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1. Introduction

The classification problem of Darboux integrable equations has attracted a considerable interest in
the recent time, see the survey paper [1] and references there in. There are many classification results
in the continuous case. The case of semi-discrete and discrete equations is not that well studied.
Discrete models play a big role in many areas of physics and discretization of existing integrable
continuous models is an important problem. There is a currently discussed conjecture saying that for
each continuous Darboux integrable system it is possible to find a semi-discrete Darboux integrable
system that admits the same set of x-integrals. To better understand properties of semi-discrete and
discrete Darboux integrable systems it is important to have enough examples of such systems. We
can test the conjecture and obtain new semi-discrete Darboux integrable systems, corresponding to
given continuous ones, following an approach proposed by Habibullin et al., see [2]. In this case
we take a Darboux integrable continuous equation and look for a semi-discrete equation admitting
the same integrals. The method was successfully applied to many Darboux integrable continuous
equations, see [2]—[4]. In almost all considered cases such semi-discrete equations exist and they
are Darboux integrable.

In the present paper we apply this method of discretization to Darboux integrable systems to
obtain new Darboux integrable semi-discrete systems. Let us give necessary definitions and formu-
late the main results of our work.
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Consider a hyperbolic continuous system

Py = (p,pepy)  (Po="(p"...P".pr..pY.py...P)) i=1,...,N), (1.1)

where p‘(x,y), i = 1,...,N, are functions of continuous variables x,y € R. We say that a function
F(x,y,P, Py, Pyy, - --) is an x-integral of the system (1.1) if

D.F (x,y,p, Py, Pyy,---) =0 on all the solutions of the system (1.1).

The operator D, represents the total derivative with respect to x. The y-integral of the system (1.1)

is defined in a similar way. The system (1.1) is called Darboux integrable if it admits N functionally

independent non-trivial x-integrals and N functionally independent non-trivial y-integrals.
Consider a hyperbolic semi-discrete system

g1 =B4,9nq1),  (da=BG" ", a,q1-4)), i=1,...,N), (1.2)

where ¢'(x,n),i=1,...,N, are functions of a continuous variable x € R and a discrete variable n €
N. Note that we use notation g (x,n) = Dg(x,n) = q(x,n+1) and gx(x,n) = Dkq(x,n) = q(x,n+k),
where D is the shift operator. To state the Darboux integrability of a semi-discrete system we need
to define x- and n-integrals for such systems, see [S]. An x-integral is defined in the same way as in
continuous case and a function I(x,n,q, qx,qxx, - - - ) is an n-integral of system (1.2) if

DI(x,n,q,qx,qxxs---) =1(x,n,q,qx, qxx - - -) on all the solutions of the system (1.2).

The system (1.2) is called Darboux integrable if it admits N functionally independent non-trivial
x-integrals and N functionally independent non-trivial n-integrals.

To find new Darboux integrable semi-discrete systems we applied the discretization method
proposed in [2] to one of the continuous systems derived by Zhiber, Kostrigina in [6] and continuous
systems derived by Shabat, Yamilov in [7]. In [6] the authors considered the classification problem
for Darboux integrable continuous systems that admit the x- and y-integrals of the first and second
order. In [7] the authors considered the exponential type system

i, =Xt j=1,2,...,N.

It was shown that such a system is Darboux integrable if and only if the matrix A = (a;;) is a
Cartan matrix of a semi-simple Lie algebra. Such systems are closely related to the classical Toda
field theories, see [8]-[10] and references there in. In this case we obtain the Darboux integrable
semi-discrete systems that were already described in [11].

