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In practice, regular expressions are usually extended by so-called capture groups or capture variables, which allow to capture

a subexpression by a variable that can be referenced in the regular expression in order to describe repetitions of subwords.

We investigate how this concept could be used for pattern-based graph querying, i. e., we investigate conjunctive regular path

queries (CRPQs) that are extended by capture variables.

If capture variables are added to CRPQs in a completely unrestricted way, then Boolean evaluation becomes PSPACE-hard

in data complexity, even for single-edge graph patterns. On the other hand, if capture variables do not occur under a Kleene

star, then the data complexity drops to NL-completeness. Combined complexity is in EXPSPACE, but drops to PSPACE-

completeness if the depth (i. e., the nesting depth of capture variables) is bounded, and it drops to NP-completeness if the size

of the images of capture variables is bounded by a constant (regardless of the depth or of whether capture variables occur

under a Kleene star).

In the application of regular expressions as string searching tools, references to capture variables only describe exact

repetitions of subwords (i. e., they implement the equality relation on strings). Following recent developments in graph

database research, we also study CRPQs with capture variables that describe arbitrary regular relations. We show that if

the expressions have depth 0, or if the the size of the images of capture variables is bounded by a constant, then we can

allow arbitrary regular relations, while staying in the same complexity bounds. We also investigate the problems of checking

whether a given tuple is in the solution set, and computing the whole solution set.

On the conceptual side, we add capture variables to CRPQs in such a way that they can be deined in an expression on one

arc of the graph pattern, but also referenced in expressions on other arcs. Hence, they add to CRPQs the possibility to deine

inter-dependencies between diferent paths, which is a relevant feature of pattern-based graph querying.

CCS Concepts: · Theory of computation→ Formal languages and automata theory; Database query languages (princi-

ples); Data structures and algorithms for data management.

Additional Key Words and Phrases: Graph Databases; Conjunctive Regular Path Queries, Regular Expressions with Backrefer-

ences

1 INTRODUCTION

The popularity of graph databases (commonly abstracted as directed, edge-labelled graphs) is due to their
applicability in a variety of settings where the underlying data is naturally represented as graphs, e. g., Semantic
Web and social networks, biological data, chemical structure analysis, pattern recognition, network traic, crime
detection, object oriented data. The problem of querying graph-structured data has been studied over the last
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three decades and still receives a lot of attention. For more background information, we refer to the introductions
of the recent papers [7, 8, 22, 39], and to the survey papers [1, 2, 5, 55].

Many query languages for graph databases (for practical systems as well as those studied in academia) follow
an elegant and natural declarative approach: a query is described by a graph pattern, i. e., a graphG = (V ,E) with
edge labels that represent some path-speciications. The evaluation of such a query consists in matching it to
the graph database D = (VD ,ED ), i. e., inding a mapping h : V → VD , such that, for every (x , s,y) ∈ E, in D
there is a path from h(x ) to h(y) whose edge labels satisfy the path-speciication s . In the literature, such query
languages are also called pattern-based.
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v1 v2
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Fig. 1. Examples of RPQ and CRPQ.

The most simple graph-patterns (called basic in [1]) have just ixed relations (i. e., edge-labels) from the
graph database as their edge labels. In order to implement navigational features that can describe more complex
connectivities between nodes via longer paths instead of only single arcs, it is common to represent path
speciications in graph patterns by regular expressions (over the set of possible edge labels). Navigational features
are popular, since they allow to query the topology of the data and, if transitivity can be described, exceed the
power of the basic relational query languages. The regular path queries (RPQs) given by single-edge graph patterns
({x ,y}, {(x , s,y)}), where s is a regular expression, can be considered the simplest navigational graph patterns.
General graph patterns labelled by regular expressions are called conjunctive regular path queries (CRPQs).

Since RPQs and CRPQs are central for our work, we discuss some examples. Consider a graph database with
nodes representing persons, arcs (u, p,v ) meaning łu is a (biological) parent of vž and arcs (u, s,v ) meaning
łv is u’s PhD-supervisorž. We consider the graph patterns from Figure 1 (labelled nodes are considered as free
variables of the query). ThenG1 describes pairs (v1,v2), where v1’s child has been supervised by v2’s parent; G2

describes pairs (v1,v2), where v1 is a biological ancestor or an academical descendant of v2; G3 describes v1 that
have a biological ancestor that is also their academical ancestor; G4 describes pairs (v1,v2), where v1 and v2 are
biologically related as well as academically. Note that G1,G2 represent RPQs, while G3,G4 represent CRPQs.
The simple, yet relevant classes of RPQs and CRPQs have been heavily studied in database theory: results

on RPQs [3, 12, 19, 21, 40, 41, 44, 45], conjunctive RPQs [4, 10, 11, 23, 46] and extensions thereof [7, 33, 39, 39],
questions of static analysis [6, 15, 26ś28, 35, 47], experimental analyses [13, 14, 43], and surveys of this research
area [1, 5, 16, 55].
Despite their long-standing investigation, these basic classes still pose several challenges that are currently

studied. For example, [40ś42] provide an in-depth analysis of the complexity of RPQs for diferent path semantics.
So far in this introduction, we implicitly assumed arbitrary path semantics, but since there are potentially ininitely
many such paths, query languages that also retrieve paths often restrict this by considering simple paths or trails.
However, such semantics make the evaluation of RPQs much more diicult (see [40ś42] for details). Much efort
has also been spent on extending RPQs and CRPQs to the setting where the data-elements stored at nodes of
the graph database can also be queried (see [38, 39]). In [8], the authors represent partially deined graph data
by graph patterns and then query them with CRPQs (among others). In the recent paper [6], the authors study
the boundedness problem for unions of CRPQs (i. e., the problem of inding an equivalent union of (relational)
conjunctive queries), and [19] investigates the ine-grained complexity of RPQs.
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Also in the practical world, pattern-based query languages for graph databases play a central role. Most
prominently, theW3C Recommendation for SPARQL 1.1 łis based around graph pattern matchingž (as stated in
Section 5 of [36]), and Neo4J Cypher also uses graph patterns as a core functionality (see [52]). Moreover, the
graph computing framework Apache TinkerPopTM contains the graph database query language Gremlin [54],
which is more based on the navigational graph traversal aspect, but nevertheless supports pattern-based query
mechanisms. Note that [1] surveys the main features of these three languages.

1.1 Regular Expressions for Strings and Graphs

The investigation of regular expressions for graph querying is still reasonably new, and the current state-of-the-art
of łregular expression based graph queryingž comprises a (constantly growing) number of theoretical papers
that present results about decidability, upper and lower complexity bounds, expressive power etc., and, on the
practical side, academical and industrial implementations of graph database systems (see our pointers from the
literature mentioned above). In stark contrast to that, the use of regular expressions as a tool for string searching
or string analysis dates back to the beginnings of computer science (milestones are Kleene’s introduction in
1956 [37], and Thompson’s irst implementation in 1968 [53]). Therefore, the classical theoretical results about
regular expressions (and regular languages in general) are part of undergraduate courses and textbooks, and, on
the practical side, regular expressions are implemented in almost all modern programming languages, and their
practical use is a standard expertise of programmers and applied computer scientists (this is also demonstrated
by the fact that many textbooks and training courses exist that are particularly tailored to teaching the use of
regular expressions in practical scenarios (a standard textbook in this regards is [34])).
This development has also caused a deviation of practical regular expressions from their theoretical origins.

More precisely, practical implementations of regular expressions usually cover the theoretical core, but also use
many extensions, some of which are just syntactic sugar, while others properly increase expressive power and
complexity. Hence, it is nowadays common in academia to distinguish between theoretical regular expressions
(dating back to Kleene [37]) and practical regular expressions (sometimes also called real regular expressions) to
denote the diferent varieties that are practically used. In particular, it is an ongoing research efort in formal
language theory ś arguably initiated by [17] ś to catch up with the practically motivated modiications of regular
expressions and provide theoretical foundations for them (see, e. g., [17, 18, 29, 32, 48]). In fact, regular expressions
form a research area for which the practical and the theoretical work seems to be mutually stimulating.
A famous practical extension of regular expressions, that is central to this work, are capture variables (also

called capture groups, backreferences, or just variables), and they are (in some way) implemented in most modern
regular expressions languages (see [34]).1 From an intuitive point of view, the concept is quite simple: by a variable
deinition x{r }, we can allocate a subexpression r to a variable x (or capture r by the variable x), and then, by using a
reference x in the expression, we can specify an exact copy of whatever is matched to the subexpression r captured
by x. For example, x{(a∨ b)∗}cx describes the (non-regular) language {wcw | w ∈ {a, b}∗}. Capture variables are
not mere syntactic sugar. They signiicantly increase the expressive power and matching complexity of regular
expressions. The theoretical properties of regular expressions with capture variables are well-documented in the
literature and we do not discuss them here; the interested reader is referred to the introductions of [29, 32]. In
particular, Section 8.2 of [32] gives a comprehensive discussions of diferent variants of regular expressions with
capture variables in theory and practice.

1The terms capture groups and backreferences seem to be the most common in the applied literature. We nevertheless use the term capture

variables, since it is more convenient to just talk about variables and then distinguish between their deinitions and their references.
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1.2 Capture Variables for Graph uerying

In database theory, especially in the context of graph databases and regular path queries, regular expressions are
usually understood as the clean and simple theoretical concept that was the basis for practical implementations
back in 1968 (e. g., the one by Thompson [53]). This is understandable, since theoretical regular expressions are
suitable for theoretical investigations (while extensions like capture variables can get quite messy in this regard).
However, in the case that regular expressions will become, to some extent, a standard tool for graph querying,
we should also keep in mind that for most programmers and IT-administrators the term łregular expressionsž
has a diferent meaning than what is usually investigated in the academic literature.
Obviously, it should not be our main objective to add to CRPQs as many concepts from practical regular

expressions as possible, but the question which of the practically existing features of regular expression can
also be added to CRPQs naturally arises for most people who are familiar with the practical side of regular
expressions. If a practitioner, who is familiar with regular expressions, is provided with a graph query language
that uses regular expressions (in the theoretical sense), then her irst question would probably be why the regular
expressions are so severely restricted in comparison to what she knows from practice and what she is trained for.
Especially from a theoretical foundations perspective, we should be able to provide some guidance with respect
to that question, and it would be good to have theoretical results that suggest that a certain practical extension
of regular expressions either probably can, or should not be added to CRPQs. In fact, this is the most valuable
support for practical developments that can be provided by theoretical research (as an example of such a situation
in the area of graph databases, consider how theoretical investigations led to an understanding of which path
semantics may cause problems if practically implemented [40ś42]).

This work is dedicated to a theoretical investigation of the following

Main Research Questions:

(1) How can we add capture variables (as found in practical regular expressions) to CRPQs?
(2) To what extent can CRPQs with capture variables be used for graph querying?

The irst question has to be answered by a conceptual contribution, i. e., sound deinitions of possible query
classes, while the second question should be answered by providing theoretical results like upper and lower
complexity bounds for their (Boolean) evaluation problem.

With respect to the irst question, it is a crucial point that we do not merely replace the regular expressions of
CRPQs by a more powerful class of language descriptors, namely regular expressions with capture variables.
Instead, we add capture variables in such a way that they can be deined in the expression of one arc and
referenced in the expression of another arc. While such a feature is irrelevant in the string case, it is interesting
for graph querying, since it provides a natural means of deining inter-dependencies between paths. The graph
patterns of Figure 2 serve as irst examples of how CRPQs with capture variables may look like (also recall
the intuitive explanation of the semantics of capture variables given in Section 1.1). For example, G1 describes
triangles (v1,v2,v3), where v1 is connected to v2 by a path labelled with aa or b, v2 is connected to v3 by a path
labelled with a sequence of arbitrary relations except a or b, and v3 is connected to v1 by a path that is labelled
in the same way as the v1-to-v2, or the v2-to-v3 path. We will discuss more practically motivated examples in
Section 1.4.

With respect to the second question, our insights can be summarised as done in the following Section 1.3 (see
also Table 1).

1.3 Main Results

Our main results are as follows:

ACM Trans. Datab. Syst.
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Fig. 2. Examples of CRPQs with capture variables.

• If regular expressions with capture variables are used in CRPQs completely unrestricted, then even single-
edge queries (i. e., the graph pattern consists of just two nodes connected by an arc) have a prohibitively
high complexity: Boolean evaluation is PSpace-hard in data complexity.
• Restricting the regular expressions such that neither variable deinitions nor references are subject to a
Kleene star lets the data complexity drop from PSpace-hardness to nondeterministic logarithmic space
completeness (NL-completeness).
• Based on the previous observation, we deine a class CXRPQ of CRPQs with capture variables. This
conceptual contribution is not straightforward, since we also allow that references for the same variable can
be distributed over diferent arc labels of the graph pattern, which allows to describe inter-path dependencies
(dependencies between labels of diferent paths). To achieve this, we deine a conjunctive variant of regular
expressions with capture variables.
• Boolean evaluation for CXRPQs is NL-complete in data complexity, but we can only show an upper bound
of ExpSpace for combined complexity. Therefore, we consider further restrictions:
ś If the nesting depth of variable deinitions is bounded by a constant, then the combined complexity drops
to PSpace-completeness (note that this is precisely the complexity achieved by the extended conjunctive
regular path queries from [7]).

ś If the capture variables are restricted such that their images have a constant size bound, then the combined
complexity drops to NP-completeness (note that this is precisely the complexity achieved by CRPQs);
and this even holds if we allow capture variables to occur under Kleene stars.

In addition to these main results, we also present the following additional results, which mainly follow from
variations of the proofs used for the main results (note that these results might nevertheless be practically
relevant):

• If the number of variables is bounded by a constant, then Boolean evaluation is PSpace-complete in
combined complexity.
• If the variables are restricted such that their images have a size logarithmically bounded in the database size
(instead of bounded by a constant), then Boolean evaluation is still NP-complete in combined complexity
and can be done in nondeterministic poly-logarithmic space in data complexity.
• If all variable deinitions have the form x{r }, where r is a classical regular expression (i. e., r does not
contain further variable deinitions or references), then we can also replace the string-equality relation
represented by variables with arbitrary regular relations (e. g., preix relation, or equal length relation), and
still Boolean evaluation is PSpace-complete in combined complexity and NL-complete in data complexity.
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• ForCXRPQs with bounded image size, we can use arbitrary regular relations without any further restriction
and still Boolean evaluation is NP-complete in combined complexity and NL-complete in data complexity.
• For the full class of CXRPQ , checking tuples (instead of only Boolean evaluation) can also be done within
the same complexity bounds, i. e., ExpSpace in combined complexity and NL-complete in data complexity.
• For the full class of CXRPQ , the whole solution set can be computed in nondeterministic logarithmic space2

in data complexity.
• The expressive power of our CXRPQ fragments is compared to CRPQ and ECRPQ (i. e., the extended
conjunctive regular path queries from [7]).

These results provide a comprehensive, although not exhaustive, answer to our main research questions
formulated in Section 1.2; open questions are discussed in Section 11.

1.4 Possible Practical Implications

As made clear above, this paper focuses on theoretical results; in particular, we do not try to introduce a speciic
query class that is meant for practical implementations. Instead, we wish to provide theoretical foundations
that explain how capture variables might be added to CRPQs, and what we can expect from such an extension
in terms of complexity and expressive power. If, however, an actual query class based on CRPQs with capture
variables (or features similar to capture variables) is to be introduced, we believe that our theoretical results,
especially with respect to the considered restrictions and fragments, could give some valuable guidance.
Despite our focus on theoretical investigations, we shall now discuss several practical scenarios in which

CRPQs with capture variables might be useful. Our examples will demonstrate that there are non-artiicial
queries that can conveniently be realised with the help of capture variables, that have evaluation complexity
comparable to classical CRPQs, and that are not obviously covered by other existing query classes.

We irst observe that using capture variables in CRPQs enhances the model in a twofold way: (1) we can deine
more complex (and non-regular) reachability relations of paths, (2) by deining a variable on one arc of the graph
pattern and using references to it on other arcs, we can describe inter-path dependencies.
The irst point is somewhat generic, since we could always replace regular expressions in CRPQs by some

other language description formalism (e. g., context-free languages), and obtain a new class of conjunctive path
queries (the question here is whether the actual class of language descriptors make sense in the context of graph
database querying). Capture variables in regular expressions are particularly tailored to repetitions of subwords
(a feature that is somewhat at odds with the classical language classes of the Chomsky hierarchy (e. g., the simple
copy language {ww | w ∈ Σ∗} is not even context-free), but can be found in pattern matching and string searching
tasks, and is central to combinatorics on words).

The second point is more interesting, since describing inter-dependencies between paths (other than that they
start or end in the same node) goes beyond CRPQ’s expressive power. In fact, that is the main motivation for [7]
to deine extended conjunctive path queries (ECRPQs) by adding regular relations to CRPQs. As it seems, capture
variables are an alternative formalism (that is well-established in applied computer science) that naturally yields
the power to deine some inter-path dependencies. Note that the fact that the possibility to deine a variable on
one arc of the graph pattern and using references to it on other arcs, requires some more conceptual work than
just replacing regular expressions of CRPQs by another language description formalism.

We have made our point in Sections 1.1 and 1.2 that capture variables, being such a widely-used extension of
regular expressions, are a natural candidate for an extension to CRPQs, and we have summarised in Section 1.3
our theoretical results that show us what to expect from it complexity-wise. Let us now discuss some practical
scenarios in which capture variables might extend CRPQs in a useful way.

2More precisely, the function that maps a graph database and a CXRPQ to the solution set is a nondeterministic log-space computable

function.
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1.4.1 Inter-Path Dependencies. As mentioned above, the need for describing relationships between the arcs
of the graph pattern has led to the model of extended conjunctive regular path queries (ECRPQs) of [7]. In
Sections 1 and 4 of [7], the authors state several application scenarios, where describing relations between paths
is necessary.

A main diference is that ECRPQs allow arbitrary regular relations, while capture variables and references only
describe the equality relation. Nevertheless, as mentioned in Section 1.3, if theCXRPQs are simple enough, capture
variables can also be interpreted as describing arbitrary regular relations. Hence, just like ECRPQs, CXRPQs
might also be interesting for some of the applications mentioned in [7]: inding semantic web associations, pattern
matching, approximate matching and sequence alignment.

1.4.2 Simple Copies of Paths. A rather simple way of using capture variables is to capture a whole path in a
variable x and then use the variable reference x as some other path label. For example, we might want to ind
node triples (v1,v2,v3) such that v3 is a c-successor of v2, and both v2 and v3 can be reached from v1 by paths
labelled with the same sequence of a or b relations (see graph pattern G3 of Figure 2). Note that we could also
interpret variable x as describing some regular relation diferent from the equality relation.

Such queries can be formulated as ECRPQs as well. However, if we use the references not as single arc labels,
but inside of more complicated regular expressions, the situation gets more complicated (this is demonstrated by
the (artiicial) graph patterns G1 and G2 from Figure 2). In the following, we shall discuss some more practical
examples.

1.4.3 Ordered Execution of Jobs. Assume that we have a graph database that represents a complex state-transition-
system (i. e., the states are represented by nodes and the arcs are labelled by transition names from Σ = {a, b, c}).
Now we want to query pairs (u,v ) of states, such that v can be reached from u by a sequence of at most 8 state
transitions, but there should also be an alternative path that performs the same transitions, but in an ordered
way, i. e., irst all transition of a certain type are performed, then all transitions of another type and so on. For
example, if u can be transformed into v by transition sequence abacab, then suitable ordered alternatives would
be sequences aaacbb, or caaabb.
As a more concrete example of such a scenario, we may think of a manufacturing process, where the nodes

describe the possible states of a component to be manufactured and arc labels represent manufacturing steps; or
the nodes describe the possible internal states of a machine performing some task and arc labels are possible
instructions. In such settings, the query described above might be relevant for optimisation ś performing all jobs
of the same kind before moving on to a diferent job might allow a more economical use of resources.
The query could be realised by the graph pattern G4 of Figure 2, where the expressions r1 (for the transition

sequence of length at most 8) and r2 (for the ordered alternative path) are deined by

r1 = xa{xb{xc{Σ
≤8}}} ,

r2 = xaxbxc ∨ xaxcxb ∨ xbxaxc ∨ xbxcxa ∨ xcxaxb ∨ xcxbxa ,

but instead of using the string-equality relation for the capture variable xa, we interpret references xa to describe
just the subsequence of occurrences of a of whatever is captured by the deinition of xa (instead of an exact copy).
For example, r1 would match abacab, and the whole string abacab would be captured by xa, xb and xc, but then
in r2 the reference xa corresponds to aaa, xb corresponds to bb, and xc corresponds to c. Since the length of the
strings captured by the variables is bounded by 8, the relations required for the capture variables are regular
relations (so the query is among those that have the same evaluation complexity as CRPQs (see Section 1.3)).
Obviously, it is also possible to describe this query by a union of CRPQs, if we just explicitly spell out all

sequences over Σ of length at most 8. This, however, would be rather cumbersome and non-intuitive.
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1.4.4 Flight Planning. A common example for a graph database are graphs that represent light connections
(see, e. g., [20]). We assume that places (e. g., łParisž, łEuropež, łUnited Kingdomž, łBerlinž, łNorth Americaž etc.)
are represented as nodes connected by arcs labelled with łlocated inž (e. g., such an arc points from łParisž to
łFrancež to łEuropež, or from łSan Franciscož to łCaliforniaž to łUSAž to łNorth Americaž). Moreover, there are
arcs pointing from cities to cities labelled by acronyms for airlines (e. g., łLHž, łAFž, łBAž, łSKž, łUAž) if there is
such a light operated by the airline.

A traveler has a certain round-the-world trip in mind: irst she wants to ly from Novosibirsk to a city in France,
then to New York by a direct light, followed by a light travel to San Francisco. After that, she wants to go back
to Novosibirsk from some North American airport. In order to take advantage of bonus cards and special deals
ofered by single airlines, she wants to use few diferent airlines: all lights except the one from France to New
York and those inside of the US should be operated by at most two diferent airlines, all lights inside of the US
should be operated by the same airline, while the light from France to New York can be operated by any airline.
Obviously, a crucial requirement here is that we do not care for the airlines, as long as they are the same.

