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Institut Élie Cartan (IECN – CNRS UMR 7502),
LORIA (CNRS UMR 7503), Université de Lorraine Nancy,
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1. Introduction

Ageing phenomena occur widely in physics: glasses, granular systems or phase-
ordering kinetics are just a few examples, see e.g. [5, 9, 23, 24] for reviews. Ageing
phenomena may typically arise in the presence of two competing, globally equiv-
alent, steady-states: except for very particular initial preparations, the physical
system does not relax to any of these; rather there appear ordered domains which
grow in size with time and which are separated by fluctuating boundaries.a A con-
venient way to describe this sort of system is through a Langevin equation, which
might schematically be written as

2M∂tφ = −δF
δφ

+ η, (1.1)

where φ = φ(t, r) stands for the physical order-parameter (here assumed to be non-
conserved), F is the Ginzburg–Landau functional, the “mass” M plays the role
of a kinetic coefficient and η describes a Gaussian, delta-correlated noise. While it
is well-accepted [5] that systems of this kind should display some sort of dynami-
cal scaling when brought into the situation sketched above, the question has been
raised whether their non-equilibrium dynamics might possess more symmetries than
merely scale-invariance [19]. At first sight, the noisy terms in the Langevin equa-
tion (1.1) might appear to exclude any nontrivial answer. However, a more refined
answer is possible. One may consider (1.1) as the classical equation of motion of an
associated field-theory, whose action reads

S[φ, φ̃] = S0[φ, φ̃] + Sb[φ̃], (1.2)

where φ̃ is the response-field associated to the order-parameter field φ. Here, the
“noise” as described by the random force η only enters into the second term Sb[φ̃].
In many cases, the so-called “noise-less” part S0 takes a free-field form

S0[φ, φ̃] =
∫

dtdrφ̃(2M∂t −∆)φ, (1.3)

which has the important property of being Galilei-invariant. If that is the case,
the Bargman superselection rules coming from the Galilei-invariance of S0 allow
one to show that all n-point correlation and response functions of the theory can
be expressed in terms of certain (n + 2)-point correlation function of an effective
deterministic theory whose action is simply S0 [30]. This result does not depend
on S0 being a free-field action but merely on its Galilei-invariance [3]. In order to
study the properties of the stochastic Langevin equation (1.1), it is hence sufficient

aA typical experimental method to achieve this is to prepare a system in a disordered “high-
temperature” initial state and then to “quench” it by lowering very rapidly the temperature
below the critical temperature Tc such that ergodicity is broken and several distinct steady-states
appear.
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Poincaré Algebra in the Context of Ageing Systems

(a) (b) (c) (d)

Fig. 1. (a) Root diagram of the complex Lie algebra B2 and the identification of the generators
(1.4) of the complexified conformal Lie algebra (conf3)C ⊃ (sch1)C. The double circle in the center
denotes the Cartan subalgebra. The generators belonging to the three non-isomorphic parabolic
subalgebras [20] are indicated by the full points, namely (b) fsch1, (c) fage1 and (d) falt1.

to concentrate on the properties of its deterministic part (where η is dropped) which
reduces the problem to the study of those dynamical symmetries of nonlinear partial
differential equations which extend dynamical scaling. For a systematic exposition,
with many explicit tests, see [24]. The symmetry properties of the deterministic
part of this kind of problems will be studied in this paper.

In the context of phase-ordering kinetics, the Schrödinger algebra sch1 [29] has
played an important role.b In what follows we shall restrict to one space dimension
and we recall in Fig. 1 through a root diagram the definition of s̃ch1 as a parabolic
subalgebra of the conformal algebra conf3 [6, 20]. The inclusion sch1 ⊂ (conf3)C

can be realized by considering the “mass” M as an additional coordinate. It is
convenient to perform a Fourier–Laplace transform with respect to M, with the
dual coordinate ζ. Then the generators of (conf3)C read explicitly

X−1 = −∂t, Y− 1
2

= −∂r, M0 = i∂ζ , Y 1
2

= −t∂r + ir∂ζ ,

X0 = −t∂t − 1
2
r∂r − x

2
, X1 = −t2∂t − tr∂r +

i
2
r2∂ζ − xt,

N = −t∂t + ζ∂ζ , W = −ζ2∂ζ − ζr∂r − 1
2
r2∂t − xζ,

V− = −ζ∂r − r∂t, V+ = −2tr∂t − 2ζr∂ζ − (r2 + 2iζt)∂r − 2xr,

(1.4)

and the correspondence with the root vectors is illustrated in Fig. 1(a).
The complete list of non-isomorphic parabolic subalgebras of (conf3)C is as fol-

lows [20]:

s̃ch1 = 〈X−1,0,1, Y− 1
2 , 1

2
,M0, N〉,

ãge1 = 〈X0,1, Y− 1
2 , 1

2
,M0, N〉, (1.5)

ãlt1 = 〈D,X1, Y− 1
2 , 12

,M0, N, V+〉

bWhile in the literature it is usually stated that the Lie algebra sch1 was first written down by Lie
[27], its elements already occur almost 40 years earlier in Jacobi’s lectures on analytical mechanics
[26].
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and these definitions are illustrated in Fig. 1(b)–(d). Here we used the generator D
of the full dilatationsc

D := 2X0 −N = −t∂t − r∂r − ζ∂ζ − x. (1.6)

For applications to non-equilibrium physics, it is of interest to consider as well the
corresponding “almost-parabolic subalgebras” without the generator N [32], namely

sch1 = 〈X−1,0,1, Y± 1
2
,M0〉,

age1 = 〈X0,1, Y± 1
2
,M0〉, (1.7)

alt1 = 〈D,X1, Y± 1
2
,M0, V+〉.

We shall show in Sec. 2.1 that alt1 is isomorphic to the Poincaré algebra p3 (well-
known from relativistic field-theory) through a non-conventional realization of the
latter; a correspondence which at first thought might appear surprising.

