
Collision Detection for Deforming Necklaces

Leonidas Guibas
Department of Comp. Sci.

Stanford University
Stanford, CA 94305

guibas@cs.stanford.edu

An Nguyen
Department of Comp. Sci.

Stanford University
Stanford, CA 94305

anguyen@cs.stanford.edu

Daniel Russel
Department of Comp. Sci.

Stanford University
Stanford, CA 94305

drussel@cs.stanford.edu

Li Zhang
Compaq Systems Res. Center

130 Lytton Avenue
Palo Alto, CA 94301

l.zhang@compaq.com

ABSTRACT
In this paper, we propose to study deformable necklaces — flexible
chains of balls, called beads, in which only adjacent balls may inter-
sect. Such objects can be used to model macro-molecules, muscles,
rope, and other ‘linear’ objects in the physical world. In this paper,
we exploit this linearity to develop geometric structures associated
with necklaces that are useful in physical simulations. We show
how these structures can be implemented efficiently and maintained
under necklace deformation. In particular, we study a bounding
volume hierarchy based on spheres built on a necklace. Such a hi-
erarchy is easy to compute and is suitable for maintenance when
the necklace deforms, as our theoretical and experimental results
show. This hierarchy can be used for collision and self-collision
detection. In particular, we achieve an upper bound of O(n log n)

in two dimensions and O(n2−2/d) in d-dimensions, d ≥ 3, for col-
lision checking. To our knowledge, this is the first sub-quadratic
bound proved for a collision detection algorithm using predefined
hierarchies. In addition, we show that the power diagram, with
the help of some additional mechanisms, can be also used to detect
self-collisions of a necklace in certain ways complementary to the
sphere hierarchy.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—Nonnumerical Algorithms and Problems; I.6.m
[Computing Methodologies]: Simulation and Modeling—Miscel-
laneous

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’02, June 5-7, 2002, Barcelona, Spain.
Copyright 2002 ACM 1-58113-504-1/02/0006 ...$5.00.

Keywords
deformable chains, collision detection, bounding volume hierarchy,
power diagram

1. INTRODUCTION
The computational study of geometry has been motivated in part

by the desire to model physical systems whose description naturally
involves geometric attributes, such as shape. Indeed, efficient algo-
rithms and data structures for handling geometric data are needed in
almost every computational field that deals with the physical world,
including computer graphics, computer vision, robotics, geographic
information systems, spatial databases, molecular biology, and sci-
entific computing. Recently there has been increased interest in
modeling time-varying phenomena and this has naturally led to the
study of geometric objects under motion.

Early work on moving objects in computational geometry, ini-
tiated by Atallah [3], focused on bounding the number of combi-
natorial changes in geometric structures as the objects move along
prescribed trajectories [1]. In the late 1980s algorithms were devel-
oped for detecting and computing the actual changes in geometric
structures as objects undergo motion, e.g. [23, 2]. However, these
results assume an off-line model of motion in which the trajecto-
ries are given in advance, which is a relatively uncommon situation.
More recently, the Kinetic Data Structures Framework (or KDS for
short) [13, 4] was introduced to allow on-line changes to the motion.
In the KDS framework certificates are used to ensure the correct-
ness of a certain computation of the attribute of interest. Motion can
cause certificates to fail; at such events the KDS repair mechanism
is invoked to fix the attribute computation so that the simulation can
proceed. Though the KDS view has provided an elegant framework
for the analysis of motion algorithms, certain requirements limit its
applicability, especially the need to predict certificate failure times.
This is hard to do in many real-world situations where a physical
system is evolving according to an ordinary or partial differential
equation, since the motion plans of the simulation elements are not
known in closed form, and time-stepping methods must be used.

Another aspect of motion that has not been adequately modeled
in previous work is that objects in the world are often organized
into groups and hierarchies and the motions of objects in the same
group are highly correlated. For example, though not all points in
an elastic bouncing ball follow exactly the same rigid motion, the
trajectories of nearby points are very similar and the overall motion

is best described as the composition of a global rigid motion with a
small local deformation. Similarly, the motion of an articulated fig-
ure, such as a man walking, is most succinctly described as a set of
relative motions, say that of the upper right arm relative to the torso,
rather than by giving the trajectory of each body part in world coor-
dinates. All theoretical analysis to-date are based on the assumption
of independently moving objects. By ignoring such motion coher-
ence we run the danger of developing sub-optimal algorithms that
do not exploit well the structure of the problem. A similar call for
realistic input models in geometric algorithms was made in [7].

To begin addressing some of these issues, in this paper we propose
to study a model for deformable ‘linear’ objects such as macro-
molecules, muscles, rope, etc. Though our objects live in 2-D or 3-
D, they have an essential one-dimensional character that we heavily
exploit in our algorithms. It is customary in engineering to model
physical objects by breaking them up into ‘elements’ of various
types — indeed this is the essence of the Finite-Element method [22].
Instead of a standard type of element (tetrahedra or hexahedra),
we have chosen (potentially partially overlapping) spheres as our
basic elements. The use of spheres simplifies substantially the basic
geometric calculations and allows us to focus on the combinatorial
issues that form our main interest. There is actually a literature
on using spheres in engineering modeling [6] and for biomolecules
spheres are obviously the right choice.

We call our linear objects necklaces and the spherical elements
used to model them beads. The exact way in which a necklace
moves and deforms depends on the physical model used and is ap-
plication dependent. Our focus will be instead on tracking different
geometric attributes of a necklace, such as its power diagram or
a bounding sphere hierarchy that are useful in applications. For
example, most forces in nature are short range and the power dia-
gram provides useful proximity information among the beads. Col-
lision and self-collision detection are important in most physical
simulation settings and bounding volume hierarchies and the power
diagram are both useful collision detection tools in such contexts.
Since we do not model the physics, we take a black box model of the
physical simulation. We assume that at certain times (the time steps
of the simulation) an oracle moves the beads forming the necklace
according to the underlying physics and reports their new position
back to us. Though in general every single bead moves at every
step, we assume that the time steps chosen by the simulator are such
that at each step the motion of each bead is small when compared to
the overall scale of the simulation. Unlike the kinetic data structure
setting where we have explicit motion laws and can predict certifi-
cate failures, here we are called upon to repair a geometric structure
after small displacements of its defining elements.

2. SUMMARY OF THE RESULTS
The two geometric tools we investigate in this paper are a bound-

ing sphere hierarchy and the power diagram. The specific sphere
hierarchy we use is based on bounding volumes which are the mini-
mum containing spheres of the enclosed geometry. This gives each
bounding sphere a small combinatorial description: such a sphere
is defined by at most four of the underlying spherical elements. As
our necklace deforms, both this sphere hierarchy and its power di-
agram consist of geometric elements (spheres, simplices) that also
change continuously. But their combinatorial descriptions change
at only discrete events. This event-based description update makes
it possible to maintain them efficiently under motion. Both these
structures can be used for proximity determination and collision
checking. However, one of the key experimental results of this pa-
per is that the sphere hierarchy is far more stable than the power
diagram under deformation.