First we consider the following system (see [6])

Uylty 1 1
Uyy = + Uy Vy
u+v+c u+v+c u+v—c (13)

e ViVy 1 n 1 ey
Y u4v—c u+v+e ut+v—c) 7

where ¢ is an arbitrary constant. This system is Darboux integrable and admits the following y-
integrals

vx(u+v+c)+2cln Uy (1.4)

Il =2v—
Uy U+v—+c
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and

u 2u,+v
L=—"22_"_1 (1.5)
Uy utv+tc
The x- integrals have the same form in u, v, uy, vy,... variables.
Now we look for semi-discrete systems admitting these functions as n-integrals. The obtained

results are given in Theorems 1.1 and 1.2 below.

Theorem 1.1. The system

{ulx:f(x,n,u,v,ul,vl,ux,vx) (1.6)

Vix = g(x,n, u,v,uy,Vvi, Uy, Vx)

possessing n-integrals (1.4) and (1.5), where c is a function of n satisfying c(n) # c(n+ 1) for all
n € Z, has the form

(1 +vi+c1)uy

u+v—+c
1.
2vi —=v)uy  2(c1 —C)uy Uy (4.7

Vix = n —+ V.
u+v-+c Uu+v—+c u+v—+c

Uix =

Moreover, the system above also possesses x-integrals

(c=ci)(va—v)—(c—c2)(vi—V)
(c=c))(v3—v)—(c—c3)(va—V)

F = (1.8)

and

(c1 —c)u+(ca—c)ur+ (c—cp)uy
Vier—a)v+(ca—c)vi+(c—ci)m

P = —V(cr—a)v+(ca—cvi+(c—ci)va. (1.9

Hence, semi-discrete system (1.7) is Darboux integrable.

Theorem 1.2. The system (1.6) possessing n-integrals (1.4) and (1.5), where c is a constant, is
either

(w1 +vi+c)uy

u+v—+c
2(v — )ity (1.10)
lx: - X

U+v-+c

Ix —

Vi —V Up—u+v—wm
and b = ————=

1
Vo) — V1 VVi—V

(u1 +v1 +c)Buy

with x-integrals F| = , Or

Uy =
ut+v+c (1.11)
2B(vi —v+clnB) B )
Vix = u v
1x utvte X X

where B is defined by equality H(K,,K;) = 0 with

_ vi—vB+B(l-B)u+clnB

K (B-1)?

+cIln(B—1)—clnB
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and

uj+cB—c—clnB B*v—Bv; —cBInB
K, = + 3
B—1 (B—1)

+cln(B—1)—clnB,

and H being any smooth function.

Remark 1.1. We considered some special cases of the system (1.11) and get Darboux integrable

systems.

u—v—+(=1)"\/(u—v)*+4uv,
2u

(D System (1.11) with B =
for B is found from K; = 0, with ¢ =0.)
Vi —Up —1—(—1)"\/(\/1 —M1)2+4ulv

is Darboux Integrable. (The expression

(II) System (1.11) with B = >
V
expression for B is found from K; = 0, with ¢ =0.)

is Darboux Integrable. (The

Remark 1.2. Expansion of the function B(u,v,v;), given implicitly by (B — 1)?K; = 0, into a series
of the form

B(u,v,vi) =Y ay(vi —v)", (1.12)
n=0
1
where coefficients a, depend on variables u and v, yields ap = 1 and a; = pa— So B can be
u+v—c
written as
1 ()

B(u,v,v1) = Hm(“ —v)+n§2an(v1 —v)" (1.13)

By letting u; = u+ €u, and v = v+ €v, and taking € — 0 one can see that the system (1.11) has a
continuum limit (1.3).

Let us discuss the exponential type systems. We consider the discretization of such systems
corresponding to 2 X 2 matrices, namely,

— L2u—v
.uxy—elJ )

Vo — v (1.14)

where ¢ = 1, 2, 3. The obtained results are given in Theorem 1.3 below. The discretization of such
systems was also considered in [11], where the form of the corresponding semi-discrete system
was directly postulated and then the Darboux integrability proved. In our approach we do not make
any specific assumptions about the form of the corresponding semi-discrete system. Note that the
integrals corresponding to Darboux integrable exponential systems are given in the statement of
Theorem 1.3.
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Theorem 1.3.