While the explicit representation (1.4) concerns the linear free Schrödinger equa-
tion Sφ = 0, with S = 2M0X−1 − Y 2

−1
2
, Schrödinger-invariance can also be proven

for semilinear Schrödinger equations of the form

Sφ = gF (φ, φ̃), (1.8)

where g is a dimensionful coupling constant, hence it transforms under the action of
scaling or conformal transformations. The corresponding representations have been
explicitly derived in the case of a variable mass for (conf3)C [32] and its subalgebras
and for a fixed mass for sch1 and for age1 [3], from which the form of the potential
F in (1.8) can be deduced. Supersymmetric extensions of the Schrödinger algebra
are discussed in [21].

While these examples and others already illustrate the intensive study of the
Schrödinger algebra and of its subalgebras [4], the other nontrivial subalgebra alt1
has so far received much less attention.d One of the few results established so far
concerns the non-relativistic limit of the conformal algebra (conf3)C. For a dynam-
ical mass, that is the dynamical symmetry algebra of the massive Klein–Gordon
equation (

1
c2
∂2

∂t2
+

∂

∂r
· ∂
∂r
−M2c2

)
φM(t, r) = 0 (1.9)

and the non-relativistic limit is obtained by letting the speed of light c → ∞.
Contrary to widely held beliefs (which go back at least to [2]), it turned out that

cIn physics, if one considers the spacetime rescaling t �→ λzt, r �→ λr with constant λ, the quantity
z is called dynamical exponent. Integrating the infinitesimal dilatation generator X0 in (1.4), one
finds z = 2, whereas the dilatation generator D in (1.6) gives z = 1.
dThis algebra had been identified first in [17], under the name of “conformal Galilean algebra”
cga(1). In recent years, especially string theorists have pursued the study of its representations,
often in the context of variants of the AdS/CFT correspondence. It can be shown that sch1 and
alt1 are essentially the only possible distinct non-relativistic limits of the conformal algebra, for
light-like and time-like geodesics, respectively [10].
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in this limit (conf3)C → alt1 �∼= sch1 and furthermore this is not a group contraction
[20]. In this paper, we study the Lie structure of alt1, give matrix as well as dual
representations, characterize Appell systems in connection with coherent states and
Leibniz function. The organization of the paper is as follows: Sec. 2 concerns the
Lie structure of alt1 where in particular we study infinite-dimensional extensions
and also discuss applications to the computation of covariant two-point functions.
Casimir operators and matrix representations are provided in Sec. 3. Section 4
focuses on Cartan decomposition and dual representations. A smooth introduction
to Wick products and Appell polynomials is given in Sec. 5. Appell systems of alt1
are characterized in Sec. 6. Calculations concerning coherent states and Leibniz
function are contained in Sec. 7 and we conclude in Sec. 8. Some of our results were
announced earlier [22].

2. A Brief Perspective on the Algebra alt1

We shall take in this section a closer look at the abstract Lie algebra alt1 and its
representations; we shall also see that, like the algebra sch1, it can be embedded
naturally in an infinite-dimensional Lie algebra W which is an extension of the
algebra Vect(S1) of vector fields on the circle. Quite strikingly, we shall find on our
way a “no-go theorem” that proves the impossibility of a conventional extension of
the embedding alt1 ⊂ conf3 on the one hand, and a surprisingly simple geometric
interpretation of W that hints at a possible connection with sv.

2.1. The abstract Lie algebra alt1

Elementary computations make it clear that

alt1 = 〈V+, D, Y− 1
2
〉� 〈X1, Y 1

2
,M0〉 =: g � h, (2.1)

is a semi-direct product of g ∼= sl(2,R) by a three-dimensional commutative Lie
algebra h; the vector space h is the irreducible spin-1 real representation of sl(2,R),
which can be identified with sl(2,R) itself with the adjoint action. So one has the
following

Proposition 2.1. The following Lie algebra isomorphisms hold true. First,

alt1 ∼= sl(2,R)⊗ R[ε]
ε2

, (2.2)

where ε is a “Grassmann” variable. Second,

alt1 ∼= p3, (2.3)

where p3
∼= so(2, 1) � R3 is the relativistic Poincaré algebra in (2 + 1) dimensions.

Proof. We shall establish the first isomorphism explicitly. Take a basis
(L1, L0, L−1) of sl(2,R) such that

[L0, L1] = −L1, [L0, L−1] = L−1, [L1, L−1] = 2L0.
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These generators may be written in terms of the anticommuting Pauli matrices
(σx, σy, σz) as follows L1 = (σx + iσy)/2, L0 = −σz/2 and L−1 = −(σx − iσy)/2.
Then let

Lε
i := Li ⊗ ε

(i = −1, 0, 1) where ε is a Grassmann variable. Then the linear map Φ :alt1 →
sl(2,R)⊗ R[ε]/ε2 defined by

Φ(V+) = L1, Φ(D) = L0, Φ(Y− 1
2
) = L−1,

Φ(X1) =
1
2
Lε

1, Φ(Y 1
2
) = Lε

0, Φ(M0) = Lε
−1

is a Lie isomorphism.
The second relation is obvious from the Lie isomorphism so(2, 1) ∼= sl(2,R).

In particular, the representations of alt1 ∼= p3 are well-known since Wigner
studied them in the ’30s.

2.2. Central extensions: an introduction

Consider any Lie algebra g and an antisymmetric real two-form α on g. Suppose that
its Lie bracket [ , ] can be “deformed” into a new Lie bracket [̃ , ] on g̃ := g× RK,

where [K, g] = 0, by putting ˜[(X, 0), (Y, 0)] = ([X,Y ], α(X,Y )). Then g̃ is called
a central extension of g. The Jacobi identity is equivalent with the nullity of the
totally antisymmetric three-form dα : Λ3(g)→ R defined by

dα(X,Y, Z) = α([X,Y ], Z) + α([Y, Z], X) + α([Z,X ], Y ). (2.4)

Now we say that two central extensions g1, g2 of g defined by α1, α2 are equivalent
if g2 can be obtained from g1 by substituting (X, c) 	→ (X, c + λ(X)) (X ∈ g)
for a certain one-form λ ∈ g∗, that is, by changing the non-intrinsic embedding
of g into g̃1. In other words, α1 and α2 are equivalent if α2 − α1 = dλ, where
dλ(X,Y ) = 〈λ, [X,Y ]〉. The operator d can be made into the differential of a
complex (called Chevalley–Eilenberg complex), and the preceding considerations
make it clear that the classes of equivalence of central extensions of g make up a
vector space H2(g) = Z2(g)/B2(g), where Z2 is the space of cocycles α ∈ Λ2(g∗)
verifying dα = 0, and B2 is the space of coboundaries dλ, λ ∈ g∗.