In general, a bounding volume hierarchy is formed by creating
a balanced recursive partitioning of the underlying geometry and
computing a bounding volume enclosing each group. Once the par-
titioning is determined, there are two ways to form the bounding
volume hierarchy — one is to compute a tight bounding volume on
the geometry in each group, which we call the ‘wrapped hierarchy’,
and the other is to compute the bounding volume of the bounding
volumes of the children subgroups, which we call the ‘layered hi-
erarchy’. Clearly, the wrapped hierarchy is always tighter than the
layered hierarchy. In this paper, we first study the relationship be-
tween the two hierarchies. We show the somewhat surprising result
that, in the worst case, a bounding sphere in the layered hierarchy is
at most a factor of

√
log n bigger than the corresponding one in the

wrapped hierarchy, and this bound is tight. Furthermore, the bound
holds in any dimension.

One important application of bounding hierarchies is in collision
and self-collision checking. While such methods work well in prac-
tice, in the worst case nothing better than the trivial quadratic bound
was previously known. We show that, with a simple heuristic, the
folklore self-collision checking method using the sphere hierarchy
achieves sub-quadratic time bounds: O(n log n) in two dimensions,
and O(n2−2/d) in d-dimensions for d ≥ 3 — to our knowledge, this
is the first sub-quadratic worst-case bound for collision detection al-
gorithms using bounding volume hierarchies. The power diagram
is another tool that people often use to deal with balls. While it has
been known that the closest pair of a set of disjoint balls defines an
edge in the power diagram ([15]), that result does not apply directly
to our problem since we allow adjacent spherical elements to in-
tersect. We show that the power diagram can be used to compute
the closest pair in a deforming necklace as well. It is interesting to
note that the worst-case for the sphere hierarchy occurs for highly
packed necklaces, while these are actually very favorable cases for
the power diagram — in such cases the power diagram size is linear
in all dimensions. In [18], kinematic chains similar to our necklaces
are studied, although with a different motivation. As in our paper,
they also use bounding volume hierarchies for collision detection
and achieve similar results on the complexity of collision checking.

In Section 3 we present the formal setting of our beads and neck-
laces. Section 4 discusses the precise bounding sphere hierarchy
we have chosen to implement and the reasons for our choice. We
also present verification and repair algorithms for maintaining the
hierarchy as the necklace deforms, as well as compare the tight-
ness of the wrapped and layered hierarchies. Section 5 presents a
number of combinatorial results about collision detection using the
sphere hierarchy or the power diagram. Section 6 discusses compu-
tational experiments for a number of different necklace scenarios,
both static and dynamic, that study the performance of our sphere
hierarchy and the power diagram under realistic conditions. Finally
Section 7 concludes the paper.

3. BEADS AND NECKLACES
We give some definitions. A necklace consists of a sequence of n

closed balls B = {B1, B2, . . . , Bn}, called beads, in the Euclidean
space Ed . We assume that only adjacent balls along the necklace
may intersect and no ball is fully contained in another set of balls.
In some contexts we make further assumptions. These include:

uniformity: there is a constant α ≥ 1 such that the ratio of the radii
of any two balls in a necklace is in the interval [1/α, α];

limited overlap: two consecutive balls Bi and Bi+1 along a neck-
lace are allowed to overlap, but the angle of their normals at
a common point on their surfaces is bounded below by β.

Whatever conditions we adopt, we assume that they are maintained
by the underlying physics causing a necklace to move or deform.
We remark that similar ‘necklace conditions’ were studied for es-
tablishing the optimality of tours in the plane [8].

4. THE WRAPPED HIERARCHY

4.1 Definition and properties
Bounding volume hierarchies have been extensively used as a data

structure for collision detection. To build such a hierarchy, a specific
geometric shape is selected as the bounding volume of choice. Com-
mon choices are axis-aligned bounding boxes (AABBs), arbitrarily
oriented bounding boxes (OBBs) [12], and spheres [21, 17]. The
choice of a bounding shape usually presents a trade-off between
the ease of testing for intersection two such shapes, and the total
number of bounding volume checks required. Once the bounding
volume shape is chosen, we can proceed to build a bounding vol-
ume hierarchy for a given object A. This can be done by several
different methods. The object A or its surface is covered by a set
of elementary bounding volumes and these are then aggregated and
the object geometry enclosed by each aggregate is further covered
by a bounding volume, and so on in a hierarchical fashion, until
A has been entirely enclosed in a single bounding volume. Once
hierarchies for rigid objects A and B have been computed, they can
be used for repeated intersection testing among the objects A and
B in different positions and poses. For given placements of A and
B, their respective hierarchies are refined only to the coarsest level
at which the primitive shapes in the two hierarchies can be shown
to be pairwise disjoint — or until an intersection is detected.

Unquestionably, bounding volume hierarchies have been among
the most successful methods used for collision detection in large
and complex virtual environments and physical simulations. How-
ever, if the object bounded by a hierarchy not only moves but also
deforms, the use of hierarchies becomes more problematic — cur-
rent methods provide only a set of bad alternatives. One can expand
the bounding volumes to allow some limited shape variability, but
then more intersection tests will be needed because the bounding
volumes do not fit as tightly. Or one can recompute the bounding
volume hierarchy at each time step, but the cost of that is significant.
One of the key contributions of this paper is to propose a bounding
volume hierarchy for our deforming necklaces that can be efficiently
maintained under deformation and remain tightly fitting.

The various hierarchies discussed above aggregate bounding vol-
umes based on spatial proximity. Spatial proximity is variable over
time and cannot be used as a reliable guide to aggregation especially
when an object undergoes large deformations. We have decided to
base the hierarchy we will use on topological proximity in the ob-
ject, because this notion of proximity is preserved under deforma-
tion. For our linear necklace this gives us an especially simple rule
for aggregation: we build a balanced binary tree on the sequence of
beads {B1, B2, · · · , Bn} so that the intermediate aggregates corre-
spond to the sets of leaves that are descendants of internal nodes in
the tree. For each node c in the tree, we denote L(c) the sequence
of beads corresponding to the leaves in the subtree rooted at c. This
defines the canonical sub-necklaces of the full necklace in a standard
fashion. As we will show later, the property of necklaces guarantees
the efficiency of using such hierarichies in collision detection. Note
that this is one instance where we heavily use the a priori known
structure of the type of object we are modeling.

