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T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and
potentially TNF-𝛼 and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and
IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune
encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the
characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22,
and IL-23, in mouse models and human inflammatory diseases.

1. Introduction

CD4+ T-helper (Th) cells play a central role in initiating and
maintaining diverse immune responses. Functionally distinct
Th cells are induced when näıve T cells are stimulated via
T cell receptor engagement in conjunction with costimula-
tory molecules and cytokines produced by innate immune
cells. Classically, Th1 cells regulate cellular immunity via
production of interferon (IFN)-𝛾, whereas Th2 cells regulate
humoral immunity via production of interleukin (IL)-4, IL-
5, and IL-13 [1, 2]. Regulatory T cells (Tregs), a third subset
of CD4+ T cells, regulate the activation and expansion of
these lineages via expression of forkhead box P3 and/or their
capacity to produce cytokines such as transforming growth
factor (TGF)-𝛽, IL-10, and IL-35 [3, 4]. Recently, the identi-
fication of a novel lineage of helper T cells, Th17, has broken
the long-held paradigm regarding the roles of the other three
lineages (Th1,Th2, and Treg) (Figure 1). Distinguished by the

production of IL-17 (also called IL-17A), these Th17 cells are
developed from naı̈ve CD4+ T cells under the influence of
a network of inflammatory cytokines, including IL-1, IL-6,
and TGF-𝛽, which support the commitment to this lineage.
Although IL-23 was previously reported to be necessary for
Th17 differentiation, it is currently thought that IL-23 plays an
important role in the survival and expansion of pathological
Th17 cells [5–9].

Th17 cells were first defined by their expression of IL-17A,
but they have since been shown also to preferentially express
IL-22, as well as IL-17F, IL-21, GM-CSF, and potentially TNF-
𝛼 and IL-6 [10, 11]. However, it is becoming apparent that the
IL-22 expression profile differs from that of IL-17A. Whereas
TGF-𝛽 and IL-6 are both necessary for induction of IL-17A,
IL-22 can be induced via IL-6 alone, and increasing amounts
of TGF-𝛽 are actually inhibitory to the expression of IL-22
[12]. Accumulating data suggest that Th17 cells play a sig-
nificant role in infectious diseases, autoimmune conditions,



2 Clinical and Developmental Immunology

Naive CD4+ T cell

DC cell

TLR

infection
Suppressing autoimmunity,
responses
Suppressing effector T cell

TGF-𝛽, IL-10, IL-35

Treg cell

inflammatory disorders
diseases, chronic
Autoimmunity, infectious

Chronic inflammatory and
autoimmune responses 

TNF-𝛼, IL-6, GM-CSF
IL-17, IL-17F, IL-21, IL-22,

Th17 cell

IL-23
IL-4

TGF-𝛽 + IL-6
TGF-𝛽 + RA

atopic disorders
allergic diseases, asthma,
Extracellular parasites,
Humoral immune response

intracellular infections
Organ-specific autoimmunity,
Cellular immune response

IL-4, IL-5, IL-13

Th2 cell

IFN-𝛾, TNF-𝛼

Th1 cell

IL-12, IFN-𝛾

Stimulator

Figure 1: Differentiation of naı̈ve CD4+ T cells. Upon certain stimulating conditions, naı̈ve CD4+ T cells differentiate into different
subpopulations, such as Th1, Th2, Th17, and regulatory T cells (Tregs). Th1: T-helper 1 cell; Th2: T-helper 2 cell; Th17: T-helper 17 cell; IL:
interleukin; TGF-𝛽: transforming growth factor-𝛽; IFN-𝛾: interferon-𝛾; TNF-𝛼: tumor necrosis factor-𝛼; GM-CSF: granulocyte macrophage
colony-stimulating factor; DC: dendritic cell; RA: retinoic acid.

adoptive immune response, and mucosal immunity [13–16].
The polarization ofTh17 cells relies critically upon the actions
of cytokines (e.g., IL-23) secreted by antigen-presenting cells
(APCs) [14, 17, 18]. In addition to the inflammatory diseases,
IL-23 also plays essential roles during tumorigenesis [19].