Let us see how this applies to alt1.

Proposition 2.2. The Lie algebra alt1 has no nontrivial central extension:
H2(alt1) = 0.

Proof. Of course, this is a consequence of the fact that Poincaré algebras have
no nontrivial central extensions, but let us give a proof in this simple example to
see how computations work. Note that ad L0 acts diagonally on the generators

1250006-6

C
on

fl
ue

nt
es

 M
at

h.
 2

01
2.

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 5

4.
20

4.
77

.2
3 

on
 1

1/
08

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

December 28, 2012 17:12 WSPC/S1793-7442 251-CM 1250006 7–23
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(Li) and (Lε
i ) (i = −1, 0, 1), defining a (−1, 0, 1)-valued graduation δ on alt1. It is

then well known that α is cohomologous to a cocycle α′ such that α′(Zi, Zj) = 0
if Zi, Zj are homogeneous generators such that δ(Zi) + δ(Zj) �= 0 (see for instance
[16], Chap. 4), so we may just as well assume this is already the case for α. Then
α is defined by

a := α(L1, L−1), aε := α(Lε
1, L

ε
−1),

b := α(L1, L
ε
−1), bε := α(Lε

1, L−1), c := α(L0, L
ε
0).

The nontrivial Jacobi identities

0 = dα(L1, L−1, L
ε
0) = 2c+ b− bε, 0 = dα(Lε

1, L−1, L
ε
0) = aε,

0 = dα(L1, L
ε
−1, L

ε
0) = aε, 0 = dα(Lε

1, L−1, L0) = −2c

give c = aε = 0 and b = bε. But the central extension α is then trivial: it is killed
by substituting L0 → L0 + 2aK,Lε

0 → Lε
0 + 2bK.

A new situation arises upon embedding alt1 into an infinite-dimensional Lie
algebra.

Remark 2.1. In d = 2 spatial dimensions, a so-called ‘exotic’ central extension
exists for the algebra alt2 [28].

2.3. Infinite-dimensional extension of alt1

The Lie algebra Vect(S1) of vector fields on the circle has a long story in math-
ematical physics. It was discovered by Virasoro in 1970 [34, 8] that Vect(S1) has
a one-parameter family of central extensions which yield the so-called Virasoro
algebra

vir := Vect(S1)⊕ RK = 〈(Ln)n∈Z,K〉 (2.5)

with Lie brackets (c ∈ R is a parameter and is called the central charge)

[K,Ln] = 0, [Ln, Lm] = (n−m)Ln+m + δn+m,0
c

12
n(n2 − 1)K. (2.6)

When c = 0, one retrieves Vect(S1) by identifying the (Ln) with the usual Fourier
basis (einθdθ)n∈Z of periodic vector fields on [0, 2π], or with Ln 	→ �n := −zn+1 d

dz

with z := eiθ. Note, in particular, that 〈L−1, L0, L1〉 is isomorphic to sl(2,R), with
Lie brackets given in Sec. 2.1, and that the Virasoro cocycle restricted to sl(2,R)
is 0, as should be (since sl(2,R) has no nontrivial central extensions).

The Schrödinger algebra sch1 can be embedded into the infinite-dimensional
Lie algebra sv (introduced in 1994, [18]) which is spanned by the generators
〈Ln, Ym,Mn〉, with nonvanishing commutators

[Ln, Lp] = (n− p)Ln+p, [Ln, Ym] = (n/2−m)Yn+m,

[Ln,Mp] = −pMn+p, [Ym, Ym′ ] = (m−m′)Mm+m′
(2.7)

with n, p ∈ Z and m,m′ ∈ Z + 1
2 . Note that sv is a semi-direct product of Vect(S1)

with an infinite-dimensional nilpotent Lie algebra. Its mathematical structure is
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analyzed in detail in [31, 33] and supersymmetric extensions are discussed in [21].
There is only one class of central extensions of sv, given by the extension by zero
of the Virasoro cocycle [18].

An analogous embedding holds for alt1, namely alt1 ∼= sl(2,R)⊗R[ε]/ε2 can be
embedded into the Lie algebra

W := Vect(S1)⊗ R[ε]
ε2

= 〈Ln〉n∈Z � 〈Lε
n〉n∈Z, (2.8)

with Lie bracket

[Ln, Lm] = (n−m)Ln+m, [Ln, L
ε
m] = (n−m)Lε

n+m, [Lε
n, L

ε
m] = 0. (2.9)

These brackets come out naturally when one puts W in the 2× 2-matrix form

Ln 	→
(
�n 0
0 �n

)
, Lε

n 	→
(

0 �n
0 0

)
(2.10)

leading to straightforward generalizations (see, in particular, [31, 33] for a defor-
mation of sv that can be represented as upper-triangular 3 × 3 Virasoro matrices
instead).

In terms of the standard representations of Vect(S1) as modules of α-densities
Fα = {u(z)(dz)α} with the action

f(z)
d
dz

(u(z)(dz)α) = (fu′ + αf ′u)(z)(dz)α, (2.11)

we have

Proposition 2.3.

W ∼= Vect(S1) � F−1. (2.12)

Proof. Immediate from the obvious isomorphism of Vect(S1) (with the adjoint
action) with the Vect(S1)-module F−1.