Given that our atomic elements are themselves balls, we have
chosen to use spheres as our bounding volumes. Spheres do not
bound as tightly as oriented bounding boxes (in the limit they have
linear as opposed to quadratic convergence to an underlying smooth

shape [12]), but intersection/containment tests among them are es-
pecially simple and their symmetry makes rigid motions straightfor-
ward to implement. We define the wrapped hierarchy of a necklace
to be the sphere hierarchy corresponding to the balanced tree de-
scribed above, where the sphere corresponding to each internal node
is the minimum enclosing sphere (MES) of the beads in the canoni-
cal sub-necklace associated with that node. We call these bounding
spheres corresponding to internal nodes cages. Note that this al-
lows the cages of the children of a node in the hierarchy to stick out
of the cage of the parent. We call the sphere hierarchy defined by
making the cage of a parent to be the MES of the cages of its two
children the layered hierarchy [21]. Though the wrapped hierarchy
is slightly more difficult to compute than the layered hierarchy, it is
tighter fitting and most importantly it can be maintained more easily
under deformation — a fact that at first seems counter-intuitive. An
example of each type of hierarchy is shown in Figure 1. The key

Figure 1: Wrapped (left) and layered (right) sphere hierar-
chies. The base beads are black. Notice that each cage in the
wrapped hierarchy is supported by 2 or 3 beads.

property of the wrapped hierarchy that is of interest to us is that
each cage, being a minimum enclosing sphere of a set of beads, is
fully determined by a small number (two, three, or four in 3-D) of
the beads in the associated canonical sub-necklace; these beads are
called the basis of the cage and each of them is a basis bead. Note
that the cage of an internal node is also the minimum enclosing
sphere of its basis beads. When a necklace deforms, the basis of
each cage remains constant for a period. At certain discrete events
the basis of a cage changes typically by a pivoting step in which
(1) an old basis bead leaves the basis, and (2) a new bead from
the enclosed sub-necklace enters the basis. At times only one of
these events may happen, but the total number of basis beads will
always remain between two and four. Thus, although during con-
tinuous necklace deformation the cages deform continuously, their
combinatorial descriptions stay constant and change only at discrete
events. This combinatorialization of a continuous phenomenon is
an insight analogous to what is exploited in kinetic data structures.

Figure 2: A combinatorially defined sphere hierarchy is sta-
ble under deformation. Only the top level cage differs between
the two conformations.

We expect that under smooth deformation the combinatorial de-
scription of the cages via their basis beads will stay constant for

a fairly long time, and when finally the basis of a cage needs to
change, that change will be easy to detect and the basis update sim-
ple to perform. For instance, in Figure 2 we show a 2-D example of
such a hierarchy in two quite different configurations of a deforming
necklace. It so happens that all the hierarchy cages except for the
root cage continue to have the same combinatorial description at all
intermediate configurations.

While the wrapped hierarchy is always tighter than the layered
hierarchy, it is interesting to know exactly how much difference
there can be between the two. In the following, we consider the
case where all the beads are points (or equivalently equal radius
spheres), and in arbitrary position. We have the following result:

Theorem 4.1. For any given set of n points in any dimension
and any binary tree with depth

⌈
log2 n

⌉
on the points, if we denote

by τ1, τ2 the radii of the root spheres for the wrapped and layered

hierarchies of the point set, respectively, then τ2 ≤ τ1

√⌈
log2 n

⌉
.

The bound is almost perfectly tight, as we can construct a set of

points so that τ2 ≥ τ1

√⌊
log2 n

⌋
.

We denote the minimum enclosing sphere (MES) of a set of beads
S by M(S) and the MES corresponding to a node t by M(t). The
upper bound result is implied by the following lemma.

Lemma 4.2. Let O and R be the center and the radius of M(S),
and O� and R� the center and the radius of a ball on level � in the
layered hierarchy of S. Let d� = |OO�|. Then R2

�
≤ �(R2 − d2

�
).

Proof. Without lost of generality, let us assume that R = 1. We
prove the lemma using induction. The lemma is clearly true for the
0-th level, as R2

0 ≤ (1 − d0)2 ≤ 1 − d2
0 . We assume that the lemma

holds for all balls at level � in the layered hierarchy and show that
the lemma still holds for balls at level � + 1.

d

d2d1

a1 a2r1 r2

r

C1 C C2

O

Figure 3: A ball in the layered hierarchy and its two
children. Lemma 4.2 proves that the farther the centers
of the children are from the center of their parent, the
smaller their radii must be in comparison.

Let C and r be the center and the radius of a ball at level � + 1
in the layered hierarchy, and let C1, C2 and r1, r2 the centers and
radii of its two children. Let d = |OC|, d1 = |OC1|, and d2 =
|OC2|, see Figure 3. By induction assumption, r2

1 ≤ �(1 − d2
1) and

r2
2 ≤ �(1 − d2

2). We would like to show that r2 ≤ (� + 1)(1 − d2).
This is clearly true when the parent ball at C is identical to one of
its children balls. We consider the general case when the parent ball
is bigger than both of its children. The proof exploits the geometric
fact that

d2 = a2d2
1 + a1d2

2
a1 + a2

− a1a2 . (1)

The details can be found in Appendix A. �

The above lemma immediately implies the upper bound in Theo-
rem 4.1 as the depth of the tree is bounded by

⌈
log2 n

⌉
. Furthermore,

we can show that the inequality in Lemma 4.2 can be made tight,
and we can construct a set of points to attain the upper bound.

Lemma 4.3. There is a set of n points in the plane such that
τ2 ≥ τ1

√�log n�, where τ1, τ2 denote the radius of the root ball in
the wrapped and layered hierarchy, respectively.

Proof. It suffices to consider the case n = 2k . We will construct a
collection of points such that their wrapped hierarchy has radius 1
and their layered hierarchy has radius

√
k. The construction is done

incrementally. We first fix any point O and place a point at O0 such
that |OO0| = 1.

O O0

O1

O'1

O2

O'0

O'2

O'3

O3

O4

Figure 4: The construction of the
√�log n� worst case

ratio for radius of layered hierarchy versus the wrapped
hierarchy for n = 16.

Suppose that we have constructed the set S�, the first 2� points.
Suppose that the root ball in the layered hierarchy of S� is centered
at the point O�. To construct the set S�+1, we first find the point
O�+1 such that (1) � OO�+1O� = 90◦, and (2) |O�O�+1| = 1√

k
.

We can then construct S�
′ by flipping all the points in S� about the

line OO�+1. Then we set S�+1 = S� ∪ S�
′. See Figure 4.

It is straightforward to show that in the above incremental con-
struction, the radius of the root ball of S� is �√

k
, and |OO�| =√

1 − �
k

. Thus we can always find the point O�+1, as long as � < k.
It is clear that the root ball of the wrapped hierarchy has unit radius
as all the points constructed are on the same circle, and the root ball
of the layered hierarchy has radius

√
k.

Theorem 4.1 is the combination of Lemmas 4.2 and 4.3. �

4.2 Construction and maintenance
It is straightforward to construct the wrapped hierarchy by directly

computing the minimum enclosing ball for the canonical set of each
cage. There is a complex algorithm for computing MES in O(n)

time in the worst case [19] and a simple one running in expected
O(n) time [24]. Therefore, it takes O(n log n) time to construct
initially the wrapped hierarchy of the necklace of n beads.