Based on evidence thatTh17 cells can mediate inflamma-
tion and tissue destruction [20, 21], there has been intense
interest in defining their origins and functions and develop-
ing strategies to block their pathological effects. In this review,
we highlight studies that provide significant evidence for a
role of Th17 cells in human diseases and animal models, and
we briefly review the role of Th17 cells by focusing on the
production of cytokines in inflammatory diseases (Figure 2).

2. Th17 Cells in Inflammatory Skin Diseases

Inflammatory skin diseases include psoriasis, allergic con-
tact dermatitis, and atopic dermatitis. Psoriasis is a com-
plex autoimmune skin disease characterized by interactions

between dendritic cells (DCs), T cells, and keratinocytes [22,
23]. Although mice with epidermal acanthosis and dermal
inflammation induced by IL-23 injection into the ear are not
an exact model for psoriasis, many of the features in this
model, such as IL-22 upregulation and STAT3 activation, are
similar to the features evident in psoriasis.

In psoriasis, IL-23 is produced at high levels by DCs
and keratinocytes, and this cytokine stimulates Th17 cells
to produce IL-17A and IL-22. Several groups reported that
psoriatic lesions showed increased mRNA levels of the IL-
23/Th17 axis, including IL-23p19, IL-12/23p40, IL-22, IL-17A,
and IL-17F, whereas mRNA levels of IL-12p35 and IL-4 were
not elevated [24–26]. Furthermore, evidence for the role of
IL-23 in the pathogenesis of psoriasis was substantiated by the
initiation of the psoriasis-like disease acanthosis following
repeated injections of IL-23 in mice [12]. More recent studies
have also revealed that polymorphisms in the IL-12/23p40
and IL-23 receptor (IL-23R) are associatedwith psoriasis [27].
Ustekinumab, an anti-IL-12/23p40 antibody, has been used to
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Figure 2: Schematic representation of Th17 cell-induced inflammatory diseases in humans. Inflammation mediated by Th17 cells has been
identified in several human organs or tissues, including the eye, brain, skin, liver, colon, kidney, testes, joint, and lung. Numerous cytokines
induced by activated Th17 cells, such as IL-22, IL-17, IFN-𝛾, TNF-𝛼, and IL-6, play essential roles during the inflammatory diseases. These
cytokines lead to the onset of the uveitis, autoimmune encephalomyelitis, psoriasis, hepatitis, inflammatory bowel disease, nephritis, testitis,
rheumatic arthritis, and asthma.The counteraction between protective cytokines and pro-inflammatory cytokines decides the final outcome
in the organ or tissue.

treat plaque psoriasis [28]. In transgenicmice, overexpression
of individual subunits of IL-23 led to inflammation [29].
In another mouse study, recombinant IL-23 injected into
normal skin produced erythematous skin with histologic
characteristics of psoriasis [30].

IL-22 is a key cytokine produced by Th17 cells, and it
plays an important role in maintaining homeostasis and
remodeling epithelial tissues. The importance of IL-22 has
been highlighted in the pathogenesis of psoriasis [12]. IL-
22 mRNA expression is upregulated in psoriatic skin as
compared to normal skin, whereas the levels of IL-22 mRNA
in peripheral bloodmononuclear cells frompsoriatic patients

and normal controls were similar [31]. Using IL-22-deficient
mice, Zheng et al. showed that in the absence of IL-22, IL-
23-mediated dermal inflammationwas reduced [12]. Another
study also showed that IL-22 is required for psoriasis-like
lesions in the mouse Imiquimodmodel. Imiquimod-induced
scaly skin lesionswere almost totally absent in IL-22-deficient
mice or inmice treatedwith anti-IL-22 antibody. Importantly,
IL-22 mediates keratinocyte activation via phosphorylation
of STAT3, leading to acanthosis that is associated with a
psoriatic phenotype [12, 32].