Assume that Σ = {LH ,AF ,BA, SK ,UA, . . .} is the set of all airline acronyms. Then, the graph pattern shown in
Figure 3 is a CRPQ with capture variables for the query described above. The expression

(x{Σ}x∗) ∨(x{Σ}x∗y{Σ}(x∨ y)∗)

on the arc from łNovosibirskž to the city in łFrancež, using capture variables x and y, describes light sequences
with all lights operated by the same airline (irst option of the alternation) or light sequences with all lights
operated by at most two diferent airlines (second option of the alternation). Similarly, the expression z{Σ}z∗

on the arc from łNew Yorkž to łSan Franciscož describes light sequences with all lights operated by the same
airline. By using z∗ on the arc from łSan Franciscož to the city in North America, we make sure that the same
airline is used that operated all lights from łNew Yorkž to łSan Franciscož; by using (x∨ y)∗ on the arc back to
łNovosibirskž, we make sure that we use the same two airlines that operated our lights to France.3

N F

NY SF

NA

(x{Σ}x∗)∨(x{Σ}x∗y{Σ}(x∨ y)∗) loc∗

Σ

z{Σ}z∗

z∗

loc∗

(x∨ y)∗

Fig. 3. Graph patern for the round-the-world trip query. Node labels łNovosibirskž, łNew Yorkž, łFrancež, łSan Franciscož
and łNorth Americaž are abbreviated as łNž, łNYž, łFž, łSFž and łNAž, respectively; edge label łlocated inž is abbreviated as
łlocž.

Without going too much into technical details, let us mention a few observations about that query. First, we
note that we use here variable references under a Kleene-star (e. g., x∗), which, as explained in Section 1.3, we do
not want to allow, since such queries can be PSpace-hard even in data complexity. However, this particularly
query is also such that variable images are just single symbols from Σ, and therefore the query is among those

3Technically, it can happen that the deinition of variable y is not instantiated, which means that references y correspond to the empty word.
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with bounded image size, for which evaluation complexity is the same as for CRPQs without capture variables
(see Section 1.3). Furthermore, we observe that also due to variable references under a Kleene-star, it seems
impossible to describe this query by an ECRPQ (since this would require an unbounded number of arcs with
equality relation). Nevertheless, we could just spell out all possible ways of setting the capture variables to some
airlines, which means that we can describe the query by unions of classical CRPQs. However, this would yield a
huge (exponential in the number of capture variables) and unwieldy collection of CRPQs. Moreover, while it
is generally possible to translate CRPQs with capture variables of bounded image size into unions of classical
CRPQs, this conversion is not trivial, since we have to deal with nestings of variable deinitions and potentially
undeined variable deinitions.

1.4.5 Similar Data Over Diferent Signatures. If we are dealing with diferent databases over slightly diferent
signatures, that all nevertheless represent data from the same domain (e. g., bibliographical data, social networks,
biological networks, hereditary information, transportation networks), then a query designed for one signature
might also be useful for databases over other signatures, simply because the data can be assumed to be structurally
similar. For example, some query for the graph representation of DBLP should also be meaningful for graph
representations of some other bibliographical databases. The problem is that diferent databases might use
diferent names for the same relation (e. g., the relation łcreatorž of one database is called łauthorž in the other,
łpartOfž is called łincludedInž etc.) and therefore we have to translate the query by changing the relation names.

However, such an obvious mapping between signatures does not always exist. For example, databases might
represent abstract data produced by empirical methods, and the task is to discover (by human experts or machine
learning algorithms) queries that describe relevant patterns and structures of the data.
For example, assume that we are dealing with some huge biological network (e. g., protein networks, gene

regulatory network, etc.), which is the result of extensive experimental research, and assume that we discovered
that node triples (v1,v2,v3) are of high relevance, if v2 and v3 can be reached from v1 by one a-arc and one b-arc,
respectively, and v2 and v3 are mutually reachable with some paths that only contain a- or b-arcs. This can be
queried by a simple q ∈ CRPQ (see the left query in Figure 4).

v1

v2 v3

a b

(a∨ b)∗

(a∨ b)∗

v1

v2 v3

x{Σ} y{Σ}

(x∨ y)∗

(x∨ y)∗

Fig. 4. ueries for the biological network example.

Now, in order to verify some hypotheses, biologists might want to evaluate this query in other databases
of the same data domain (protein networks, gene regulatory network, etc.), but that have been produced by
experiments of other research groups in other laboratories. So even though the other databases use completely
diferent signatures, the fact that the represented data is similar justiies the hypothesis that in these database
there are relations a′ and b′ that play the role of our a and b relations in the relevant query q. If Σ is the set
of łunknownž relations of the new database, then the right query in Figure 4 is a suitable CRPQ with capture
variables to evaluate our hypothesis.

Another example would be a CRPQ that in routing networks identiies łvulnerable linksž (i. e., connections
that are more likely to be subject to interruptions as others). Such a query might be the product of simulations
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or learning algorithms. For using it also for other routing networks with diferent signatures, it might again be
useful to use capture variables in a similar way as described above for the biological network.

Apart from using diferent relation names, databases from the same data domain can also difer such that single
relations in one database are reined into sequences of relations in other databases. A simple example of this
would be the situation where in a network of light connections (like the one described in Section 1.4.4) łlocated
inž arcs are directly pointing from cities to countries, and in another network of light connections they are irst
pointing to states, and then to countries. In this case, all single łlocated inž-arcs would translate into length two
paths labelled by łlocated in · located inž.
Again, choosing the example of the biological network from above, it can happen that the single a and b

relations are represented by (unknown) chains of at most 3 single relations in another database (e. g., due to more
ine-grained experimental studies). In this case, replacing the labels x{Σ} and y{Σ} of the right query in Figure 4
by labels x{Σ≤3} and y{Σ≤3}, respectively, demonstrates an appropriate use of capture variables.

1.5 Additional Contributions

This work represents a substantially extended version of the paper łConjunctive Regular Path Queries with String
Variablesž [49]. In addition to all proofs and technical details that were omitted in the conference version [49],
the present paper contains the following new contributions.
In [49], it has only been shown that evaluation for CXRPQs with depth 1 is PSpace-complete in combined

complexity. We extend this result and show that for any constant depth bound evaluation becomes PSpace-
complete in combined complexity (see Section 6).

We also consider CXRPQs with arbitrary regular relations (Section 8), while [49] only considers CXRPQs with
the equality relation. In particular, we show that if the depth is 0, then evaluation for CXRPQs with regular
relations is PSpace-complete in combined complexity and NL-complete in data complexity, and if CXRPQs have
bounded image size, then evaluation for CXRPQs with regular relations is NP-complete in combined complexity
and NL-complete in data complexity (even for abitrary depth).

Another aspect that is not considered in [49] are the upper bounds for checking whether a given tuple is in the
solution set and for computing the whole solution set (see Section 9).

1.6 Organisation of the Paper

In Section 2, we give some basic deinitions and in Section 3, we deine in detail the class of regular expressions
with capture variables (called xregex) and we lift this concept to conjunctive xregex, which is the most important
building block for CXRPQs. Moreover, as our irst result, we show that checking whether a given graph database
contains some path described by a xregex is PSpace-hard in data complexity. This negative result is central for
our deinition of CXRPQs and its fragments. A formal deinition of CXRPQs will then be given in Section 4.

We shall spend quite some time on these initial sections, since we illustrate all deinitions with comprehensive
examples and additional explanations. This is necessary especially with respect to xregex and our new concept of
conjunctive xregex, which, in comparison to the general concept of graph databases and conjunctive regular path
queries, can be assumed to be less well-known by the intended audience of this paper. On the other hand, the
step from conjunctive xregex to the class CXRPQ will then be straightforward.

Our upper and lower complexity bounds for CXRPQs are presented in Section 5. The fragments obtained from
bounding the depth of CXRPQs and bounding the image sizes are discussed in Sections 6 and 7, respectively.
Then, in Section 8, we investigate how the capture variables of CXRPQs may use arbitrary regular relations
instead of only the equality relation, and in Section 9 we discuss the problems of checking whether a given
tuple is in the solution set of the query, and the problem of computing the whole solution set. In Section 10, we

ACM Trans. Datab. Syst.



Conjunctive Regular Pathueries with Capture Groups • 11

investigate the expressive power of the query classes introduced in this work. Finally, we conclude the paper and
discuss open problems and further research directions in Section 11.

For the sake of accessibility of this paper, we defer some proofs and technical content to an electronic appendix.

2 PRELIMINARIES

Let N = {1, 2, 3, . . .} and [n] = {1, 2, . . . ,n} for n ∈ N. A+ denotes the set of non-empty words over an alphabet
A and A∗ = A+ ∪ {ε } (where ε is the empty word). For a word w ∈ A∗, |w | denotes its length, and for k ∈ N,
A≤k = {w ∈ A∗ | |w | ≤ k }. For w1,w2, . . . ,wn ∈ A

∗, we set Πn
i=1wi = w1w2 . . .wn , and if w = wi , for every

i ∈ [n], then we also writewn instead of Πn
i=1wi . For a wordw ∈ A

∗ and b ∈ A, |w |b is the number of occurrences
of symbol b inw .
We ix a inite terminal alphabet Σ and an enumerable set Xs of string variables, where Xs ∩ Σ = ∅. As a

convention, we use symbols a, b, c, d, . . . for elements from Σ, and x, y, z, x1, x2, . . . , y1, y2, . . . for variables from
Xs . We consistently use sans-serif font for string variables to distinguish them from node variables to be introduced
later. We use regular expressions and (nondeterministic) inite automata (NFA for short) as commonly deined in
the literature (see Section 3.1 and the remainder of this section for more details).

2.1 Graph-Databases

A graph-database (over Σ) is a directed, edge labelled multigraph D = (VD ,ED ), where VD is the set of vertices
(or nodes) and ED ⊆ VD × Σ ×VD is the set of edges (or arcs). A path from u ∈ VD to v ∈ VD of length k ≥ 0 is a
sequence

p = (w0,a1,w1,a2,w2 . . . ,wk−1,ak ,wk )

with (wi−1,ai ,wi ) ∈ ED for every i ∈ [k]. We say that p is labelled with the word a1a2 . . . ak ∈ Σ
∗. According to

this deinition, for every v ∈ VD , (v ) is a path from v to v of length 0 that is labelled by ε . Hence, every node of
every graph-database has an ε-labelled path to itself (and these are the only ε-labelled paths in D).
Nondeterministic inite automata (NFAs) are just graph databases, the nodes of which are called states, and

that have a speciied start state and a set of speciied inal states. Moreover, we allow the empty word as edge
label as well (which is not the case for graph databases). The language L (M ) of an NFAM is the set of all labels
from paths that lead from the start state to some inal state.

In the following, Xn is an enumerable set of node-variables; we shall use symbols x, y, z, x1, x2, . . . , y1, y2, . . .
for node variables (in contrast to the string variables Xs in sans-serif font).

2.2 Conjunctive Path ueries

Letℜ be a class of language descriptors, and, for every r ∈ ℜ, let L (r ) denote the language represented by r . An
ℜ-graph pattern is a directed, edge-labelled graph G = (V ,E) with V ⊆ Xn and E ⊆ V ×ℜ ×V ; it is anℜ-graph
pattern over alphabet Σ, if L (α ) ⊆ Σ∗ for every (x ,α ,y) ∈ E. For anℜ-graph pattern G = (V ,E) over Σ and a
graph-database D = (VD ,ED ) over Σ, a mapping h : V → VD is a matching morphism for G and D if, for every
e = (x ,α ,y) ∈ E, D contains a path from h(x ) to h(y) that is labelled with a wordwe ∈ L (α ). The tuple (we )e ∈E
is a tuple of matching words (with respect to h). In particular, a matching morphism can have several diferent
tuples of matching words.
A conjunctiveℜ-path query (ℜ-CPQ for short) is a query q = z̄ ← Gq , where Gq = (Vq ,Eq ) is anℜ-graph

pattern and z̄ = (z1, z2, . . . , zℓ ) with {z1, z2, . . . , zℓ } ⊆ Vq . We say that q is anℜ-CPQ over alphabet Σ if Gq is an
ℜ-graph pattern over Σ. The query q is a single-edge query, if |Eq | = 1.
For an ℜ-CPQ q = z̄ ← Gq over Σ with z̄ = (z1, z2, . . . , zℓ ), a graph-database D = (VD ,ED ) over Σ

and a matching morphism h for Gq and D (we also call h a matching morphism for q and D), we deine
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qh (D) = (h(z1),h(z2), . . . ,h(zℓ )) and we set

q(D) = {qh (D) | h is a matching morphism for q and D} .

The mapping D 7→ q(D) from the set of graph-databases to the set of relations over VD of arity ℓ that is deined
by q shall be denoted by JqK, and for any class A of conjunctive path queries, we set JAK = {JqK | q ∈ A}.
A Booleanℜ-CPQ has the form z̄ ← Gq where z̄ is the empty tuple. In this case, we also denote q just by Gq

instead of () ← Gq . For a Booleanℜ-CPQ q and a graph-database D, we either have q(D) = {()} or q(D) = ∅,
which we shall also denote by D |= q and D ̸|= q, respectively. For Boolean queries q, the mapping JqK can also
be interpreted as the set {D | D |= q}. Twoℜ-CPQs q and q′ are equivalent, denoted by q ≡ q′, if JqK = Jq′K,
i. e., q(D) = q′(D) for every graph-database D (or, in the Boolean case, D |= q ⇔ D |= q′).
For a class Q of conjunctive path queries, Q-Bool-Eval is the problem to decide, for a given Boolean q ∈ Q

and a graph database D, whether D |= q.
As common in database theory, the combined complexity for an algorithm solving Q-Bool-Eval is the time

or space needed by the algorithm measured in both |q | and | D |, while for the data complexity the query q is
considered constant. For simplicity, we assume |q | = O( | D |) throughout the paper.4

Conjunctive regular path queries (CRPQ) areℜ-CPQ whereℜ is the class of regular expressions (which are
deined in Section 3.1). See Figure 1 for examples of CRPQ . For some of our results, we need the following result
about CRPQs (this seems to be a folklore result, but it is formally stated in [7]).

Lemma 2.1 ([7]). CRPQ-Bool-Eval is NP-complete in combined complexity and NL-complete in data complexity.

2.3 Ref-Words

The following ref-words (irst introduced in [48]) are convenient for deining the semantics of xregex (Section 3).
They have also been used in [32] and for so-called document spanners in [24, 30, 31, 50, 51]. Ref-words will be
vital in our deinition of conjunctive xregex (Section 4.1), which are the basis of the class CXRPQ . We start with
an intuitive explanation of ref-words and then provide a formal deinition.
Ref-words are words with terminal symbols from Σ and variables from Xs . For every x ∈ Xs , we may use

parentheses ▷x . . . ◁x in order to mark a subword of the ref-word (i. e., by enclosing this subword with the
parentheses). Such a subword ▷x . . . ◁x is called a deinition for variable x . These deinitions must be such that,
for every x ∈ Xs , there is at most one deinition of x, which is not allowed to enclose an occurrence of x, and the
deinitions are not overlapping, i. e., for x, y ∈ Xs , ▷

x ▷y ◁x ◁y must not occur as subsequence, but nestings in the
form of ▷y ▷x ◁x ◁y are allowed. The idea is that every occurrence of x describes a reference to the deinition of x
(if it exists). Since we allow nestings of deinitions, i. e., deinitions may contain itself references or deinitions of
other variables, there are chains of references, e. g., the deinition of x contains references of y, but the deinition
of y contains references of z and so on. We nevertheless require these nestings to be acyclic. For example,

axb ▷x ab ◁x c ▷y xaa ◁y y

axb ▷x a ▷y cc ◁y by ◁x y

are ref-words, while the following are not:

axb ▷x ax ◁x b (occurrence of x in deinition of x) ,

axb ▷x a ◁x c ▷x b◁x (two deinitions of x) ,

ay ▷x a ▷y abc ◁x b ◁y c (overlapping deinitions) ,

axa ▷x ayb ◁x c ▷y xa◁y (cyclicity) .

4This is not without loss of generality, but it its to the common assumption in databases (in both applied and theoretical considerations) that

the query is small in comparison to the data.
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We now give a formal deinition of ref-words.

Deinition 2.2 (Ref-Words). A subword-marked word (over terminal alphabet Σ and variables Xs ) is a word
w ∈ (Σ ∪ { ▷x , ◁x | x ∈ Xs } ∪ Xs )

∗ that, for every x ∈ Xs , contains the parentheses ▷
x and ◁x at most once and

all these parentheses form a well-formed parenthesised expression. For every x ∈ Xs , a subword ▷x v ◁x in
w is called a deinition (of variable x), and an occurrence of symbol x is called a reference (of variable x). For a
subword-marked wordw over Σ and Xs , the binary relation ⪯w over Xs is deined by setting x ⪯w y if inw there
is a deinition of y that contains a reference or a deinition of x. A ref-word (over terminal alphabet Σ and variables

Xs ) is a subword-marked word over Σ and Xs , such that ⪯w is acyclic.

Note that any ref-word w over terminal alphabet Σ and variables Xs is also a ref-word over any terminal
alphabet Σ′ ⊃ Σ and variables X′s ⊃ Xs . A set L of ref-words (over Σ and Xs ) is called a ref-language (over Σ and
Xs ).

3 XREGEX

We now deine the class of regular expressions with capture variables (or simply regular expressions with variables).
This deinition will also provide a deinition of classical regular expressions, since they can be considered a
special case of regular expressions with variables. In the next two subsections, we deine separately the syntax
and the semantics of regular expressions with variables. After that, we provide a irst insight regarding regular
expressions with variables as path queries.

3.1 Syntax

Deinition 3.1 (Xregex). The set XREΣ,Xs of regular expressions with variables (over Σ and Xs ), also denoted by
xregex, for short, is recursively deined as follows:

(1) a ∈ XREΣ,Xs and var(a) = ∅, for every a ∈ Σ ∪ {ε },
(2) x ∈ XREΣ,Xs and var(x) = {x}, for every x ∈ Xs ,
(3) (α · β ) ∈ XREΣ,Xs , (α ∨ β ) ∈ XREΣ,Xs , and (α )+ ∈ XREΣ,Xs , for every α , β ∈ XREΣ,Xs ;

furthermore, var((α · β )) = var((α ∨ β )) = var(α ) ∪ var(β ) and var((α )+) = var(α ),
(4) x{α } ∈ XREΣ,Xs and var(x{α }) = var(α ) ∪ {x}, for every α ∈ XREΣ,Xs and x ∈ Xs \ var(α ).

For technical reasons, we also add ∅ to XREΣ,Xs . For α ∈ XREΣ,Xs , we use r
∗ as a shorthand form for r+ ∨ ε ,

and we usually omit the operator ‘·’, i. e., we use juxtaposition. If this does not cause ambiguities, we often
omit parenthesis. For example, x, x{ya} and x{(y{z{a∗ ∨ bc}a}y)+b}x are all xregex, while neither x{ax}b nor
x{ax{b∗}a}b is an xregex. The operations ·, ∨, + and ∗ are also called concatenation, alternation, plus and star,
respectively.

We call an occurrence of x ∈ Xs a reference of variable x and a subexpression x{α } a deinition of variable x. The
set XREΣ,∅ (or, equivalently, the set of expressions deined by the irst three points of Deinition 3.1) is exactly the
set of regular expressions over Σ, which shall be denoted by REΣ in the following. We also use the term classical

regular expressions for a clearer distinction from xregex. If the underlying alphabet Σ or set Xs of variables is
clear from the context, we also drop these and simply write XRE and RE.

Example 3.2. The following are examples of xregex:

• α1 = (a∨ b)∗c(a∨ b)∗,
• α2 = x{(a∨ b)∗}c(a∨ x)∗,
• α3 = x{y{a∨ b}b∗}cy{(a∨ b)∗x},
• α4 = (x{a∗} ∨ x{b})c∗x,
• α5 = (ax{b∗})∗cy{x(b∨ c)}.
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It can be easily seen that xregex are descriptors for ref-languages. We shall now make this more precise. For
any α ∈ XREΣ,Xs , let αref be the classical regular expression over the alphabet Σ ∪ Xs ∪ { ▷

x , ◁x | x ∈ Xs } that is
obtained from α by iteratively replacing all variable deinitions x{β } by ▷x β ◁x. For example,

α = x{(y{z{a∗ ∨ bc}a}y)+b}x ,

αref = ▷
x ( ▷y ▷

z (a∗ ∨ bc) ◁z a ◁y y)+b ◁x x .

We say that α is valid if everyw ∈ L (αref ) contains for every x ∈ Xs at most one occurrence of ▷x . For example, α
is not valid. If not explicitly stated otherwise, we assume from now on that all our xregex are valid. Note that for
α to be valid, it is also necessary that variable deinitions are not subject to the +-operator. The example xregex
α1,α2 and α4 of Example 3.2 are valid, while α3 and α5 are not valid: Lref (α3) contains ▷

x ▷y a ◁y b ◁x c ▷y bx◁y,
and Lref (α5) contains a ▷

x b ◁x a ▷x b ◁x c ▷y xc◁y.
If an xregex α is valid, then everyw ∈ L (αref ) must be a ref-word. Indeed, this directly follows from the fact

that the deinitions x{. . .} are always subexpressions. Hence, for valid xregex, L (αref ) is a ref-language, which
we shall denote by Lref (α ).

If a ref-word v ∈ Lref (α ) contains a deinition ▷x vx◁
x, then we say that the corresponding deinition x{γx } in

α is instantiated (by v). In particular, we observe that valid xregex can nevertheless have several deinitions for
the same variable x, but at most one of them is instantiated by any ref-word. This is due to the fact that these
deinitions can occur in diferent branches of alternations (see xregex α4 of Example 3.2). Furthermore, the fourth
point of Deinition 3.1 makes sure that valid xregex can only generate acyclic ref-words. Also note that in general,
in valid xregex no variable deinition can occur under a star.

3.2 Semantics

The semantics of the subclass REΣ, i. e., classical regular expressions, is deined in the usual way:

• L (a) = {a}, for every a ∈ Σ ∪ {ε },
• L (α · β ) = L (α ) · L (β ), for every α , β ∈ REΣ,
• L (α ∨ β ) = L (α ) ∪ L (β ), for every α , β ∈ REΣ,
• L (α+) = L (α )+, for every α ∈ REΣ.

In order to deine the semantics for XREΣ,Xs , we irst deine semantics for ref-words. To this end, we deine a
dereference function, which maps ref-words over Σ and Xs to words over Σ. It is helpful to recall that, intuitively,
variable references x function as pointers to the subword speciied by the deinition ▷x . . . ◁x.

Deinition 3.3 (Deref-Function). For a ref-wordw over Σ and Xs , derefΣ,Xs (w ) ∈ Σ∗ is the word obtained from
w by the following procedure:

(1) Remove all occurrences of x ∈ Xs without deinition inw .
(2) Repeat until we have obtained a word over Σ:

(a) Let ▷x vx◁
x be a deinition such that vx ∈ Σ

∗.
(b) Replace ▷x vx◁

x by vx, and replace each occurrences of x inw by vx.