To maintain the wrapped hierarchy, we need to verify the correct-
ness of the hierarchy, i.e. the correctness of the basis beads at each
internal node after a simulation time step, and update those which
are no longer correct. To verify the validity of the basis beads, we
make the following observation.

Lemma 4.4. Let B and S be sets of beads with B ⊆ S. If all
beads B ∈ S are contained in M(B), then M(S) = M(B). Thus,
the basis for M(S) is the same as the basis for M(B).

Note that the basis can shrink, so if B was the basis of M(S)

before an update, and after the update M(S) = M(B), then some
(not necessarily proper) subset of B is the new basis for M(S).

The checking is done in a hierarchical manner; we call this method
the cascade verification. Suppose that we have checked the valid-
ity of the descendant nodes under a node c. We first compute the
minimum enclosing sphere M of the basis beads from the previous
time step. Lemma 4.4 proves that in order to check the correctness
of c, it is sufficient to check that all the beads in L(c), the leaf beads
under the node c, are contained in M . To do this we maintain a
frontier, F , initially containing the children of c. At each step we
take a node d out of the frontier and check if M(d) is contained in
M . In case it is not, there are two cases — if the node is an internal
node we add its children to F ; otherwise it is a leaf, so we know that
it has escaped and the basis of node c is no longer valid and needs to
be updated. If we can continue the above process until F becomes
empty without encountering an escaped leaf node, we know that the
basis for M(c) is still valid. It is tempting to try to accelerate the
above process by noting that the geometry belonging to a cage must
be contained in the intersection of the cages on the path from that
node to the root, and checking to see if this volume is contained in
the cage being verified. However, in practice the extra complexity
of this check more than outweighs its benefits. While in the worst
case, the above procedure may take �(n log n) time if all paths need
to be traversed, our experiments suggest than in most instances the
actual time is closer to linear, as only paths to the basis beads of the
canonical subsequence need to be checked.

When beads escape from an enclosing cage c, a basis update
must be performed. At least one of the escaped beads must be a
basis bead for the new M(c). The LP-type algorithm [24] allows
easy exploitation of this knowledge in a natural manner, as well as
easy use of other heuristic information about which beads are likely
to be basis beads.

5. COLLISION AND SELF-COLLISION
DETECTION

5.1 Separating beads by the wrapped
hierarchy

Hierarchical representation is often used for collision detection
between two objects or for self-collision detection. Typically, such
an algorithm tries to compute a covering with separating bounding
volume pairs by walking down the hierarchy. It reports a collision
when it fails to produce such a covering. More precisely, suppose
that B is a set of n disjoint objects {B1, B2, . . . , Bn} and T is a
balanced binary tree built on the elements of B. Just as before, for
each internal node t in T , we create a bounding volume for the union
of the objects which are the leaves in the subtree rooted at t . This
way, we create a collection P of 2n − 1 objects, among which n

are basic objects and n − 1 are bounding volumes. A set C of pairs{
(ci , ci

′)
}
, where ci , ci

′ ∈ P , is called a collection of separating
pairs for B if:

1. for any i, ci and ci
′ are disjoint, and

2. for any i, j , where i �= j , there exists k so that Bi ∈ ck and
Bj ∈ ck

′.

Such a separating pair set serves as a proof of the non-collision of
the set B, i.e. it exists if and only if all the objects in B are mutually
disjoint. The minimum number of pairs needed to separate a set
of objects is crucial as it is a lower bound of the cost of a colli-
sion detection algorithm taking such an approach. In our problem,
the objects are beads and the bounding volumes are cages, and the
hierarchical structure is the wrapped hierarchy. We also need to
relax requirement 2 to i �= j − 1, j, j + 1 as we allow adjacent
beads to intersect each other. There has been some prior research
on separating a set of balls. When we are allowed to group balls
arbitrarily, there always exist a set of O(n) separating pairs for n

disjoint balls ([16, 5]). However, to our knowledge, the separating
pairs for predefined hierarchical structures have not been studied
combinatorially before. Here, we will show that for the wrapped
hierarchy in d dimensions, there always exists a separation col-
lection with O(max{n log n, n2−2/d }) pairs if there is no collision
between any pair of two non-adjacent beads. In the following, we
do not distinguish a node in the tree and the cage built for that node.

Theorem 5.1. Let B = {B1, B2, · · · , Bn} be a sequence of n

beads in d-dimensions (for d ≥ 2), satisfying the uniformity and
limited overlap assumptions. Then there exists a separating fam-
ily for B of size O(max{n log n, n2−2/d }) among the cages in its
wrapped hierarchy.

Proof. By the uniformity and limited overlap assumption, we have
that there exists a constant γ ≥ 1 such that the distance between the
centers of two adjacent beads is in the interval [1/γ, γ]. We give an
algorithm for constructing a separating family �. Throughout the
proof, log is understood as log2.

Fix an integer i such that 0 ≤ i ≤ log n − 1. Set ri = 2i . Let
Dj be the cage in the wrapped hierarchy that encloses the beads
B(j−1)ri+1, . . . , Bjri . Clearly, the radius of Dj is at most Ri =
riγ + α. Let Di = {D1, D2, . . .} be the resulting set of balls. For
each Dj ∈ Di , let Kj be the set of points that are distance at most
8Ri from a point in Dj , i.e., Kj = {

x | ∃y ∈ Dj |xy| ≤ 8Ri

}
.

Kj is a ball with radius at most 9Ri and concentric with Dj . For

any ball Dk ∈ Di that is contained in Kj and is disjoint from Dj ,

we report the pair (Dj , Dk). We define �i
j

to be the set of pairs

reported for Dj . We repeat this process for all balls in Di and set

�i = ⋃
j �i

j
. Set � = ⋃log n−1

i=0 �i .
We claim that � is a separating family for B. It is obvious from

the construction that all the pairs in � are disjoint. We need to
argue that it covers all the pairs of beads. Consider a pair of disjoint
beads (B�, Bm). Denote by Di

�
and Di

m the i-th level (the level
increases bottom up starting from 0) cages that contain B� and Bm,

respectively. Let t = max
{
i | Di

�
∩ Di

m = ∅
}

. It is easy to see that

every point in Dt
�

is within distance 4Rt+1 ≤ 8Rt from the center of

Dt
m because Dt+1

�
and Dt+1

m intersect. Therefore (Dt
�
, Dt

m) ∈ �.
Hence, � is a separating family.

Next, we bound the size of �. Note that

log n−1∑
i= 1

d
log n+1

|Di | = O(n1−1/d) ,

because each ball in this set corresponds to the cage at a node in
the wrapped hierarchy of B whose depth is less than (1/d) log n.