In addition, injection of IL-23 enhances IL-17A expres-
sion in mouse skin, but pretreatment of anti-IL-17A antibody
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does not ameliorate the formation of psoriatic lesions [30].
This observation suggests that IL-17A is dispensable during
IL-23-dependent psoriasis. Skin biopsy samples frompatients
with psoriasis showed elevated expression levels of IL-17
together with high expression of IL-23 and IL-22 [12, 33].
Although there was no difference between the levels of IL-17
in the sera of patients with psoriasis and in controls, there was
a correlation between serum levels of IL-17 and the severity of
psoriasis [34].

3. Th17 Cells in Inflammatory Bowel Diseases

Inflammatory bowel disease (IBD), including Crohn’s disease
and ulcerative colitis, is a chronic inflammatory disease of
the gastrointestinal tract. IBD is caused by aberrant innate
and/or adaptive immune responses [35]. IBD had long
been described as a Th1-mediated disease because IFN-𝛾 is
essential for disease progression [36]. However, the recent
discovery ofTh17 cells has revealed a key role of this subset of
T cells in IBD.

IL-23 is essential for the development of IBD in mouse
models [37, 38], and protective IL-23R polymorphisms in
the human population were identified through a genome
association study [39]. However, IL-22 stimulates epithelial
cell growth, goblet cell hyperplasia, and antimicrobial pro-
duction. IL-22-mediated protective effects were seen in the
T cell transfer colitis model [40]. IL-22 is highly upregulated
in the sera and lesions of patients with either Crohn’s disease
or ulcerative colitis [41]. Moreover, activation of aryl hydro-
carbon receptor (AHR) results in the elevated production of
IL-22 in particular and reduction of Th1 and Th2 cytokines
[42, 43]. Blockade of IL-22 by using its neutralizing antibody
reversed the therapeutic effect of 6-formylindolo (3, 2-b)
carbazole on the trinitrobenzenesulfonic acid-induced colitis
in mice. Thus, induction of IL-22 is one of the major
mechanisms controlling pathogenesis in the gut through the
AHR signaling pathway [44].

On the other hand, IL-17 is produced in healthy gut.
A recent study suggested that IL-17F, but not IL-17A, was
required to induce severe immunopathology in the dextran
sulfate sodium-induced colitis model [45]. In contrast, anti-
IL-17A monoclonal antibody treatment was demonstrated to
aggravate dextran sulfate sodium-induced colitis, and block-
ade of IL-17A in colitis of IL-10 knockout mice was inefficient
in reducing disease unless IL-6 was also neutralized [46, 47].
Another study demonstrated that adoptive transfer of IL-17A-
deficient näıve CD4+ T cells or transfer of IL-17 receptor-
deficient T cells to recipient immunedeficient mice induces
severe colitis [48], suggesting that IL-17 exerts a protective
effect on T cells. Collectively, these results indicate that Th17
cytokines have both anti- and pro-inflammatory effects in the
gut, depending on the microenvironments.

4. Th17 Cells in Experimental Autoimmune
Encephalomyelitis/Multiple Sclerosis

Experimental autoimmune encephalomyelitis (EAE), which
resembles an autoimmune inflammatory disease of human

multiple sclerosis (MS), was classically believed to be medi-
ated by Th1 cells and inflammatory macrophages. However,
the concept thatTh1 response is centrally important for auto-
immunity was challenged by evidence that animals lacking a
functionalTh1 response still develop aggravated autoimmune
encephalomyelitis. Recent studies demonstrated an associa-
tion between the development of demyelinating plaques and
the accumulation of Th17 cells in EAE and MS.

IL-23 plays a pivotal role in the development of EAE.
Mice deficient in IL-23p19 or IL-23R knockout mice were
resistant to EAE [5, 49, 50]. Moreover, IL-23R is expressed
in macrophages infiltrating the central nervous system, and
macrophages expressing IL-23R in response to IL-23 produce
IL-22 and IL-17 [5, 50].