We lift the function derefΣ,Xs from ref-words to ref-languages in the obvious way, i. e., for a ref-language L,
we deine derefΣ,Xs (L) = {derefΣ,Xs (w ) | w ∈ L}. If the underlying alphabet Σ or set Xs of variables is clear from
the context, we also write deref instead of derefΣ,Xs .

The following is easy to see (a formal proof is provided in the Appendix).

Proposition 3.4. The function derefΣ,Xs (w ) is well-deined.
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Example 3.5. We consider the following ref-words over Σ = {a, b, c} and Xs = {x1, x2, x3}:

u1 = aaaa ▷
x1 ▷

x2 ba ◁x2 baa ◁x1 x2x2bbax1 ,

u2 = aaa ▷
x1 a ▷

x2 bab ◁x2 aa ◁x1 x2abbx1 ,

u3 = ▷
x1 cc ▷

x2 aa ◁x2 ◁x1 cx2cx3bx1 .

By deinition, we have

deref (u1) = deref (u2) = aaaababaabababbababaa

deref (u3) = ccaacaacbccaa .

Note that the reference x3 in u3 has no deinition and is therefore removed by Step 1 of Deinition 3.3.

The language described by a valid α ∈ XREΣ,Xs is now deined as L (α ) = deref (Lref (α )). As a special case, we
also deine L (∅) = ∅.

Example 3.6. Let Σ = {a, b, c} and x1, x2, x3 ∈ Xs , let α , β ∈ XREΣ,Xs be deined by

α = a∗x1{a
∗x2{(a∨ b)

∗}b∗a∗}x∗2 (a∨ b)
∗x1 ,

β = x1{c
∗ (x2{a

∗} ∨ x3{b
∗})}cx2cx3bx1 .

The classical regular expressions that describe Lref (α ) and Lref (β ) are given by

αref = a∗ ▷x1 a∗ ▷x2 (a∨ b)∗ ◁x2 b∗a∗ ◁x1 x∗2 (a∨ b)
∗x1 ,

βref = ▷
x1 c∗ ( ▷x2 a∗ ◁x2 ∨ ▷

x3 b∗◁x3 ) ◁x1 cx2cx3bx1 .

Let u1,u2,u3 be the ref-words from Example 3.5. Then, by deinition, w1 = a4 (ba)2 (ab)3 (ba)3a ∈ L (α ), since
deref (u1) = w1 and u1 ∈ Lref (α ); andw3 = c2a2ca2cbc2a2 ∈ L (β ), since deref (u3) = w3 and u3 ∈ Lref (β ).

3.3 Xregex as Path ueries

The membership problem for XRE (i. e., checking whether w ∈ L (α ) for given w ∈ Σ and α ∈ XREΣ,Xs ) is
NP-complete (but only in combined complexity, i. e., α is part of the input). In other words, adding variables
to regular expressions causes a substantial increase in complexity (since the membership problem for classical
regular expressions can be solved quite eiciently). This leads to the question of how adding variables changes
the complexity of regular path queries.
Any language descriptor r from some class ℜ of language descriptors can be interpreted as a simple path

query that returns all node pairs (u,v ) (or checks whether such a pair exists) that are connected by a path
labelled with a word from L (r ); or, in the terminology of Section 2.2, as the single-edge conjunctive ℜ-path
query q = (x ,y) ← Gq withGq = ({x ,y}, {(x , r ,y)}). It can be easily seen that ifℜ is the class of classical regular
expressions, then such queries can be evaluated eiciently (e. g., see [5]); and, since the membership problem for
the string case can be easily expressed as a graph query problem, evaluation should become at least NP-hard if
we letℜ be the class XRE. Unfortunately, in the graph case, adding variables to regular expressions causes a
much more severe increase in complexity: there is a ixed α ∈ XRE, such that checking whether a given graph
contains a path labelled with some word form L (α ) is PSpace-hard.
Let ∆ = {a, b, #} and let Xs = {x}. We deine the xregex αni = #x{(a∨ b)∗} (## x)∗### ∈ XRE∆,Xs .

Theorem 3.7. Deciding whether a given graph-database over Σ ⊇ ∆ contains a path labelled with somew ∈ L (αni)

is PSpace-hard.
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Proof. We will prove the result by a reduction from the PSpace-complete NFA-intersection problem over
binary alphabet {a, b}, which is deined as follows: Given NFAM1, . . . ,Mk over alphabet {a, b}, decide whether

or not
⋂k

i=1 L (Mi ) , ∅.
Without loss of generality, we assume that, for every i ∈ [k],Mi has state set Qi , transition function δi , initial

state q0,i , only one accepting state qf ,i , and we also assume that
⋂k

i=1Qi = ∅. We transform the NFAM1, . . . ,Mk

into a graph-database D = (VD ,ED ) over alphabet ∆ = {a, b, #} as follows. For the sake of convenience, we
assume that arcs can also be labelled by the words ## and ### (technically, these would be paths of length 2 and 3,

respectively, instead of single arcs). We set VD = (
⋃k

i=1Qi ) ∪ {s, t }, where {s, t } ∩ (
⋃k

i=1Qi ) = ∅, and we set

ED = *
,

k⋃

i=1

δi+
-
∪ {(qf ,i , ##,q0,i+1) | 1 ≤ i ≤ k − 1} ∪ {(s, #,q0,1), (qf ,k , ###, t )} .

We irst note that in D there is a path labelled with a word from L (αni) if and only if there is such a path from
node s to node t . Let us now assume that there is a path in D from s to t labelled with a wordw ∈ L (αni). Since
w ∈ L (αni), we can conclude that w = #w ′(##w ′)ℓ### for some w ′ ∈ {a, b}∗ and ℓ ≥ 0. By the structure of
D, this directly implies that ℓ = k − 1 and, for every i ∈ [k], there is a path labelled with w ′ from q0,i to qf ,i .

Consequently, w ′ ∈
⋂k

i=1 L (Mi ). On the other hand, if there is some word w ′ ∈
⋃k

i=1 L (Mi ), then, for every
i ∈ [k], there is a path labelled with w ′ from q0,i to qf ,i , which directly implies that there is a path from s to t

labelled with #w ′(##w ′)k−1### ∈ L (αni). □

We shall briely discuss this negative result. While the evaluation of CRPQ is only NP-hard in combined
complexity and can be solved in polynomial-time in data complexity (see Lemma 2.1), using XRE as path queries
leads to PSpace-hardness even in data-complexity, and we do not even need conjunctive queries for this, i. e.,
single-edge queries are enough. This seems to rule out variables for regular path queries altogether. However, we
shall see next that minor restrictions are enough to obtain classes of conjunctive XRE-path queries that have
acceptable complexities. Moreover, the beneit of the negative result of Theorem 3.7 will be that the query αni
indicates which such restrictions are successful.

4 CONJUNCTIVE XREGEX PATH QUERIES

In this section, we deine a class of conjunctive path queries based on XRE. Technically, we could consider
conjunctive XRE-path queries as deined in Section 2.2, but this would mean that we have CRPQ in which
regular expressions are just replaced by the more powerful class XRE, without any possibility to distribute
variables references over diferent arcs of the graph patterns. Consequently, we irst have to deine the concept of
conjunctive xregex (Section 4.1), which are then used to as the base of our class of conjunctive XRE-path queries
(Section 4.2). Moreover, this has to be done in such a way that we avoid the PSpace-hardness in data complexity
pointed out by Theorem 3.7.

4.1 Conjunctive Xregex

Deinition 4.1 (Conjunctive Xregex). A tuple ᾱ = (α1, . . . ,αm ) ∈ (XREΣ,Xs )
m is a conjunctive xregex of dimension

m, if α1α2 . . . αm is a valid xregex.

We note that all αi being valid is necessary, but not suicient for α1α2 . . . αm being valid, e. g., two valid αi
and α j with i , j may have both a deinition for variable x, which makes α1α2 . . . αm invalid. Since xregex can
have references of undeined variables, undeined references of x in some αi may nevertheless become deined
references in α1α2 . . . αm due to a deinition of x in some α j with i , j.

Bym-CXREΣ,Xs , we denote the set of conjunctive xregex of dimensionm (over Σ andXs ) and we setCXREΣ,Xs =⋃
m≥1m-CXREΣ,Xs . Note that 1-CXREΣ,Xs = XREΣ,Xs . If the terminal alphabet Σ or set Xs of variables are not
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important or clear from the context, we also drop the corresponding subscripts. We also write ᾱ[i] to denote the
ith element of some ᾱ ∈m-CXRE.

Let # < Σ ∪ Xs be a new symbol. A tuple w̄ = (w1,w2, . . . ,wm ) ∈ (Σ∗)m is a (conjunctive) match for ᾱ =
(α1,α2, . . . ,αm ) ∈ (XREΣ,Xs )

m ifw1#w2# . . . #wm ∈ L (α1#α2# . . . #αm ).
For an ᾱ ∈ CXRE, L (ᾱ ) is the set of conjunctive matches for ᾱ . We say that conjunctive xregex ᾱ and β̄ are

equivalent ifL (ᾱ ) = L (β̄ ) (note that ᾱ and β̄ having the same dimension is necessary for this). Note that changing
the order of the elements of the tuple ᾱ changes both the conjunctive xregex and its set of conjunctive matches.

Example 4.2. Consider the xregex

α1 = x2{x1 ∨ a
∗}b , α2 = x1{(a∨ b)

∗}x3{c
∗}bx3 ,

α3 = x∗2a
∗x1 , α4 = x4{a

∗}bx4x1{x2a} .

The tuple (α2,α4) is not a conjunctive xregex since α2α4 is not a valid xregex (it has two deinitions of x1). The
tuple (α3,α4) is a conjunctive xregex (note that there are references, but no deinition for x2, which, by deinition,
is not a contradiction to α3α4 being a valid xregex). The tuple (α1,α2,α3) is also a conjunctive xregex (here, all
variables with a reference also have a deinition).

For w1 = bab, w2 = bacbc, w3 = babaaba, the tuple (w1,w2,w3) is an example of a conjunctive match for
(α1,α2,α3), since w1#w2#w3 ∈ L (α1#α2#α3). This can also be illustrated by considering suitable ref-words as
witnesses: u1 = ▷x2 x1 ◁

x2 b ∈ Lref (α1), u2 = ▷x1 ba ◁x1 ▷x3 c ◁x3 bx3 ∈ Lref (α2), and u3 = x2x2ax1 ∈ Lref (α3),
which yield the ref-word u1#u2#u3 ∈ Lref (α1#α2#α3) with deref (u1#u2#u3) = w1#w2#w3.

On the other hand, w ′1 = aab, w ′2 = bbacb and w ′3 = aa are members of the languages L (α1), L (α2) and
L (α3), respectively, but (w

′
1,w

′
2,w

′
3) is not a conjunctive match for (α1,α2,α3), sincew

′
1#w

′
2#w

′
3 < L (α1#α2#α3).

This can be easily seen: any ref-word u ′2 with derefu ′2 = bbacb must be such that x1’s deinition contains
occurrences of b, and since any ref-word u ′3 ∈ Lref (α3) contains a reference of x1, butw

′
3 = aa, it is impossible

that deref (u ′1#u
′
2#u
′
3) = w

′
1#w

′
2#w

′
3.

Remark 4.3. A helpful point of view for a (conjunctive) match is to consider the mapping Xs → Σ∗ induced by the

ref-word witnesses and the function deref, i. e., the replacement of deinitions and references of variables by words

over Σ in order to obtainw1#w2# . . . #wm from u1#u2# . . . #um . Since such a mapping is only uniquely determined

by the ref-word witnesses, the same conjuncive match can have several diferent such mappings. This is illustrated by

Example 3.5: The ref-words u1 and u2 satisfy deref (u1) = deref (u2), but the mapping induced by u1 is x1 7→ babaa,

x2 7→ ba, while the mapping induced by u2 is x1 7→ ababaa, x2 7→ bab.

In Example 4.2, the mapping induced by the ref-words (u1,u2,u3) that witness the conjunctive match (w1,w2,w3)

is x1 7→ ba, x2 7→ ba, x3 7→ c.

While keeping this mapping in mind is helpful for our intuition, it shall also play a more central role (and shall be

deined more formally) in Section 7.1.

A special class of conjunctive xregex ism-CXREΣ,∅, i. e., the class of allm-dimensional tuples of classical regular
expressions. For every ᾱ ∈m-CXREΣ,∅, L (ᾱ ) = L (ᾱ[1]) × L (ᾱ[2]) × . . . × L (ᾱ[m]).

The following lemma is straightforward (a formal proof is given in the Appendix), but nevertheless helpful in
our proofs. It also points out how the semantics of a conjunctive xregex ᾱ depends on the ref-languages of the
individual components ᾱ[i].

Lemma 4.4. Let ᾱ = (α1,α2, . . . ,αm ) ∈ m-CXREΣ,Xs and let β1, β2, . . . , βm ∈ XREΣ,Xs such that, for every

i ∈ [m], Lref (αi ) = Lref (βi ). Then β̄ = (β1, β2, . . . , βm ) is a conjunctive xregex with L (ᾱ ) = L (β̄ ).
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4.2 Conjunctive Xregex Path ueries

An xregex α is variable-star free (vstar-free, for short), if in α no +-operator applies to a variable reference.5 A
conjunctive xregex ᾱ of dimensionm is vstar-free if, for every i ∈ [m], ᾱ[i] is vstar-free. We discuss the meaning
of this restriction in more detail in Section 5, when we investigate complexity issues.

Finally, we deine conjunctive xregex path queries:

Deinition 4.5 (CXRPQ). A conjunctive xregex path query over Σ and Xs (CXRPQΣ,Xs for short) is anℜ-CPQ
q = z̄ ← Gq , whereℜ = XREΣ,Xs , Gq = (Vq ,Eq ) with Eq = {(xi ,αi ,yi ) | i ∈ [m]} and ᾱ = (α1,α2, . . . ,αm ) is a
vstar-free conjunctive xregex (which is also called the conjunctive xregex of q).

The semantics are deined by combining the semantics of conjunctive path queries and conjunctive xregex in
the obvious way. More precisely, let q = z̄ ← Gq be a CXRPQΣ,Xs , where Gq = (Vq ,Eq ) with Eq = {(xi ,αi ,yi ) |
i ∈ [m]}, and let D be a graph database. Then h : Vq → VD is a matching morphism for q and D if there is
a conjuctive match (w1,w2, . . . ,wm ) of ᾱ , such that, for every i ∈ [m], D contains a path from h(xi ) to h(yi )
labelled withwi . Note that this deinition of a matching morphism h for CXRPQΣ,Xs also yields deinitions for
qh (D), q(D), D |= q, JqK and JCXRPQΣ,Xs K (see Section 2.2).

The graph patterns of Figure 2 in Section 1 show some examples of CXRPQs.
Since, for a q ∈ CXRPQΣ,Xs and a ixed graph database D, the set q(D) is completely determined by the

corresponding graph pattern and the set of conjunctive matches of the corresponding conjunctive xregex, the
following can directly be concluded from the deinitions.

Proposition 4.6. Let q = z̄ ← Gq be a CXRPQΣ,Xs with conjunctive xregex ᾱ ∈ m-CXRE. Let β̄ ∈ m-CXRE and

let q′ = z̄ ← Gq′ be a CXRPQΣ,Xs whereGq′ is obtained fromGq by replacing each edge label ᾱ[i] by β̄[i], for every

i ∈ [m]. If L (ᾱ ) = L (β̄ ), then q ≡ q′.

In this paper, we mainly concentrate on queries with conjunctive xregex that are variable star-free (i. e., the class
CXRPQ as given by Deinition 4.5, and fragments thereof), and this decision is well motivated by Theorem 3.7 (a
discussion of this issue follows in Section 5). However, we shall briely consider queries without that restriction
in Sections 10 (when we discuss expressive power) and in Sections 7 and 8.3, where upper bounds also hold for
the unrestricted variant. Therefore, let us denote by CXRPQvs the class of queries obtained by dropping from
Deinition 4.5 the requirement that the conjunctive xregex must be variable-star free (since we have deined
conjunctive xregex without the restriction of vstar-freeness, this is well-deined).

The query of Figure 3 and the right query of Figure 4 are examples of CXRPQvss that are not CXRPQs.

5 THE COMPLEXITY OF CXRPQ-EVALUATION

We now investigate the complexity of CXRPQ-evaluation, by investigating the problem CXRPQ-Bool-Eval:
Given a Boolean q ∈ CXRPQΣ,Xs , and a graph database D, check whether D |= q.

The main result of this section is as follows.

Theorem 5.1. CXRPQ-Bool-Eval is

• in ExpSpace, but PSpace-hard, with respect to combined-complexity and

• NL-complete with respect to data complexity.

Before proving the lower and upper bounds of Theorem 5.1 in Sections 5.1 and 5.2, respectively, we discuss
this result in more detail.

5Since we use the Kleene-star r ∗ only as short hand form for r+ ∨ ε , the term łvariable-plus freež seems more appropriate. We nevertheless

use the term łstar freež, since it is much more common in the literature on regular expressions and languages.
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Our lower bound of Theorem 3.7 shows that even single-edge queries with xregex have PSpace-complete
data-complexity. However, the reduction of Theorem 3.7 needs an xregex that has a variable reference under a star,
and Theorem 5.1 shows that restricting xregex accordingly (i. e., to require the xregex to be vstar-free) is actually
suicient to avoid such a high data complexity, even for queries with arbitrary graph patterns. Consequently, the
data complexity of CXRPQ is as good as that of conjunctive regular path queries, i. e., adding variables to CRPQ
as done in Section 4 does not increase the data complexity of CRPQ .

The combined complexity of CXRPQ , on the other hand, is problematic, since it is at least PSpace-hard. This
justiies to search for further restrictions of CXRPQ that yield fragments with lower combined complexity (see
Sections 6 and 7), for which again the lower bound reduction of Theorem 5.1 provides some guidance.

5.1 Lower Bounds

Proving the lower bounds of Theorem 5.1 is much simpler than the upper bounds. In fact, we can prove the
following slightly stronger lower bounds:

Theorem 5.2. CXRPQ-Bool-Eval is PSpace-hard in combined complexity, even if restricted to inputs where

|Σ| = 3, Xs = {x}, and the query is a single-edge query.

Proof. We can proceed similarly to the proof of Theorem 3.7. An instanceM1, . . . ,Mk of the NFA-intersection
problem over alphabet {a, b} is transformed into a graph-database D = (VD ,ED ) over alphabet Σ = {a, b, #} in
the same way as in the proof of Theorem 3.7 and into a graph pattern (x ,αkni,y) with

αkni = #x{(a∨ b)∗} (## x)k−1###

(i. e., αkni is obtained from αni by replacing (## x)∗ by k − 1 copies of ## x). We note that αkni is vstar-free, and

therefore (x ,αkni,y) is a single-edge CXRPQ . In particular, all the restrictions mentioned in the statement of the
theorem are satisied.

It follows analogously as in the proof of Theorem 3.7 that in D there is a path labelled with somew ∈ L (αkni)

if and only if
⋂k

i=1 L (Mi ) , ∅. □

It is a trivial observation, that we can check reachability between to given vertices in a given graph by a ixed
single-edge CRPQ (and that a binary alphabet is suicient for this reduction). Hence, we can directly conclude
the following lower bound.

Theorem 5.3. CXRPQ-Bool-Eval is NL-hard in data complexity, even if restricted to inputs where |Σ| = 2 and
Xs = ∅, and the query is a single-edge query.

5.2 Upper Bounds

In this section, we prove the following result, which directly implies the upper bounds of Theorem 5.1.

Lemma 5.4. Given a Boolean q ∈ CXRPQ and a graph database D, we can nondeterministically check whether

D |= q in space O(2poly( |q |) log( | D |)).

We irst need the following deinitions (also recall the deinition of vstar-freeness given at the beginning of
Section 4.2).

Deinition 5.5. Let α be a valid xregex. A variable deinition x{γ } of α is basic, ifγ is a classical regular expression.
The xregex α is

• variable-alternation free (valt-free) if, for every subexpression (β1 ∨ β2) of α , neither β1 nor β2 contain any
variable deinition or variable reference.
• variable-simple if it is vstar-free and valt-free.

ACM Trans. Datab. Syst.



20 • M. L. Schmid

Let us clarify these deinitions with some intuitive explanations and examples. A variable deinition is basic if
it applies to a classical regular expression, like x{a∗ ∨ b} or x{(a∨ b∨ c)∗}; on the other hand, variable deinitions
x{ay} or x{by{a∗}} are not basic. The condition of being vstar-free or valt-free can also be interpreted as follows:
an xregex is vstar-free (or valt-free), if every subtree of its syntax tree rooted by a node for a +-operation (for a
∨-operation, respectively) does not contain any nodes for variable deinitions or references. If this is true for all
+-operation nodes and all ∨-operation nodes, then the xregex is variable-simple. Equivalently, α is variable-simple
if α = β1β2 . . . βk , where each βi is a classical regular expression, a variable reference or a variable deinition
x{γ }, where γ is also variable-simple.

Example 5.6.

x{a∗}(bx(c∨ a))∗b is not vstar-free, but valt-free,

x{a∗}y((bx) ∨(ca))b∗y is vstar-free, but not valt-free,

ax{(b∨ c)∗by{dxa∗}}bxa∗z{d∗}zy is variable-simple, but contains non-basic deinitions,

ax{(b∨ c)∗da}bxa∗y{c∗}xy is variable-simple and only contains basic deinitions.

We extend these restrictions to conjunctive xregex and CXRPQ in the obvious way, i. e., a conjunctive xregex
(α1,α2, . . . ,αm ) is valt-free or variable-simple if each αi with i ∈ [m] is valt-free or variable-simple, respectively.
Analogously, a CXRPQ is valt-free or variable-simple if its conjunctive xregex is valt-free or variable-simple,
respectively.

Remark 5.7. A CXRPQ has only basic variable deinitions if and only if it has a depth of 0 in the sense as shall

be deined in Section 6. The deinition of depth is more general and not required here, so, for the sake of simplicity, we

defer it to Section 6. However, since we shall also talk about depth-0 queries later on, we keep in mind that depth-0
queries are precisely the ones with only basic variable deinitions.

We are now ready to give a formal proof of Lemma 5.4.
Let q ∈ CXRPQ be Boolean and represented by the graph pattern Gq with ED = {(xi ,αi ,yi ) | i ∈ [m]}, and let

D be a graph-database. We now deine a nondeterministic procedure to check whether or not D |= q.
In a irst step, for every i ∈ [m], we transform αi by a nondeterministic procedure as follows. As long as

αi is not valt-free, we choose some subexpression (γ1 ∨γ2) where γ1 or γ2 contains a variable deinition or a
variable reference, and we nondeterministically replace it by γ1 or γ2. In this way, we obtain a conjunctive xregex
β̄ = (β1, β2, . . . , βm ) that is variable-simple and that satisies that every x ∈ Xs has at most one deinition in β̄
(this is due to the fact that, since β̄ is variable-simple, every variable deinition is necessarily instantiated by
every tuple of ref-words, so two deinitions of a variable would contradict the validity of β̄). We note that β̄ can
be constructed in space O( |ᾱ |) = O( |q |). The next proposition follows directly from the deinitions.