Hence,
log n−1∑

i= 1
d

log n+1

|�i | = O(n2−2/d) .

It suffices to bound |�i | for 0 ≤ i ≤ (1/d) log n.
Every pair (Dj , Dk) in �i

j
‘covers’ r2

i
= 22i pairs of beads. For

any pair of beads (Bu, Bv) covered by this pair, their centers are
within distance 9Ri because Dk is contained in Kj . Therefore, �i

covers 22i |�i | pairs of beads with each pair is within distance 9Ri .
But by a packing argument, there are O((9Riγ)d) = O(2di) beads
whose centers are within distance 5Ri from the center of Bu. Hence,
22i |�i | = O(n2di), which implies that |�i | = O(n2(d−2)i).
Therefore,

|�| = O(n2−2/d) +
1
d

log n∑
i=0

O(n2(d−2)i)

= O(max{n log n, n2−2/d }) .

This completes the proof of the theorem. �

Remark. The above bound is tight in the worst case. Consider an
n1/d ×· · ·×n1/d d-dimensional grid. We can form a necklace B by
tracing and connecting the segments parallel to the x-axis in the grid.
By the construction, B contains n1−1/d x-axis aligned segments,
each with length n1/d . Any separating family of B in its wrapped
hierarchy has size �(max{n log n, n2−2/d }). For two parallel seg-
ments at distance δ where δ ∈ [i, i + 1), we need �(n1/d/i) pairs
to cover the beads on them. According to the bounds on the number
of lattice points in circles, we know that there are �(n1−1/d id−2)

such pairs of segments. So the number of pairs in any separating
family is

n1/d∑
i=1

�(nid−3) = �(max{n log n, n2−2/d }) .

From Theorem 5.1, it follows that there always exists a collec-
tion of sub-quadratically many (O(n log n) in two dimensions and
O(n2−2/d) in d-dimensions for d ≥ 3) separating pairs if any two
non-adjacent balls are disjoint. The above constructive proof also
suggests the following simple heuristic for collision detection using
wrapped hierarchies: when two cages intersect, we always split the
one containing more beads and break ties arbitrarily. This way, the
cages we compare always have similar number of beads inside them,
and their parent cages intersect. Therefore, the above proof applies
— the number of pairs examined by the algorithm is bounded by
Theorem 5.1. That is, such a collision detection algorithm takes
time O(n log n) in two dimensions and O(n2−2/d) in higher di-
mensions, in particular, it is O(n4/3) in three dimensions. To our
knowledge, this is the first guaranteed sub-quadratic bound for col-
lision detection algorithms using bounding volume hierarchies.

5.2 Collision detection with the power diagram
Theorem 5.1 gives us a sub-quadratic bound on the running time

of the collision detection method using the wrapped hierarchy. While
the bound is O(n log n) in two dimensions, it is �(n4/3) in three
dimensions. We observe that the wrapped sphere hierarchy is good
for self-collision detection of a deforming necklace when the neck-
lace is not too entangled. When the string of beads is highly packed,
however, many cages in the hierarchy overlap with each other. We
then have to traverse deeply down the hierarchy before being able
to locate disjoint cages. According to a recent result by Jeff Er-
ickson [10], the Delaunay triangulation has linear complexity for a

dense set of points. Although that result does not directly apply to
the power diagrams, we may still expect that a similar result holds
for the power diagram of a dense set of balls with comparable sizes.
It was shown in [15] that the closest pair of balls are neighbors in
the power diagram if all the balls are disjoint, and therefore we may
use the power diagram for collision detection of a set of disjoint
balls. In our problem, however, consecutive beads may overlap and
that result no longer applies. In the following, we first show that we
can still use the power diagram to perform collision detection, even
when we allow some partial ball overlaps. Then, we discuss briefly
how to maintain the power diagram under our motion model.

We prove our result about the power diagram in a more general
setting. Let B be a collection of balls and P be a set of pairs of balls.
B is disjoint with respect to P if every pair of balls are disjoint, unless
it is in P . For example, a necklace is disjoint with respect to the set
P = {

(Bi, Bi+1)|1 ≤ i ≤ n − 1
}
. We define the closest pair of B

to be the pair with the minimum Euclidean distance among all the
pairs not in P .

For any given P , a ball A is a neighbor of B if the pair (A, B)

is in P . A ball A is a neighbor of a pair (B, C) if A is a neighbor
of either B or C. A ball B is called a proper connector if for every
neighboring ball A of B, there is another neighbor C of B such
that A and C are disjoint. Balls that are not proper connectors are
called improper. Note that when the balls are disjoint, there are
no improper balls. For a necklace, only the first and last beads are
improper. We then have the following result.

Theorem 5.2. The closest pair of B must either (1) have an
improper ball as a neighbor, or (2) have a common neighbor, or (3)
share an edge in the power diagram of B.

Bi

O

Bj

Bk

a

x-b r

b

c

δ

α β

γ σ

K Bl

Figure 5: The power diagram can be used for collision
detection in necklaces. The ball Bk cannot intersect
ball O more than orthogonally, certifying the power
diagram edge BiBj . x is the distance between Bi and
Bj .

Proof. Suppose that (Bi, Bj) is the closest pair of balls in B with
respect to P . Assume that (Bi, Bj) does not satisfy (1) and (2). We
would like to show that BiBj is an edge in the power diagram of B.

Let O be the minimum ball orthogonal to both balls Bi and Bj ,
and let r, a, b be the radii of O, Bi , and Bj respectively (Figure 5.2).
Consider another ball Bk , where k �= i, j , in B. We would like to
show that Bk does not intersect O more than orthogonally. Accord-
ing to [15], it is sufficient to consider those balls intersecting either
Bi or Bj . Since Bi and Bj do not share common neighbor, we
assume, without loss of generality, that Bk intersect Bi but disjoint
from Bj . Let r be the radius of Bk . We denote the length of the
line segments OBi, OBj , OBk, BiBk, BjBk by α, β, γ, δ, and σ ,
respectively, and the length of BiBj by x = α + β. We list the
following conditions those quantities have to satisfy:

1. α2 = r2 + a2, and β2 = r2 + b2. (by orthogonality)

2. σ ≥ x −a + c. (by that the distance between ball Bi and ball
Bj should be no more than the distance between ball Bj and
ball Bk .)

3. δ ≥ c−a. (by triangle inequality δ ≥ σ −x, and condition 2.)

4. δ ≥ x − b − c. (since Bk is proper, there is another neighbor
ball Bl of Bk so that Bi, Bl are disjoint, and so the distance
between ball Bi and ball Bl is no less than the distance be-
tween ball Bi and ball Bj . If K is the intersection of balls Bk

and Bl , then δ + c ≥ |BiK| ≥ x − b.)