In addition, IL-17 (IL-17A) also plays a pro-inflammatory
role during the development of EAE, as shown by several
lines of evidence. First, IL-17F knockout mice with normal
levels of IL-17A showed only marginally reduced EAE [45].
Second, IL-17A knockout mice with normal levels of IL-17F
showed milder disease [51]. Finally, IL-17A knockout mice
with reduced levels of IL-17F exhibited clearly reduced EAE
[15]. Moreover, administration of anti-IL-17A antibody could
attenuate EAE but not completely prevent this disease [52].

Although IL-22 can be induced from Th17 cells by IL-23
during inflammation, IL-22 seems to have no effect on the
development of EAE. Kreymborg et al. showed that IL-22
knockout mice are not protected from EAE [53].

In MS patients, IL-17 mRNA and protein levels were
increased in both brain lesions and mononuclear cells iso-
lated from blood and cerebrospinal fluids [54, 55]. Although
these observations suggest that IL-17 may contribute to the
development of MS in humans, further research is needed to
elucidate the precise role of this cytokine in the pathogenesis
of MS. In addition, because IL-23 plays a pivotal role in EAE,
administration of monoclonal antibody specific for IL-23p19
instead of IL-17A or IL-17F might prevent this disease [56].
Based on these results, neutralization of IL-23 may be an
effective therapeutic approach to treat EAE/MS.

5. Th17 Cells in Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory disease
associated with the destruction of affected joints, and it
represents one of the most common autoimmune-related
diseases. Although RA had long been classified as a Th1-
mediated disease, it is now thought to be a primarily Th17-
driven disease [57].

Initial evidence for a pathogenic role of IL-17 in RA
came from reports that IL-17 was increased in the sera and
synovial fluids of RA patients [58–60]. Long-term intra-
articular administration of IL-17 via gene transfer reproduced
the key features of RA, includingmassive inflammation, bone
erosions, and cartilage damage [61]. As with psoriasis, there is
also increased IL-22 and IL-23 in the synoviumof RApatients
[62, 63]. Notably, the increase in IL-17 and IL-23 appears to be
specific for RA, but not for osteoarthritis [64, 65]. Conversely,
inhibition of IL17 by antibodies against IL-17A or its receptor
IL17RA protected against the development of arthritis [66].
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Because cyclosporine A can inhibit the production of IL-17
by memory Th17 cells in healthy donors and RA patients
[67], this could be an effective strategy to limit the disease.
Furthermore, mice lacking IL-17RA develop a very mild
form of experimental arthritis [68]. TNF has been shown to
be a key cytokine in the collagen-induced arthritis model.
Although TNF contributes to the pathogenesis of the early
stages of the disease, it is not involved in the later stages.
In contrast, IL-17 has a role throughout all stages of chronic
disease [69]. This finding is another indication that IL-17
contributes to the chronicity of RA. Therapeutic strategies
that specifically block Th17 cell development are expected to
be highly effective in treating RA patients.

6. Th17 Cells in Renal Inflammation

Several recent studies have emphasized the functional impor-
tance of Th17-induced immune response in renal inflam-
matory diseases. We discuss the potential roles of the
Th17 immune response in experimental murine models and
humans.

6.1. Th17 Cells in Experimental Animal Models with Nephritis.
The first evidence for the importance of TH17 cells in renal
inflammation was provided by a murine model of crescen-
tic glomerulonephritis [70, 71]. Recently, Th17 cells were
identified in murine kidneys after ureteral obstruction [72].
In addition, the IL-23/IL-17 pathway was demonstrated to
contribute significantly to renal tissue injury in experimental
glomerulonephritis by analysis of nephrotoxic nephritis in
both IL-23p19 and IL-17 knockout mice [70]. Moreover,
IFN-𝛾 plays a protective role in experimental autoimmune
anti-glomerular basement membrane (anti-GBM) glomeru-
lonephritis, as revealed by the fact that IFN-𝛾-deficient mice
develop more severe anti-GBM disease [73]. In contrast,
IL-23p19 and IL-17A knockout mice are protected from
anti-GBM disease after treatment with anti-mouse GBM
antibodies [70]. In addition, by using IL-12p35, IL-12p40,
and IL-23p19 knockout mice, Ooi et al. demonstrated that
mice deficient in IL-23, but not IL-12, were protected from
glomerulonephritis [74]. Neutrophils were recently identified
to be an early source of IL-17 in renal inflammation in amouse
kidney ischemia reperfusion injury model [75].