Proposition 5.8. Regardless of the actual nondeterministic choices, we have L (β̄ ) ⊆ L (ᾱ ). Furthermore, for

every w̄ ∈ L (ᾱ ), it is possible to perform the nondeterministic steps in such a way that also w̄ ∈ L (β̄ ).

Let q′ be obtained from q by replacing each αi by βi . Proposition 5.8 means that we can proceed with q′ instead
of q, i. e., it remains to check whether D |= q′.

In a next step, we will transform β̄ into an equivalent γ̄ . First, we deine a general modiication step, which can
be applied to any variable deinition in β̄ . This modiication step will then be used in order to transform β̄ into γ̄ .

Main modiication step: Let z{ψ } be a variable deinition of β̄ . Sinceψ is variable-simple,ψ = ψ1ψ2 . . .ψp such
that eachψℓ with ℓ ∈ [p] is either a classical regular expression, a variable deinition, or a variable reference.

For every ℓ ∈ [p], we deine aψ ′
ℓ
as follows. Ifψℓ is a variable deinition yℓ {. . .}, then we setψ ′

ℓ
= ψℓ . Ifψℓ is a

classical regular expression or a variable reference, then we setψ ′
ℓ
= yℓ {ψℓ } for a new variable yℓ < Xs . Note that

ψ ′1ψ
′
2 . . .ψ

′
p = y1{. . .}y2{. . .} . . . yp {. . .}
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is a concatenation of variable deinitions. Next, we replace the variable deinition z{ψ } in β̄ byψ ′1ψ
′
2 . . .ψ

′
p . Then,

we replace all variable references of z in β̄ by y1y2 . . . yp .

Let the thus modiied version of β̄ be denoted by β̄ ′ = (β ′1, β
′
2, . . ., β

′
m ). It can be easily seen that β̄ ′ is valid and

therefore a conjunctive xregex. Moreover, for every i ∈ [m], β ′i is still variable-simple.

Lemma 5.9. L (β̄ ) = L (β̄ ′).

Proof. The diiculty in showing L (β̄ ) = L (β̄ ′) is due to the fact that we cannot assume, for every i ∈ [m], that
Lref (βi ) = Lref (β

′
i ); i. e., we cannot conveniently apply Lemma 4.4. We need a few more notational preliminaries.

We assume that r ∈ [m] is such that the modiied variable deinition z{ψ } is in βr . Moreover, recall that β ′r is
obtained from βr by the construction from above (i. e., β ′r is obtained from βr by replacing the deinition z{ψ }
withψ ′1ψ

′
2 . . .ψ

′
p and all references z with y1y2 . . . yp .

Let w̄ = (w1,w2, . . . ,wm ) be a conjunctive match for β̄ , i. e., there is a ref-word

vβ = vβ,1#vβ,2# . . . #vβ,m ∈ Lref (β1#β2# . . . #βm )

such that deref (vβ ) = w1#w2# . . . #wm . In order to show that w̄ is a conjunctive match for β̄ ′, we have to show
that there is a ref-word

vβ ′ = vβ ′,1#vβ ′,2# . . . #vβ ′,m ∈ Lref (β
′
1#β

′
2# . . . #β

′
m )

such that deref (vβ ′ ) = w1#w2# . . . #wm .

Since β̄ is variable-simple, the variable deinition z{ψ } = z{ψ1ψ2 . . .ψp } (i. e., the variable deinition that
has been modiied by the construction) must be instantiated by vβ,r , i. e., vβ,r ∈ Lref (βr ) and vβ,r contains a
factor ▷z д1д2 . . .дp ◁

z, where, for every ℓ ∈ [p], дℓ ∈ Lref (ψi ). We let vβ ′,r be obtained from vβ,r by replacing
▷z д1д2 . . .дp ◁

z by ▷y1 д1 ◁
y1 ▷y2 д2 ◁

y2 . . . ▷yp дp ◁
yp and all occurrences of z by y1y2 . . . yp . By construction,

vβ ′,r ∈ Lref (β
′
r ) is satisied. For every i ∈ [m] \ {r }, we let vβ ′,i be obtained from vβ,i by replacing each

variable-reference z by y1y2 . . . yp . By construction, it follows that vβ ′,i ∈ Lref (β
′
i ). It remains to show that

deref (vβ ′ ) = w1#w2# . . . #wm .
By construction, the factor vβ,r of vβ contains the deinition ▷z д1д2 . . .дp ◁

z, and vβ ′ is obtained from vβ by
replacing ▷z д1д2 . . .дp ◁

z with the deinitions ▷y1 д1 ◁
y1 ▷y2 д2 ◁

y2 . . . ▷yp дp ◁
yp , and every reference z with the

references y1y2 . . . yp . We can now argue with the deinition of the function deref, i. e., we consider the run
of deref on vβ and the run of deref on vβ ′ and show that these two runs produce the same word over Σ∗, i. e.,
deref (vβ ) = deref (vβ ′ ). Since deref (vβ ) = w1#w2# . . . #wm , this will also mean that deref (vβ ′ ) = w1#w2# . . . #wm .
First, the function deref applied to vβ and vβ ′ will make identical replacements up to the point where ▷z

д′1д
′
2 . . .д

′
p ◁

z is a factor of vβ , and ▷y1 д′1 ◁
y1 ▷y2 д′2 ◁

y2 . . . ▷yp д′p ◁
yp is a factor of vβ ′ , where д

′
1д
′
2 . . .д

′
p ∈ Σ

∗. This

means that after replacing all references of z in vβ by д′1д
′
2 . . .д

′
p and replacing all references of y1, y2, . . . , yp by

д′1,д
′
2, . . . ,д

′
p , respectively, we obtain the same words in the run of deref on vβ and vβ ′ . This shows that every

conjunctive match for β̄ is also a conjunctive match for β̄ ′. Moreover, the reverse direction, i. e., showing that
every conjunctive match for β̄ ′ is also a conjunctive match for β̄ , can be done analogously. More precisely, in
order to construct suitable ref-words, we obtain vβ from vβ ′ by replacing every y1y2 . . . yp (observe that every
reference of some yℓ in vβ ′ must occur in this form) by z and every ▷y1 д1 ◁

y2 ▷y2 д2 ◁
y2 . . . ▷yp дp ◁

yp (observe
that every deinition of some yℓ in vβ ′ must occur in this form) by ▷z д1д2 . . .дp ◁

z. The rest of the argument is
analogous.

Consequently, L (β̄ ) = L (β̄ ′), which concludes the proof. □

Next (and also as part of the main modiication step), for every ℓ ∈ [p] where γℓ = u ∈ Xs is a single variable
reference, we replace yℓ {u} and all occurrences of variable reference yℓ by u. We denote the thus modiied version
of β̄ ′ by β̄ ′′.
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Lemma 5.10. L (β̄ ′) = L (β̄ ′′).

Proof. Since β̄ ′ is variable-simple, every variable x ∈ Xs with a deinition in β̄ ′ has exactly one deinition
in every ref-word v ∈ Lref (β

′
1#β

′
2# . . . #β

′
m ). Consequently, any deinition yℓ {u} will necessarily yield the factor

▷yℓ u◁yℓ in every ref-word v ∈ Lref (β
′
1#β

′
2# . . . #β

′
m ) and therefore replacing yℓ {u} and all variable references yℓ

directly by u does not change the set of conjunctive matches of β̄ ′. □

Remark 5.11. Instead of applying this second part of the modiication step, we could also change the irst part

such that we directly leave all γℓ = u ∈ Xs unchanged and use u in the place of yℓ when substituting the references z
by y1y2 . . . yp . This, however, would unnecessarily complicate the proof of Lemma 5.9.

Applying themainmodiication step tomake all variable deinitions basic:We now inductively apply the
main modiication step to each non-basic variable deinition of β̄ . Each such application of the main modiication
step replaces a non-basic variable deiniton z{ψ } by a sequenceψ ′1ψ

′
2 . . .ψ

′
p of variable references and variable

deinitions, such that each variable deinition is either basic or it is already a non-basic variable deinition of
the original conjunctive xregex β̄ . Hence, after applying the main modiication step with respect to all original
non-basic variable deinitions of β̄ , we obtain a conjunctive xregex γ̄ with only basic variable deinitions.

Lemma 5.12. L (β̄ ) = L (γ̄ ) and |γ̄ | = O( |β̄ | |Xs |+1).

Proof. It directly follows from the correctness of the main modiication step (Lemmas 5.9 and 5.10) that
L (β̄ ) = L (γ̄ ).
We next estimate the size of γ̄ . In the procedure that transforms β̄ into γ̄ , there are k ≤ |Xs | applications of

the main modiication step (note that since β̄ is variable-simple, every variable can have at most one deinition).

For every i ∈ [k] ∪ {0}, let β̄ (i ) be the version of β̄ after the ith application of the main modiication step

in the procedure that transforms β̄ into γ̄ . In particular, β̄ (0) = β̄ and β̄ (k ) = γ̄ . For every x ∈ Xs , let kx be
the number of references of x in β̄ . We claim that, for every i ∈ [k] ∪ {0}, |β̄ (i ) | = O( |β̄ |i+1). For i = 0, this

obviously holds. Now let i ∈ [k − 1] ∪ {0} and assume that |β̄ (i ) | = O( |β̄ |i+1). Moreover, let the (i + 1)th

application of the main modiication step apply to variable x. This means that β̄ (i+1) is obtained in the (i + 1)th

application of the main modiication step by replacing kx symbols in β̄ (i ) by at most |β̄ (i ) | symbols. Hence,

|β̄ (i+1) | = O(kx |β̄
(i ) |) = O( |β̄ | |β̄ (i ) | = O( |β̄ | |β̄ |i+1) = O( |β̄ |i+2). Consequently, |γ̄ | = O( |β̄ |k+1) = O( |β̄ | |Xs |+1). □

Finally, let q′′ be obtained from q′ by replacing each βi by γi . We observe that, |γ̄ | = O( |β̄ | |Xs |+1) = O(2poly( |ᾱ |) ).
Since, γ̄ has only basic variable deinitions, we can use Lemma 8.4 (which will be proven in Section 8.2) to

nondeterministically decide whether D |= q′′ in space O( |q′′ | log( | D |)) = O(2poly( |q |) log( | D |)). Consequently,

this whole procedure decides nondeterministically whether or not D |= q in space O(2poly( |q |) log( | D |)), which
concludes the proof of Lemma 5.4.

6 CXRPQ WITH BOUNDED DEPTH

In this section, we consider a restriction of CXRPQ that leads to fragments with combined complexity upper
bound of PSpace (i. e., fragments with the same combined complexity as relational algebra).
The only reason why the procedure of Lemma 5.4 only leads to a combined complexity upper bound of

ExpSpace (instead of a PSpace upper bound that would match our lower bound) is that the modiication that
makes all variable deinitions basic introduces a seemingly unavoidable exponential size blow-up. Hence, we
should investigate this aspect in a bit more detail.

Let us irst illustrate the situation by the following example:

α = x1{a}x2{x1x1}x3{x2x2}x4{x3x3} . . . xn {xn−1xn−1} .
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This xregex is variable-simple and if we apply the main modiication step with respect to the deinitions for the
variables x2, x3, . . . , xn , then each reference of x2 is replaced by 2 variable references, each reference of x4 by 4
variable references, each reference of x5 by 8 variable references, and so on.

The crucial point here seems to be that if we replace single references of x in a deinition of y by longer
sequences of references, then we also enlarge the deinition of y and therefore the sequences by which single
references of y are to be replaced in a following step of the procedure. This obviously leads to an exponential size
blow-up. We shall now deine the depth of (conjunctive) xregex.
First, we recall the deinition of the relation ⪯v on Xs for ref-words v . For any ref-word v , we deine a graph

Gv = (Xs , {(x, y) | x ⪯v y}), and we note that since ⪯v is acyclic,Gv is a directed acyclic graph (DAG). The depth
of v (denoted by depth(v )) is deined as the length of a longest path from a root to a sink inGv . For a conjunctive
xregex ᾱ = (α1,α2, . . . ,αm ), we deine its depth (denoted by depth(ᾱ )) as max{depth(v ) | v ∈ Lref (α1α2 . . . αm )}.

Next, we prove the following stronger variant of Lemma 5.12.

Lemma 6.1. Let β̄ ∈ m-CXREΣ,Xs be variable simple. Then there is an equivalent γ̄ ∈ m-CXREΣ,X′s such that γ̄

has only basic variable deinitions. Moreover, |γ̄ | = O( |β̄ |depth(β̄ ) ).

Proof. We transform β̄ to γ̄ in exactly the same way as done in Section 5.2, but we apply the applications of
the main modiication step in a particular order. Let ⪯β̄ be the binary relation on Xs deined by setting x ⪯β̄ y if

in β̄ there is a deinition of y that contains a reference or a deinition of x. LetG β̄ be the graph induced by ⪯β̄ , i. e.,

G β̄ = (Xs , {(x, y) | x ⪯β̄ y}). Since β̄ is variable-simple, every variable deinition of β̄ is necessarily instantiated

by every ref-word v ∈ Lref (β1β2 . . . βm ). In particular, this also means that G β̄ is a DAG. We apply the main

modiication steps according to the structure of G β̄ as follows.

We repeatedly choose some root x of (the current version of) G β̄ . If the deinition of x is basic, then we will

just remove the root x from G β̄ without modifying β̄ . If, on the other hand, the deinition x{γ } is non-basic, then

we apply the main modiication step to x{γ } (which modiies β̄), and then we remove the root x from G β̄ . Note

that in this procedure, x{γ } always refers to the deinition of x in the current version of β̄ , which may have been
changed by applications of the main modiication steps, i. e., variable references in the original deinition of x

might have been replaced by concatenations of new variable references. Next, we show that |γ̄ | = O( |β̄ |depth(β̄ ) ).
For every ixed variable deinition x{ψ } of β̄ that is non-basic, the construction will repeatedly replace variable

references inψ by sequences of variable references of size O( |β̄ |). Then, the variable deinition is replaced by a
sequence of basic variable deinitions, which does not cause a size-increase. Consequently, the size of the variable
deinition of x right before it will be replaced is bounded by |β̄ |k+1, where k is the number of main modiication
steps that replace references in this deinition of x. By deinition of G β̄ and depth(β̄ ), we have that k ≤ depth(β̄ ).

This directly implies that, for every i ∈ [m], |γ̄ [i]| = O( |γ̄ [i]|depth(β̄ )+1), and therefore |γ̄ | = O( |β̄ |depth(β̄ )+1). □

For a q ∈ CXRPQΣ,Xs with conjunctive xregex ᾱ , we deine depth(q) = depth(ᾱ ). For every k ∈ N, let

CXRPQ
depth≤k
Σ,Xs

be the class of q ∈ CXRPQΣ,Xs with depth(q) ≤ k .

If the depth of a query is 0, then it can only have basic variable deinitions (see Remark 5.7) and therefore
Lemma 8.4 (which will be proven in Section 8.2) directly implies the following result.

Theorem 6.2. CXRPQdepth≤0-Bool-Eval can be solved in nondeterministic space O( |q | log( | D |)).

Given a q ∈ CXRPQdepth≤k with k > 0, we can proceed analogously as done on Section 5.2. We only have
to note that the initial nondeterministic transformation does not increase the depth of q. Consequently, the
application of the procedure of Section 5.2 yields a CXRPQ with a conjunctive xregex whose components are
variable-simple, and that is of size polynomial in the initial query. Hence, for every ixed k , we obtain the following
analogue of Lemma 5.4.
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Lemma 6.3. Let k ∈ N be a ixed constant. Given a Boolean q ∈ CXRPQdepth≤k and a graph database D, we can

nondeterministically check whether D |= q in space O(poly( |q |) log( | D |)).

Since the vstar-free xregex used in order to show PSpace-hardness of CXRPQ-Bool-Eval, i. e., the xregex αkni
from the proof of Theorem 5.2, has only basic variable deinitions and therefore a depth of 0, we can conclude the
following result.

Theorem 6.4. For every ixed constant k ∈ N ∪ {0}, CXRPQdepth≤k -Bool-Eval is PSpace-complete in combined

complexity.

For every k ∈ N, let CXRPQvar≤k
Σ

be the class of conjunctive xregex path queries with at most k variables, i. e.,

CXRPQvar≤k
Σ

=

⋃
|Xs | ≤k CXRPQΣ,Xs . Since, for every q ∈ CXRPQ

var≤k , we have depth(q) ≤ k − 1, and since the

xregex αkni from the proof of Theorem 5.2 has only one variable, we can conclude the following corollary from
Theorem 6.4.

Corollary 6.5. For every ixed constant k ∈ N, CXRPQvar≤k -Bool-Eval is PSpace-complete in combined

complexity.

Note that CXRPQs with no variables are classical CRPQs, for which Boolean evaluation is NP-complete in
combined complexity.

7 CXRPQ WITH BOUNDED IMAGE SIZE

In this section, we consider another restriction of CXRPQ that leads to fragments with a better combined
complexity upper bound, this time even of NP (i. e., fragments with the same combined complexity as CRPQ).
The idea is to restrict the size of the words that can be referenced by variable references.

7.1 Conjunctive Xregex with Fixed Images

We recall the deinition of the function deref (see Deinition 3.3) that computes deref (w ) for a ref-wordw and
note that it also uniquely allocates a subword vx of deref (w ) to each variable x that has a deinition inw (i. e., the
subwordsvx deined in the iterations of Step 2a of Deinition 3.3). In this way, a ref-wordw over terminal alphabet
Σ and variables Xs describes a variable mapping vmapw,Xs

: Xs → Σ∗, i. e., we set vmapw,Xs
(x ) = vx if x has a

deinition inw and we set vmapw,Xs
(x ) = ε otherwise. The elements vmapw,Xs

(x ) for x ∈ Xs are called variable

images. See also Remark 4.3 of Section 4.1 for explanations and examples concerning the variable mapping.
For every α ∈ XREΣ,Xs with Xs = {x1, x2, . . . , xn } and v̄ = (v1,v2, . . . ,vn ) ∈ (Σ∗)n , we deine

Lv̄
ref (α ) = {u ∈ Lref (α ) | ∀i ∈ [n] : vmapu,Xs (xi ) = vi } ,

Lv̄ (α ) = deref (Lv̄
ref (α )) .

The notion Lv̄ (α ) also extends to conjunctive xregex in the following way. Let ᾱ ∈ m-CXREΣ,Xs with
Xs = {x1, x2, . . . , xn } and v̄ = (v1,v2, . . . ,vn ) ∈ (Σ∗)n . A tuple w̄ = (w1,w2, . . . ,wm ) ∈ (Σ∗)m is a (conjunctive)
v̄-match for ᾱ ∈ (XREΣ,Xs )

m ifw1#w2# . . . #wm ∈ L
v̄ (α1#α2# . . . #αm ). By Lv̄ (ᾱ ), we denote the set of v̄-matches

for ᾱ .
We now give an informal description of the restricted classes of CXRPQ and the corresponding evaluation

algorithm. The main observation is that if we have ixed some variable mapping v̄ = (v1,v2, . . . ,vm ), then the
subsetLv̄ (ᾱ ) ofL (ᾱ ) can be represented by a conjunctive xregex without variables, i. e., a tuple of classical regular
expressions (see Lemma 7.1). However, the corresponding procedure is not as simple as łreplace each xi {. . .} and xi
byvi ž. We shall now illustrate this with an example and some intuitive explanations. Let α = (α1,α2) ∈ CXREΣ,Xs
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be deined by

α1 = x3{x1{ca
∗c}x∗2} ∨[ (x1{cb

∗} ∨ x1{x4c
∗}) (b∨ x∗2)x3{x1x2x

∗
1} ] ,

α2 = (x1 ∨ x2)
∗x4{(b∨ c)

∗x∗2}x2{(a∨ b)
∗a} ,

and let v̄ = (v1, . . . ,v4) = (ca, a, caaca, ca).
For computing β = (β1, β2) ∈ CXREΣ,∅ with L (β̄ ) = L

v̄ (ᾱ ), replacing xi {γ } by vi can only be correct, if γ can
produce vi (in a match with variable mapping v̄). So we should treat the variable deinitions and references of
γ as their intended images and then check whether the thus obtained classical regular expression can produce
vi . For example, we transform x3{x1{ca

∗c}x∗2} in α1 to x3{v1v
∗
2 } = x3{caa

∗} and check that v3 = ca ∈ L (caa∗).
However, this assumes that x1{ca

∗c} can really produce v1, which is not the case, so we should rather remove
x3{x1{ca

∗c}x∗2} altogether, since it can never be involved in a conjunctive match from Lv̄ (ᾱ ). Hence, we also
need to cut whole alternation branches in ᾱ , and, moreover, we have to make sure that if xi , ε , then at least
one deinition of xi is necessarily instantiated, while this is not required if xi = ε . Let us illustrate the correct
transformations with the above example.
We pick an unmarked variable deinition xi {γ }, where γ does not contain any unmarked variable deinition

(this means that initially we must choose deinitions such that γ does not contain any other variable deinition).
Let γ ′ be obtained from γ by interpreting each variable deinition and reference for xj as vj . If vi ∈ L (γ

′), then
we mark the variable deinition xi {γ }, and vi < L (γ

′), then we cut all branches that necesssarily produce this
deinition. This step is repeated until all variable derinitions are marked or removed. With respect to our example
(α1,α2), this means that we proceed as follows.
For α1, we irst observe that the deinitions x1{ca

∗c} and x1{cb
∗} should not be marked, but x1{x4c

∗} should be
marked. This leads to the following expression (markings are represented by overline):

x1{x4c∗}(b∨ x
∗
2)x3{x1x2x

∗
1} .

Then, we investigate the remaining unmarked variable deinition x3{x1x2x
∗
1} and observe that it should be marked

as well, which yields:

x1{x4c∗}(b∨ x
∗
2)x3{x1x2x

∗
1} .

With respect to α2, we get

(x1 ∨ x2)
∗x4{(b∨ c)∗x

∗
2}x2{(a∨ b)

∗a} .

Finally, we replace all deinitions and references by the intended images to obtain

(β1, β2) = (ca(b∨ a∗)caaca, ((ca) ∨ a)∗caa) .

In the general case, the situation can be slightly more complicated, since we also have to make sure that every
ref-word necessarily instantiates a deinition for xi if vi , ε , while for vi = ε ref-words without deinition for
xi should still be possible. It can also happen that this procedure reduces an xregex to ∅, which means that
Lv̄ (ᾱ ) = ∅.
By turning these exemplary observations into a general procedure, we can prove the following result.