Given the above relations, we would like to derive that the ball Bk

does not intersect ball O ′ more than orthogonally, i.e. γ 2 ≥ c2 +r2.
By using Equation 1 and the above conditions, we can show that
γ 2 ≥ c2 + r2 and therefore complete the proof. The details can be
found in Appendix B. �

Theorem 5.2 gives us a way to check self-collision for a necklace:
we can first compute the power diagram of all the beads and then
check every pair for each power diagram edge. In addition, we check
those pairs which share common neighbors, i.e. pairs (Bi, Bi+2) for
1 ≤ i < n−1, and those pairs involving B2 or Bn−1 (the only beads
having an improper neighbor in the necklace). Clearly, the number
of additional pairs is O(n), and the cost of the checking is dominated
by the complexity of power diagram, which we expect to be linear
for a densely packed necklace.

Under the KDS motion model, it is easy to maintain the power
diagram [14]. For the discrete time step model, however, it can be
too expensive to recompute the power diagram at each time step.
We can imagine an incremental method where only the invalid parts
of the diagram are repaired locally. Another way is to utilize the
maintenance method intended for the continuous motion model.
We can create a simple artificial motion to morph each bead in
the previous time step to its new position at the current time step.
We then run the kinetic algorithm for this imaginary motion and
effectively morph the power diagram of the previous time step to
the power diagram for the beads at the current position. Since the
motion is artificial, we can design the motion so that the certificate
failure times are easy to compute, or the number of events is small.
For example, we can continuously change the size of beads so that
each bead moves on a straight line in the standard lifting space. Due
to lack of space, we do not elaborate on these options here.

6. EXPERIMENTAL RESULTS
We ran a variety of experiments to test the static properties of

the wrapped hierarchy as well as its stability under motion. All the
timings were done on a 700Mhz PIII and use Bernd Gärtner’s [11]
implementation of Welzl’s algorithm for computing minimum en-
closing spheres. The properties of interest were:

1. the cost of construction, as measured by the time taken,

2. the cost of verifying the hierarchy, using both the naive method
(direct verification of bead inclusion in the cages) and the
cascade verification, measured by both the time taken and the
number of sphere inclusion tests performed,

3. the cost of collision detection in terms of time, the size of the
set of separating pairs, and the number of intersection tests
performed, and

4. the frequency of basis changes as the shape deforms.

a: b: c:

d: e: f:

g:

Figure 6: The necklaces used for testing. (a) is the back-
bone of the protein 1a4yA0, (b) is the backbone of the protein
1cem00, (c) is a 2-D grill which is a bad case for self-collision
detection, (d) is a spline sampled at a variety of resolutions, (e)
is a helix which has a quadratic complexity power diagram,
(f) is a beta hairpin backbone fragment, and (g) is a 2-D spiral.
(f) and (g) were also used to test stability under motion.

A variety of static curves were used for testing the first three
properties. Two of them, (a) and (b), are protein backbones (1a4yA0
and 1cem00) consisting of slightly over 1000 atoms, each of whom
was treated as having a radius of as 2Å. The first protein has a great
deal of secondary structure and is horse-shoe shaped, while the
second is basically globular. The third, (c), is a 2-D grill-like curve
which is a bad case for collision checking, according to Theorem 5.1.
We also sampled a simple spline, (d), consisting of 2 quadratic
segments, with 100 to 800 points. Our next shape (e) was a helix.
The helix has constant height and radius, but it has variable number
of turns and sample points. We tried two cases: ‘static’ helixes with
10 turns and with 100 to 12,800 sample points, and ‘scaling’ helixes
with n sample points and

√
n turns, where n varies between 100 and

25,000. This shape is a bad case for the power diagram [9].
We had two data sets for testing the properties under dynamics.

The first, (f), was a 51 atom backbone fragment from a beta hair-
pin, simulated through 300 time steps using a molecular dynamics
package for protein folding (Tinker) [20]. The initial configuration
was with the backbone folded along itself, a situation which did
not visibly change during the time steps considered. The radii of
all the atoms were treated as 2Å for the purposes of building the
wrapped hierarchy. The other dynamic case was a straight line seg-
ment rolling up into a spiral over 100 frames. The final form is
shown in (g). The spiral was evenly sampled at 500 points along its
length.

The cost of construction depends solely on the number of beads
used. It took approximately 42ms to build the wrapped hierarchy
for a protein backbone with 1380 beads. In general, the time de-
pendence on the number of beads agrees well with the expected
O(n log n) cost.

Similarly, the naive verification cost is mostly independent of the
geometry. In contrast, the cascade verification algorithm depends
quite heavily on the necklace shape. As a consequence, which veri-
fication algorithm was faster varied from model to model. Cascade
verification performed best when the curve was smooth compared
to the number of samples, i.e. when the curve crossing most of the
spheres was diametral and fairly straight. For example, the two al-

gorithms performed similarly for the simple spline, (d), when the
sampling was at 100 points, but they diverged as the sampling in-
creased, and cascade verification was twice as fast when (d) was
sampled with 800 points. This high sampling was typical of the
good cases for cascade verification in that the only descendant cages
which stick out are those that contain the end-points of the canonical
sub-necklace. As a result, the average verification cost per cage is
constant and independent of the number of beads (since it is twice
the average distance to the leaves of the tree).

Nklc S. Col. S. Col. Casc. Casc. Naive
Model Size Tests Front. Tests Front. Tests

(a) 1380 9.8 5.7 7.6 5.8 13

(b) 1089 7.2 5.0 6.4 4.8 10

(c) 63 6.5 4.9 6.2 4.4 8.5

(d) 100 .98 1.4 7.0 4.2 8.6
400 1.0 2 7.0 4.3 11

1600 1.0 1.5 7.0 4.3 14

(e) 400 9.7 7.2 6.1 15 3.9
static 1600 3.5 3.3 14 7.7 14

6400 1.7 2.0 13 6.9 16

(e) 100 19 11 12 5.7 8.6
scaling 400 28 22 16 8.1 11

1600 41 32 19 10 14
6.4k 166 130 23 12 16
25k 672 530 28 15 19

(f) 51 6.0 3.3 5.6 3.5 7.2

(g), start 500 1.0 1.5 3.1 2.5 9.1
end 500 8.1 5.7 8.1 4.6 9.1

Figure 7: ‘‘Nklc Size’’ is necklace size. ‘‘S. Col. Tests’’
is the average number of intersection tests for self-collision
per hierarchy node, and ‘‘S. Col. Front.’’ is the average size
of the frontier per node. ‘‘Casc. Tests’’ is the number of
comparisons for cascade verification per node, and ‘‘Casc.
Front’’ is the frontier size per node. Finally, ‘‘Naive Tests’’
is the average number of comparisons for naive verification,
namely the average number of leaves per node.