D

2)

The system

{ulx = f(u,v,M],V1,Mx,Vx)
Vix = g(uav7u17v1aMX7vx)7

possessing n-integrals
_ 2 2
I = Uy + Vi — U +Upvy — vy
and
1 = Upxx T Mx(Vxx - Mxx) + ULV — UV
has the form

Uy = ux+Aeu1+u—v1
Viy = vx+Befu+v+v1 ,

or

Uy = ux+Aeu1+u—v
Vix = vx+Be—u1+v+v1 ,

where A and B are arbitrary constants.
The system (1.15) possessing n-integrals

b =2+ Vi — 2u§ 4+ 2u,vy — v;‘;

and

% 2 2
12 = Uyypx T “x(vxxx - 2Mxxx) + Uiy (4Mxvx - Zux - V,\:)

+ sy (Vix — thy) + Vit (1 — 2vy) + ui + uiv% — 2u)36v)C
has the form

Uy = ux+AeL¢+u1—v1
Vi = vx_i_Bequ+v+v1 ,

where A and B are arbitrary constants.
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(3) The system (1.15) possessing n-integrals
1 2 15
I; = uxx+§vxx—ux+uxvx—§vx (1.23)

and

L= U(e) — 2u(s)lx + V(5) Uy + U(4) (32(th)2 —30u, v, + ll(vx)2 —40uy, — 11vyy)
() (14 (10)* = 15uvi+ (13/3) (vi0)* = 100 — (13/3)viee) + 19(u3))* + (13/6) (v(3) ) >+ 1613 v(3)
+ u(3) (= 36Uty + 1813,V + 80Viity — 45V V) +v(3) (=520l + 33133V — SVl
gy (—64 (1) + 102(1) vy — 620 (ve) > + 13(v2)*) +v(3) (32(1t)> — 58 (1) >y
4381, (v,)? = (26/3) (v2)?) 4+ 66(11)* + (26/3) (Vi )? — 35 (1) (Vi) — St (Vi)
+ (1) ? (30(1 )2 — 181,y — (11/2)(v4)?) + v (=34 (1) + 321,05 — 2(v)?) — 2(vir) 21tV
e (6(10) =24 (1) v +25 (1) (vi0)* = 9t (V) + () ) A+ e (— (1) * 8 (14) vie — 8 (1) > (v)?
+ 2”X(Vx)3) + (_2(MX)6 + 6(”x)5Vx - (13/2)(”)6)4(")6)2 + 3(”X)3(VX)3 —(1/2) (”)C)Z(Vx)4)
(1.24)

has the form

Vix = vy + Be v (1.25)

{ Uiy = Uy +Ae T
where A and B are arbitrary constants.

Remark 1.3. We note that while considering systems with integrals (1.20) and (1.21) we also obtain
two degenerate systems

Uiy = Uy
{ Vix = vy + Be~ (Gtutauntviin (1.26)

and

{ulx — Mx_’_AequulJchvf(Zchl)vl

Vix = Vx,

(1.27)

where A, B and c are arbitrary constants, which are equivalent to a Darboux integrable equation.

Remark 1.4. Bylettingu=p!, u; =pu! —i—s,uyl, v=p?v = ,u2+8uy2 and A = &, B = € in equations
(1.18), (1.22), (1.25) and taking € — 0 one can see that the considered systems have corresponding
continuum limit given by (1.14).

2. Proof of Theorems 1.1 and 1.2
Let us find a semi-discrete system (1.6) possessing n-integrals (1.4) and (1.5), where c is an arbitrary
constant, possibly dependent on n. Let Dc = c;. It follows from DI, = I, that

Ulxx 2uix+Vix _ M 2uy + vy

- )
Uiy Uur+vi+cy u ut+v-+c
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that is

fx+fu”x+fvvx+fu1f+fv1g+fuxuxx+fvxvxx . 2f+g _ U Uy + vy

f i +vi+er  ue  utv+ce’

1
Jur _ —. Hence
f Ux

Compare the coefficients by vy, and u,,, we get f,, =0 and

f(x,n,u,v,ul,vl,ux,vx) :A(x,n,u,v,ul,vl)ux.