It can be easily shown that W has two linearly independent central extensions:

• the natural extension toW of the Virasoro cocycle on Vect(S1), namely [ , ] = [̃ , ]

except for ˜[Ln, L−n] = n(n2 − 1)K + 2nL0. In other words, Vect(S1) is centrally
extended, but its action on F−1 remains unchanged.
• the cocycle ω which is zero on Λ2(Vect(S1)) and Λ2(F−1), and defined on

Vect(S1)×F−1 by

ω(Ln, L
ε
m) = δn+m,0 n(n2 − 1)Kε. (2.13)

The independence of these two central charges is nicely illustrated through the
following example: consider the generators Vn and V ′

n (n ∈ Z) of two commuting
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Virasoro algebras with central charges c and c′. Then identify

Ln 	→
(
Vn + V ′

n 0
0 Vn + V ′

n

)
, Lε

n 	→
(

0 Vn

0 0

)
,

K 	→
(

1 0
0 1

)
, Kε 	→

(
0 1
0 0

) (2.14)

and the nonvanishing commutators become

[Ln, Lm] = (n−m)Ln+m +
c+ c′

12
(n3 − n)δn+m,0K,

[Ln, L
ε
m] = (n−m)Lε

n+m +
c

12
(n3 − n)δn+m,0K

ε.

(2.15)

A natural related question is: can one deform the extension of Vect(S1) by the
Vect(S1)-module F−1? The answer is: no, thanks to the triviality of the cohomology
spaceH2(Vect(S1),F−1) (see [15] or [16]). In other words, any Lie algebra structure
[̃ , ] on the vector space Vect(S1)⊕F−1 such that

˜[(X,φ), (Y, ψ)] = ([X,Y ]Vect(S1), adVect(S1)X.ψ − adVect(S1)Y.φ+B(X,Y )) (2.16)

(B antisymmetric two-form on Vect(S1)) is isomorphic to the Lie structure of W .
So one may say thatW and its central extensions are natural objects to look at.

2.4. Some results on representations of W
We shall give in this subsection several results, the second of which certainly
deserves deeper thoughts and will be developed in the future.

Proposition 2.4. (“no-go theorem”) There is no way to extend the usual repre-
sentation of alt1 as conformal vector fields into an embedding of W into the Lie
algebra of vector fields on R3.

Proof. Put Lε
2 = f∂t + g∂r + h∂ζ where f = f(t, r, ζ), g = g(t, r, ζ), h = h(t, r, ζ)

are yet undetermined functions. We use the explicit forms of the generators of alt1.
Then the relations

[Lε
2, L−1] = 3Lε

1, [Lε
2, L

ε
−1] = 0, [Lε

2, L
ε
0] = 0

give respectively

∂rf = −6t2, ∂rg = −6tr, ∂rh = 3ir2, (2.17)

∂ζf = ∂ζg = ∂ζh = 0, (2.18)

∂rf = 0, f = tr∂rg, ig + t∂rh = 0. (2.19)

But (2.17) and (2.19) are incompatible.

The following proposition hints at quite unexpected connections between contact
structures in R3, the Lie algebra sv and the Lie algebra W . Recall that a contact

1250006-9
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form α on a three-dimensional manifold V is a one-form on V such that dα ∧ α is
a non-degenerate volume form.

Proposition 2.5. Let α be the complex-valued contact form on R3 defined by
α(t, r, ζ) = rdr − 2iζdt. Then the Lie algebra of vector fields X(t, r, ζ) such that:

(i) LXα is proportional to α, i.e. LXα = fα for a certain function f = f(t, r, ζ);
(ii) [X, ∂ζ ] = 0, i.e. components of X do not depend on ζ;
(iii) LXdt is proportional to dt, so that X is tangent to each leaf t = constant is

generated by Ln, L
ε
n, n ∈ Z, with

Ln = −tn+1∂t − 1
2
(n+ 1)tnr∂r +

i
4
(n+ 1)ntn−1r2∂ζ − x

2
(n+ 1)tn,

Lε
n = −tn+1 1

r
∂r +

i
2
(n+ 1)tn∂ζ .

(2.20)

The Lie algebra 〈Ln, L
ε
n〉 is isomorphic to W , with commutators given by formula

(2.9) in Sec. 2.3.

The attentive reader will have noted that Ln = Xn and Lε
n = 1

rYn+ 1
2

[20].

Proposition 2.6. The infinite-dimensional extension W of the algebra alt1 is a
contraction of a pair of commuting loop algebras Vect(S1) ⊕ Vect(S1) → W. In
particular, we have the explicit differential operator representation

Ln = −tn+1∂t − (n+ 1)tnr∂r − (n+ 1)xtn − n(n+ 1)γtn−1r,

Lε
n = −tn+1∂r − (n+ 1)γtn,

(2.21)

where x and γ are parameters and n ∈ Z.

Proof. Let �n and �̄n be the generators of the two commuting loop algebras
Vect(S1) and Vect(S1). Obviously, the generators Xn := �n + �̄n and Yn := a�̄n
satisfy the commutation relations

[Xn, Xm] = (n−m)Xn+m, [Xn, Ym] = (n−m)Yn+m, [Yn, Ym] = a(n−m)Yn+m

which in the limit a→ 0 reduces to (2.9). A differential-operator representation of
the Xn and Yn is given in case (iii) of Table 1 of [19] and Ln = lima→0Xn and
Lε

n = lima→0 Yn which yields the form (2.21).

One of the possible applications of these generators is the calculation of multi-
point correlation functions of many-body systems. One says that the n-point cor-
relator Fn := 〈Φ1 · · ·Φn〉 of so-called quasi-primary fields Φj is covariant under
the action of the generators (Xi)i∈I of a Lie algebra if XiFn = 0 for all i ∈ I.
We apply this idea to the two-point correlators covariant under alt1. The standard
representation (1.4) refers to the coordinates ζ, t, r and the quasi-primary field will
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be denoted by ψ = ψ(ζ, t, r) and is assumed to have a scaling dimension x. The
two-point function reads [20]

〈ψ1(ζ1, t1, r1)ψ2(ζ2, t2, r2)〉 = (t1 − t2)−(x1+x2)/2

(
t1
t2

)(x2−x1)/2

× f
(
ζ1 − ζ2 +

i
2

(r1 − r2)2
t1 − t2

)
, (2.22)

where f is an arbitrary function. Similarly, imposing covariance under the repre-
sentation (2.20) leads to

〈ψ1(ζ1, t1, r1)ψ2(ζ2, t2, r2)〉 = δx1,x2(t1 − t2)−x1f

(
ζ1 + ζ2 +

i
2
r21 − r22
t1 − t2

)
, (2.23)

where again f is an arbitrary function. It is evident that these two representations
will describe quite distinct physical systems.