At the other extreme, the naive algorithm was twice as fast as the
cascade verification on the scaling helix (e). On such a tightly coiled
shape, most child cages stick out from their parents, consequently,
cascade verification must explore the whole subtree before getting to
the beads, resulting in almost twice as many intersection tests. The
other experiments were somewhere in between the two extremes,
and the two algorithms were generally fairly equivalent in time and
work. The minimum times for verification ranged from 6ms for the
smooth curve sampled with 800 points to .8s for the scaling helix
with 25,600 beads.

When the objects are deforming, we can save the ‘frontier’ from
the earlier time step in the cascade verification algorithm and use
that as a starting point for the verification in the next time step,
allowing a smooth transition between the two algorithms. Even in
the worst case of the scaling helix with 25,000 beads, the frontier
was less than 16 descendant nodes per cage being tested.

Collision checking performance was tested using the self-collision
algorithm. The collision checking algorithm is fairly similar to the
verification algorithm, so it is not surprising that the good and bad
cases were similar. The spline, (d), was the fastest to check, as the
algorithm was able, in most cases, to simply verify that the two
siblings did not intersect due to the small size of the beads com-
pared to their separation. However, even if the beads did intersect,

there would still be an average constant cost per node for reasons
similar to verification. The separating set scaled linearly with the
sampling of (d), from 35 for a sampling of 100 beads to 575 for a
sampling of 1600. Performance on the grill curve, (c) was as ex-
pected. While the separating set size for (d) sampled at 100 points
was only 35, the set size for the grill was 309, and the verification
took correspondingly longer, at .6ms for the grill.

As before, the scaling helix was far and away the worst case.
Self collision on the 25,600 bead sampling took 18 seconds, and the
100 bead sampling took 2ms. The separating sets were similarly
enormous, being almost 10 million pairs for the high sampling rate
and 1000 pairs for the 100 bead sample. This set is too large to hope
for gains from a caching scheme analogous to that proposed for the
verification stage. However, this is a pathologically bad case, and
in many applications such situations can be ruled out.

A more interesting case was the static helix. When sampled with
200 points, self-collisions took 3.25ms, involved 14 checks per node
and had a separating set of 2000 pairs. As the sampling rate in-
creased, the number of checks per node decreased. At the highest
sampling rate with 12,800 beads, it took 20ms and only involved
1.3 intersection tests per cage and the separating set was only 6,800
pairs. The reason for this is that as the sampling increases, amount
of bending per bead decreases so the curve looks straighter and
straighter on the scale of most of the spheres. As a result, a greater
fraction of the collision tests became trivial ones as in the smooth
curve case.

The wrapped hierarchy was very stable under the deformations
of the underlying necklace in our tests. For the hairpin simula-
tion (f), the cascade verification performed similarly to the naive
verification, both averaging approximately 7 containment tests for
each of the 37 nodes, and the separating set had a size of about 30.
There were 19 basis changes over the 300 frames of the simulation.
For comparison, we also built the power diagram and looked at its
stability. The power diagram was much more complex with approx-
imately 300 edges and 450 faces. The total number of changes was
close to 1500.

For the spiral tests set (g), the wrapped hierarchy had 487 cages.
Since the sequence involved a change from a straight line (an opti-
mal configuration for our algorithm), to a spiral (a near worst case
configuration), the wrapped hierarchy verification performance var-
ied quite considerably. In the first frame, cascade verification was
twice as fast as naive and made 3 comparisons per node, while in the
last frame cascade verify was slightly slower and took 8 inclusion
tests per cage. Self-collision fared even worse, with the separating
set size going from 243 pairs to 2,868 pairs. There were a total of
500 basis changes. In comparison, the power diagram had 1000
edges in the first frame, and 498 faces, compared to 1,425 edges
and 926 faces in the last frame. The total number of events in the
power diagram was over 50,000.

The experiments show that the wrapped hierarchy is quite sta-
ble under deformation and efficient to maintain for elongated ot
relatively unpacked shapes, while the verification and collision de-
tection become expensive when the curve is tangled and becomes
globular. The cost of self-collision checking and hierarchy verifi-
cation seems to depend on the amount of bending at each bead, but
we have so far been unable to quantify the dependence. The exper-
iments also show that the power diagram is more complex than the
wrapped hierarchy for the cases we tested — while the verification
and collision checking cost for the power diagram is low, the main-
tenance cost is significantly higher. When dealing with curves that
are loosely packed, the greater simplicity of the wrapped hierarchy
clearly wins; the verdict it is less clear with necklaces that are more
tightly packed. We can hope that a hybrid method exists that com-

bines the best features of the sphere hierarchy and power diagram
approaches.

7. CONCLUSIONS
This paper raises a new set of issues in geometric computing,

by posing the problem of how to repair and maintain geometric
structures under small motions or deformations of their defining el-
ements. Efficient geometric structure repair is essential in complex
physical simulations, virtual reality animations, as well as when
tracking real world objects. More generally, additional research is
needed on how to better integrate geometric algorithms with phys-
ical models of objects.

Even for our simple example of a deforming necklace, many basic
questions remain open:

• What are the trade-offs between the wrapped and layered hi-
erarchies?

• Can we prove bounds on the number of combinatorial changes
in the wrapped hierarchy, assuming a physical model of de-
formation and a given ‘deformation energy budget’ that limits
the overall bending that can occur?

• how can we best integrate the power diagram and the sphere
hierarchy so as to get the advantages of each?

We hope to address some of these issues in the near future.

Acknowledgments The authors wish to thank PankajAgar-
wal for his contributions to the results of this paper. Discussions
with John Hershberger, Menelaos Karavelas, Rachel Kolodny, and
Man-Cho A. So were very helpful and are also gratefully acknowl-
edged. This research was supported by NSF grants CCR-9910633
and ITR-0086013 and a Stanford Graduate Fellowship.

8. REFERENCES

[1] P. K. Agarwal and M. Sharir. Arrangements and their
applications. In J. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 49–119. Elsevier Science
Publishers, 2000.

[2] G. Albers, L. J. Guibas, J. S. B. Mitchell, and T. Roos.
Voronoi diagrams of moving points. Internat. J. Comput.
Geom. Appl., 8:365–380, 1998.

[3] M. J. Atallah. Some dynamic computational geometry
problems. Comput. Math. Appl., 11(12):1171–1181, 1985.

[4] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for
mobile data. Journal of Algorithms, 31:1–28, 1999.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition of
multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. Journal of
ACM, 42:67–90, 1995.

[6] S. De and K. J. Bathe. The method of finite spheres.
Computational Mechanics, 25:329–345, 2000.

[7] M. de Berg, M. J. Katz, A. F. van der Stappen, and
J. Vleugels. Realistic input models for geometric algorithms.
In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages
294–303, 1997.

[8] H. Edelsbrunner, G. Rote, and E. Welzl. Testing the necklace
condition for shortest tours and optimal factors in the plane.
Theoret. Comput. Sci., 66:157–180, 1989.