Lemma 7.1. For every ᾱ ∈m-CXREΣ,Xs withXs = {x1, x2, . . . , xn } and every v̄ ∈ (Σ∗)n , there is a β̄ ∈m-CXREΣ,∅
such that L (β̄ ) = Lv̄ (ᾱ ). Furthermore, |β̄ | = O( |ᾱ |k ), where k = max{|v̄[i]| | i ∈ [n]}, and β̄ can be computed in

time polynomial in |ᾱ | and |v̄ |.

Proof. Let ᾱ = (α1,α2, . . . ,αm ) and let v̄ = (v1,v2, . . . ,vn ) ∈ Σ
∗. We give an algorithm that transforms ᾱ into

β̄ with the desired property.
The general idea of the procedure is as follows. For every considered variable deinition xi {γ } in some α j ,

we want to determine whether γ can produce vi under the assumption that all variable references and variable
deinitions in γ can produce their corresponding images (according to v̄). If this is not the case, then we delete

ACM Trans. Datab. Syst.



26 • M. L. Schmid

the alternation branch that instantiates the variable deinition xi {γ } to make sure that it cannot be instantiated.
When this procedure terminates, we can replace all remaining variable deinitions and variable references by their
corresponding images in order to obtain the components βi of β̄ , which are then classical regular expressions.
We now describe this procedure in more detail.

• Step 1: We assume that the variable deinitions in ᾱ can be either marked or unmarked and that they
are initially all unmarked. The algorithm considers each variable deinition separately in such an order
that every considered variable deinition does only contain other variable deinitions (if any) that are
already marked. We repeat the following step until all variable deinitions are marked (recall that initially
all variable deinitions are unmarked). Let xi {γ } be some unmarked variable deinition in some α j such that
γ does not contain any unmarked variable deinition. Let γ ′ be the classical regular expression obtained
from γ by replacing each reference and deinition for a variable xi′ by vi′ . If vi ∈ L (γ

′), then we mark

xi {γ }. If vi < L (γ
′), then we have to modify α j in such a way that xi {γ } is never instantiated. This is

achieved as follows. We start at the node of the syntax-tree of α j that represents xi {γ }, we move up in
the syntax tree and simply delete every node that we encounter (including the node that represents xi {γ }
where we started, which also means that the whole subtree rooted by this node is deleted), and we stop as
soon as we encounter an alternation node, which is then replaced by its other child (i. e., the sibling of the
node from which we entered the alternation node). In particular, if no alternation node is encountered,
then we can conclude that the deinition xi {γ } under consideration will necessarily be instantiated by
every ref-word of α j , which immediately implies that there is no conjunctive match of ᾱ with variable
mapping (v1,v2, . . . ,vn ). In this case, the procedure will replace α j by ∅ (the unique regular expressions
with L (∅) = ∅). Let ᾱ ′ = (α ′1,α

′
2, . . . ,α

′
m ) be the conjunctive xregex obtained when the procedure of this

step terminates.
• Step 2: Next, for every i = 1, 2, . . . ,n, if vi , ε , then we have to modify ᾱ ′ as follows. If, for some j ∈ [m],
α ′j contains a deinition of xi (note that this is possible for at most one α ′j ), then we have to modify it such

that it necessarily instantiates a deinition for xi , which is done as follows. For every node of the syntax
tree for α ′j that corresponds to a deinition for xi , we mark it and then we move from this node up to the

root and mark every visited node along the way. Next, for every marked alternation-node, we remove its
unmarked child nodes (note that every such marked alternation-node has either one or two marked child
nodes).
In particular, we note that this modiication is only necessary for i ∈ [n] with vi , ε , since ref-words that
have no deinition for xi correspond to variable mappings with image ε for variable xi , which should not
be excluded if vi = ε . Let ᾱ

′′
= (α ′′1 ,α

′′
2 , . . . ,α

′′
m ) be the conjunctive xregex obtained when the procedure

of this step terminates.

After these two modiication steps, it is possible that, for some i ∈ [m] with vi , ε , there is no deinition of xi in
ᾱ ′′. If this is the case, we replace each α ′′j by ∅.

Finally, for every i ∈ [n], we replace each deinition and each occurrence of xi by vi in order to obtain a β̄ ∈m-
CXREΣ,∅. It can be veriied with moderate efort that L (β̄ ) = Lv̄ (ᾱ ). Moreover, this procedure can obviously be
carried out in time polynomial in |ᾱ | and |v̄ |, and also |β̄ | = O( |ᾱ |k ), where k = max{|v̄[i]| | i ∈ [n]}. □

Remark 7.2. We observe that the intuitive explanations and examples mentioned at the beginning of this subsection,

as well as the statement of Lemma 7.1 and its proof do not require the xregex to be vstar-free. This explains why for

the concepts and results of the following subsections we can consider the class CXRPQvs (without the restriction of

vstar-freeness), instead of only CXRPQ .
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7.2 CXRPQvs with Bounded Image Size

We next lift the deinition Lv̄ (ᾱ ) for conjunctive xregex ᾱ to CXRPQvs in the obvious way. Let q ∈ CXRPQvs
Σ,Xs

with conjunctive xregex ᾱ ∈ CXREΣ,Xs and Xs = {x1, x2, . . . , xn }, let v̄ ∈ (Σ∗)n , and let D be a graph database.
By qv̄ (D) we denote the subset of q(D) that contains those qh (D) ∈ q(D), where h is a matching morphism
with respect to some matching words w̄ = (w1,w2, . . . ,wm ) ∈ Lv̄ (ᾱ ). For Boolean q ∈ CXRPQvs

Σ,Xs , we also
write D |=v̄ q to denote () ∈ qv̄ (D).

A direct consequence of Lemma 7.1 is that for every v̄ ∈ (Σ∗)n we can also transform any q ∈ CXRPQvs with n
variables into a q′ ∈ CRPQ with qv̄ (D) = q′(D).

Lemma 7.3. For every q ∈ CXRPQvs with conjunctive xregex ᾱ ∈ m-CXREΣ,Xs with Xs = {x1, x2, . . . , xn } and
every v̄ ∈ (Σ∗)n , there is a q′ ∈ CRPQ , such that, for every database D, we have that qv̄ (D) = q′(D). Furthermore,

|q′ | = O( |q |k ), where k = max{|v̄[i]| | i ∈ [n]}, and q′ can be computed in time polynomial in |q | and |v̄ |.

Proof. According to Lemma 7.1, we can compute in time polynomial in |ᾱ | and |v̄ | (and therefore in time
polynomial in |q | and |v̄ |) a β̄ ∈m-CXREΣ,∅ such thatL (β̄ ) = L

v̄ (ᾱ ). Thus, q′ can be obtained from q by replacing
each edge label αi by βi . In particular, we have |β̄ | = O( |ᾱ |k ), where k = max{|v̄[i]| | i ∈ [n]}, and therefore also
|q′ | = O( |q |k ). □

We slightly change the syntax of xregex by associating with every x ∈ Xs a function fx : N→ N. This class of
xregex with bounded image size is denoted by XREbi

Σ,Xs
. The idea is that when a CXRPQvs q is evaluated over a

graph database D, then we are only interested in matching words for which each variable x is deined with a
word of length at most fx ( | D |). If fx is a constant k ∈ N, then we also write k instead of fx. Let us now formally
deine the semantics of this modiication.
For an α ∈ XREbi

Σ,Xs
with Xs = {x1, x2, . . . , xn }, and k ∈ N, a tuple v̄ ∈ (Σ∗)n is a valid tuple of variable images

for α with respect to k , if, for every i ∈ [n], |v̄[i]| ≤ fxi (k ). The ref-language of α with respect to k (denoted by
Lref (α ,k )) is deined as the union of all Lv̄

ref
(α ), where v̄ is a valid tuple of variable images for α with respect to

k . The language of α with respect to k is deined by L (α ,k ) = deref (Lref (α ,k )).
The deinition of xregex with bounded image size gives also rise to the class of conjunctive xregex with bounded

image size, denoted by CXREbi
Σ,Xs

, and therefore the class of conjunctive xregex path queries with bounded image

size, denoted by CXRPQvs,bi
Σ,Xs

. The semantics extend in a straightforward way: For an ᾱ ∈m-CXREbi
Σ,Xs

and k ∈ N,

a tuple w̄ = (w1,w2, . . . ,wm ) ∈ (Σ∗)m is a (conjunctive) k-match for ᾱ ifw1#w2# . . . #wm ∈ L (α1#α2# . . . #αm ,k ).
We denote the class of conjunctive k-matches by L (ᾱ ,k ).

For aq ∈ CXRPQvs,bi
Σ,Xs

with conjunctive xregexwith bounded image size ᾱ ∈ CXREbi
Σ,Xs

withXs = {x1, x2, . . . , xn },

and graph database D, q(D) is deined as the union of all qv̄ (D), where v̄ is a valid tuple of variable images for
ᾱ with respect to k .

For every k ∈ N, by CXRPQvs,bi≤k
Σ,Xs

, we denote the class of CXRPQvs,bi
Σ,Xs

, where, for every x ∈ Xs , fx is a constant

k ′ ≤ k ; by CXRPQ
vs,bi≤k log

Σ,Xs
, we denote the class of CXRPQvs,bi

Σ,Xs
, where, for every x ∈ Xs , fx (n) is a constant

k ′ ≤ k or the function k ′ log(n) for some constant k ′ ≤ k .

7.3 Evaluation of CXRPQ with Bounded Image Size

We are now ready to show that the combined complexity of evaluating CXRPQvs with image size bounded by
constants is in NP.

Theorem 7.4. For every k ∈ N, CXRPQvs,bi≤k -Bool-Eval can nondeterministically be solved in polynomial time

in combined complexity and in logarithmic space in data complexity.
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Proof. Letq ∈ CXRPQvs,bi≤k be Booleanwith a conjunctive xregexwith bounded image size ᾱ = (α1,α2, . . . ,αm )

over Σ and Xs = {x1, x2, . . . , xn }, and let D be a graph-database. We note that D |= q if and only if there is a
valid tuple v̄ = (v1,v2, . . . ,vn ) of variable images for ᾱ with respect to | D | such that D |=v̄ q. Consequently,
the following is a nondeterministic algorithm that checks whether D |= q.

(1) Nondeterministically guess a valid tuple v̄ of variable images for ᾱ with respect to | D |.
(2) Compute q′ ∈ CRPQ such that, for every database D ′, we have that qv̄ (D ′) = q′(D ′).
(3) Check whether D |= q′.

Point 2 can be done according to Lemma 7.3, and Point 3 can be done according to Lemma 2.1. It remains to show
that this nondeterministic algorithm requires polynomial time in combined complexity and logarithmic space in
data complexity.
We irst note that since fx is a constant k

′ ≤ k for every x ∈ Xs , Point 1 can be done in time O(nk ) = O(n),
which is polynomial in combined complexity. Moreover, the required space for this does only depend on q and k ,
which means that it is constant in data complexity.

According to Lemma 7.3, q′ can be computed in time that is polynomial in |q | and |v̄ | in combined complexity,
which, since k is a constant, is polynomial in |q |. Again, the required space for this does only depend on q and k ,
which means that it is constant in data complexity.

According to Lemma 2.1, we can nondeterministically check D |= q′ in time polynomial in |q′ | and | D | in
combined complexity. Moreover, according to Lemma 7.3, |q′ | = O( |q |k ) = O( |q |), which means that we can
nondeterministically check D |= q′ in time polynomial in |q | and | D |, so polynomial in combined complexity.
Finally, we also note that Lemma 2.1 implies that D |= q′ can be checked in nondeterministic space that is
logarithmic in D with respect to data complexity. □

By applying more or less the same algorithm, we can also show that for logarithmic size bounds, the combined
complexity is still in NP, while the data complexity increases to poly-logarithmic space, more precisely, to
nondeterministic space O(log2 ( | D |)).

Theorem 7.5. For every k ∈ N, CXRPQvs,bi≤k log-Bool-Eval can nondeterministically be solved in polynomial

time in combined complexity and in space O(log2 ( | D |)) in data complexity.

Proof. We can apply the same nondeterministic algorithm from the proof of Theorem 7.4:

(1) Nondeterministically guess a valid tuple v̄ of variable images for ᾱ with respect to | D |.
(2) Compute q′ ∈ CRPQ such that, for every database D, we have that qv̄ (D) = q′(D).
(3) Check whether D |= q′.

For every x ∈ Xs , we have fx = k
′ log(n) for some constant k ′ ≤ k ; thus, Point 1 can be done in time and space

O(n log( | D |)). According to Lemma 7.3, q′ can be computed in time that is polynomial in |q | and |v̄ |, which, since
|v̄ | = O(n log( | D |)), is polynomial in |q | and | D |. Moreover, according to Lemma 7.3, |q′ | = O( |q | log( | D |)).
We can use Lemma 2.1 in order to conclude that we can nondeterministically checkD |= q′ in polynomial time

in combined complexity. For data complexity, we observe that since q′ ∈ CRPQ , we also have that q′ is a CXRPQ
with only basic variable deinitions. Hence, we can conclude with Lemma 8.4 that we can nondeterministically
check D |= q′ in space O( |q′ | log( | D |)) = O( |q | log2 ( | D |)). □

Our algorithm is essentially a brute-force algorithm: it exhaustively tries all possible tuples of variable images
that are within the given size bounds. Hence, the question arises whether we can achieve better upper bounds by
some more sophisticated approach. However, we can answer this in the negative by complementing the upper
bounds of Theorem 7.4 with matching lower bounds.

Theorem 7.6. For every ixed constant k ∈ N, CXRPQvs,bi≤k
Σ,Xs

-Bool-Eval is
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s u0 u1 u2 . . . uk
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Fig. 5. Sketch of the Hitting Set Reduction from Theorem 7.6. An arc labelled withU or Ai stands for arcs labelled by ⟨z⟩ for
every z ∈ U or z ∈ Ai , respectively.

• NP-hard in combined complexity, even for single-edge queries with only basic variable deinitions and |Σ| = 3,
• NL-hard in data complexity, even for single-edge queries with conjunctive xregex α ∈ REΣ and |Σ| = 2.

Proof. The NL-hardness for data complexity follows in the same way as for Theorem 5.3.
In order to prove the NP-hardness for combined complexity, we devise a reduction from the problem Hitting

Set, which is deined as follows. Given subsets A1,A2, . . . ,Am of some universeU and k ∈ N, decide whether
there is a hitting set of size at most k , i. e., a set B ⊆ U with |B | ≤ k and B ∩Ai , ∅ for every i ∈ [m].

Now let A1,A2, . . . ,Am ⊆ U = {z1, z2, . . . , zn } and k ∈ N be an instance of Hitting Set. Let Σ = {a, b, #} and,
for every zi ∈ U , we deine ⟨zi ⟩ = baib.

Next, we deine a graph database D = (VD ,ED ) over Σ as follows. For the sake of convenience, we also allow
words as edge labels in graph databases, which stand for paths in the obvious way, i. e., for somew ∈ Σ∗, an arc
(u,w,v ) in a graph-database represents a path from u to v labelled with w (using some distinct intermediate
nodes). We set

VD = {s,u0,u1, . . . ,uk ,v0,v1, . . . ,vm , t }

and the set ED is deined as follows.

• There are arcs (s, #,u0), (uk , #,v0) and (vm , #, t ),
• For every i ∈ [k] and z ∈ U there is an arc (ui−1, ⟨z⟩,ui ),
• for every i ∈ [m] and z ∈ Ai there is an arc (vi−1, ⟨z⟩,vi ),
• for every i ∈ [m] ∪ {0} and every z ∈ U there is an arc (vi , ⟨z⟩,vi ).

See Figure 5 for an illustration of D. Next, we deine the xregex

α = #

(n+2)k∏

i=1

xi {a∨ b∨ ε } #
*.
,

(n+2)k∏

i=1

xi
+/
-

m

# ,

and the Boolean q ∈ CXRPQvs,bi≤1 is deined by the single edge graph pattern {{x ,y}, (x ,α ,y)}, where fxi is the
constant 1 for every i ∈ [(n + 2)k]. In order to prove the correctness, we irst make some observations:

(1) Due to the occurrences of #, there is a path in D from some node u to some node v labelled with a word
from L (α ) if and only if there is such a path in D from s to t .

(2) The language L (α ) contains exactly the wordsw = #w1#w2#, wherew1 ∈ {a, b}
∗ with |w1 | ≤ (n + 2)k , and

w2 = (w1)
m .

(3) Every path in D from s to t is labelled byw = #w1#w2#, where

w1 = ⟨zj1⟩⟨zj2⟩ . . . ⟨zjk ⟩ ,

for some {j1, j2, . . . , jk } ⊆ [n], and

w2 = u1⟨zr1⟩u2⟨zr2⟩u3 . . .um⟨zrm ⟩um+1 ,
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such that {r1, r2, . . . , rm } ⊆ [n] and, for every i ∈ [m], zri ∈ Ai ; in particular, thismeans that {zr1 , zr2 , . . . , zrm }
is a hitting set (with respect to the considered problem-instance).

Next, we assume that in D there is a path p labelled with a word w ∈ L (α ). With Point 1, we conclude that
p is a path from s to t . Moreover, with Point 3, we have that w = #w1#w2#, where w1 = ⟨zj1⟩⟨zj2⟩ . . . ⟨zjk ⟩ and
w2 = u1⟨zr1⟩u2⟨zr2⟩u3 . . .um⟨zrm ⟩um+1, such that {zr1 , zr2 , . . . , zrm } is a hitting set. Finally, Point 2 means that
w2 = (w1)

m , which directly implies that {zr1 , zr2 , . . . , zrm } ⊆ {zj1 , zj2 , . . . , zjk } and therefore |{zr1 , zr2 , . . . , zrm }| ≤
k .

On the other hand, if {zj1 , zj2 , . . . , zjk } is a hitting set of size k , then we can construct a wordw ∈ L (α ) and
a path from s to t that is labelled with w as follows. We set w = #w1#w2# with w1 = ⟨zj1⟩⟨zj2⟩ . . . ⟨zjk ⟩ and
w2 = (w1)

m . We note that, according to Point 2,w ∈ L (α ) and we have to show that there is a path from s to t
labelled withw . There is obviously a path from s to v0 labelled with #w1#. The set {zj1 , zj2 , . . . , zjk } is a hitting
set and each of them occurrences of factor w1 in w2 contains a factor ⟨zji ⟩ for every i ∈ [k]. Thus, w2 can be
factorised into w2 = u1⟨zr1⟩u2⟨zr2⟩u3 . . .um⟨zrm ⟩um+1, such that, for every i ∈ [m], ⟨zri ⟩ ∈ Ai . This means that
there is a path from v0 to t labelled withw2# and therefore a path from s to t labelled withw .

This proves that CXRPQvs,bi≤1
Σ,Xs

-Bool-Eval is NP-hard in combined complexity, even for single-edge queries

with only basic variable deinitions and |Σ| = 3. Since we can interpret the constructed query as a CXRPQvs,bi≤k
Σ,Xs

for any k ∈ N, it follows that, for every k ∈ N, CXRPQvs,bi≤k
Σ,Xs

-Bool-Eval is NP-hard in combined complexity,

even for single-edge queries with only basic variable deinitions and |Σ| = 3. □

Remark 7.7. Theorem 7.6 also points out a noteworthy diference between CXRPQvs,bi≤k and CRPQ . While

in combined complexity CRPQ can be evaluated in polynomial-time if the underlying graph pattern is acyclic

(see [5, 7, 10]), CXRPQvs,bi≤k evaluation remains NP-hard in combined complexity even for single-edge graph

patterns (and k = 1).

8 CXRPQ WITH REGULAR RELATIONS

Variable deinitions and variable references of ref-words or xregex check equality between certain subwords.
Similarly, they could also be interpreted as checking some other binary string relation, e. g., the preix relation or
subsequence relation. In this section, we shall investigate the question whether CXRPQ can be extended in this
way (the formal deinitions are provided in Section 8.1), but we restrict ourselves to so-called regular relations.6

Our main observation (Lemma 8.4 presented in Section 8.2) is that ifCXRPQ have only basic variable deinitions
(or, equivalently, are of depth 0), then even with arbitrary regular relations instead of only equality relations,
evaluation is PSpace-complete in combined complexity and NL-complete with respect to data complexity. In
particular, we recall that we have used this result already in the proof of Lemma 5.4 (see Page 22), but for the
special case of only equality relations; thus, by proving this, we also ill the gap of the proof of Lemma 5.4.

Finally, in Section 8.3, we revisit the fragments of CXRPQ with bounded image size presented in Section 7, and
we show that for them regular relations can be added while staying within the same complexity bounds, i. e., the
ones stated by Theorems 7.4 and 7.5. In particular, we do not need to require all variable deinitions to be basic.

8.1 Adding Regular Relations to CXRPQ

We irst need some general deinitions.
Let u,v ∈ Σ∗, letm = max( |u |, |v |), and let ⊥ be some symbol not in A. The convolution of u and v is deined by

u ⊗v = ((x1,y1), (x2,y2), . . . , (xm ,ym ) ,

6This decision is explained below in Section 8.1; see Remark 8.2.
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where m = max{|u |, |v |}, and, for every i ∈ [m], xi = u[i] if i ≤ |u | and xi = ⊥ otherwise, and yi = v[i] if
i ≤ |v | and yi = ⊥, otherwise. Note that the convolution is a word over the alphabet (Σ ∪ {⊥})2. For example,
abca ⊗ acacbab = (a, a) (b, c) (c, a) (a, c) (⊥, b) (⊥, a) (⊥, b). A binary relation ⊏ over A∗ is regular if the language
{u ⊗v | u,v ∈ A∗,u ⊏ v} is a regular language over the alphabet (A ∪ {⊥})2.
With every x ∈ Xs , we associate a binary regular relation ⊏x over Σ∗. We modify the deinition of the

deref-function (Deinition 3.3) to the case of regular relations as follows:

Deinition 8.1 (Deref-Function with Regular Relations). For a ref-word w over Σ and Xs , derefΣ,Xs (w ) ⊆ Σ∗

contains exactly the words that can be obtained fromw by the following procedure:

(1) Remove all occurrences of x ∈ Xs without deinition inw .
(2) Repeat until we have obtained a word over Σ:

(a) Let ▷x vx◁
x be a deinition such that vx ∈ Σ

∗.
(b) Replace ▷x vx◁

x by vx, and replace each occurrences of x inw by some word ux with vx ⊏x ux.

We note that in contrast to the case where every ⊏x is the equality relation, derefΣ,Xs (w ) is not a unique word,
but a set of words. The language described by a valid α ∈ XREΣ,Xs can nevertheless be deined analogously, i. e.,

L (α ) =
⋃

w ∈Lref (α )

derefΣ,Xs (w ) .