Furthermore, instead to working with the variable ζ, it is from a physical point
of view more natural to consider the Fourier-transform of the field ψ with respect
to ζ and to define [20]

φ(t, r) = φM(t, r) :=
1√
2π

∫
R

dζe−iMζψ(ζ, t, r). (2.24)

Then the quasiprimary fields φ are characterized byM and their scaling dimension.
We find the following two-point correlation functions

• for the standard representation we find from (2.22) [20]

〈φ1(t1, r1)φ∗2(t2, r2)〉 = φ0δ(M1 −M2)Θ(t1 − t2)
(
t1
t2

)(x2−x1)/2

× (t1 − t2)−(x1+x2)/2 exp
[
−M1

2
(r1 − r2)2
t1 − t2

]
, (2.25)

where Θ(t) is the Heaviside function and φ0 a normalization constant.
• for the representation (2.20), we find from (2.23)

〈φ1(t1, r1)φ2(t2, r2)〉 = φ0δx1,x2δ(M1 −M2)(t1 − t2)−x1

× exp
[
−M1

2
r21 − r22
t1 − t2

]
(2.26)

• finally, for the representation (2.21), the quasiprimary field φ(t, r) is characterized
by its scaling dimension x and the extra parameter γ. One has [19]

〈φ1(t1, r1)φ2(t2, r2)〉 = φ0δx1,x2δγ1,γ2(t1 − t2)−x1 exp
[
−2γ1

r1 − r2
t1 − t2

]
. (2.27)

Clearly, the form of these two-point correlators, notably their invariance under time-
or space-translations, are different.
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3. Casimir Operators and Matrix Representations for alt1

From now on, we consider the finite-dimensional representations of alt1. We shall
use the following notational conventions (see Sec. 2.1):

• sl(2,R) is spanned by X±1, X0.
• The commutative algebra h is spanned by Y±1, Y0.

The nonzero commutators of alt1 are:

[Xn, Xm] = (n−m)Xn+m, [Xn, Ym] = (n−m)Yn+m; n,m ∈ {±1, 0}. (3.1)

In the notation of Sec. 2, Xn = Ln and Yn = Lε
n.

3.1. Casimir operators

The construction of such operators is important, because in the vector-field rep-
resentation they correspond to the invariant differential operators. Looking for
second-order differential operator we write:

Ŝ = aijXiXj + bijXiYj + cijYiYj + diXi + eiYi. (3.2)

Here the sum over repeated index is understood and i, j ∈ {±1, 0}. From the
conditions [Ŝ,Xi] = [Ŝ, Yi] = 0 the coefficients a, b, c, d, e can be determined. The
result is the following:

Ŝ = AS0 + S1, A = cste.

S0 = X−1Y1 +X1Y−1 − 2X0Y0 (3.3)

S1 = Y−1Y1 − Y 2
0 .

The calculation for different representations gives the results:

• In the physical representation (1.4)

Ŝ = −t2(2i∂ζ∂t + ∂2
r )− it(2x− 1)∂ζ (3.4)

which for the canonical scaling dimension of the wave function x = 1
2 reduces to

the usual Schrödinger-operator in dynamical-mass representation, see [20, 32].
• In the representation (2.20)

Ŝ = iA
(x

2
− 1

)
∂ζ − 1

4
∂2

ζ . (3.5)

The inverse Fourier transformation with respect to ζ of the wave function leads
to a constant.
• Finally for the representation (2.21) this operator is again constant.
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This confirms the statement that the “fixed mass” or projective representation of
alt1 characterizes the wave function with its scaling dimension x and the constant
γ instead of mass (the mass generator drops out).e

Remark 3.1. In fact, when consider d spacial dimensions that is a representation
of altd, the compatibility with rotations require this constant γ to be a vector [7]

γ → γ = (γ1, . . . , γd ).

3.2. Matrix representations

The adjoint representation can be obtained directly from the commutators
([ηi, ηj ] = ckijηk) in the following 6× 6-matrix form

Y−1 = ck1j =




0 0 0 0 −1 0
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, Y0 = ck2j =




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

(3.6)

Y1 = ck3j =




0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, X−1 = ck4j =




0 0 0 0 0 0
0 −1 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −2



,

(3.7)

X0 = ck5j =




1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1



, X1 = ck6j =




0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 0



.

(3.8)

eIf one admits values z �= 1, 2 for the dynamical exponent, there are no representations of alt1 in
terms of local differential operators. However, for generic values of z, nonlocal representations in
terms for fractional differential operators can be constructed, which can be shown to close on the
solution space of an appropriate linear PDE of fractional order [25].
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An embedding into su(4) can be obtained by taking the six-dimensional restric-
tion of the algebra W and writing the generators in its Pauli-matrix form

Y−1 =




0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


, Y0 =

1
2




0 0 −1 0
0 0 0 1
0 0 0 0
0 0 0 0


, (3.9)

Y1 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


, X−1 =




0 0 0 0
−1 0 0 0

0 0 0 0
0 0 −1 0


, (3.10)

X0 =
1
2



−1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 1


, X1 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


. (3.11)

4. Cartan Decomposition and Dual Representations

It is clear, from the commutation relations, that alt1 has the following Cartan
decomposition:

alt1 = P ⊕K ⊕ L = {Y1, X1} ⊕ {Y0, X0} ⊕ {Y−1, X−1} (4.1)

and there is a one-to-one correspondence between the subalgebras P and L.
The typical element X of the algebra alt1 is given by X =

