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Abstract: Particles are assumed smooth in classical discrete element modelling.but real particles have random rough

surfaces which may influence their mechanical properties. It is necessary therefore to quantitatively improve the

conventional discrete element model particles by taking their surface roughness into consideration. In this work,a

new random normal contact law is established for particles that have random rough surfaces. The contact law, based

on the classic Greenwood and Williamson (GW) model, is derived by both theoretical derivation and numerical

simulation. A Newton-Raphson based numerical solution procedure is proposed to obtain the total contact force for

a given overlap and a set of rough surface parameters. Some related computational issues key to improve computa-

tional efficiency and accuracy are addressed. Instead of a complicated integral expression involved in the GW model,

the curve fitted empirical formula of the random contact law retains the closed form and simplicity of the Hertz

model, with only one added parameter, o, the standard deviation of the surface roughness, and therefore can be

readily incorporated into the current discrete element modelling framework.

Key words: surface roughness;contact law;discrete element method;stochastic DEM ; numerical model

1 Introduction

The discrete element method (DEM)™ is a
computational technique that is well suited to
simulate the response of systems of particle as-
semblies?. DEM has been applied successfully in
simulating and predicting the performance of
many processes involving granular solids and dis-
continuous materials, especially in granular flows,
powder mechanics and rock mechanics. Its basic
idea is to model the elements as rigid discrete
particles. In order to obtain the response as a
whole system, the interaction forces between the
contacting elements are introduced based on some
appropriate physical interaction laws.

The basic particles commonly used in DEM
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are all assumed to have smooth surfaces. However
real materials contain geometric irregularities at
both macroscopic and microscopic levels. The dis-
crete element modelling of irregularities of real
materials has mostly been focused on the macro-
scopic level. Complicated geometric shapes are
often represented by bonding together some basic
entities™ ™. However surface irregularities at the
microscopic level, also called the surface rough-
ness,are more difficult to be considered,although
they may have strong influence on the phenomena
of contacts, friction, wear and lubrication™. Up to
now, very few attempts have been reported to
address this problem. The current contact laws in
DEM method, such as the linear contact model
and the Hertz contact model, are intended for
contact between smooth particles. It is therefore
necessary to quantitatively improve the classical

DEM by taking the surface roughness into consid-
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eration. It is important to provide random interac-
tion laws that can be readily applied in DEM to
estimate the contact forces between rough parti-
cles.

The earliest and most recognized statistical
treatment of rough surfaces is the Greenwood and
Williamson(GW) model"**’,in which a rough sur-
face is described as an assembly of asperities
whose properties are obtained from a given statis-
tical height distribution, and then the Hertz
contact solution is applied to each asperity to
obtain an overall contact pressure distribution.
This method can be viewed as a single scale meth-
od since the statistical parameters used to repre-
sent rough surfaces are scale-dependent. An early
attempt of using multiple scale methods is devel-
oped by Archard™. Archard models the asperi-
ties of rough surface as protuberance upon protu-
berance. Another statistical approach, where a
fractal curve/surface is adopted to describe a
rough surface is introduced by Majumdar
et alt’®. This fractal based approach can be regar-
ded as multiple scaled because of the inherent
multiscale invariant characteristics of most fractal
curves and surfaces.

For the contact between two rough curved
bodies, the first analytical study is conducted by
Greenwood et al""*) who employ the GW asperity
contact model together with the bulk surface
deformation for circular point contact. More re-
cent works have extended the GW approach to the
elasto-plastic deformation regime-""", Alj et al'®
apply the same method of line contact™ in the
elliptical point contact. They present different
results of contact behaviour of curved rough sur-
faces based on different contact models and also
provide the predictive formulas that can be used
for the prediction of the maximum contact pres-
sure, contact dimensions, contact compliance, real
area of contact and pressure distribution. Howev-
er the formulas contain many parameters and
coefficients, making them less ready to be adopted

in DEM.

2 The GW model

A rough surface consists of a myriad of as-
perities or peaks that restrict the real contact
area. Due to its complex profile of a rough sur-
face,a general analytical technique is to model the
real surface as a profile, which has a statistical
distribution of asperities,e. g. the Gaussian distri-
bution or the exponential distribution. Greenwood

U190 adopt this statistical approach to mathe-

et al
matically represent rough surfaces,and by further
combining with the Hertz elastic theory, derive
solutions for the contact problem of rough sur-
faces.