As a special case, we also deine L (∅) = ∅.

Remark 8.2. The restriction to regular relations is a reasonable choice, since surprisingly simple non-regular

relations can make evaluation problems undecidable. For example, in [7] it is shown that ECRPQ evaluation becomes

undecidable if we allow rational relations (i. e., relations that can be deined by non-deterministic transducers) instead

of only regular relations.

With respect to CXRPQ , we can show a slightly weaker result: if we allow alphabet reduction relations and the
palindrome relation (to be explained below), then CXRPQ-Bool-Eval is already undecidable.

For an alphabet Σ, let the palindrome relation be deined by u ⊏P v if u = v = w (w )R for somew ∈ Σ∗; for any
∆ ⊆ Σ, let the ∆-restriction relation ⊏∆ be deined by u ⊏∆ v if u restricted to alphabet ∆ equals v . A relation is
called an alphabet restriction relation if it is the ∆-restriction relation for some ∆ ⊆ Σ.
We note that alphabet restriction relations are not regular, but they are rational relations (i. e., relations that

can be deined by nondeterministic transducers (e. g., see [9])). The palindrome relation is not even rational, but
context-free, i. e., it can be deined by a pushdown transducer.

Theorem 8.3. CXRPQ-Bool-Eval with only alphabet reduction relations and the palindrome relation is undecid-

able.

This result can be proven by a reduction from the post correspondence problem that is similar to the one used
in [7]. Full proof details are given in the Appendix.

8.2 Evaluating CXRPQ with Regular Relations and Basic Variable Definitions

In this section, we show that CXRPQ with regular relations and only basic variable deinitions can nondetermin-
istically be evaluated in space O( |q | log( | D |)). We recall that we have already used this result (in the case of
only equality relations) in the proof of Lemma 5.4 (see Page 22).

Lemma 8.4. Given a set Xs of variables (with relations ⊏x for every x ∈ Xs given as NFAs), a Boolean q ∈ CXRPQ
with only basic variable deinitions, and a graph-database D, we can nondeterministically decide whether or not

D |= q in space O( |q | log( | D |)).
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Proof. For every x ∈ Xs , let Rx be the NFA that describes the relation ⊏x. Let q be deined by a graph pattern
Gq with edge set Eq = {(xi ,αi ,yi ) | i ∈ [m]} and conjunctive xregex ᾱ = (α1,α2, . . . ,αm ) ∈ CXREΣ,Xs . We irst

nondeterministically transform q into a query q′ with a variable-simple conjunctive xregex β̄ , by the procedure
described before Proposition 5.8. Now, for every i ∈ [m], βi = βi,1βi,2 . . . βi,ti , where, for every j ∈ [ti ], βi, j is
a classical regular expression, a variable reference, or a variable deinition x{ψ }, whereψ is a classical regular
expression.

We nextmodifyGq′ such that every (xi , βi ,yi ) is replaced by edges (zi,0, βi,1, zi,1), (zi,1, βi,2, zi,2), . . ., (zi,ti−1, βi,ti , zi,ti ),
where zi,0 = xi and zi,ti = yi . We denote this modiied CXRPQ by q′′ and let γ̄ = (γ1, . . . ,γm′ ) be its conjunctive
xregex, i. e.,m′ =

∑m
i=1 ti and (γ1, . . . ,γm′ ) equals

(β1,1, . . . , β1,t1 , β2,1, . . . , β2,t2 , . . . , βm,1, . . . , βm,tm ) .

It can be easily seen that q′ ≡ q′′.
We now show how to decide D |= q′′ for a given graph database D.
For every i ∈ [m′], we deine an NFAMi with state-set Qi and transition function δi as follows:

• If γi ∈ {ψ , x{ψ }} for some classical regular expressionψ , thenMi accepts L (ψ ).
• If γi = x for some x ∈ Xs , thenMi = Rx (note that Rx accepts words over Σ

2).

For technical reasons, we irst add an ε-labelled self-loop to every node in D and to every state in everyMi (or
an (ε, ε )-labelled self-loop, ifMi = Rx, for some x ∈ Xs ). Next, we deine a graph Gq′′,D = (Vq′′,D ,Eq′′,D ), where

Vq′′,D = (VD )
m′ ×Q1 ×Q2 × . . . ×Qm′ and Eq′′,D contains an edge

((u1, . . . ,um′,p1, . . . ,pm′ ), (v1, . . . ,vm′, r1, . . . , rm′ ))

if and only if there are b1,b2, . . . ,bm′ ∈ Σ ∪ {ε } such that,

• for every i ∈ [m′], (ui ,bi ,vi ) ∈ ED ,
• for every i ∈ [m′] with γi = {ψ , x{ψ }} for some classical regular expressionψ , ri ∈ δi (pi ,bi ), and
• for every i, j ∈ [m′] with γi = x and γj = x{ψ }, for some x ∈ Xs and a classical regular expression ψ ,
ri ∈ δ j (pi , (bj ,bi )).

Let ū = (u1, . . . ,um′,p1, . . . ,pm′ ) and v̄ = (v1, . . . ,vm′, r1, . . . , rm′ ) be two vertices from Gq′′,D . We observe that

in Gq′′,D there is a path from ū to v̄ if and only if there is a tuple (w1,w2, . . . ,wm′ ) ∈ (Σ∗)m
′

such that, for every
i ∈ [m′], there is a wi -labelled path from ui to vi in D, a wi -labelled path from pi to ri in Mi if γi ∈ {ψ , x{ψ }},
and aw j ⊗wi labelled path from pi to ri inMi if γi = x and γj = x{ψ }.
We say that a vertex ū of Gq′′,D is initial, if, for every i ∈ [m′], pi is the initial state of Mi , and, for every

i, i ′ ∈ [m′], xi = xi′ implies ui = ui′ . Analogously, we say that a vertex v̄ ofGq′′,D is inal, if, for every i ∈ [m′], ri
is the inal state ofMi , and, for every i, i

′ ∈ [m′], yi = yi′ implies vi = vi′ . With the observation from above, we
can conclude that in Gq′′,D there is a path from some initial vertex ū = (u1, . . . ,um′,p1, . . . ,pm′ ) to some inal

vertex v̄ = (v1, . . . ,vm′, r1, . . . , rm′ ) if and only if there is a tuple (w1,w2, . . . ,wm′ ) ∈ (Σ∗)m
′

that is a conjunctive
match of γ̄ (this follows from the deinition of the edge relation of Gq′′,D ), and, for every i ∈ [m], D contains
a path from ui to vi labelled with wi ; note that this latter property means that D |= q′′ (this follows from the
deinition of initial and inal vertices of Gq′′,D ). For simplicity, we add two additional vertices s and t to Gq′′,D

with an edge (s, ū) and an edge (v̄, t ) for every initial vertex ū and inal vertex ū. Now D |= q′′ if and only if
there is a path from s to t in Gq′′,D .

It remains to describe how this can be done in the claimed time and space bound. To this end, we irst observe
that the initial replacement of variable deinition x{y} by y can obviously be carried out in space O( |q′ |), and it does
not increase the size of q′. Then, transforming β̄ into γ̄ can also be done in space O( |q′′ |), where |q′′ | = O( |q′ |).
Moreover, we can transform each γi into an NFAMi of size O( |γi |) in space O( |γi |). Consequently, we can obtain
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allMi in space O( |q′′ |). In particular, we note that removing ε-transitions may result in NFA of size O( |γi |
2), but

our construction of Gq′′,D from above can also handle possible ε-transitions of theMi .
Now a vertex ū from Gq′′,D can be represented by O(m′) pointers to D and O(1) pointers to each of theMi .

Moreover, evaluating the edge relation ofGq′′,D , i. e., checking for ixed vertices ū, v̄ ofGq′′,D whether there is
an edge (ū, v̄ ), can be done as follows. Checking whether there are b1,b2, . . . ,bm′ ∈ Σ ∪ {ε } such that, for every
i ∈ [m′], ri ∈ δi (pi ,bi ) and (ui ,bi ,vi ) ∈ ED , can be done by consulting the pointers that represent ū and v̄ , the
transition functions of theMi and the edge-relation of D. Moreover, checking for every i, j ∈ [m′] with γi = x
and γj = x{ψ }, for some x ∈ Xs and a classical regular expressionψ , whether ri ∈ δ j (pi , (bj ,bi )) can be done by
using two pointers to q′′. Consequently, we can nondeterministically check whether there is a path from s to t in
Gq′′,D in space O( |q′′ |(log( | D |) + log( |q′′ |)) = O( |q′ |(log( | D |) + log( |q′ |)) = O( |q′ | log( | D |)). □

This result yields the following complexity bounds for CXRPQ with regular relations and only basic variable
deinitions.

Theorem 8.5. CXRPQ-Bool-Eval with regular relations and only basic variable deinitions is

• PSpace-complete, with respect to combined-complexity and

• NL-complete with respect to data complexity.

Proof. The upper bounds follow directly from Lemma 8.4. The lower bounds follow from Theorems 5.2 and 5.3.
□

We can note that the lower bounds of Theorem 8.5 also hold for the more restricted cases mentioned in
Theorems 5.2 and 5.3: The combined complexity lower bounds also holds if |Σ| = 3, Xs = {x}, and the query is a
single-edge query; the data complexity lower bound also holds if |Σ| = 2, Xs = ∅, and the query is a single-edge
query.

8.3 Bounded Image Size

It can be seen with moderate efort, that the results about CXRPQvs with bounded image size from Section 7 also
hold if we allow regular relations. More precisely, we associate with every x ∈ Xs a regular relation ⊏x and a
function fx that bounds the image size in terms of the graph database. However, since ⊏x can be an arbitrary
regular relation, the images of the deinition of x and the references of x can have diferent lengths, so we require
not only the word the variable is deined with to be bounded by fx, but also all words the references are substituted
with to be bounded by fx.

First, we extend the deinition of xregex with ixed images (see Section 7.1) by stating an explicit image not
only for every variable, but for every variable deinition and each of its references in the xregex. In this way, we
get deinitions for Lv̄

ref
(α ) and Lv̄ (α ). Technically, this requires a more reined version of the mapping vmapu,Xs

for ref-words u ∈ Lref (α ), which also depends on the xregex α , since it needs to describe exactly which variable
references of the xregex are mapped to which words (it is straightforward to derive a formal deinition of this
from Section 7.1). At this point, we do not care about the łcorrectnessž of the images, i. e., whether they satisfy the
inter-dependency postulated by the regular relations ⊏x, or the length bounds given by fx. For example, if each
⊏x is the equality relation like in Section 7.1, then a tuple of images is only valid if all images for the deinitions
and all references of the same variable are the same word. Also note that even though there might be several
deinitions of the same variable x in a xregex, it is suicient to only state one image for the deinitions, since in
every match at most one such deinition can be instantiated.
We can now prove an analogue of Lemma 7.1: a conjunctive xregex ᾱ and a tuple v̄ of images (i. e., images

for each deinition of a variable and each reference of a variable) can be transformed into a tuple β̄ of classical
regular expressions such that L (β̄ ) = Lv̄ (ᾱ ). The proof is analogous to Lemma 7.1. We only have to keep in
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mind that whenever we consider a variable deinition (that only contains already marked variable deinitions),
the images of the variable deinitions and the variable references are now explicitly given by v̄ . Note that also
Step 2 of the proof of Lemma 7.1 is necessary and can be performed in the same way.
Consequently, if we choose a tuple v̄ of images for every variable deinition and every variable reference,

we can transform a q ∈ CXRPQvs into a q′ ∈ CRPQ that is equivalent to q with respect to the matchings that
use the chosen images, i. e., for every database D, we have that qv̄ (D) = q′(D). Moreover, we also have that
|q′ | = O( |q |k ), where k = max{|v̄[i]| | i ∈ [n]}. We note that this is an analogue of Lemma 7.3.
We now consider conjunctive xregex with bounded image size and regular relations, i. e., for every variable

x we have a regular relation ⊏x and a function fx : N → N. Analogously to Section 7.2, we say that a tuple of
images is valid with respect to k ∈ N if every image v corresponding to the deinition or a reference of x satisies
|v | ≤ fx (k ), and each two images v and v ′ such that v corresponds to the deinition and v ′ corresponds to a
reference of x satisfyv ⊏x v

′. This also gives rise to the deinition Lref (α ,k ) of the union of all Lv̄
ref
(α ), where v̄ is

a valid tuple of variable images for α with respect to k , and L (α ,k ) = deref (Lref (α ,k )). In particular, analogously

to Section 7, this gives rise to the class CXRPQvs,bi
Σ,Xs

of conjunctive xregex path queries with bounded image size

and regular relations. We can also deine CXRPQvs,bi≤k
Σ,Xs

as the class of CXRPQvs,bi
Σ,Xs

, where, for every x ∈ Xs , fx is

a constant k ′ ≤ k , and CXRPQ
vs,bi≤k log

Σ,Xs
as the class of CXRPQvs,bi

Σ,Xs
, where, for every x ∈ Xs , fx (n) is a constant

k ′ ≤ k or the function k ′ log(n) for some constant k ′ ≤ k .
The same nondeterminstic algorithms as used for the proofs of Theorem 7.4 and 7.5 can now be used in order to

solve CXRPQvs,bi≤k -Bool-Eval with regular relations. We nondeterministically guess a valid tuple v̄ of variable
images for ᾱ with respect to | D |, we construct q′ ∈ CRPQ such that, for every database D ′, we have that
qv̄ (D ′) = q′(D ′), and then we check whether D |= q′. The last point is done with Lemma 2.1, and the second
point can be done with the analogue of Lemma 7.3 sketched above. For the irst point, we note that even though
we have to guess more images compared to the situation where each ⊏x is the equality relation, this step can still
be done in time O(nk ). Furthermore, for checking the validity of a tuple, we have to check the relations ⊏x for
certain elements of the guessed tuple. This, however, can be done in logarithmic space, since the relations ⊏x are
given as NFAs.

These considerations yield the following result.

Theorem 8.6. For every k ∈ N, CXRPQvs,bi≤k -Bool-Eval with regular relations can nondeterministically be

solved in polynomial time in combined complexity and in logarithmic space in data complexity.

Moreover, the argument for the case of CXRPQvs,bi≤k log-Bool-Eval is analogous.

Theorem 8.7. For every k ∈ N, CXRPQvs,bi≤k log-Bool-Eval with regular relations can nondeterministically be

solved in polynomial time in combined complexity and in space O(log2 ( | D |)) in data complexity.

Remark 8.8. For CXRPQvs,bi≤k , we could also allow more powerful relations, while staying within the complexity

bounds of Theorem 8.6. This is due to the fact that we explicitly guess a tuple of images within the given length

bounds, and for checking its validity, we only have to check the relations ⊏x. Consequently, instead of requiring

relations to be regular, it is also suicient to require that the complexity of checking the relations does not exceed the

bounds of nondeterministic logarithmic space in data complexity, or nondeterministic polynomial time in combined

complexity. For example, we could also allow rational relations instead of regular relations and the complexity bounds

of Theorem 8.6 would remain unchanged. In fact, since for CXRPQvs,bi≤k the elements of the tuple of images have

constant size, virtually all binary word relations should be checkable even in constant time and space. This means

that as long as we have a constant upper bound for variable images, we can aford to use arbitrary relations instead

of only regular ones (although the question of how these relations are to be represented needs to be discussed).
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9 CHECKING TUPLES AND COMPUTING THE WHOLE SOLUTION SET

In order to classify the complexity of CXRPQ (and its fragments), we have investigated the decision problem
CXRPQ-Bool-Eval. This is common in the theoretical literature, since upper and lower bounds for the Boolean
evaluation problem give a irst indication of whether a certain query class might also be practically relevant.
For example, the fact that non-vstar-free xregex path queries lead to PSpace-hard Boolean evaluation even in
data complexity (see Lemma 3.7) strongly suggests that they must be further restricted. On the other hand, the
NL data complexity of CXRPQ and its considered fragments justify hope that practical implementations are
possible (if the queries are not too large). Nevertheless, for practical settings Boolean evaluation is less relevant
and therefore we shall also briely consider the problem of checking whether a given tuple is in the query result,
and the problem of computing the whole solution set.
These results also demonstrate how the algorithmic approaches developed for Boolean evaluation yield

algorithms for checking tuples and computing the whole solution set.

9.1 Checking Tuples

For a class Q of conjunctive xregex path queries, we denote by Q-Check the problem to check t̄ ∈ q(D) for a
given q ∈ Q , a graph database D and a tuple t̄ .

We now lift Lemma 8.4 to the case of checking tuples.

Lemma 9.1. Given a set Xs of variables (with relations ⊏x for every x ∈ Xs given as NFAs), a q = z̄ ← Gq ∈

CXRPQΣ,Xs with |z̄ | = ℓ and with only basic variable deinitions, a graph-database D, and a tuple t̄ ∈ (VD )
ℓ , we

can nondeterministically decide whether or not t̄ ∈ q(D) in space O( |q | log( | D |)).

Proof. Let q be deined by a graph patternGq with edge set Eq = {(xi ,αi ,yi ) | i ∈ [m]} and conjunctive xregex
ᾱ = (α1,α2, . . . ,αm ) ∈ CXREΣ,Xs . We proceed analogously as in the proof of Lemma 8.4 and irst transform
q into q′′. Recall that, for every i ∈ [m], Gq′′ has edges (zi,0, βi,1, zi,1), (zi,1, βi,2, zi,2), . . ., (zi,ti−1, βi,ti , zi,ti ),
where zi,0 = xi and zi,ti = yi . Then, we deine the graph Gq′′,D = (Vq′′,D ,Eq′′,D ), but we declare a vertex
ū = (u1, . . . ,um′,p1, . . . ,pm′ ) as initial, if,

• for every i ∈ [m′], pi is the initial state ofMi ,
• for every i, i ′ ∈ [m′], xi = xi′ implies ui = ui′ ,
• for every i ∈ [m′] and j ∈ [ℓ], xi = z̄[j] implies ui = t̄[j].

Analogously, a vertex v̄ = (v1, . . . ,vm′, r1, . . . , rm′ ) is inal, if,

• for every i ∈ [m′], ri is the inal state ofMi ,
• for every i, i ′ ∈ [m′], yi = yi′ implies vi = vi′ ,
• for every i ∈ [m′] and j ∈ [ℓ], yi = z̄[j] implies vi = t̄[j].

Analogously to the proof of Lemma 8.4, there is a path inGq′′,D from some initial vertex ū = (u1, . . . ,um′,p1, . . . ,pm′ )

to some inal vertex v̄ = (v1, . . . ,vm′, r1, . . . , rm′ ) if and only if

• there is a tuple (w1,w2, . . . ,wm′ ) ∈ (Σ∗)m
′

that is a conjunctive match of γ̄ ,
• for every i ∈ [m], D contains a path from ui to vi labelled withwi ,
• for every i ∈ [m′] and j ∈ [ℓ], xi = z̄[j] implies ui = t̄[j], and yi = z̄[j] implies vi = t̄[j].

For simplicity, we add two additional vertices s and t to Gq′′,D with an edge (s, ū) and an edge (v̄, t ) for every
initial vertex ū and inal vertex v̄ . Now t̄ ∈ q(D) if and only if there is a path from s to t in Gq′′,D .

It follows in exactly the same way as in the proof of Lemma 8.4 that checking whether there is a path from s to
t can be done in nondeterministic space O( |q | log( | D |)). □

Analogously as Theorem 5.1 can be obtained by using Lemma 8.4 and the transformation of Section 5.2, we
can now prove an equivalent of Theorem 5.1 with respect to checking tuples.
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Theorem 9.2. CXRPQ-Check is

• in ExpSpace, but PSpace-hard, with respect to combined-complexity and

• NL-complete with respect to data complexity.

Proof. The lower bounds follow in the same way as for CXRPQ-Bool-Eval. This is due to the fact that the
reduction from Theorem 5.2 is such that checking D |= q is equivalent to checking (s, t ) ∈ q(D). It is easy to see
that also Theorem 5.3 has this property. This shows the lower bounds.

For the upper bounds, we can proceed analogously as in the proof of Lemma 5.4, i. e., as described in Section 5.2.
Let q ∈ CXRPQΣ,Xs with conjunctive xregex ᾱ . Let D be a graph database and let t̄ ∈ (VD )

ℓ be a tuple.

We irst nondeterministically transform the conjunctive xregex ᾱ into a variable simple conjunctive xregex β̄ .
Then we construct an equivalent conjunctive xregex γ̄ with only basic variable deinitions, and we let q′′ be the
corresponding CXRPQ . Finally, we check whether t̄ ∈ q′′(D) with Lemma 9.1. □

9.2 Computing the Whole Solution Set

For a class Q of conjunctive xregex path queries, we denote by Q-Compute the problem to produce some
enumeration without repetitions of the elements of the set q(D) for a given q ∈ Q and a graph database D.
As common in theoretical computer science, when we talk about the space complexity of an algorithm for

Q-Compute, we only refer to the working space needed by the algorithm, i. e., we do not count the size of the
input or of the output.

Theorem 9.3. CXRPQ-Compute can be solved in nondeterministic logarithmic space in data complexity.

Proof. Let q = z̄ ← Gq ∈ CXRPQΣ,Xs with |z̄ | = ℓ and letD be some graph database. For each tuple t̄ ∈ (VD )
ℓ ,

we check whether or not t̄ ∈ q(D), and, if this is the case, we produce t̄ as output. This obviously produces an
enumeration of q(D), and therefore solves CXRPQ-Compute for input q and D.
For a ixed tuple t̄ , checking whether t̄ ∈ q(D) can be done in nondeterministic logarithmic space in data

complexity due to Theorem 9.2. Consequently, the whole procedure can be carried out in nondeterministic
logarithmic space in data complexity. □

10 EXPRESSIVE POWER

In this section, we compare the expressive power of CXRPQs and their fragments with other established classes
of graph queries that are suitable for comparison.

First, we recall the deinition of CRPQ , which has been presented in Section 2.2. Moreover, we deine so-called
extended conjunctive regular path queries (ECRPQs), which have been introduced in [7]. These ECRPQs are an
extension of CRPQs: while CRPQs can only use regular expressions to impose unary constraints on the paths
that are matched by the edges of the graph pattern, ECRPQs can use regular relations of arbitrary arity7 to
describe constraints on tuples of paths, e. g., that certain paths are all equal, or have equal length or that one path
is a preix of the other etc.
More formally, ECRPQs have the form q = z̄ ← Gq ,

∧
j ∈[t ] R j (ω̄j ), where z̄ ← Gq is a CRPQ and, for every

j ∈ [t], ω̄j is an sj -tuple over Eq and R j is a regular expression that describes a regular relation over Σ∗ of arity sj .
The semantics of ECRPQ can be derived from the semantics of CRPQ as follows. We interpret q as a CRPQ , but
we add to the concept of a matching morphism the requirement that there must be a tuple (we1 ,we2 , . . . ,wem ) of
matching words such that, for each ω̄j = (ep1 , ep2 , . . . , epsj ), we have (wep1

,wep2
, . . . ,wepsj

) ∈ L (R j ).