[9] J. Erickson. Nice point sets can have nasty delaunay
triangulations. In Proc. 17th Annual ACM Symposium on
Computational Geometry, pages 96–105, 2001.

[10] J. Erickson. Dense point sets have sparse Delaunay
triangulations. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 125–134, 2002.

[11] B. Gärtner. Fast and robust smallest enclosing balls. In Proc.
7th Annual European Symposium on Algorithms (ESA),
pages 325–338. Springer Verlag, Lecture Notes in Computer
Science 1643, 1999.

[12] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A
hierarchical structure for rapid interference detection. In
SIGGRAPH 96 Conference Proceedings, pages 171–180,
1996.

[13] L. J. Guibas. Kinetic data structures — a state of the art
report. In Proc. 3rd Workshop on Algorithmic Foundations of
Robotics (WAFR), pages 191–209, 1998.

[14] L. J. Guibas, F. Xie, and L. Zhang. Kinetic data structures for
efficient simulation. In Proc. IEEE International Conference
on Robotics and Automation (Vol. 3), pages 2903–2910,
2001.

[15] L. J. Guibas and L. Zhang. Euclidean proximity and power
diagrams. In Proc. 10th Canadian Conference on
Computational Geometry, pages 90–91, 1998.

[16] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. Efficient
detection of intersections among spheres. Internat. J. Robot.
Res., 2(4):77–80, 1983.

[17] P. M. Hubbard. Collision detection for interactive graphics
applications. IEEE Trans. on Visualization and Computer
Graphics, 1:218–320, 1995.

[18] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe.
Efficient maintenance and self-collision testing for kinematic
chains. manuscript, 2002.

[19] N. Megiddo. Linear-time algorithms for linear programming
in R3 and related problems. In Proc. 23rd Annu. IEEE
Sympos. Found. Comput. Sci., pages 329–338, 1982.

[20] J. W. Ponder and F. M. Richards. An efficient newton-like
method for molecular mechanics energy minimization of
large molecules. J. Comput. Chem., 8:1016–1026, 1987.

[21] S. Quinlan. Efficient distance computation between
non-convex objects. In Proc. IEEE International Conference
on Robotics and Automation, pages 3324–3329, 1994.

[22] J. N. Reddy. An Introduction to the Finite Element Method.
McGraw-Hill, 1993.

[23] E. Schömer and C. Thiel. Efficient collision detection for
moving polyhedra. In Proc. 11th Annu. ACM Sympos.
Comput. Geom., pages 51–60, 1995.

[24] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In
H. Maurer, editor, New Results and New Trends in Computer
Science, volume 555 of Lecture Notes Comput. Sci., pages
359–370. Springer-Verlag, 1991.

APPENDIX

A. PROOF OF LEMMA 4.2
Let a1 = |CC1|, a2 = |CC2| as in Figure 3. Then r = r1 +

a1 = r2 + a2 = s + a, where s = r1+r2
2 and a = a1+a2

2 . Let

δ = a2−a1
2 = r1−r2

2 . It is easy to see that

a1 = a − δ, a2 = a + δ,

r1 = s + δ, r2 = s − δ,

d2
1 ≤ 1 − r2

1 /�, d2
2 ≤ 1 − r2

2 /�

From cos(� OCC1) = − cos(� OCC2) and the law of cosines,

we obtain:

a2
1 + d2 − d2

1
2a1d

= −a2
2 + d2 − d2

2
2a2d

a2(a2
1 + d2 − d2

1) = −a1(a2
2 + d2 − d2

2)

(a1 + a2)d2 = (a2d2
1 + a1d2

2) − (a2a2
1 + a1a2

2)

d2 = a2d2
1 + a1d2

2
a1 + a2

− a1a2

Thus,

d2 ≤ (a + δ)(1 − r2
1 /�) + (a − δ)(1 − r2

2 /�)

2a

−(a − δ)(a + δ)

= 2a − a(r2
1 + r2

2)/� − δ(r2
1 − r2

2)/�

2a
− (a2 − δ2)

= 1 − 1

2�
(r2

1 + r2
2) − δ

2a�
(r2

1 − r2
2) − (a2 − δ2)

= 1 − 1

2�
2(s2 + δ2) − δ

2a�
(4sδ) − (a2 − δ2)

= 1 − s2 + δ2

�
− 2sδ2

a�
− (a2 − δ2)

We would like to show that r2 ≤ (� + 1)(1 − d2).

(� + 1)(1 − d2) − r2

≥ (� + 1)
[s2 + δ2

�
+ 2sδ2

a�
+ (a2 − δ2)

] − (s + a)2

+ s2 + δ2

�
+ 2sδ2

a�
+ (a2 − δ2)

by expanding and simplifying the expression, we get:

= 2sδ2

a
+ �a2 − �δ2 − 2as + s2 + δ2

�
+ 2sδ2

a�

by completing the square, we get:

= (�a2 − 2as + s2

�
) − (�δ2 − 2sδ2

a
+ s2δ2

�a2)

+(
s2δ2

�a2 + 2sδ2

a�
+ δ2

�
)

= (�a − s)2

�
− (�a − s)2δ2

�a2 + (s + a)2δ2

�a2

= (�a − s)2(a2 − δ2) + (s + a)2δ2

�a2

= (�a − s)2a1a2 + (s + a)2δ2

�a2

≥ 0

Thus, we have that r2 ≤ (� + 1)(1 − d2). �

B. PROOF OF THEOREM 5.2
From Equation 1 in the proof of Lemma 4.2, we have

γ 2 = βδ2 + ασ 2

x
− αβ .

We substitute x − a + c for σ and the larger of c − a or x − b − c

for δ to find a lower bound for γ 2.

1. When c − a ≥ x − b − c, i.e. c ≥ (x + a − b)/2, we obtain

γ 2 ≥ β(c − a)2 + α(x − a + c)2

x
− αβ

= c2 + 2(α − a)c + (α − a)2

≥ c2 + (α − a)(x + a − b) + (α − a)2

= c2 + r2 + (α − a)(β − b) + (α − a)2

≥ c2 + r2.

2. When c < (x + a − b)/2, similarly, we get

γ 2 ≥ β(x − b − c)2 + α(x − a + c)2

x
− αβ

= c2 + 2
cr2

x

(
α

α + a
− β

β + b

)

+r2
(

α − a

α + a
+ β − b

β + b

)
+ r2.

If α
α+a ≥ β

β+b
, it is clear that γ 2 ≥ c2 + r2. If not, using

c > (x + a − b)/2, we have that

γ 2 > c2 + r2 x + a − b

x

(
α

α + a
− β

β + b

)

+r2
(

α − a

α + a
+ β − b

β + b

)
+ r2

= c2 + r2 + α − a

α + a
r2

+α(β2 − b2) + β(α2 − a2)

(α + β)(α + a)(β + b)
r2

≥ c2 + r2.

In both cases, γ 2 ≥ c2 + r2. �

