in time domain:

(
jωσ (T̃i) –ωε

)
Âc +∇ × (

μ–∇ × Âc
)
= Ĵsrc, ()

ρc
∂T
∂t

= ∇ · (k∇T) + Q̃i. ()

The curl-curl equation is formulated with constant material parameters in frequency
domain. Thus, only a linear, complex system has to be solved once for each time window,
instead for each time step of the curl-curl equation in time domain.

3 Algorithm
We will now discuss the algorithm to simulate heat-EM problems with the frequency-
transient model. After discretization, the model is solved in a Gauss-Seidel scheme, which
can be interpreted as co-simulation. It is comparable with a dynamic iteration for time
integration. Section . will briefly discuss the co-simulation scheme. In Section . the
convergence analysis for the iteration is proved.

3.1 Method
The co-simulation scheme uses () and () in a discretized form. For simplicity we as-
sume Finite Integration Technique (FIT) [–] for spatial discretization and then for time
discretization the implicit Eulermethod. As an alternative to FIT discretization, one could
use the (lowest order) Finite Element or Boundary Element Methods [, ] with the
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drawback of non-diagonal material matrices. This would complicate the following deriva-
tions. However, in FIT-notation the curl-curl equation () becomes

(
jωMl

σ –ωMε +C�MνC
)

�al+ =
��j s, ()

with (diagonal) positive semi-definite matrix for electric conductivityMσ , (diagonal) pos-
itive definite matrices for permittivity and reluctivity Mε , Mν , discrete curl operators C
and C�. Note, that Ml

σ := Mσ (Tl), where Tl denotes the discretized temperature at the
lth iteration step. Let n denote the number of nodes in the computational domain, then
the matrices are from R

n×n; the discretized (facet-integrated) source current density
��j s ∈ R

n and the (edge-integrated) magnetic vector potential �a ∈ R
n are ordered in xyz-

direction, e.g., �a� := [�a�
x ,

�a�
y ,

�a�
z ], []. For the heat equation, () gives

(
Mρc + hiS̃MkS̃�)

Tl+ =MρcTi + hi
ω


P
[
ωMl+

σ
�al+ ◦ �al+ + Im

(��j s ◦ �al+
)]
, ()

where ◦ denotes theHadamard (elementwise) product, diagonal positive definitematrices
for thermal conductivity and volumetric heat capacity Mk , Mρc, discrete divergence and
gradient operators S̃, –S̃� on the dual grid, respectively. The matrix P ∈ R

n×n averages
and sums up the discrete losses, cf. ().We useP := [I, I, I] with I ∈ R

n×n being the identity
matrix. However other choices are possible and in [] a more sophisticated averaging is
proposed for P.
To simulate thismodel, () and () are solved successively. This can be repeated for one

time step until convergence (see Algorithm ), similarly as done in Gauss-Seidel schemes.
Here, we call it co-simulation. The scheme is also depicted in Figure . However, since
convergence cannot be guaranteed for such schemes in general, a proof is given in Sec-
tion ..

Algorithm Co-simulation with the frequency transient model, with discretized temper-
ature Ti, discretized magnetic vector potential �ai and time ti.
: Initialize model
: T(t) ← T

: i← 
: while ti < tend do
: T

i+ ← Ti

: l ← 
: while l <  or not converged do
: Solve () for �al+i+

: Solve () for Tl+
i+

: l ← l + 
: end while
: �ai+ ← �ali+
: Ti+ ← Tl

i+

: i← i + 
: end while
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Figure 2 Frequency-transient co-simulation approach.

From Algorithm  it can be seen that time steps are chosen according to the time con-
stant of the heat equation and only one (complex) linear system is solved per iteration
for the curl-curl equation in frequency domain. Thus the time step size is independent of
the excitation frequency ω. In contrast, a time domain solution would require many time
steps per period π/ω and consequently the solution of a large number of real-valued lin-
ear systems. This is the reason, why the model is very efficient for high frequencies since
there is multirate behavior.

3.2 Convergence analysis
We first verify that the Maxwell operator is bounded:

Lemma Let the EM problem () be given with adequate BC, IV for a frequency ω > ω.
Then the inverse of the discrete Maxwell operator exists and is bounded

∥∥(
jωMσ (T) –ωMε +C�MνC

)–∥∥ ≤ C(ω) ()

for some frequency dependent upper bound C(ω) that is independent of the tempera-
ture.