6.2. Th17 Cells in Human Renal Inflammation. There is only
limited evidence of the involvement of Th17 cells/IL-17 in
the pathogenesis of renal autoimmunity in humans. The
contribution of IL-17 to inflammatory reactions in the kidney
was initially reported in an in vitro study of patients suffering
from renal transplantation graft rejection [76]. Recently,
upregulation of IL-17 mRNA expression in the urinary sed-
iment of patients with systemic lupus erythematosus (SLE)
and increased percentage of Th17 cells in patients with active
SLE were reported [77, 78]. Although serum IL-17 levels were
significantly increased in SLE patients comparedwith normal
controls, associations between serum IL-17 levels and clinical
parameters were demonstrated [79]. Another study reported
that a lower percentage of Th22 cells and higher percentage

of Th17 cells are present in patients with lupus nephritis
compared with healthy controls [80]. Th22 cells are a new
subset of CD4+ T helper differentiated from naı̈ve T cells and
characterized by secretion of IL-22 but not IL-17 or IFN-𝛾
[43, 81]. IL-22 may play a protective role in preventing the
development of lupus nephritis, although future research is
necessary to identify the real role of IL-22 in SLE.

7. Th17 Cells in Hepatitis

7.1. Th17 Cells in Experimental Hepatitis Models. Intravenous
administration of Concanavalin A (Con A) results in rapid
liver inflammation and necrosis [82]. Many features of Con
A-induced liver injury are believed to mimic human autoim-
mune and viral liver disorders. Numerous experiments have
also shown that IL-22 plays a protective role in mice with
hepatitis [83, 84]. However, there are conflicting reports
regarding the susceptibility of IL-17-deficient mice to Con
A-induced acute hepatitis [84, 85]. IL-17 is critical in the
induction of liver injury and is induced during Con A
hepatitis [86, 87]. Moreover, both IL-17A and IL-17F function
via the IL-17 receptor (IL-17R), and both IL-17A and IL-
17F are overexpressed in IL-17R-deficient mice, suggesting
that a feedback loop acts on Th17 cells [88, 89]. In addition,
IL-17 activates other cell types in the liver to produce pro-
inflammatory cytokines beneficial to hepatocyte apoptosis
[90].

Notch is an evolutionarily conserved molecule that con-
trols the cell fate decision in a variety of cells [91, 92]. We
previously demonstrated that Notch signaling drives IL-22
secretion by stimulating the AHR [93].Mice that are deficient
in RBP-J, a key mediator of Notch signaling, are highly
susceptible to the detrimental immunopathology associated
with Con A-induced hepatitis with little IL-22 production
[93] (Figure 3). Although IL-6 has the ability to induce IL-
22 production [12], and IL-6-deficient mice were shown
to be highly susceptible to liver damage [94], these mice
were reported to have no impairment in IL-22 expression
during Con A-induced hepatitis [84]. IL-23 also has the
ability to induce the production of IL-22 [12] and IL-17 [95].
However, there are conflicting reports regarding the role of
IL-17 in Con A-induced hepatitis and the susceptibility of
IL-17-deficient mice to hepatitis [84, 85]. Therefore, the role
of IL-23 in the induction of IL-22 and IL-17 production
and liver damage during Con A-induced hepatitis using IL-
23p19- and IL-17-deficient mice was investigated [86]. These
results revealed that the endogenous IL-23 plays a protective
role in hepatitis in an IL-22-dependent manner, whereas
exogenous IL-23 plays a pathological role in IL-17-dependent
and -independent manners. Further studies are necessary
to elucidate the precise role of exogenous IL-23 in Con A-
induced hepatitis.