∑6
i=1 αiηi where

{ηi}, i = 1, . . . , 6 is a basis of alt1. The {αi}, i = 1, . . . , 6 are called coordinates of
the first kind. The matrix form is:

X =




−α4

2
α2 −α3

2
α1

−α6
α4

2
−α5

α3

2
0 0 −α4

2
α2

0 0 −α6 −α4

2



. (4.2)

The group element (near to identity) can be expressed as:

exp(αiηi) = g({Ai}) = exp(A1η1) · · · exp(A6η6). (4.3)

The Ai, i = 1, . . . , 6 are called coordinates of the second kind. Here the following
correspondence is made η1 = Y1, η2 = X1, η3 = Y0, η4 = X0, η5 = Y−1, η6 = X−1.
Next, consider the one-parameter subgroup generated by X , esX , the coordinates α
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scale by factor s, while the coordinates A become functions of the single parameter
s. Consequently one can write

g(A(s)) = esX . (4.4)

Evaluating at s = 1 gives the coordinate transformation A = A(α), while taking
derivatives with respect to Ai gives

Xg =
∑

i

eA1η1 · · · eAi−1ηi−1Ȧiηie
Aiηi · · · eA6η6 = Ȧµ∂µg (4.5)

with ∂µ = ∂/∂Aµ; the dot denotes differentiation with respect to s. Further consid-
erations show that the coordinates A contain the complete information about the
Lie algebra structure.

We can calculate

g({Ai}) = e−
A4
2




1−A2A6e
A4 A2e

A4 A Ā

−A6e
A4 eA4 −(A5 +

1
2
A3A6)eA4

1
2
A3e

A4

0 0 1−A2A6e
A4 A2e

A4

0 0 −A6e
A4 eA4



, (4.6)

where

A = −
(
A2A5 +

1
2
A2A3A6 +A1A6

)
eA4 − 1

2
A3, Ā =

(
1
2
A2A3 +A1

)
eA4 .

From (4.6) the second kind coordinates can be given in terms of the elements of
the matrix representation of the group (and conversely):

A1 =
g14
g22
− g12g24

(g2
22)

, A2 =
g12
g22

, A3 =
2g24
g22

,

A4 = 2 ln g22, A5 = −g23
g22
− g24g21

(g2
22)

, A6 = −g21
g22

.

(4.7)

The multiplication by basis elements η, g 	→ gη, acting on the universal enveloping
algebra with basis [n] = ηn = ηn1

1 · · · ηn6
6 are realized as left-invariant vector fields

η∗, acting on function of A (action commutes with multiplication by group element
on the left, so η acts on the right), given in terms of pi-matrix η∗i = π∗

iµ(A)∂µ.
Similarly, multiplication on the left gives right-invariant vector fields η‡i = π‡

iµ(A)∂µ.
The dual representations are defined as realization of the Lie algebra as vec-

tor fields in terms of coordinates of the second kind acting on the left or right
respectively

ηjg(A) = π‡
jµ(A)∂µg(A), g(A)ηj = π∗

jµ(A)∂µg(A). (4.8)

The connection between left and right dual representations is given by the following
splitting lemma

Lemma 4.1.

Ȧk = αµπ
∗
µk(A) = αµπ

‡
µk(A) (4.9)
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with initial values Ak(0) = 0, π∗(0) = π‡(0) = I is gathered from [1, 12, 13].

For our case we find

π‡ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−A1 −A2 0 1 0 0

A2
2 0 −2A2 0 e−A4 0

2A1A2 A2
2 −2A1 −2A2 −A3e

−A4 e−A4



, (4.10)

η‡ =




∂1

∂2

∂3

−A1∂1 −A2∂2 − ∂4

A2
2∂1 − 2A2∂3 + e−A4∂4

2A1A2∂1 +A2
2∂2 − 2A1∂3 − 2A2∂4 −A3e

−A4∂5 − e−A4∂6



, (4.11)

π∗ =




e−A4 0 −2A6 0 A2
6 0

−A3e
−A4 e−A4 −2A5 −2A6 2A5A6 A2

6

0 0 1 0 −A6 0
0 0 0 1 −A5 −A6

0 0 0 0 1 0

0 0 0 0 0 1



, (4.12)

η∗ =




e−A4∂1 − 2A6∂3 +A2
6∂5

−A3e
−A4∂1 + e−A4∂2 − 2A5∂3 − 2A6∂4 + 2A5A6∂5 +A2

6∂6

∂3 −A6∂5

∂4 −A5∂5 −A6∂6

∂5

∂6



. (4.13)

The last representation leads to the physical case (2.21) from [19] if A5 	→
−r, A6 	→ −t and one supposes the action of the vector fields on the functions in
the form e−γA3e−xA4f(A5, A6).

5. Wick Products and Appell Polynomials

Appell polynomials share many properties with Wick products. In physical litera-
ture, the term Wick product is even more popular. The aim of this section is to
provide a “smooth” introduction to Appell polynomials through Wick products.
The following presentation is gathered from [1].
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Let X1, X2, . . . be random variables. The Wick powers are defined inductively
on k as follows. Start with 〈X1, X2, . . . , Xk〉 = 1 for k = 0. Then for any k > 0,
〈X1, X2, . . . , Xk〉 is defined recursively for k = 1, 2, . . ., by

E〈X1, X2, . . . , Xk〉 = 0 (5.1)

and
∂〈X1, X2, . . . , Xk〉

∂Xi
= 〈X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xk〉, (5.2)

where E means expectation (or mean) and X̂i denotes the absence of the Xi vari-
able.

Example 5.1. The first two Wick products are

〈X1〉 = X1 − EX1,

〈X1, X2〉 = X1X2 −X1EX2 −X2EX1 + 2EX1EX2 − EX1X2.
(5.3)

The Appell polynomials Pn(x) are then defined by

PX,n(X) = Pn(X) = 〈X, . . . ,X〉︸ ︷︷ ︸
n times

. (5.4)

Example 5.2. Denoting m1 = EX = 0 and mi = EX i, i = 2, . . ., we have:

P0(x) = 1,

P1(x) = x,

P2(x) = x2 −m2,

P3(x) = x3 −m3 − 3m2x,

P4(x) = x4 − 10m2x
3 − 10m3x

2 + 5x(6m2
2 −m4),

P5(x) = x5 − 10m2x
3 − 10m3x

2 + 5x(6m2
2 −m4) + 20m2m3 −m5.