Proof Beforehand we introduce some abbreviations:

X := ωMε –C�MνC, Z := –X + jωMσ . ()

For ω > ω for some ω the matrix X = X(ω) is real, symmetric positive definite and
Mσ =Mσ (T) is real, diagonal, positive semi-definite. Then

Z = (–X + jωMσ ) =X/(–I + jωX–/MσX–/)X/, ()

where X/ :=U�/U– for an eigendecomposition X =U�U–.
Now letA :=X–/MσX–/, which is real and symmetric positive semi-definite. It follows

that the eigenvalue decomposition is A =Q–�Q, with ‖Q‖ = . Then

Z– =X–/(–I + jωA)–X–/

=X–/(–Q–Q + jωQ–�Q
)–X–/

=X–/Q–(–I + jω�)–QX–/,

http://www.mathematicsinindustry.com/content/4/1/1
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∥∥Z–∥∥ ≤ ∥∥X–/∥∥∥∥Q–∥∥∥∥(–I + jω�)–
∥∥‖Q‖∥∥X–/∥∥

≤ ∥∥X–/∥∥ ·  · √
 +ωλ

min

·  · ∥∥X–/∥∥ =
∥∥X–∥∥ =: C(ω),

because A is semidefinite. �

The Lemma guarantees solvability of Maxwell’s equations independent of the tempera-
ture. However, generalizations are possible but we focus here on the high frequency case
because it exhibits a distinct multirate potential. In practice the time-harmonic approach
can be used over a wide range of possible excitation frequencies. In particular for low-
frequencies where the displacement currents are often disregarded [, ]. Furthermore
for other choices of gauging similar results are found. Also in pure transient simulation
[], a wide range of excitation frequencies is covered in practice.

Theorem Let the coupled problem ()-() be given with adequate BC, IV for a frequency
ω > ω.We assume for nonlinear materials, e.g.,metals, positivity and differentiability for
σ (T) w.r.t. temperature T and σ ′ < . Let the exact (monolithic) solution be denoted by �a∞

and T∞, then the iteration is convergent for hi small enough with

∥∥Tl+ –T∞∥∥ ≤ C(ω)hi
∥∥Tl –T∞∥∥,

where C(ω) is uniformly bounded. Furthermore, we have C(ω) = O( 
ω ) for sufficiently

large ω.

Proof Consider the inner loop of Algorithm  (steps  and ). It consists of () and ().
We prove convergence for this inner loop and use the same abbreviations as introduced
in () with the shortcut Zl := Z(Tl). Then we deduce from ()

Zl�al+ =
��j s ⇔ �al+ =

(
Zl)–��j s ()

due to the Lemma above. We define N := S̃Mk S̃�, use () with T∞ and �a∞ subtract it
from ()

(Mρc + hiN)
(
Tl+ –T∞)

= hi
ω


P
(
Ml+

σ
�al+ ◦ �al+ –M∞

σ
�a∞ ◦ �a∞)

+ hi
ω


P Im

(��j s ◦ (
�al+ – �a∞))

. ()

Next, by adding and subtracting hi ω


 PM∞
σ

�al+ ◦ �al+, we have

(Mρc + hiN)
(
Tl+ –T∞)

= hi
ω


P
(
Ml+

σ –M∞
σ

)(
�al+ ◦ �al+

)

+ hi
ω


PM∞

σ

(
�al+ ◦ �al+ – �a∞ ◦ �a∞)

+ hi
ω


P Im

(��j s ◦ (
�al+ – �a∞))

. ()
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Figure 3 Mimetic discretizations of Maxwell’s equations
(e.g. by FIT) use a primal and dual grid. The discrete
temperatures Tk are located at primary nodes, the
line-integrated electric field and the magnetic vector
potentials �e k = �a ′

k are defined at primary edges and finally

the facet-integrated source current density
��j k at dual

surfaces. The material laws relate the quantities on both
grids, e.g., the conductivity connects by Ohm’s Law the

currents and voltages, i.e.
��j k = σk (Tk)�e k . The figure shows

the case for a current in x-direction.

Now, let us consider the term

(
Ml+

σ –M∞
σ

)(
�al+ ◦ �al+

)
.

The conductivity matrix Mσ is a diagonal matrix for any iteration step. We assume, that
the kth component σk ( ≤ k ≤ n) depends only on the neighboring temperature Tk :=
(P�T)k , see Figure . Thus the kth component of the term can be written as

�al+k
(
σk

(
Tl+
k

)
– σk

(
T∞
k

))
�al+k .