7.2. Th17 Cells in Human Liver Diseases. Chronic hepatitis
B virus (HBV) or hepatitis C virus infection leads to liver
disease. Such infective disease is associated with T cell
activation and the secretion of numerous pro-inflammatory
cytokines, such as IFN-𝛾. Nonetheless, although IL-22 shows



6 Clinical and Developmental Immunology

Con A

AHR

IL-22 protection

GSINotch

ROR𝛾t IL-17-dependent injury

IL-17-independent injury

IL-23

IL-6

TNF-𝛼

IFN-𝛾

IL-17

IL-22

IL-17R

TLR

IL-12

Th1

NKT

Kupffer cell

𝛾𝛿T

Treg

Th17

?

Figure 3: Schematic diagram of the role of activated Th17 cells during Con A-induced hepatitis. Con A injection induces IL-23 expression
from Kupffer cells (also inducing IL-12, IL-6, TNF-𝛼, and other cytokines) in the liver, then activates Notch signaling in activated Th17 cells
(and other types of T cells). AHR-dependent production of IL-22 is pivotal for protection, and ROR𝛾t-dependent production of IL-17 is
critical for pathogenesis.The IL-17/IL-17R signaling pathway also exacerbates hepatitis by inducing TNF-𝛼 and IL-6. Con A: Concanavalin A;
AHR: aryl hydrocarbon receptor; ROR𝛾t: retinoic acid-related orphan receptor 𝛾t; TLR: toll-like receptor; GSI: 𝛾-secretase inhibitor; IL-17R:
interleukin-17 receptor.

a marked protective role in Con A-induced hepatitis, IL-
22 also enhances the pro-inflammatory activity of TNF-𝛼
expressed in the liver after transfer of HBV-specific T cells
[96]. Another study reported that IL-22 neutralization ame-
liorates liver damage after transferring HBV-specific T cells
by using a transgenic mouse model of HBV replication [97].
During acute liver inflammation, IL-22 protects hepatocytes
from injury, possibly through STAT3-mediated upregulation
of prosurvival and proliferative responses. During chronic
inflammation, IL-22 may also help to limit damage and
allow survival of damaged hepatocytes that are precursors for
hepatocellular carcinomas [98]. Future research is necessary
to examine the role of IL-22 in chronic inflammation and the
development of liver cancer. In patients with chronic HBV
infection, Th17 cells are highly increased in both peripheral
blood and liver, and they exhibit a potential to aggravate
liver damage during chronic HBV infection [99]. Thus, Th17
cells may be involved in both the pathogenesis and anti-
inflammatory responses in human liver diseases.

8. Th17 Cells in Ophthalmic Inflammation

8.1. Th17 Cells in Experimental Autoimmune Uveitis. The eye
is an immune-privileged organ, and immune privilege is a
complex phenomenon that involves multiple components.
Uveitis is a sight-threatening intra-ocular inflammatory dis-
ease that is predominantly mediated by Th1 and Th17 [100].
Experimental autoimmune uveitis (EAU) is an animal model
of human autoimmune uveitis, and activated Th1 and Th17
cells are considered to play amajor role in initiating the intra-
ocular inflammation [101].

The initial evidence indicated that Th1 cells predomi-
nantly produce IFN-𝛾 in experimental and clinical uveitis
[102–104]. However, it is now clear that IL-17-producing
Th17 cells, but not IFN-𝛾-producing Th1 cells, are the true
mediators of tissue-specific ocular pathogenesis [81, 105].
Neutralization of IL-17, but not IFN-𝛾, in mice prevents and
ameliorates EAU [104, 106]. Several recent studies suggested
that IL-17 has both pro- and anti-inflammatory effects on the
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development of EAU [107, 108]. Furthermore, a protective
role of IL-22 by inducing regulatory CD11b+ APCs has
been described in EAU [109]. In addition, CD4+ T cells
are necessary for initiating EAU, and depletion of CD4+
T cells prevents EAU development. Furthermore, antigen-
specific CD8+ T cells also act as regulatory cells to suppress
EAU [110, 111]. Similar to other autoimmune animal models,
costimulatory signals such as CD40, CD80, and CD86 are
also involved in the course of EAU, and blockade of these
signals ameliorates intra-ocular inflammation [112–116].