Remark 5.1. If X ∼ N(0, 1) (the Gaussian random variable with mean equal to
0 and variance equal to 1), then we get the familiar Hermite polynomials. But in
general, Appell polynomials are not necessarily orthogonal polynomials.

Appell polynomials Pn(x);n ∈ N are also characterized by the two conditions

• Pn(x) is a polynomial of degree n,
• d

dxPn(x) = nPn−1(x).

Interesting examples are furnished by the shifted moment sequence

Pn(x) =
∫ ∞

−∞
(x+ y)nµ(dy), (5.5)

where µ is a probability measure on R with all moments finite. Of course, this
includes in particular the Hermite polynomials for the Gaussian case. In [14] the
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probabilistic interpretation of Appell polynomials is used to define their analog on
Lie groups where, in general, they are no longer polynomials. For this reason they
are called Appell systems.

6. Appell Systems of the Algebra alt1

Appell systems of the Schrödinger algebra sch1 have been investigated in [11] but
the algebra alt1 requires a specific study.

Referring to the decomposition (4), we specialize variables, writing
V1, V2, B1, B2 for A1, A2, A5, A6 respectively. Basic for our approach is to calcu-
late eB1Y−1+B2X−1eV1Y1+V2X1 . We get

B1Y−1 +B2X−1 =




0 0 0 0
−B2 0 −B1 0

0 0 0 0
0 0 −B2 0


 , V1Y1 + V2X1 =




0 V2 0 V1

0 0 0 0
0 0 0 V2

0 0 0 0



(6.1)

and finally:

eB1Y−1+B2X−1eV1Y1+V2X1 =




1 V2 0 V1

−B2 1−B2V2 −B1 −B2V1 −B1V2

0 0 1 V2

0 0 −B2 1−B2V2


. (6.2)

Proposition 6.1. In coordinates of the second kind, we have the Leibniz formula

g(0, 0, 0, 0, B1, B2)g(V1, V2, 0, 0, 0, 0) = g(A1, A2, A3, A4, A5, A6)

= g

(
B1V

2
2 + V1

(1−B2V2)
,

V2

(1 −B2V2)
,−2

B1V2 +B2V1

(1−B2V2)
,

ln(1−B2V2),
B1 − 2B1B2V2 −B2

2V1

(1 −B2V2)2
,

B2

(1−B2V2)

)
. (6.3)

Now we are ready to construct the representation space and basis – the canonical
Appell system. To start, define a vacuum state Ω. The elements Y1, X1 of P can be
used to form basis elements

|jk〉 = Y j
1 X

k
1 Ω, j, k ≥ 0 (6.4)

of a Fock space F = span{|jk〉} on which Y1, X1 act as raising operators, Y−1, X−1

as lowering operator and Y0, X0 as multiplication with the constants γ, x (up to the
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sign) correspondingly. That is,

Y1Ω = |10〉, X1Ω = |01〉,
Y−1Ω = 0, X−1Ω = 0, (6.5)

Y0Ω = −γ|00〉, X0Ω = −x|00〉.

The goal is to find an abelian subalgebra spanned by some self-adjoint operators
acting on the representation space, just constructed. Such a two-dimensional subal-
gebra can be obtained by an appropriate “turn” of the plane P in the Lie algebra,
namely via the adjoint action of the group element formed by exponentiating X−1.
The resulting plane, Pβ say, is abelian and is spanned by

Ȳ1 = eβX−1Y1e
−βX−1 = Y1 − 2βY0 + β2Y−1,

X̄1 = eβX−1X1e
−βX−1 = X1 − 2βX0 + β2X−1.

(6.6)

Next we determine our canonical Appell systems. We apply the Leibniz formula
(6.3) with B1 = 0, B2 = β, V1 = z1, V2 = z2 and use (6.5). This yields

ez1Ȳ1ez2X̄1Ω = eβX−1ez1Y1ez2X1e−βX−1Ω = eβX−1ez1Y1ez2X1Ω

= e
z1Y1

(1−βz2)2 e
z2X1

(1−βz2) e
2γβz1

(1−βz2) (1 − βz2)−2xΩ. (6.7)

To get the generating function for the basis |jk〉 set in Eq. (6.7)

v1 =
z1

(1 − βz2)2 , v2 =
z2

(1 − βz2) . (6.8)

Substituting throughout, we have

Proposition 6.2. The generating function for the canonical Appell system |jk〉 =
Y j

1 X
k
1 Ω is:

ev1Y1+v2X1Ω = exp
(
y1

v1
(1 + βv2)2

)
exp

(
y2

v2
(1 + βv2)

)

× exp
(
− 2γβv1

(1 − βv2)
)

(1 + βv2)−2xΩ, (6.9)

where we identify Ȳ1Ω = y1 · 1 and X̄1Ω = y2 · 1 in the realization as function of
y1, y2.

Remark 6.1. With v1 = 0, we recognize the generating function for the Laguerre
polynomials, while v2 = 0 reduces to the generating function of a standard Appell
system.
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7. Coherent States and Leibniz Function

Now we define an inner product such that

Y †
1 = β2Y−1, X†

1 = β2X−1. (7.1)

In such a way the operators (6.6) are extended to self-adjoint ones on appropriate
domains. For simplicity we take β = 1 and define the two-parameter family of
coherent states.