Several assumptions are made in the GW
model: the height profile of a rough surface is as-
sumed to a Gaussian distribution; the summits of
the asperities are spherical with constant curva-
ture;each individual asperity deforms separately;
and the bulk surface deformation below the indi-
vidual asperity is negligible. Fig. 1 shows the pro-
file of an actual rough surface and its description
in the GW model.

2.1 Characteristics of rough surfaces

The topographical characteristics of rough
surfaces which are closely connected with their
behaviour under contact pressure are discussed.
The characteristics of a rough surface are based
on the profile which is the line of a cross section
in a direction perpendicular to the surface as
shown in Fig. 2. From this profile, surface rough-
ness parameters are determined by scrutinizing a
set of points z(x;),(i =1,++,M) which gives the
height from the mean line in the sample length in-

terval L.

™~ rigid smooth surface

%%MVMWWVW
mean line of surface

rigid smooth surface

|

mean line of surface
Fig. 1 Profile ofan actual rough surface (top) and simplified

description in the GW model
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(a) 3D rough surface

mean line

! L

(b) Profile of the cross section A-A’

Fig. 2 Topography of a rough surface

Root mean squareroughness 6; This parame-
ter,also called RMS,is the standard deviation of
the height distribution of a surface from its mean

line

L
UZJ(I/L)J F(o)dx (1)
0

Probability density function ¢ : The probability
density function represents the distribution spec-
trum of a profile height and can be expressed by
plotting the density of the profile height shown in
Fig. 3.

In the GW model, it is assumed that the
height distribution is close to the following nor-

mal or Gaussian probability

o(2) = exp(—</20) (2)

2
2no

2.2 Contact of nominally flat rough surfaces
Firstly, consider the contact problem of two
nominally flat rough surfaces which are assumed
to have RMS roughness values 0, and ¢, respec-
tively. The problem can be further reduced to the

contact of a rigid smooth flat surface with a de

Zx‘ %co(zs)

A \ rigid flat

| A

mean line

Fig. 3 Profile heights and probability density of summits

formable rough flat surface which has the equiva-
lent RMS roughness ¢ =0 + 3. The height pro-
file of the rough surface is given by the summit
height 2., the mean summit height %, and proba-
bility function ¢(z,) as shown in Fig,. 3.

As mentioned above, all the summits are as-
sumed to have the same radius 8 and there are N
summits in the nominal surface area. Since the
overlap between an asperity which exceeds the
separation d and the flat surface can be written by
0 =z—d, the contact force g of a summit of height
z, > d is defined by

g(z) = %EB” (2. — D (3)

Then the total contact force of the nominal

surface area is
P(d) = g‘ ENB”ZJ (e — DVe(2)dx ()
d

2.3 Contact of two rough spheres

When the above GW theory is applied to the
contact problem of two rough spheres, the only
difference from the contact of two rough flat sur-
faces is in the geometric aspect. Because of the
spherical profile, the separation between the two
spheres will be a function of r , the distance from
the centre of the contact area. The contact prob-
lem between two rough spheres is equivalent to
the contact between a deformable smooth sphere
of radius R and a nominally rigid flat rough sur-
face having a Gaussian distribution of asperities
heights 6,, where R and ¢ can be obtained by the
radii and roughness parameters of the two spheres
using the following two relationships:

11

R TR (5)

in which subscripts 1 and 2 indicate the surface

numbers. As shown in Fig. 4, the overlap of the
sphere with the asperity at ris given by

8=z + =z —w(r —r/2R (6)

in which z, is the height of the asperity and w, (1)
is the (bulk) deformation of the sphere.