Now the mean value theorem can be applied component-wise and yields for the kth com-
ponent

�al+k
(
σk

(
Tl+
k

)
– σk

(
T∞
k

))
�al+k = �al+k σ ′

k(ζ )
�al+k

(
Tl+
k – T∞

k
)
,

where ζk between Tl+
k and T∞

k , and σ ′
k is by assumption non-positive. Hence, in matrix

vector notation with (ζ )k = ζk

(
Ml+

σ –M∞
σ

)(
�al+ ◦ �al+

)
=Al+M′

σ (ζ )A
H
l+P

�(
Tl+ –T∞)

,

where Al := diag(�al) and the diagonal matrix M′
σ (ζ ) has only non-positive elements, i.e.,

it is negative semi-definite. It follows

L
(
Tl+ –T∞)

= hi
ω


PM∞

σ

(
�al+ ◦ �al+ – �a∞ ◦ �a∞)

+ hi
ω


P Im

(��j s ◦ (
�al+ – �a∞))

()

with L := Mρc + hiN – hi ω


 PAl+M′
σ (ζ )AH

l+P� whose inverse exists because it holds
‖L–‖ ≤ ‖M–

ρc‖, since Mρc, N are positive definite and M′
σ (ζ ) is negative semi-definite.

Multiplying () by the inverse of L, taking the norm and exploiting the upper bound
‖M–

ρc‖ yields

∥∥Tl+ –T∞∥∥ ≤ ∥∥M–
ρc

∥∥ ·
[
hi

ω


∥∥PM∞

σ

(
�al+ ◦ �al+ – �a∞ ◦ �a∞)∥∥

+ hi
ω


∥∥P Im

(��j s ◦ (
�al+ – �a∞))∥∥]

. ()

Now, we need estimates for (a) the linear term ‖�al+ – �a∞‖ and (b) the quadratic term
‖�al+ ◦ �al+ – �a∞ ◦ �a∞‖.
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(a) We start with the linear term: Consider () for the difference of exact solution and
(l + )th iterate:

jωMl
σ

�al+ – jωM∞
σ

�a∞ –X
(

�al+ – �a∞)
= 

⇔ Z∞(
�al+ – �a∞)

+ jω
(
Ml

σ –M∞
σ

)
�al+ = 

⇒ ∥∥�al+ – �a∞∥∥ ≤ ω
∥∥(
Z∞)–∥∥∥∥Ml

σ –M∞
σ

∥∥∥∥�al+
∥∥ ()

≤ ω
∥∥(
Z∞)–∥∥∣∣σ ′

max
∣∣∥∥Tl –T∞∥∥∥∥(

Zl)–∥∥‖��j s‖ ()

≤ C
(ω)ω

∣∣σ ′
max

∣∣∥∥Tl –T∞∥∥‖��j s‖ ()

≤ c(ω)
∥∥Tl –T∞∥∥, ()

where we have exploited the Lemma to obtain c(ω) := C
(ω)ω|σ ′

max|‖
��j s‖.

(b) We now consider the quadratic term in ()

∥∥�al+ ◦ �al+ – �a∞ ◦ �a∞∥∥ =
∥∥(

�al+ – �a∞ + �a∞) ◦ (
�al+ – �a∞ + �a∞)

– �a∞ ◦ �a∞∥∥
≤ ∥∥(

�al+ – �a∞) ◦ (
�al+ – �a∞)∥∥ + 

∥∥(
�al+ – �a∞) ◦ �a∞∥∥.

Because ‖a ◦ b‖ ≤ ‖a‖‖b‖, this can be written as

∥∥�al+ ◦ �al+ – �a∞ ◦ �a∞∥∥ ≤ ∥∥�al+ – �a∞∥∥ + 
∥∥�al+ – �a∞∥∥∥∥�a∞∥∥

≤ c(ω)
∥∥Tl –T∞∥∥ + c(ω)

∥∥�a∞∥∥∥∥Tl –T∞∥∥, ()

where the Lemma gives us

∥∥�a∞∥∥ =
∥∥(
Z∞)–��j s

∥∥ ≤ C(ω)‖
��j s‖.

Using the estimates () and () in () gives

∥∥Tl+ –T∞∥∥ ≤ hi
ω


c(ω)‖P‖∥∥M–

ρc
∥∥∥∥Tl –T∞∥∥(

ωc(ω)
∥∥M∞

σ

∥∥∥∥Tl –T∞∥∥
+ ωC(ω)‖

��j s‖
∥∥M∞

σ

∥∥ + ‖��j s‖
)
.

Now consider the asymptotic behavior of this for large ω and small hi. It holds

C(ω) =
∥∥X–∥∥ =

∥∥(
ωMε –C�MνC

)–∥∥ ∼ 
ω

and

c(ω) = C
(ω)ω

∣∣σ ′
max

∣∣‖��j s‖ ∼ 
ω .

Then, for fixed hi and ω large enough, it follows that

∥∥Tl+ –T∞∥∥ ≤ hiC(ω)
∥∥Tl –T∞∥∥,

with some C(ω) ∼ 
ω . �
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3.3 Generalization
The frequency-transient model can be generalized in different ways. To enhance versatil-
ity, one can use a multi-frequency excitation of the EM subsystem. An application would
be steel hardening of gears [, ], where two frequencies are necessary to obtain a ho-
mogeneous heating of the surface. Also to approximate periodic signals other than sinu-
soidal, multi-frequency excitation can be used. This also allows for a Harmonic Balance
approach, which enables usage of a nonlinear permeability μ.