ΨV = ΨV1,V2 = eV1Y1eV2X1Ω. (7.2)

The Leibniz function is defined as inner product of coherent states

YBV = 〈ΨB,ΨV 〉 = 〈Ω, eB1Y−1eB2X−1eV1Y1eV2X1Ω〉

= (1−B2V2)−2x exp
(

2γ(B1V2 +B2V1)
(1−B2V2)

)
. (7.3)

Here we use the result (6.3) and a normalization 〈Ω,Ω〉 = 1 is understood. Further
consideration shows that one can recover the raising and lowering operators as
elements of the Lie algebra acting on the Hilbert space with basis consisting of the
canonical Appell systems.

The remarkable fact is that the Lie algebra can be reconstructed from the Leib-
niz function YBV . Really, differentiation with respect to V1 brings down Y1 acting
on ΨV , while differentiation with respect to B1 bring down Y1 acting on ΨB which
moves across the inner product as Y−1 acting on ΨV . Similarly for X1 and X−1.
We thus introduce creation operators Ri and annihilation operators Vi, satisfying
[Vi,Ri] = δigI. For alt1, we identify Y1 = R1, X1 = R2. Note, however, that V1

is not adjoint of R1, nor V2 of R2. Bosonic realization of the respective adjoints
Y−1, X−1, we want to determine now. One method is the following. When the
explicit form of the Leibniz function YBV = Y is known, one can (formally) write
the partial differential equations for it. In our case they are

∂B1Y = (V 2
2 ∂V1 + 2γV2)Y,

∂B2Y = (V 2
2 ∂V2 + V1V2∂V1 + 2xV2 + 2γV1)Y.

(7.4)

Then, one interprets each multiplication by Vi as the operator Vi and each differ-
entiation by Vi as the operator Ri. This gives the following action of the operators
Y−1, X−1 on polynomial functions of Y1 and X1:

Y−1 = 2γV2 +R1V2
2 ,

X−1 = R2V2
2 + 2R1V1V2 + 2γV1 + 2xV2.

(7.5)

From the commutation relations, we find Y0 and X0

Y0 = −R1V2 − γ,X0 = −R1V1 −R2V2 − x. (7.6)
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Using the more usual notation a1 = V1, a2 = V2, a
+
1 = R1, a

+
2 = R2 we have the

following:

Proposition 7.1. The raising a+
1 , a

+
2 and lowering a1, a2 operators appear as ele-

ments of the algebra alt1 in the following way :

Y1 = a+
1 , X1 = a+

2 ,

Y0 = −a+
1 a2 − γ, X0 = −a+

1 a1 − a+
2 a2 − x,

Y−1 = a+
1 a

2
2 + 2γa2, X−1 = a+

2 a
2
1 + 2a+

1 a1a2 + 2γa1 + 2xa2.

(7.7)

The action on the Fock space, consisting of two parameter family of coherent state
(7.2) with basis the canonical Appell systems with generated function (6.9) is as
follows:

Y1|j, k〉 = |j + 1, k〉, X1|j, k〉 = |j, k + 1〉,
Y0|j, k〉 = −k|j + 1, k − 1〉 − γ|j, k〉, X0|j, k〉 = −(j + k + x)|j, k〉,
Y−1|j, k〉 = k(k − 1)|j + 1, k − 1〉+ 2γ|j, k − 1〉,
X−1|j, k〉 = k(k + 2j + 2x− 1)|j, k − 1〉+ 2jγ|j − 1, k〉.

(7.8)

The natural involution on the algebra Y1 ↔ Y−1, X1 ↔ X−1, with substitutions
−a1 ← r,−a2 ← t,−a+

1 ← ∂r,−a+
2 ← ∂t leads to the physical representation

(2.21).

8. Concluding Remarks

We have studied properties of the Poincaré or “altern” algebra alt1, nowadays also
often referred to as “conformal galilean algebra”, and of interest in connection
with the ageing phenomenon in condensed-matter physics and in string-theory in
the context of the AdS/CFT correspondence. In particular, we have shown that
alt1 can be embedded in an infinite-dimensional Lie algebra and have discussed its
relationship with the Virasoro and the Schrödinger–Virasoro algebras.

As for the representation-theory, we have systematically constructed the Casimir
operators and have written down explicit matrix representations. Considerations of
the Wick product has led us to the construction of the Appell systems of alt1 which
are useful for the construction of coherent states.

A more general study of random walks and stochastic processes on alt1 is a
challenging research project.

Acknowledgment

The authors have been supported by the EU Research Training Network HPRN-
CT-2002-00279.

1250006-21

C
on

fl
ue

nt
es

 M
at

h.
 2

01
2.

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 5

4.
20

4.
77

.2
3 

on
 1

1/
08

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

December 28, 2012 17:12 WSPC/S1793-7442 251-CM 1250006 22–23

M. Henkel et al.

References

1. F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann.
Probab. 15 (1987) 767–775.

2. A. O. Barut, Conformal group → Schrödinger group → Dynamical group – the maxi-
mal kinematical group of the massive Schrödinger particle, Helv. Phys. Acta 46 (1973)
496–503.

3. F. Baumann, S. Stoimenov and M. Henkel, Local scale-invariances in the bosonic
contact and pair-contact processes, J. Phys. A Math. Gen. 39 (2006) 4095–4118.

4. C. D. Boyer, R. T. Sharp and P. Winternitz, Symmetry-breaking interactions for the
time dependent Schrödinger equation, J. Math. Phys. 17 (1976) 1439–1451.

5. A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43 (1994) 357–459.
6. G. Burdet, M. Perrin and P. Sorba, About the non-relativistic structure of the con-

formal algebra, Comm. Math. Phys. 34 (1973) 85–90.
7. R. Cherniha and M. Henkel, The exotic conformal Galilei algebra and nonlinear partial

differential equations, J. Math. Anal. Appl. 369 (2010) 120–132.
8. L. Clavelli and P. Ramond, Group-theoretical construction of dual amplitudes, Phys.

Rev. D 3 (1971) 988–990.
9. L. F. Cugliandolo, Dynamics of glassy systems, in Slow Relaxation and non-

equilibrium Dynamics in Condensed Matter, Les Houches Session 77, July 2002, eds.
J.-L. Barrat, J. Dalibard, J. Kurchan, M. V. Feigel’man (Springer, 2003).
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