8.2.Th17Cells in Keratitis. IL-17A-producing cells are present
in the midperipheral cornea in a mouse model of dry eye
disease, as well as in corneas from patients with herpetic
stromal keratitis (SK) [117–119]. The cornea infection with
herpes simplex virus (HSV) 1 leads to SK, a blinding immune-
inflammatory lesion of the eye. IL-17 is upregulated after
HSV infection of the cornea [120]. HSV infection of IL-17R
knockout mouse as well as IL-17 neutralization in wild-type
mouse showed reduced SK damage [120]. In addition, admin-
istration of 2,3,7,8-tetrachlorodibenzo-p-dioxin, which is a
ligand for AHR, caused a significant induction of Tregs and
inhibited the differentiation ofTh1 andTh17 cells, resulting in
suppression of the severity of SK damage [121].

Staphylococcus aureus and Pseudomonas aeruginosa often
cause bacterial keratitis, and these bacteria predominantly
invade corneal epithelial cells [122]. IL-6, one of the major
cytokines responsible for differentiating into Th17 cells, is
expressed in the corneal epithelial and conjunctival cell lines
[123]. Desiccating stress in the murine dry eye model, similar
to human dry eye, also causes ocular surface inflammation
characterized by increasing IL-6 and IL-17A expression [118].
In general, IL-17RA is constitutively expressed in cornea and
conjunctiva. When infected with S. aureus, human corneal
epithelial cells were demonstrated to increase the production
of IL-6 but show no change of IL-17A and IL-17RA in vitro
[124].

9. Th17 Cells in Testes

The testis is an immunologically privileged site where germ
cell antigens are protected from autoimmune attack [125–
128]. Multiple mechanisms prevent autoimmune disease in
the testes, including the structure of the blood-testis bar-
rier and secretion of immunosuppressive factors mainly by
macrophages, Sertoli, peritubular, and Leydig cells. Studies
established the presence of several T cell subsets (CD4+
and CD8+ 𝛼𝛽 T cells, 𝛾𝛿 T cells, and NK cells) and Tregs,
as modulators of immune response acting through local
and systemic mechanisms, in normal testicular interstitium
of human and rodents [129, 130]. However, the testicular
environment does not preclude inflammatory reactions and
recruitment of tissue-specificT lymphocytes, which appear to
be crucial components of the inflammation cascade [131, 132].
In fact, testicular inflammatory disorders leading to impair-
ment of spermatogenesis are thought to be a primary reason
for male infertility [133–135]. The recruitment of immune
cells in testicular interstitium (mainly DCs, macrophages,

and T cells) and secretion of pro-inflammatory cytokines (IL-
6, IFN-𝛾, TNF-𝛼, IL-12, IL-17, and IL-23), which disrupt the
normal testicular immunosuppressive microenvironment,
occur during inflammation induced by infectious agents
or develop in different pathologies, such as experimental
autoimmunity orchitis (EAO) [136]. In the rat testis of EAO,
it was demonstrated that not only CD4+ cells (Th17) but
also CD8+ T cells produce IL-17 (Tc17). Both CD4+ and
CD8+ T cells are the major contributors during the onset and
chronic phases of EAO [136]. In human azoospermic testis
with chronic inflammation,Th17 cells, which are orchestrated
by IL-23 produced from APCs, are critically involved in
chronic inflammation [137]. Such patients have increased
levels of Th17 cells, their cytokines such as IL-17A, IL-21,
and IL-22, and IL-23-producing CD11c+ DCs and CD68+
macrophages [137]. Moreover, because IL-17 was expressed
not only in normal testis but also in higher levels in azoosper-
mic testis, IL-17 might be involved in the maintenance of
testicular immune privilege and spermatogenesis [137, 138].
In addition, pro-inflammatory cytokines including IL-1 and
IL-6 have direct effects on spermatogenic cell differentiation
and testicular steroidogenensis within the normal testis [139].
However, increased numbers and expression level of IL-
17A-immunoreactive cells in azoospermic testis with chronic
inflammation indicate that overexpression of IL-17A can
substantially damage the blood-testis barrier and probably
destroy normal spermatogenesis and germ cells, which in
turn could ultimately lead to azoospermia.