It follows from DI} = I; that

oy, tvite)g g F  wlutvde) g e
f uy+vy+cg Uy u+v+c
Using (2.2) we obtain
A
oy tvitens oo g Aue o wlutvEd) g
Aty ur+vy+ci Uy u+v+c
and find g as
:< 2(vi —v)A N 2Acy n (u+v+c)A )u N 2(c1—c)A win
(ur+vi+c1) (u+vi+ec) (u+vi+ecr) (ur +vi+cy) u+v+c
(u+v+c)A
(uy+vi+ecp)

@2.1)

2.2)

(2.3)

2.4)

Substituting the expressions (2.2) and (2.4) into equality (2.1) and comparing coefficients by u,, vy,

u . ..
uIn ———— and free term we get the following equalities

u+v—+c
Ay
720 2.5
A (2.5)
2(C1 _C)Avl . 2(C1 —C)A s = (26)
(ur+vi+ec1) (ur+vi+er)
ﬂ‘i‘Au. 4 zh_ 1 > Z(V] —V)A I 2ci1A In (u—|—v+c)A >
A A (ur+vi+c) (ur+vi+c1) (u+vi+ec) (m+vi+er)
2A 2
- + =0 2.7
(i +vi+c1) (u+v+e)

Ay | (utv+oA,  (utv+o)A L 05

A (um+vi+c) (u+vit+c)? (u+v+e)

We have two possibilities: ¢; # ¢ and ¢ = c.
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2.1. cdepends on n

First we consider the case ¢; # ¢, that is ¢ depends on n and satisfies ¢(n) # c(n+ 1) for all n. Then
equations (2.6)-(2.8) are transformed into

Ay, 1

el N E— 2.9
A (u1+v1—|—c1) (2.9)
A 2A 2

A " (uptvitea) (utv+o) (2.10)
A, 1

—+———=0. 2.11
A +(u—i—v—i—c) .11

Equations (2.9) and (2.11) imply that

A:O?iwi?Uﬂmmm) 2.12)
u v C

Substituting the above A into (2.10) we get that M satisfies

M,
(u+v+c)ﬁ+(u1+v1+cl)Mul+(17M):O. (2.13)

Differentiating equation (2.13) with respect to v and v; we get that M,, = 0 and M,,, = O respectively.
Thus, equation (2.13) implies that M = 1. So in the case ¢| # ¢ we arrive to the system of equations
(1.7). We note that the system (1.7) is Darboux integrable. It admits two n-integrals (1.4) and (1.5)
and two x-integrals (1.8) and (1.9). The x-integrals can be found by considering the characteristic
x-ring for system (1.7).

2.2. cdoes not depend on n

Now we consider the case ¢ = ¢y, that is ¢ is a constant independent of n. Then we have equations

(2.7) and (2.8). Introducing new variable B = mA we can rewrite the equations as
up+vi+c
B, (uy+vi+c) (vi—v+clnB) 1-B
—+~-———B 2 B =0 2.14
B (u+v+c) wt (u+v+c) vl+(u—|—v+c) @14)
B
—§+BW:O. (2.15)

The set of solutions of the above system is not empty, for example it admits a solution B = 1.
Setting B = 1 we arrive to the system of equations (1.10). We note that the system (1.10) is Darboux
integrable. It admits two n-integrals (1.4) and (1.5) and two x-integrals

vy —V Up—U+VvV—V
Fh=————
VVi—V

The x-integrals are calculated by considering the characteristic x-ring for system (1.10).

F = ;
V2 — Vi
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Now let us consider case when B # 1 identically. For function W = W (u,v,u;,v1, B) equations (2.14)
and (2.15) become

W, (ur+vi+c) (vi —v+clnB) B—-1

— =W, +2 W, Wp=0 2.16
B (u+v+ec) ¥ (u+v+c) V1+(u—{—v—|—c) 5 (2-16)
W,

FWWV] =0. (2.17)

After the change of variables v=v+c¢, vi =v; +c¢— (v+¢)B, u = u, u; = u;, B= B equations
(2.17) and (2.16) become W; = 0 and

u+v -~ - ~ - ~
?Wg—l- (Lt] +v —|—VB)W,;1 + (21/1 +2C1HB—|—V(B— 1))W‘71 + (B— 1)W§ =0.

We differentiate the last equality with respect to v, use Wy = 0, and find that W satisfies the following
equations

W~  ~ ~
E”%—BWL;, +(B—1)W; =0

u — ~ — ~ ~
EWg-}- (M] —f—vl)W,;l + (2\/1 —}-2CII'IB)W‘,~1 + (B— I)WE =0.

After doing another change of variables u} = iy — B*@, vi = v + B(1 — B)ii, u* = il, B* = B, we
obtain that W, = 0 and

(u +v)Wyr + (2v] +2¢InB")W,x + (B* — 1)Wp- = 0.

The first integrals of the last equation are

vi clnB* c
K, = 1 —clnB* +cIn(B* — 1
o T o B e Dt
and
u: —c—clnB* B*v} cB*InB*
K, = -1 — L _ In(B* —1) —cInB*.
2 31 B 12 (B*—1)2+Cn( )—cln

They can be rewritten in the original variables as

_ vi—VvB+B(l-B)u+clnB
- (B—1)?

K +cln(B—1)—clnB

and

_uy+cB—c—chB B%>v—Bv| —cBInB

K
2 B—1 + (B—1)2

+cln(B—1)—clnB.

Therefore, system (1.6) becomes (1.11) due to (2.2) and (2.4).
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2.3. Proof of Remark 1.1

Function B is any function satisfying the equality H (K, K;) = 0, where H is any smooth function.
(I) By taking function H as H(K;,K>) = K; we obtain one possible function B. It satisfies the

wm v (1)l

2u
(1I) By taking function H as H(K;,K,) = K, we obtain another possible function B. It satisfies the
vi—up + (=1)"/(vi —up)2 +4uyy

equality —uB? + (u—v)B+v; = 0 and can be taken as B =

equality vB? + (u; —v{)B —u; = 0 and can be taken as B = 5
v
In both cases ((I) and (II)) let us consider the corresponding x-rings. Denote by X = Dy, Y| =

O = O B =y X)L B = LX), Bs = [EyEs]. Note that X = uEy + veEs. W
EYE] - 5 > - 3 s - — B N — 3 . ote al = Uu 1% . c
8ux28vxl g 2= pl2 3 1,L2 x£1 + VxL2
have,
[Ei,EJ]| E E> E;
E; 0 Es g Ex + o Es
E, —FE3 0 0
Es —(OC1E2+062E3) 0 0
where
2vi(u—v)+2(uv —v* 4+ 2uvi)B 2
gy = 22— 2B
vi(u—v)+ ((u—v)>+2uv))B B
in case (I) and
o — Zu% +4uyv —2u1vy +2(— (g —\;21)2 + vy —3vuy)B ’ = 34 2
ur(vi —uy) + ((ug —v1)>+2u;v)B B
in case (II).
3. Proof of Theorem 1.3
3.1. Case (1)
Let us find a system
{M]x:f(x7n,u,v,u],\)],ux7vx) (31)
Vix = g(x,n,u,v,ul,vl,ux,vx)
possessing n-integrals (1.16) and (1.17). The equality DI = I implies
Ulxx + Vi — u%x F UiV — V%x = Uy + Vix — M)ZC + U vy — V;zm (3.2)

or the same

Fot Fatte+ fova+ fur 4 Fun @+ Fuboe + ooV + 8 -+ Butt + 8uvx
+§ulf+ §V1§+§uxuxx+§vxvxx _P +f§_§2 = uxx+vxx - M% +uxvx - VJZC . (33)

We consider the coefficients by u,, and v,, in (3.3) to get

fu+8u =1 (3.4)

fvx'i‘gvx =1 (3-5)
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The equality DI} = I} implies
-2 2 Vix— U Ve, = -2 2y — up? 3.6
”1xxx+u1x(lex ulxx) F U Vi — ULV = ”xxx"‘ux(vxx Mxx) T+ U vy — Uy vy ( .6)

Since DIf = ujypx+--- = ]?ux Uyxx+ - . ., Where the remaining terms do not depend on u,.,, the equality
(3.6) implies

fu = 1. (3.7)
Note that J = DyJj — I = vyer + Vi (e — 2vi) + vZu, — u?v, is an n-integral as well. Since DJ = J
and DJ = Vi + -+ = &y, Varx + - - -, Where the remaining terms do not depend on vy, then

g, = 1. 3.8)

It follows from equalities (3.4), (3.5), (3.7) and (3.8) that fvx =0and g, = 0. Therefore the system
(3.1) and equality (3.3) become

{ulx:ux—l—f(x,n,u,v,ul,vl) (3.9)
Vix = Ve +g(x,nyu, v, up,vr)
and
fx+fuux+fvvx+fu1(ux+f) +fv1(vx+g) +gx+guux+gvvx+gul(ux+f)
+ 8 (v +8) —2uxf — P ug+vif + fg—2vg— > =0. (3.10)
By considering coefficients by u,, v, and u%v? in the last equality, we get
(f+&u+ (f+8u+(f+g—3f=0, (3.11)
(f+g)v+(f+g)v1+(f+g)_3g:()a (3-12)
(48w +8(f+8)w+(F+8)— (f+2)+3fg=0. (3.13)

Now let us rewrite inequality (3.6) for the system (3.9)

Dx(fx+fu”x+fvvx+fu1 (ux+f)+fv1(vx+g))
+ (ux + f) (8x+8uux+8vvx+gu| (U +f)+gv(vit+g) +Vxx)
+(uxJFf)(*fo*2fuux*2fvvx72fu1(ux+f) *zfvl (Vx+g) 72uxx)
+ (u)zc + 2uxf—i—f2)(vx +g)— (v)zc +2ng+g2)(ux + 1) =ty (Vix — 2utyy) +u§vx — uxv)zc. (3.14)
By comparing the coefficients by u,, and vy, in the last equality, we get
fu +fu| = 2f
(3.15)
fv +fv1 = _f-
It follows from equality DJ = J that

Dy (8x + uttx + &uvx + &uy (e + f) + &v, (Ve +8))
+ (e +8) (fo futb & five+ fu (1) + fir (Ve + ) + )
—2(ve+8) (8x + guit + 8V + &uy (tx + f) + 8y (Ve + 8) + Vix)
+ (e + ) (V2 4208 + &%) — (v + &) (12 +2u f + £2) = vi(thex — 2vc) + Ve — vy, (3.16)
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By comparing the coefficients by u,, and vy, in the last equality, we get

Sut8u =—8
3.17
gvt+8v =28. G-17

Note that the equalities (3.11) and (3.12) follow from equalities (3.15) and (3.17). Let us use equal-
ities (3.15) and (3.17) to rewrite equality (3.14)

DX(fx+2fux_fvx+fu1f+fvlg)+(”x+f)<gx+gu1f+gwg+vxx_4f”x_2fx)
(e )2 ve =2 f— 2f0n8 — 2t + v+ fri+ fg— V2 —g%)

2 2
= Uy (Var — 2Uyy) + ULVy — UV

We note that the consideration of the coefficients by u,,, Vi, u2, v, u,v, in the above equality give

x> Vx>°
us equations that follow immediately from (3.15) and (3.17). Considering coefficient by u, we get

Faut fan +2Fc+2f fuy + 2008+ [+ Fur fu+ fa, + 8F v
+gfu1v1 +fv1gu +fv18u1 +fu1u1f+gx+gu1f+gv1g_2fx_2fu1f_2fvlg+fg_g2_4f2 =0.