Then the effective contact pressure distribu-

tion over the entire contact area can be expressed

as
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Fig. 4 Contact between a smooth sphere and a nominal

flat rough surface

oo

p(r):%ENB”ZJ

u'[)(r')+r2/’2R|: '

(1/0/2m)e " s, 7
where N and 8 denote the asperity density and ra-
dius respectively; z, is the overlap between the
undeformed configuration of the sphere and the
mean line; and w, () is the deformation of the
sphere that can be obtained from the solution for
the axisymmetric deformation of an elastic half-

space subject to the pressure p(r) as follows
w,)(r)=ijﬁ|:t/(t+ ] p(OK(Rdt  (8)
nEJo

where K(k) is the first kind complete elliptic inte-
gral with the elliptic modulus k=2Crt)"*/(r+ 0,
and ais the radius of the contact area. Then by in-
tegrating the pressure distribution (7) over the
be-

tween the sphere and the rough plat surface with

contact radius a, the total contact force P

rough

overlap z, can be obtained by

Prougl\(z()):ZTtJﬁrj)(r>dr (9)

0
Egs. (7~9) provide the complete solution for
the contact of two rough spheres,leading to a ran-
dom interaction law between the overlap 0=z, and

the contact force P, for a pair of rough spheres

rough
with the given geometric, material and surface
roughness properties. Note that there are three
roughness parameters N,f and o in Eq.(7), but
there are only two independent variables ¢ and
NB'"? instead.

Nevertheless,due to the inter-dependence be-
tween the pressure p(r) and the deformation
w(7), and also to the non-integrable part invol-
ving the Gaussian distribution, as shown in Eqgs.
(7,8) ,an explicit expression between the overlap

0 and the contact force P cannot be estab-

rough

lished. Thus, numerical solutions have to be

sought to obtain the interaction law.

3 Numerical solutions and computa-

tional issues

3.1 Numerical solutions of the pressure and de-
formation distributions and the contact force
Because Eqgs. (7,8) are coupled to implicitly
define the pressure distribution p(#) in terms of
the deformation of the sphere w, () over the con-
tact area, both equations are needed to be solved
simultaneously by the Newton-Raphson method
to obtain a numerical solution. Note that the con-
tact radius a may not be known preciously in pri-
or because the rough surface extends the contact
radius from a smooth Hertz contact case, but a
sufficiently large value can be estimated based on
the given overlap 8= z, and the roughness o,
Firstly,the interval ofthe contact area [0, a]
is discretised into m discrete points r, =[r 7,
-+, 7. ]". These points are taken to be the inte-
gration points of a chosen numerical integration
quadrature, and the corresponding weights are
assumed to be s, =[5 5,5, ", Then Eq. (7)
can be discretized as

P.Z,uj (z,—dD"e(z)dz,=pg(w) (10)
! d.

i

where pZ%ENBw, e(z)dxz,

d,=7/2R+ w,, glw) qu(z,\ — 7 /2R— w)*
d
and Eq. (8) becomes

w=/TE)> S0P (@ED)

i=1

where coefficients
a; =Lr/Cr+rD 1Kk vk =2Cr e )/ Cri4 1)
Thus the equation which must be satisfied
atdiscrete point 1 is given by
F(p sesp )=p — pglw) =0 (12)
Since this equationhas to be satisfied at all
the discrete points, i=1,+**,m, it leads to a non-
linear system of equations in vector format
F(p=p— pgw) =0 (13)
To solve this system of equations in terms of
p by the Newton-Raphson method, the function F
is expanded by the Taylor series in the neighbour-
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hood of p with an increment dp
F(p+8p)=F(p) + J-dp+ OG3p>) (14
where J is the Jacobian matrix of the vector F
J=VF, ], =0F/dp, (15)
By ignoring the 2" orderand higher terms,
the increment 8p can be obtained as
Sp=—J '"F(p (16)
The final solution pis achieved when the iter-
ative process converges starting from a trial solu-
tion. Then the total contact force can be obtained
by numerically integrating the converged discrete
pressure distribution p over the entire contact area

P (2) =27 > 5,750, an

i=1
3.2 Computational issues

There are several numerical issues involved
in the above numerical procedure that may have
some significant impact on the overall computa-
tional efficiency and accuracy and thus need to be
discussed in detail.
3.2.1

There are three integrals involved in Egs.