IL-17-deficient mice showed decreased antigen-specific
T cell activation and antibody production in models of
autoimmune and allergic diseases [140]. In addition to the
signature cytokine IL-17A (IL-17), Th17 cells also produce
IL-17F, IL-21, and IL-22, which would also allow Th17 cells
to communicate with a wide variety of immune and non-
immune cells [14]. A recent study demonstrated that the
small molecule halofuginone can selectively inhibit mouse
and humanTh17 cell differentiation and autoimmune inflam-
mation in vivo through a cytoprotective signaling pathway
[141]. An understanding of the development, function, and
regulation of Th17 cells in testicular immunopathology is
critical for designing better strategies for the treatment of
immunological male infertility.

10. Th17 Cells in Allergic Airway Disease

Asthma is characterized by an inflammatory reaction associ-
ated with increased production ofTh2 type cytokines, such as
IL-4 and IL-13.

10.1. Th17 Cells in Mouse Models. Numerous studies have
shown that Th17 cytokines play an essential role in allergic
airway disease, and the role of Th17 cells was investigated
in several mouse models. A study of IL-17RA knockout
mice demonstrated decreased ovalbumin-induced airway
eosinophilia and Th2-related cytokines [142]. IL-17A knock-
out mice showed attenuated airway eosinophilia and neu-
trophilia, whereas IL-17F knockout mice demonstrated ele-
vated eosinophil recruitment. These findings suggest that
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IL-17 drives the allergic Th2 response. Other studies also
confirmed that IL-17 promotes ovalbumin-induced Th2
responses by synergizing with IL-4 and IL-13 [143]. Unlike
IL-17, which has a pro-inflammatory role during allergic air-
way disease, IL-22 seems to suppress Th2-mediated inflam-
mation. Treatment with anti-IL-22 antibody exacerbated
airway eosinophilia, suggesting that IL-22 may have anti-
inflammatory properties in airway disease [144]. In contrast,
IL-23 knockout mice showed ameliorated eosinophilia com-
pared to IL-23 overexpression mice [145, 146].

10.2. Th17 Cells in Human Asthma. The role of Th17 cells in
human asthma remains largely elusive. In humans, increased
expression of IL-17A and IL-17F was detected in bronchial
submucosa, and examination of sputum in patients with
asthma demonstrated that neutrophils were present, particu-
larly in severe forms of this disease [147]. Furthermore, Lajoie
et al. demonstrated a direct link among C5aR signaling,
IL-17A production, and severe airway hyperresponsiveness;
the sensitivity of airway hyperresponsiveness noted in mice
after C5aR blockade is completely reversed by concurrent IL-
17A blockade [148]. In addition, polymorphisms in the IL-
17A gene related to asthma risk have been reported [149].
Further studies are necessary to clarify whether IL-17 is a safe
therapeutic target for asthma therapy.

11. Conclusion

Th17 cells, which are directly involved in and mediate
chronic inflammation, are characterized by the production of
cytokines such as IL-17 and IL-22 as well as the recruitment
of neutrophils and other inflammatory cells. Under certain
circumstances, the same cytokine plays opposite roles in
different tissues. For instance, IL-22 plays a protective role in
Con A-induced acute hepatitis but a pro-inflammatory role
in psoriasis. In different tissues, the counteraction between
protective cytokines and pro-inflammatory cytokines should
determine the final outcome of the immune responses.
Although some conflicting findings still need to be resolved,
targeting Th17 cells and their related cytokines such as IL-17,
IL-22, and IL-23 may be an effective therapeutic approach for
chronic inflammation in the future.
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