For our comparison with CXRPQ , we are mainly interested in ECRPQer, i. e., the fragment of ECRPQ obtained
by only allowing unary relations or equality relations (i. e., relations requiring certain paths to be equal).

7Note that the deinition of regularity for binary relations over Σ∗ from the beginning of Section 8.1 extends to relations of larger arity in a

natural way.
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Fig. 6. Illustration of the relations between the considered classes of conjunctive path queries. A dashed or solid arrow from

A to B denotes A ⊆ B or A ⊊ B, respectively. Note that CXRPQdepth≤i is abbreviated as CXRPQd≤i .

For a query class Q , a union of Qs (or ∪-Q , for short) is a query of the form q = q1 ∨ q2 ∨ . . . ∨ qk , where, for
every i ∈ [k], qi ∈ Q . For a graph-database D, we deine q(D) =

⋃
i ∈[k] qi (D).

Recall that by CXRPQvs we denote the class of queries obtained by dropping the requirement that the conjunc-
tive xregex must be variable-star free (see also the last paragraph of Section 4.2).

Theorem 10.1. The inclusions illustrated by Figure 6 are correct.

We shall discuss the result of Theorem 10.1 on an intuitive level, and provide proofs in full detail in the
appendix.

The diagram of Figure 6 shows on the left and on the right side two vertical layers of query classes of increasing
expressive power. More precisely, on the left side we have the classical conjunctive path query classes CRPQ ,
ECRPQer and ECRPQ , and on the right side, we have the union-closures of these classes. These two layers are
naturally ordered by the subset relation, and all these inclusions follow directly by deinition. However, the
strictness of the inclusions

JCRPQK ⊊ JECRPQerK ⊊ JECRPQK
need individual proofs that, if slightly adapted, also show the strictness of the inclusions

J∪-CRPQK ⊊ J∪-ECRPQerK ⊊ J∪-ECRPQK .
The strictness of JCRPQK ⊊ JECRPQerK and JECRPQerK ⊊ JECRPQK are not mentioned in the literature, but
the strictness of JCRPQK ⊊ JECRPQK is shown in [7].

All the CXRPQ fragments introduced in this paper (except the class CXRPQvs) lie in between these two layers.
That JECRPQerK is included in JCXRPQK is expected, but JECRPQerK ⊆ JCXRPQdepth≤0K points out that quite

restricted classes of CXRPQ already cover CRPQ extended by equality relations. That JCRPQK is a subset of
JCXRPQvs,bi≤1K is not surprising, but we can also show that this inclusion is strict, which is less obvious. After

all, CXRPQvs,bi≤1 can use variable references only for referencing single symbols; thus, it seems reasonable that
we can replace the xregex by more complicated classical regular expressions. In fact, this is true even for arbitrary
large image size bounds if we are talking about string matching, but it is not the case if xregex are used as graph
queries. Intuitively speaking, even CXRPQvs,bi≤1 can use the variables to deine inter-path dependencies that
cannot be described by any CRPQ .

The inclusion JCXRPQK ⊆ J∪-ECRPQerK is rather non-trivial to show, and the proof requires the transforma-
tion techniques from the proof of Lemma 5.4 described in Section 5.2. We stress here the fact that the conversion
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CRPQ ECRPQer CXRPQ CXRPQdepth≤k CXRPQvs,bi≤k

NP PSpace ExpSpace PSpace NP
NL NL NL NL NL

Table 1. A summary of the evaluation complexity upper bounds in combined complexity (upper row) and data complexity
(lower row).

from CXRPQ to a union of ECRPQer may produce exponentially many ECRPQers, each of which may be of
exponential size. This also demonstrates that even though we can express any CXRPQ as a union of ECRPQ this
is, at least by the transformations presented here, expected to be very complicated and unwieldy. Analogously, the

fact that we can express CXRPQvs,bi≤k as unions of CRPQ follow from the upper bounds presented in Section 7.
From an intuitive point of view, it is to be expected that the inclusion of ECRPQer in CXRPQ is strict. However,

we can only show that CXRPQvs are strictly more powerful than ECRPQer (and even this result has a non-trivial
proof). We expect a proof for the strictness of JECRPQerK ⊆ JCXRPQK to be rather challenging.

11 CONCLUSIONS AND OPEN PROBLEMS

Table 1 summarises the upper complexity bounds for the fragments presented in this work (note that we have
also shown matching lower bounds for all these upper bounds, except for the ExpSpace upper bound in combined
complexity for CXRPQ , for which we only know PSpace-hardness). For comparison, we have added columns for
CRPQ and ECRPQer (note that in Table 1, ECRPQer could also be replaced by ECRPQ , since the upper bounds
are the same).
In data complexity, the picture looks rather good, since all our fragments of CXRPQ achieve an evaluation

complexity ofNL. This gives some hope that in scenarios were queries can be expected to be small, these fragments
are also practically relevant. In combined complexity, the only upper bound that seems problematic is the one for
the unrestricted class CXRPQ . However, for real-world queries, it seems very likely that the depth is not very
large; in fact, conjunctive xregex with a depth of, say 5 or 8, are already quite complex and diicult to parse for a
human user. Therefore, it is a safe assumption that in practical scenarios CXRPQ would most likely fall in the

fragment CXRPQdepth≤k for even low k . We might even go a step further and assume that in most cases the total
number of variables ś which also bounds the depth ś is not very high. At least this seems to be the case if regular
expressions with capture variables are used as string searching tools, which also explains why they ind such
wide practical application even though they are theoretically intractable to match. It is also worth noting that all
the practically motivated examples from Section 1.4 belong to the fragments with good evaluation complexity.
Nevertheless, the question whether the ExpSpace upper bound for CXRPQ can be lowered to PSpace is

deinitely of theoretical interest.

Several of our results implicitly pose conciseness questions. Each CXRPQvs,bi≤k can be represented as the
union of O( |Σ| + 1) |Xs |k ) many CRPQs, and each CXRPQ can be represented as the union of exponentially many
ECRPQers of exponential size. Are these exponential blow-ups necessary?
The classical use of regular expressions with capture variables is that of a string searching tool, while using

them for graph querying is a rather new approach. Nevertheless, it is very interesting to compare these two
scenarios directly with each other. In the string case, the NP-complete matching problem for xregex trivially
becomes polynomial-time solvable, if the number of variables is bounded by a constant (see [48]). For xregex
path queries that are not variable-star free, bounding the number of variables has now such efect, as pointed out
by Lemma 3.7. However, if we consider CXRPQ , which have variable-star free conjunctive xregex, then bounding
the number of variables bounds the depth, and therefore improves our upper bound to PSpace. Moreover, the
restriction of variable star-freeness has a huge impact for xregex path queries: it lets the data-complexity drop
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from PSpace-hardness toNL (see Lemma 3.7 and Theorem 5.1). Likewise, restricting the image size of the variables
by a constant lets the combined complexity drop from PSpace-hardness to NP. However, the matching problem
for xregex in the string case remains NP-hard, even if we require variable-star freeness and that variables can
only range over words of length at most 1 (see [25, Theorem 3]).
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A PROOF OF PROPOSITION 3.4

Proof. If we reach Step 2 without any deinition for a variable, then there can also be no reference of a variable,
since we removed all variable references that have no deinition in Step 1, and for every variable deinition
removed in Step 2b, we also replaced all corresponding references by words over Σ. Consequently, if we reach
Step 2 without variable deinitions, then we have obtained a word over Σ and terminate. If, on the other hand,
there is at least one deinition for some variable x when we reach Step 2, then, due to the acyclicity of ref-words,
there must be at least one deinition that does not contain another deinition. Hence, there must be at least one
deinition ▷x vx◁

x such that vx ∈ Σ
∗, as required by Step 2a. In Step 2b this deinition of x and all its references

are then replaced by a word over Σ. □

B PROOF OF LEMMA 4.4

Proof. Weirst observe thatLref (αi ) = Lref (βi ), for every i ∈ [m], impliesLref (β1β2 . . . βm ) = Lref (α1α2 . . . αm ).
If β̄ is not a conjunctive xregex, then β1β2 . . . βm is not a valid xregex. However, if β1β2 . . . βm is not valid, then
Lref (β1β2 . . . βm ) must contain a word that is not a ref-word. This directly implies, that Lref (α1α2 . . . αm ) contains
a word that is not a ref-word, which contradicts the fact that α1α2 . . . αm is a valid xregex.

It remains to show that L (ᾱ ) = L (β̄ ):

L (ᾱ ) = {(w1,w2, . . . ,wm ) | w1#w2# . . . #wm ∈ L (α1#α2# . . . #αm )}

= {(w1,w2, . . . ,wm ) | w1#w2# . . . #wm ∈ deref (Lref (α1#) Lref (α2#) . . .Lref (#αm ))}

= {(w1,w2, . . . ,wm ) | w1#w2# . . . #wm ∈ deref (Lref (β1#) Lref (β2#) . . .Lref (#βm ))}

= {(w1,w2, . . . ,wm ) | w1#w2# . . . #wm ∈ L (β1#β2# . . . #βm )} = L (β̄ ) . □

C PROOF OF THEOREM 8.3

We irst recall the main deinitions. For an alphabet Σ, let the palindrome relation be deined by u ⊏P v if
u = v = w (w )R for some w ∈ Σ∗; for any ∆ ⊆ Σ, let the ∆-restriction relation ⊏∆ be deined by u ⊏Σ v if u
restricted to alphabet Σ equals v .

The post correspondence problem (PCP) is deined as follows. Given two lists a1,a2, . . . ,an and b1,b2, . . . ,bn of
words over some alphabet ∆, decide whether there are indices i1, i2, . . . , ik ∈ [n] with ai1ai2 . . . aik = bi1bi2 . . .bik .
It is a well-known fact that PCP is an undecidable problem.

Given a PCP-instance a1,a2, . . . ,an andb1,b2, . . . ,bn over some alphabet ∆, we deine the following regular lan-
guages and relations over Σ = ∆∪[n]. Let ra,n = (a11∨a22∨ . . .∨ann) and rb,n = ((b1)

R1∨(b2)
R2∨ . . .∨(bn )

Rn).

Lemma C.1. The PCP instance is positive if and only if there arewa ∈ L (ra,n ),wb ∈ L (rb,n ), ua ,ub ∈ [n]
∗, and

va ,vb ∈ ∆
∗ such that

wa ⊏[n] ua wa ⊏∆ va uaub ⊏P uaub ,

wb ⊏[n] ub wb ⊏∆ vb vavb ⊏P vavb .
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Proof. We start with the if direction. Let wa ∈ L (ra,n ),wb ∈ L (rb,n ), ua ,ub ∈ [n]
∗, and va ,vb ∈ ∆

∗ satisfy
the properties of the lemma. This means that there are i1, i2, . . . , ika ∈ [n] and j1, j2, . . . , jkb ∈ [n] such that

wa = ai1i1ai2i2 . . . aika ika ,

wb = (bjkb
)R jkb (ajkb−1

)R jkb−1 . . . (aj1 )
R j1 ,

ua = i1i2 . . . ika ,

ub = jkb jkb−1 . . . j1 ,

va = ai1ai2 . . . aika ,

vb = (bjkb
)R (bjkb−1

)R . . . (bj1 )
R
.

From uaub ⊏P uaub , we conclude that uaub = u (u)R for some u, which implies that ua = (ub )
R . Thus, we

have i1i2 . . . ika = j1j2 . . . jkb , which implies that ka = kb , and iℓ = jℓ for every ℓ ∈ [ka]. Analogously, from

vavb ⊏P vavb , we conclude that vavb = u (u)R for some u, which implies that va = (vb )
R . Consequently,

ai1ai2 . . . aika = ((bjka )
R (bjka−1 )

R . . . (bj1 )
R )R . Since

((bjka )
R (bjka−1 )

R
. . . (bj1 )

R )R = ((bj1bj2 . . .bjka )
R )R = bj1bj2 . . .bjka

this implies that ai1ai2 . . . aika = bj1bj2 . . .bjka . Thus, i1, i2, . . . , ika ∈ [n] is a solution for the PCP-instance.
Next, we prove the only if direction. Let i1, i2, . . . , ik ∈ [n] be a solution for the PCP instance. Recall that this

means that ai1ai2 . . . aik = bi1bi2 . . .bik . We deine

wa = ai1i1ai2i2 . . . aik ik ,

wb = (bik )
Rik (bik−1 )

Rik−1 . . . (bi1 )
Ri1 ,

ua = i1i2 . . . ik ,

ub = ik ik−1 . . . i1 ,

va = ai1ai2 . . . aik ,

vb = (bik )
R (bik−1 )

R
. . . (bi1 )

R
.

Obviously, wa ∈ L (ra,n ) and wb ∈ L (rb,n ). Furthermore, wa ⊏[n] ua , wb ⊏[n] ub , wa ⊏∆ va and wb ⊏∆ vb .

Finally, we observe that ua = i1i2 . . . ik = (ik ik−1 . . . i1)
R
= (ub )

R and

va = ai1ai2 . . . aik

= bi1bi2 . . .bik

= ((bi1bi2 . . .bik )
R )R

= ((bik )
R (bik−1 )

R
. . . (bi1 )

R )R = (vb )
R
.

Hence, uaub ⊏P uaub and vavb ⊏P vavb , which concludes the proof. □

Let xa,[n], xb,[n], xa,∆, xb,∆, y[n] and y∆ be variables with the following relations:

⊏xa,[n] = ⊏xb,[n] = ⊏[n] ,

⊏xa,∆ = ⊏xb,[n] = ⊏∆ ,

⊏y[n] = ⊏y∆ = ⊏P .
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We deine the conjunctive xregex ᾱ = (αa ,αb , βP,[n], βP,∆,γ[n],γ∆), where

αa = xa,[n]{xa,∆{ra,n }} ,

αb = xb,[n]{xb,∆{rb,n }} ,

βP,[n] = y[n]{xa,[n]xb,[n]} ,

βP,∆ = y∆{xa,∆xb,∆} ,

γ[n] = y[n] ,

γ[n] = y∆

Lemma C.2. There exists a conjunctive match for ᾱ if and only if there are wa ∈ L (ra,n ), wb ∈ L (rb,n ),

ua ,ub ∈ [n]
∗, and va ,vb ∈ ∆

∗ such that

wa ⊏[n] ua wa ⊏∆ va uaub ⊏P uaub ,

wb ⊏[n] ub wb ⊏∆ vb vavb ⊏P vavb .

Proof. We start with the if direction. Let wa ∈ L (ra,n ),wb ∈ L (rb,n ), ua ,ub ∈ [n]
∗, and va ,vb ∈ ∆

∗ satisfy
the properties of the lemma. Then, by deinition of conjunctive xregex, (wa ,wb ,uaub ,vavb ,uaub ,vavb ) is a
conjunctive match for ᾱ .

In order to prove the only if direction, we assume that (w1,w2, . . . ,w6) is a conjunctive match for ᾱ . This means
that w1 ∈ L (ra,n ) and w2 ∈ L (rb,n ). Furthermore, there are words ua and ub (namely the ones corresponding
to the references of xa,[n] and xb,[n]) with w1 ⊏[n] ua and w2 ⊏[n] ub , and there are words va and vb (namely
the ones corresponding to the references of xa,∆ and xb,∆) with w1 ⊏∆ va and w2 ⊏∆ vb . This also means that
w3 = uaub andw4 = vavb . Finally,w5 is a word withw3 = uaub ⊏P w5 andw6 is a word withw4 = vavb ⊏P w6.
This means that the wordswa := w1,wb := w2, ua , ub , va and vb satisfy the conditions of the lemma. □

We are now ready to give a proof of Theorem 8.3:

Proof. Given a PCP instance, we irst construct the conjunctive xregex ᾱ = (αa ,αb , βP,[n], βP,∆,γ[n],γ∆), then
we construct a CXRPQ that has just two nodes with 6 arcs each of which pointing from one node to the other,
and the arcs are labelled with the components of ᾱ . The graph database D is just a single node v with a loop for
every symbol in Σ. Note that for everyw ∈ Σ∗ there is a path from v to v labelled withw .
If D |= q, then there is a conjunctive match for ᾱ and, according to Lemmas C.1 and C.2, this means that the

PCP instance is positive. On the other hand, if the PCP instance is positive, then there is a conjunctive match for
ᾱ , which, by construction of D, means that D |= q. □

D FORMAL PROOFS FOR THE INCLUSIONS OF FIGURE 6

For convenience, we repeat Figure 6 here again as Figure 7.
We recall that by ECRPQ with equality relations (ECRPQer for short), we denote the class of ECRPQ for which

each R j is the equality relation (for some arity sj ), i. e., the relation {(u1,u2, . . . ,usj ) ∈ (Σ∗)sj | u1 = u2 = . . . = usj }.
In order to ease our notations, we sometimes represent the equality relations as a partition {Eq,1,Eq,2, . . . ,Eq,t }
of Eq (i. e., for every j ∈ [t], the edges of Eq, j are subject to an equality relation), or, for simple queries, we also
state which edges are required to be equal without formally stating the equality relations.

First, by the following Theorems D.1 and D.2, we will show the vertical inclusion chains

JCRPQK ⊊ JECRPQerK ⊊ JECRPQK and
J∪-CRPQK ⊊ J∪-ECRPQerK ⊊ J∪-ECRPQK ,

respectively, of the diagram of Figure 6.
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JCRPQK

JECRPQerK

JECRPQK

r
CXRPQ

vs,bi≤1

z r
CXRPQ

vs,bi≤2

z
. . .

r
CXRPQ

d≤0

z r
CXRPQ

d≤1

z
. . . JCXRPQK

JCXRPQvsK

J∪-ECRPQK

J∪-ECRPQerK

J∪-CRPQK

Fig. 7. Illustration of the relations between the considered classes of conjunctive path queries. A dashed or solid arrow from

A to B denotes A ⊆ B or A ⊊ B, respectively. Note that CXRPQdepth≤i is abbreviated as CXRPQd≤i .

x x′y1 y′
1

y2 y′
2z z′

c a∗ c d b∗ d

Fig. 8. Illustration of the graph-patern for qanbn .

Theorem D.1. JCRPQK ⊊ JECRPQerK ⊊ JECRPQK.
Proof. The inclusions follow immediately, since CRPQ can be interpreted as ECRPQer without any equality

relations, and ECRPQer ⊆ ECRPQ . We shall next prove that they are proper.
Let Σ = {a, b, c, d} and let qanbn be the Boolean ECRPQ over Σ deined by the graph-pattern Gqan bn

=

(Vqan bn
,Eqan bn

) with

Vqan bn
= {x ,y1,y2, z,x

′
,y ′1,y

′
2, z
′} ,

Eqan bn
= {(x , c,y1), (y1, a

∗
,y2), (y2, c, z),

(x ′, d,y ′1), (y
′
1, b
∗
,y ′2), (y

′
2, d, z

′)} ,

and with only one equal-length relation (i. e., the relation {(u1,u2) ∈ (Σ∗)2 | |u1 | = |u2 |}) that applies to the edges
(y1, a

∗,y2) and (y ′1, b
∗,y ′2). See Figure 8 for an illustration. We note that Jqanbn K is the set of graph-databases D

that contain (not necessarily distinct) vertices u,v,u ′,v ′ and a path from u to v labelled with canc and a path
from u ′ to v ′ labelled with dbnd, respectively, for some n ≥ 0.

Claim 1: Jqanbn K < JECRPQerK.
Proof of Claim 1: For the sake of convenience, we relabel qanbn to q in the proof of the claim. We assume that there
is a Boolean q′ ∈ ECRPQer, such that Jq′K = JqK. Moreover, let q′ be deined by a graph pattern Gq′ = (Vq′,Eq′ )

with Eq′ = {(x̂i ,αi , ŷi ) | i ∈ [m]} and some equality relations.
For every n ∈ N, let Dn,n be the graph-database given by two node-disjoint paths (r0, r1, . . . , rn+2) and

(s0, s1, . . . , sn+2) labelled with canc and dbnd, respectively. Obviously, for every n ∈ N, Dn,n ∈ JqK = Jq′K, which
means that there is at least one matching morphism h for q′ andDn,n . In the following, for every n ∈ N, let hn be
some ixed matching morphism for q′ and Dn,n . By the structure of Dn,n , we also know that, for every i ∈ [m],
the arc (x̂i ,αi , ŷi ) is matched to some sub-path of either (r0, r1, . . . , rn+2) or (s0, s1, . . . , sn+2); more precisely, there
are ℓi , ℓ

′
i ∈ [n + 2] ∪ {0} with 0 ≤ ℓi ≤ ℓ

′
i ≤ n + 2 such that either hn (x̂i ) = rℓi and hn (ŷi ) = rℓ′i , or hn (x̂i ) = sℓi
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and hn (ŷi ) = sℓ′i . Now let {Cn ,Dn } be a partition of [m] such that i ∈ Cn if (x̂i ,αi , ŷi ) is matched to some sub-path

of (r0, r1, . . . , rn+2) and i ∈ Dn if (x̂i ,αi , ŷi ) is matched to some sub-path of (s0, s1, . . . , sn+2). In particular, we
note that (r0, r1, . . . , rn+2) only contains labels a and c, while (s0, s1, . . . , sn+2) only contains labels b and d. This
means that for each single equality relation of q′ with arity p that applies to a set {ej1 , ej2 , . . . , ejp } of arcs, there

are three possibilities: (1) {j1, j2, . . . , jp } ⊆ Cn , (2) {j1, j2, . . . , jp } ⊆ Dn , or (3), for every i ∈ [p], hn (x̂ ji ) = hn (ŷji )
(i. e., they cover paths of length 0 that are labelled with ε).

Since there is only a inite number of partitions of [m] into two sets, there must be some n1,n2 ∈ Nwith n1 , n2
such thatCn1 = Cn2 and Dn1 = Dn2 . We now deine a morphism h : Vq′ → {r0, r1, . . . , rn1+2} ∪ {s0, s1, . . . , sn2+2} by
setting, for every i ∈ Cn1 = Cn2 , h(x̂i ) = hn1 (x̂i ) and h(ŷi ) = hn1 (ŷi ), and, for every i ∈ Dn1 = Dn2 , h(x̂i ) = hn2 (x̂i )

andh(ŷi ) = hn2 (ŷi ). We note thath is a matching morphism for q′ andDn1,n2 . In particular, due to our observation
from above, each equality relation is satisied. Since n1 , n2, we have that Dn1,n2 < Jq′K, which is a contradiction.

□ (Claim 1)

Let qanan be the ECRPQer over Σ that is deined in almost the same way as qanbn , with the only diferences that
we label the arc from y ′1 to y

′
2 of the graph-pattern by a∗ instead of b∗ and that the binary equal-length relation

on (y1, a
∗,y2) and (y ′1, b

∗,y ′2) becomes a binary equality relation on (y1, a
∗,y2) and (y ′1, a

∗,y ′2).
More formally, letqanan ∈ ECRPQ

er over Σ = {a, b, c, d} be deined by the graph-patternGqan an
= (Vqan an

,Eqan an
)

with

Vqan an
= {x ,y1,y2, z,x

′
,y ′1,y

′
2, z
′} ,

Eqan an
= {(x , c,y1), (y1, a

∗
,y2), (y2, c, z),

(x ′, d,y ′1), (y
′
1, a
∗
,y ′2), (y

′
2, d, z

′)} ,

and only one binary equality relation that applies to the edges (y1, a
∗,y2) and (y ′1, a

∗,y ′2). We note that Jqanan K is
the set of graph-databases D that contain (not necessarily distinct) vertices u,v,u ′,v ′ and a path from u to v
labelled with canc and a path from u ′ to v ′ labelled with dand, respectively, for some n ≥ 0.

Claim 2: Jq̂anan K < JCRPQK.
Proof of Claim 2: We assume that there is a q′ ∈ CRPQ , such that Jq′K = Jq̂anan K. Moreover, let q′ be deined by a
graph pattern Gq′ = (Vq′,Eq′ ) with Eq′ = {(x̂i ,αi , ŷi ) | i ∈ [m]}.
We can now obtain a contradiction analogously as in to the proof of Claim 1. In fact, the argument is almost

the same, but we argue with graph-databases Dn,n given by two node-disjoint paths (r0, r1, . . . , rn+2) and
(s0, s1, . . . , sn+2) labelled with canc and dand, respectively. In general, the argument is simpler, because we do
not have to take care of possible equality relations.

□ (Claim 2)

This concludes the proof. □

Theorem D.2. J∪-CRPQK ⊊ J∪-ECRPQerK ⊊ J∪-ECRPQK.
Proof. The inclusions follow by deinition. We next show that the inclusion J∪-ECRPQerK ⊆ J∪-ECRPQK

is proper. To this end, we irst recall the proof of Claim 1 in the proof of Theorem D.1, which showed that
for the query q = qanbn ∈ ECRPQ ⊆ ∪-ECRPQ (see also Figure 8), we have that JqK < JECRPQerK. We have
demonstrated that if there is a query q′ ∈ ECRPQer with Dn,n |= q

′ for every n ∈ N, then there are n1,n2 ∈ N
with n1 , n2, such that q can be matched to both Dn1,n1 and Dn2,n2 in such a way that the partition of the edges
of q′ according to whether they are matched to the canc path or the dbnd path are exactly the same. This has
lead to the contradiction that Dn1,n2 |= q

′.
If we now instead consider a q′ ∈ ∪-ECRPQer, then q′ contains only a inite number of graph patterns

G
(1)
q ,G

(2)
q , . . . ,G

(ℓ)
q , and, for every n ∈ N, there is at least one j ∈ [ℓ], such thatG

(j )
q can be matched to Dn,n . This
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implies again, that there are n1,n2 ∈ N with n1 , n2, such that, for some j ∈ [ℓ], G
(j )
q can be matched to both

Dn1,n1 and Dn2,n2 in such a way that the partition of the edges ofG
(j )
q according to whether they are matched to

the canc path or the dbnd are exactly the same. Again, this leads to the contradiction thatG
(j )
q can be matched to

Dn1,n2 and therefore Dn1,n2 |= q
′.

In order to show that the inclusion J∪-ECRPQerK ⊆ J∪-ECRPQK is proper, we argue analogously, but with
q = qanan ∈ ECRPQer ⊆ ∪-ECRPQer (i. e., we extend the argument of the proof of Claim 2 of the proof of
Theorem D.1 to the case of unions of queries just as it is done above with respect to Claim 1 of the proof of
Theorem D.1). □

All inclusions of

JECRPQerK ⊆ JCXRPQdepth≤0K ⊆ JCXRPQdepth≤1K ⊆ . . . ⊆ JCXRPQK ⊆ JCXRPQvsK
follow by deinition, except the irst one, which is due to the following Lemma D.3. Note that this inclusion chain
also implies the inclusion JECRPQerK ⊆ JCXRPQvsK depicted in Figure 6; its strictness follows from Lemma D.7
below.

Lemma D.3. JECRPQerK ⊆ JCXRPQdepth≤0K.
Proof. Let q ∈ ECRPQer be of the form q = z̄ ← Gq with Eq = {ei = (xi ,αi ,yi ) | i ∈ [m]} and let

{Eq,1,Eq,2, . . . ,Eq,t } with Eq, j = {ep1 , ep2 , . . . , epsj } be the partition of Eq that represents the equality constraints.

For every j ∈ [t], we successively modify q as follows. We replace (xp1 ,αp1 ,yp1 ) by (xp1 , β ,yp1 ), where β is a

regular expression for
⋂sj

i=1 L (αpi ), and, for every i with 2 ≤ i ≤ psj , we replace (xpi ,αpi ,ypi ) by (xpi , Σ
∗,ypi ).

We denote the ECRPQer constructed in this way by q′ and we note that q′ is equivalent to q. Moreover, q′

is represented by a graph (Vq′,Eq′ ) and a partition {Eq,1,Eq,2, . . . ,Eq,t } such that, for every j ∈ [t], Eq, j =
{(xp1 , βp1 ,yp1 ), (xp2 , Σ

∗,yp2 ), . . . , (xpsj , Σ
∗,ypsj )} for some regular expression βj1 . We can now translate q′ into

a q′′ ∈ CXRPQdepth≤0 by replacing, for every j ∈ [t], edge (x j1 , βj1 ,yj1 ) by (x j1 , zj {βj1 },yj1 ) and every edge
(x jℓ , Σ

∗,yjℓ ), 2 ≤ ℓ ≤ sj , by (x jℓ , zj ,yjℓ ). It can be easily veriied that q′′ is equivalent to q. □

The inclusion JECRPQK ⊆ J∪-ECRPQK follows trivially by deinition, whereas JCXRPQK ⊆ J∪-ECRPQerK is
shown by the following Lemma D.4.

Lemma D.4. JCXRPQK ⊆ J∪-ECRPQerK.
Proof. Let q = z̄ ← Gq with conjunctive xregex ᾱ = (α1,α2, . . . ,αm ). We irst assume that every ᾱ is variable

simple and has only basic variable deinitions (the general case is considered later on).
We can transform q into an equivalent q′′ ∈ ECRPQer as follows. By assumption, for every i ∈ [m], αi =

π1π2 . . . πt , where each πℓ is a classical regular expression γ , a variable deinition x{γ }, where γ is a classical
regular expression, or a variable reference x. Thus, for every i ∈ [m], we can break up the edge labelled with αi
into a path of size t with the edge labels πℓ . If we do this for all αi , then we have turned q into a q′ ∈ CXRPQ ,
such that every edge is labelled by a classical regular expression, a variable deinition over a classical regular
expression, or a variable reference. For every variable x, we now do the following. We replace the edge label x{γ }
by γ (since q′ is variable simple, there can be at most one such edge label) and all edge labels x by Σ∗ and add
an equality constraint that applies to exactly the edges modiied by this step. It can be easily seen that the thus
obtained q′′ ∈ ECRPQer is equivalent to q (note that the tuple of output nodes z̄ remains unchanged).

For the general case, where ᾱ is not variable simple or has not only basic variable deinitions, we proceed simi-
larly as in the proof of Lemma 5.4. More precisely, we irst carry out the nondeterministic modiication described
in the paragraph before Proposition 5.8, but we do this in a deterministic way, i. e., instead of nondeterministically
replacing (γ1 ∨γ2) by either γ1 or γ2, we create two copies, one that contains γ1 instead of (γ1 ∨γ2), and one that
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contains γ2 instead of (γ1 ∨γ2) (note that this corresponds to łmultiplying-outž alternations). Let us describe this
in more detail.
For every i ∈ [m], if αi is not already an alternation of valt-simple xregex, then it has the form αi =

π1 ∨π2 ∨ . . .∨πq (note that q = 1 is possible), where at least one πj is not valt-free (since αi is vstar-free,
each πj is vstar-free as well). This means that πj has some subexpression γ = (γ1 ∨γ2) and γ contains a variable
deinition or a variable reference. Let πj,1 be obtained from πj by replacing γ by γ1 and let πj,2 be obtained from
πj by replacing γ by γ2. Finally, let α

′
i = π1 ∨ . . .∨πj,1 ∨πj,2 ∨ . . .∨πq and let ᾱ ′ be obtained from ᾱ by replacing

αi by α
′
i . We observe that

Lref (π1 ∨π2 ∨ . . .∨πq ) = Lref (π1 ∨ . . .∨πj,1 ∨πj,2 ∨ . . .∨πq ) .

Consequently, we have Lref (αi ) = Lref (α
′
i ), which, by Lemma 4.4, means that L (ᾱ ) = L (ᾱ ′).

This means that by repeating this modiication, we can change ᾱ = (α1,α2, . . . ,αm ) into ᾱ ′ = (α ′1,α
′
2, . . . ,α

′
m )

such that, for every i ∈ [m], α ′i = α
′
i,1 ∨α

′
i,2 ∨ . . .∨α

′
i,ti

and every α ′i, j for j ∈ [ti ] is variable simple. Let q′ be

obtained from q by replacing each αi by α
′
i . As observed above, q and q′ are equivalent.

We can now transform q′ into q′1,q
′
2, . . . ,q

′
r ∈ CXRPQ , such that, for every graph-database D, q′(D) =⋃r

j=1 q
′
j (D), and, for every j ∈ [r ], q′j is variable simple and that satisies that every variable has at most

one deinition (the latter is a consequence from the fact that q′j is variable simple and therefore each variable

deinition is necessarily instantiated by every tuple of ref-words). More precisely, the qj with j ∈ [r ] are obtained
by considering, for every i ∈ [m], all possibilities of replacing α ′i by exactly one of the α ′i,1,α

′
i,2, . . . ,α

′
i,ti

,

which obviously results in CXRPQ that are variable simple (since each α ′
i, ℓ

is variable simple), and that satisfy

q(D) = q′(D) =
⋃r

j=1 q
′
j (D) for every graph database D.

Since each q′j with j ∈ [r ] is variable simple and satisies that every variable has at most one deinition,

we can transform it into an equivalent q′′j that is variable simple and has only basic variable deinitions, in

the same way as done in the second part of the modiication used in the proof of Lemma 5.4, i. e., by using
the main modiication step as explained after Proposition 5.8. In particular, we observe that we now have that
q(D) =

⋃r
j=1 q

′
j (D) =

⋃r
j=1 q

′′
j (D) for every database D.

Finally, since each q′′j with j ∈ [r ] is variable simple and has only basic variable deinitions, each q′′j can

be transformed into an equivalent q̂j ∈ ECRPQer as explained at the beginning of the proof. Consequently,
q(D) =

⋃r
j=1 q̂j (D) for every database and for q̂1, q̂2, . . . , q̂r ∈ ECRPQ

er . Thus, JqK ∈ J∪-ECRPQerK. □

The inclusions JCXRPQvs,bi≤k K ⊆ J∪-CRPQK, for every k ≥ 1, are due to the following Lemma D.5. Moreover,

the inclusion JCRPQK ⊆ JCXRPQvs,bi≤1K follow trivially by deinition and the strictness of this inclusion follows
from Lemma D.6 below.

Lemma D.5. For every k ≥ 1, JCXRPQvs,bi≤k K ⊆ J∪-CRPQK.

Proof. Let k ≥ 1 and let q ∈ CXRPQvs,bi≤k be deined by a graph patternGq = (Vq ,Eq ) with Eq = {(xi ,αi ,yi ) |

i ∈ [m]}, where ᾱ ∈ CXREΣ,Xs with Xs = {x1, x2, . . . , xn }. Now, for every v̄ ∈ (Σ≤k )n , let q[v̄] be a CRPQ with
the property that, for every graph databaseD, q[v̄](D) = qv̄ (D). Such q[v̄] exist due to Lemma 7.3. This directly
implies that, for every graph databaseD, q(D) =

⋃
v̄ ∈(Σ≤k )n q[v̄](D). Moreover, we can conclude that JqK = Jq′K,

where q′ ∈ ∪-CRPQ is deined by q′ =
∨

v̄ ∈(Σ≤k )n q[v̄]. □

It now only remains to prove the strictness of the inclusion JCRPQK ⊆ JCXRPQvs,bi≤1K, and JECRPQerK ⊆
JCXRPQK; the witnesses used for proving these claims are illustrated in Figure 9.

Lemma D.6. There is a Boolean q ∈ CXRPQvs,bi≤1 with JqK < JCRPQK.
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u1 u2 u3 u4

x{a∨ b} d x∨ c
u1 u2

#y{x{a+b}x∗}cy#
Gq1 : Gq2 :

Fig. 9. The queries q1 and q2 for the proofs of Lemmas D.6 and D.7, respectively.

Proof. Let the Boolean q1 ∈ CXRPQ over Σ = {a, b, c, d} be deined by the graph pattern Gq1 = (Vq1 ,Eq1 )

with Vq1 = {u1,u2,u3,u4} and

Eq1 = {(u1,α1,u2), (u3,α2,u2), (u3,α3,u4)} ,

where α1 = x{a∨ b}, α2 = d and α3 = x (see Figure 9). We note that since the only variable deinition of q has
the form x{a∨ b}, the image size is necessarily bounded by 1, which means that we can interpret q as a normal
CXRPQ without bounded image size. Thus, in order to prove the statement of the lemma, it is suicient to show
that Jq1K < JCRPQK, where q1 is interpreted as a CXRPQ without any restrictions.

For every σ1,σ2 ∈ Σ, let Dσ1,σ2 = (Vσ1,σ2 ,Eσ1,σ2 ) be a graph-database with Vσ1,σ2 = {v1,v2,v3,v4} and

Eσ1,σ2 = {(v1,σ1,v2), (v3, d,v2), (v3,σ2,v4)} .

We note that Dσ1,σ2 |= q1 for every σ1,σ2 ∈ {a, b} with σ1 = σ2. We assume that there is a q′ ∈ CRPQ with
q′ ≡ q1, deined by the graph pattern Gq′ = (Vq′,Eq′ ) with Eq′ = {(xi , βi ,yi ) | i ∈ [m]}.

If, for some i ∈ [m], there is no wi ∈ L (βi ) with |wi |a = 0, then Db,b ̸ |= q′, which, since Db,b |= q1, is a
contradiction. Therefore, we can assume that, for every i ∈ [m], there is somewi ∈ L (βi ) with |wi |a = 0 (note
thatwi = ε is possible). Next, we consider a matching morphism h for q′ and Da,a, which, since Da,a |= q1, must
exist. Let A ⊆ [m] be exactly the set of i ∈ [m] with h(xi ) = v1 and h(yi ) = v2. If A = ∅, then we can conclude
that the edge (v1, a,v2) is not part of any of the paths between some h(xi ) and h(yi ) that are necessary for h
being a matching morphism (this is due to the fact that in Da,a there are no paths of length strictly greater
than 2). Consequently, we can remove (v1, a,v2) from Da,a in order to obtain a graph database D ′, such that
h would still be a matching morphism for q′ and D ′. This, however, is a contradiction, since D ′ ̸ |= q1. Thus,
A , ∅. Now let D ′a,a be the graph database obtained from Da,a, by deleting the edge (v1, a,v2) and, for every
i ∈ A withwi , ε , adding a path labelled withwi from v1 to v2. We now slightly change the matching morphism
h for Da,a into a matching morphism h′ for D ′a,a: for every i < A and for every i ∈ A with wi , ε , we set
h′(xi ) = h(xi ) and h

′(yi ) = h(yi ); for every i ∈ A withwi = ∅, we set h
′(xi ) = h

′(yi ) = h(xi ). We note that h′ is a
matching morphism for q′ andD ′a,a, since, for every i ∈ A withwi , ε , there is a path from v1 to v2 labelled with
wi ∈ L (βi ), and, for every i ∈ A with wi = ε , there is a path from v1 to v1 labelled with wi = ε . Furthermore,
as already observed above, the deleted edge (v1, a,v2) was exclusively covered by edges (xi , βi ,yi ) with i ∈ A.
However, since |wi |a = 0 for every i ∈ A, we have that D ′a,a ̸ |= q1, which is a contradiction. □

Lemma D.7. There is a Boolean q ∈ CXRPQvs such that JqK < JECRPQerK.

Proof. Let q2 be deined by a graph pattern with just a single edge (u1, β ,u2) with β = #y{x{a+b}x∗}cy# (see
Figure 9). We note that D |= q2 if and only if D contains a path labelled with #(an1b)n2c(an1b)n2# for some
n1,n2 ≥ 1. Let us assume that there is some q′ ∈ ECRPQer with q2 ≡ q

′ and q′ is deined by a graph pattern
Gq′ = (Vq′,Eq′ ) with Eq′ = {(xi ,αi ,yi ) | i ∈ [m]} and some equality relations. Moreover, for every i ∈ [m], let
pi be the pumping lemma constant of L (αi ) and let p = max{pi | i ∈ [m]}. We consider the graph database
D = (VD ,ED ) with VD = {v0,v1, . . . ,vt }, where t = 2(p2m + pm) + 3 and (v0,v1, . . . ,vt ) is a path labelled with
#(apb)pmc(apb)pm#.
Since D |= q′, there is a matching morphism h for q′ and D with some matching words (w1,w2, . . . ,wm ),

such that, for every i ∈ [m], h(xi ) = vji and h(yi ) = vj′i with 0 ≤ ji ≤ j ′i ≤ t . We now partition [m] into
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S = {i | j ′i − ji < 2p + 1} and L = [m] \ S , i. e., (xi ,αi ,yi ) is matched to a long sub-path of (v0,v1, . . . ,vt ) of length
at least 2p + 1 if i ∈ L and to a short sub-path of (v0,v1, . . . ,vt ) of length strictly less than 2p + 1 otherwise.

If there is an arc (vr ,σ ,vr+1) of the path (v0,v1, . . . ,vt ) that is not covered by some (xi ,αi ,yi ) (i. e., for every
i ∈ [m], it is not the case that ji ≤ r < j ′i ), then we can contract nodes vr and vr+1 and h is still a matching
morphism for q′ and the thus modiied graph database D ′, which is not in Jq2K anymore. This can be seen by
observing that removing a single symbol from a word w ∈ L (β ) yields a word that is not in L (β ) anymore.
Therefore, we can assume that every arc (vr ,σ ,vr+1) of D is covered by some (xi ,αi ,yi ), i. e., ji ≤ r < j

′
i . Since,

for every i ∈ S , at most 2p edges can be covered by (xi ,αi ,yi ), we also know that L , ∅ (since otherwise not all
arcs are covered).

We now modify D as follows. For every i ∈ [m], we add a shortcut from vji to vj′i , which is a new path of the

same length and with the same label as the path (vji ,vji+1, . . . ,vj′i ). In particular, we note that for every i ∈ [m],
the labels of the shortcuts are identical to the matching words of h.

We now pump some of the shortcuts depending on the equality relation of q′ as follows. Assume that A ⊆ [m]
represents an equality relation of q′, i. e., exactly the edges {(xi ,αi ,yi ) | i ∈ A} are subject to the equality relation.
This also means that either all (xi ,αi ,yi ) with i ∈ A cover a short path, i. e., A ⊆ S , or all (xi ,αi ,yi ) with i ∈ A
cover a long path, i. e., A ⊆ L. Moreover, as observed above, L , ∅, so there is at least one such equality relation A
(note that we assume that the equality relations are represented by a partition of the edge-set, i. e., every edge is
subject to exactly one equality relation, possibly a unary one).

Recall that (w1,w2, . . . ,wm ) are the matching words for h. Thus, for every i ∈ A,wi is the label of the sub-path
(vji ,vji+1, . . . ,vj′i ). Since h is a matching morphism and since we have the equality relation represented by A, we

know that, for someu, we haveu = wi for every i ∈ A; moreover, the corresponding shortcuts for edges (xi ,αi ,yi )
with i ∈ A are also all labelled with u. Since A ⊆ L, we have |u | ≥ 2p + 1, which means that u = u ′apu ′′. Hence,
for every i ∈ A, there is a di such that u ′ap+δdiu ′′ ∈ L (αi ) for every δ ≥ 0. This means that, for every i ∈ A,
w ′ = u ′ap+du ′′ ∈ L (αi ), where d = Πi ∈Adi . Consequently, we can pump all shortcuts for the edges (xi ,α,yi ) with

i ∈ A by the factor ad , i. e., we replace them by paths of length |u | +d labelled byw ′. We repeat this pumping-step
with respect to all equality relations that refer to edges that cover long paths. After this modiication, we have
the property that in the tuple (w1,w2, . . . ,wm ) of matching words for h, we can arbitrarily replace somewi by
the label of the corresponding shortcut for (xi ,αi ,yi ) (regardless of whether it has been pumped or not) and still
h is a matching morphism with respect to this modiied tuple of matching words.

We now choose an arbitrary edge (vℓ,σ ,vℓ+1) of the original path (v0,v1, . . . ,vt ), which is only covered by
edges (xi ,αi ,yi ) with i ∈ L, which means that their shortcuts have been pumped. Such an edge must exist, since
otherwise all edges are covered by edges from S , which is not possible. Then, we delete this edge and we denote
the obtained graph database by D ′. After this modiication, due to the shortcuts, the matching morphism h must
still be a valid matching morphism for q′ and D, i. e., D |= q′. We now conclude the proof by showing that
D ′ ̸ |= q2, which clearly is a contradiction.
For D ′ |= q2, there must be a path in D ′ that is labelled by a word #(an1b)n2c(an1b)n2# for some n1,n2 ≥ 1.

We note that this is only possible for paths from v0 to vt . Now let us consider an arbitrary path from v0 and vt in
D ′. Since we deleted the edge (vℓ,σ ,vℓ+1), this path must use at least one shortcut that corresponds to an edge
(xi ,αi ,yi ) with ji ≤ ℓ < j

′
i . However, by our choice of (vℓ,σ ,vℓ+1), all such shortcuts have been pumped, which

means that the path is labelled with a word ŵ that can be obtained from #(apb)pmc(apb)pm# by pumping some
unary factors over a. Furthermore, it is not possible that all maximal unary factors over a, i. e., factors of the form
#apb, bapb or capb, have been pumped, since the considered path can take at mostm shortcuts. □
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