Numerical integrations

(7~9) that need to be evaluated numerically. Al-
though many numerical integration quadratures
can be used,the Gaussian quadrature is adopted in
the current work due to its high algebraic accura-
cy. As the two integrals in Eqs.(7,8) have the
same integral domain which is the contact area,
the same set of Gaussian points and weights is
used. This is also the requirement of the numeri-
cal solution outlined in the previous subsection.
The integral in (7) or (10) has a different in-
tegral domain and thus should be evaluated using
a different number of Gaussian points. Although
the upper bound of the domain should be infinity
in theory. a limited value based on the given
roughness 0 can be adopted instead.
3.2.2 Evaluation of the Jacobian matrix J
TheJacobian J needs to be evaluated at each
Newton-Raphson iteration. It is however difficult
to obtain the analytical expression for J. In this
work, a finite difference approximation to J is
employed. Let J; be the j-th column of Jand ¢, =

[0,++,1,++,0]" be a unit vector with only the j-

component be unity. Then
J}.:i[F(anejA)—F(p)] (G=1l.m) (18)

where A is a small value.
3.2.3 Determination of coefficients @

The coefficients a;; in (11) play a crucial role
in the current numerical solution procedure. An
efficient approach to determine their values are
described below.

Introducing a ratio A; = r,/r;sa; can now be
expressed in a slightly different form

_ 1
1A

As A is fixed for a given m of the integration

Q

K(k;) s ky=227/(14 21, (19

quadrature regardless of the contact radius a ,q;
are also fixed. Also note that k;==k;, thus
K(k;) = KC(k;;). Since it is computationally inten-
sive to compute the value of the elliptic function
K(k), utilising this symmetrical property can
halve the computational costs involved in evalua-
ting a;.

However, one technical difficulty occurs
when evaluating the diagonal terms q; since A, =

k;=1 and K(1) is infinity. This

problem is resolved by utlising the Hertz theory:

singularity

for a given Hertz pressure distribution p, (r) =
p,(1— rz/gz)l’/2 over the contact region [0, a],the
deformation is given by the Hertz deformation
wy (1) =w, (1 — rz/Zgz). So it is required that a;
should be determined in such a manner so that for
the given Hertz pressure distribution p, (1), the

calculated w, from (11) should be equal to w,,_(r)

sz(r,)=(4/TcE)Z sjo p () 20
i=1

which leads to

m

1 E
a; :7(r ) [%wm(n) — 2

- f:l,,-yt;‘gjaiij:(rj)J
21)
In summary,all the coefficients a; are solely
determined by the number of integration points m
for the chosen integration quadrature and thus can
be pre-calculated when m is given and used for
any overlap and surface roughness. This feature,
together with the property K(k;)=KC(k;;) , signif-

icantly increases the computational efficiency of
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the preceding numerical solution procedure. The
specific approach to determining the diagonal
terms a; not only eliminates the singularity prob-
lem, but also maintains the numerical accuracy of

the integration quadrature.

4 A random contact interaction law
for DEM

A contact law in DEM establishes the explicit
relationship between the contact force,the overlap
and other characteristics of the two contacting
particles. Most commonly used interaction laws
used in DEM are explicit and simple functions of
the overlap and other contact characteristics.
However,the GW model leads to a very compli-
cated but essentially implicit relationship between
the overlap and the total contact force,and there-
fore cannot be directly employed in DEM. In order
to obtain the random normal interaction law that
can be used in DEM, an explicit relationship
between the total force P and the overlap & needs
to be defined from the numerical results which
build the bridge between the GW model and the
interaction law in DEM.

A series of numerical simulations with differ-
ent values of roughness o and overlap & between
the sphere and the rough flat surface is carried
out,in which the range of 6is 0~0. 1 and the
range of 8is —0.001~0. 1. All the other parame-
ters are set to be 1. The simulation results are
shown in Fig. 5.

4.1 Reduction of roughness parameters

It is of practical importance that the resulting
P~ & relationship should have a simple closed
form with the minimum number of added parame-

ters. It is obvious that the P~ ¢ relationship

<SS
=
ST

S OSISISESS,

SSOSS <
< OO
S

Fig. 5 Numerical simulation results

should degenerate to the Hertz law when 0 =0.

However, to treat NB"* as an independent
parameter in addition to o will violate this require-
ment as different values of NB"* would lead to
different P~ 8 curves at 6 = 0. To resolve this is-
sue, NB'"7 is calibrated in the following manner.
When ois sufficiently small, the rough surface can
be regarded as a smooth surface and thus should
have the same P~ drelationship as the Hertz law.
However,Fig. 6 depicts a clear difference between
P oonand P (with NB"*=1, and assuming that
6 =10"" is sufficiently small).

Our numerical calculation shows that the

condition P,,,, (6 =0) = P can be enforced if

snooth
NB'* takes the following value:
NB"* =P ot/ Prowsn = 0. 49R 287" (22)
The correctness of this formula can befurther
verified by the following theoretical analysis.
In Eq. (7), the non-integrable part involving
the Gaussian distribution can be simplified when o

is small. Note that the Gaussian distribution re-

duces to the Dirac Delta function when 6— 0.

o) =lim(1/ /2% e /% (23)

c—>0
Thus when ¢ - 0, the pressure distribution

p( in Eq. (7) reduces to

p(r :%ENBW[% — /2R — w,)(r)]s/z (24)

An explicit expression for p(r) is not possible
because of the inter-dependence between p(r) and
setting w,(r) =0

w,(r). However, artificially

leads to an explicit but approximate expression

for p(r)
4 /2 2 3/

p(r) :§ENB“ (2, — F /2R (25)
— smotoh
—— rough

0.04f

0.03F

R

0.02}

0.01F

0.00 . I/’/

0.00 0.02 0.04 0.06 0.08 0.10
J
Fig. 6 P~ drelationships of smooth surface and rough

surface (6 =10"",Ng*=1)
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The total contact force is obtained by substi-

tuting Eq. (25) into Eq. (9) as (note that 6 =%,) :

P =2. 76ENB'? RS (26)

The flat rough surface can be considered asa

smooth surface when 6— 0. The contact force be-

tween the sphere and the smooth surface can be
calculated by the Hertz law

P oo = (4/3) ER* 5" 27

The condition P, = P gives rise to Eq.

(22).
The relationship (22) is useful to reduce the

smooth

number of roughness parameters in the expression
for p(r). There are three roughness parameters
N,Band oin Eq.(7). By incorporating Eq.(22) in-
to Eq.(7),the final expression for the total force
contains only one roughness parametero, making
the new interaction law much simpler.

4.2 Curve fitted empirical formula

In order to obtain the random normal interac-
tion law that can be used in DEM, an explicit rela-
tionship between the total force P and the overlap
0 needs to be defined from the numerical results
via curve-fitting. It is also desirable that the ran-
dom interaction law retains the closed form and
simplicity of the Hertz model.

Based on the numerical results obtained
above andby applying nonlinear least squares
curve fitting, a predictive formula for calculating
the normal contact force between two rough
spheres is derived. The fitted formulas are presen-
ted in the Tab. 1 where both cand dare normalised
by R and thus non-dimensional. The R-squared
values are 0. 99, indicating a very high accurate
fitting obtained. When 6 =0, the formula recovers
the Hertz law as required. The resulting random
normal contact law retains the closed form and
simplicity of the Hertz model and has only one

added roughness parameter o,

Tab.1 Random normal contact law

Empirical formula (o and & arenomalisedby R)  R-squared

N Prough = ERZ[(Ui% 10,45 6) 5 @¥/2F500m
§>0 1.5330'1301‘30+1,502'4] 0.99

8=0 P,u=1.5ER%c"" 0.99

rough

8<C0 Py =ER?[0.360(— & ™" %82 41 567 0.99

5 Conclusion

In this work, a new random normal contact
lawhas been established for particles that have
random rough surfaces based on the classic
Greenwood and Williamson model. For a given
overlap ¢ and a roughness o, a Newton-Raphson
based iterative solution procedure has proposed to
calculate the contact pressure and the total force.
The key elements in this procedure include the
use of the Gaussian quadrature to evaluate three
integrals, a finite-difference approximate to the
Jacobian matrix, and determination of the coeffi-
cients a;; and particularly the diagonal terms «;.
These features not only significantly increase the
computational efficiency of the preceding numeri-
cal solution procedure,but also maintain the high
accuracy of the numerical solutions.

On the basis ofthe numerical results obtained
and by applying nonlinear least squares curve fit-
ting,an explicit predictive formula for calculating
the normal contact force between two rough
spheres has been derived. The fitted formula re-
covers the Hertz law when 0 =0. More important-
ly it retains the closed form and simplicity of the
Hertz model and has only one added roughness
parameter 6. Thus it can be readily incorporated

into the DEM modelling framework.
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