.. Time dependent phasor
The model can be improved by weakening the assumptions made. In [] it is suggested
to consider the complex phasor not as constant within one time window. This means ()
becomes

A(t) =


(
Âc(T)ejωt + Âc(T)e–jωt

)
= Re

(
Âc(T)ejωt

)
. ()

Thus the derivatives are

∂A
∂t

= Re

(
∂Âc

∂t
· ejωt

)
+Re

(
jωÂc · ejωt), ()

∂A
∂t

= Re

(
∂Âc

∂t
· ejωt

)
+ Re

(
jω

∂Âc

∂t
· ejωt

)
–Re

(
ωÂc · ejωt), ()

where Âc := Âc(T). Substituting ()-() into () yields

∇ × (
μ–∇ × Âc

)
+ ε

(
∂Âc

∂t
+ jω

∂Âc

∂t
–ωÂc

)
+ σ (T)

(
∂Âc

∂t
+ jωÂc

)
= Ĵsrc,

which is now a second order PDEwith partial derivatives with respect to time as well. Note
that in [] magnetoquasistatic formulation is used, so there the modification yields a first
order system. However, since now both parts (EM and heat) have to be time integrated,
the co-simulation of these can be called dynamic iteration [].
Due to the modification () changes to

Q̃(T) =
ω


σ (T)‖Âc‖c +

ω



[
σ Im

(
∂Âc

∂t
· Âc

)
+ Im(Ĵsrc · Âc)

]

+



[∥∥∥∥∂Âc

∂t

∥∥∥∥


c
+Re

(
Ĵsrc · ∂Âc

∂t

)]
.

The convergence analysis can be extended accordingly.

.. MPDAE approach
The Multirate Partial Differential Algebraic Equations (MPDAE) approach in [] offers
another type of generalization. It yields a fully time-domain model that introduces two
time scales according to a fast and a slow component in the solution. For circuit simulation
this can be exploited to efficiently determine envelope simulation in case of amplitude
modulation. Themethod however also works for frequencymodulation problems. For the
coupled electromagnetics-heat problem the slow time scale comes from the heat equation,
the fast time scale comes from the periodic source in the electromagnetic problem.
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(a) d view and d cut view on geometry. From
left to right: ferrite (gray), primary coil (blue), air,
secondary coil (blue), ferrite (gray), air, steel slice
(red). The left coil represents the charging station
and the right coil the coil behind the number plate
in the car.

(b) Temperature distribution after a simulation time
of  min. The maximum temperature is . K.
This is the cross section as shown in (a).

Figure 4 Model for an inductive charging system for electric vehicles (Comsol).

4 Frequency-transient co-simulation example
In this section the frequency-transient model is applied to an inductive charging system
for electric vehicles. The charging system is modeled in a d-axisymmetric way by a pri-
mary coil for the station and a secondary coil as receiver in the car. Both coils include
ferrite. Additionally there is a steel slice to model the part of the car body behind the sec-
ondary coil. The electric conductivity of this steel slice depends on the temperature, i.e.,
the system is mutually coupled. The geometry and simulation results are shown in Fig-
ure . For more details of the set up we refer to [].
A constant conductivity would have lead to a single way coupled system and thus the

magnetic vector potential would by a constant vector phasor. Models with a constant con-
ductivity (according to the initial temperature) will systematically underestimate the heat-
ing. In this case the obtained maximum temperature would be  K below the correspond-
ing solution of the mutually coupled problem, [].
For mutually coupled problems the frequency-transient model has proved to be very

efficient. This is expected, since the main part of the computational effort - the time in-
tegration of the EM subsystem - is avoided. In this numerical example ω was chosen to
be  · π ·  kHz. In fact the proposed co-simulation algorithm reached the end time of
tend =  min by using only  time steps with n ≤  iterations (on average n̄ ≈ . it-
erations). This coarse time grid sufficiently resolves the dynamics of the heat equation.
For comparison, in a naive monolithic simulation with  time steps per period  mil-
lion time steps would be necessary to resolve the dynamics of the EM subsystems. This
underlines the computational gain.

5 Conclusions
A frequency-transientmodel tailored for heat-electromagnetic problemswas derived. The
time step size of the coupled system is determined by the heat subsystem only. The con-
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vergence analysis is presented in detail. Convergence for high frequencies is guaranteed.
The error bound for the iteration decreases quadratically with higher frequencies. This re-
sult also applies to approaches by Driesen and Hameyer [] and similar implementations
in Comsol []. Thus the approach fits perfectly for applications where inductive heating
either appears as losses or is intended.
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