Using equations (3.15) and (3.17) we get
2+ 8+ 4  fuy + o8+ 8u f+8u g+ e—8 —4f =0,
or using equation (3.13),

fe+3f(fu = ) =0. (3.18)

Considering coefficient by v, we get

o "‘fxvl _fx_ffm _fv1g+ffu1v+ffu1v1 +fu1fv "‘fulfvl
+ng1V+ng1v1 +fv1gv +fvlgv1 +3f2 — O

Using equations (3.15) and (3.17) we get

2fc+3f(fu — 1) =0. (3.19)
It follows from equations (3.18) and (3.19) that f, = 0 and f(f,, — f) = 0. Thus either f =0 or
/= fm )
3.20
{f:fu- ( )

Now we consider the coefficient by v in (3.14) we get

fzfulul +fgfu1v1 +ff131 +fu1fv1g+fgfu1v1 +g2fV1V1 +fV1gX+ffV1ngl
+ 808 + f8t [o8u + £88w — 212 fus —2f8fn + fPg— f8* =0.

First assume that f = 0 then using (3.20) we can rewrite the above equality as
F8fo+ & foi + Fon8xt for8ur + Fougn g+ S8+ f2gu + f880 + P8 —f&¥=0.  (321)
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Also we can rewrite equality (3.16), using equations (3.15), (3.17) and (3.13) then considering
coefficients by u, and v, we obtain

2g:+3g(8v, — 8)
gx+38(gv, —8) =0.

From above equalities and (3.17) it follows that g, = 0, g,, = g and g, = g (we assume that g # 0).
We have

=0,
=0

fu1:f7 fu:f7 fv+fv1:_f
=8 & =& 8ut8u =—§ (3.22)
fV1g+gu1f:_fg'

Using (3.22), the equality (3.21) takes form g, f,, (—g + f) = 0. This equality implies that under
assumptions that f # 0 and g # 0 we have three possibilities: (I) g,, =0, (II) f,, =0 and (III) g = f.
Let us consider these possibilities.

Case (I) From g,, = 0, using (3.22), we get that g, = —g, 8,, = &, §» = &. Thus g = Be
where B is a constant. We also get that f, = f, f,, = f, fy =0and f,, = —f. Thus f = Ae"1T4 "1,
where A is a constant. So the system (3.9) takes form (1.18).

Case (II) From f,, = 0, using (3.22), we get that f, = f, fu, = f, fy = —f. Thus f = Ae"1™"",
where A is a constant. We also get that g, =0, g,, = —g, gy = g and g,, = g. Thus g = Be™ 11",
where B is a constant. So the system (3.9) takes form (1.19).

Case (III) From g = f, using (3.22), we get that f = 0 and g = 0. So the system (3.9) takes form

Ulx = Uy,
Vix = Vx.

—u+v+vy

3.2. Case (2)

Let us find system (1.15) possessing n-integrals (1.20) and (1.21). We compare the coefficients in
DI, = I, by uy, and vy, and get

2fz‘x +§ux =2,

~ (3.23)
zfvx"i‘gvx =1.

We also compare the coefficients in DI; =I5 and _
D(D2l, —213) = (D2l — 213 ) by Uy and vy, respectively and get f,, = 1 and g,, = 1. It follows

from (3.23) that f, = 0 and g, = 0. Therefore, our system (1.15) becomes

{Mlx =+ f(u,v,u1,v1),
Vie = Ve +g(u,v,up,vy).

We write equality DI, = I, and get

U + 2 futte + 2 f,vx + 2 fu, (ux+f> +2f, (vet+g) + Vi + 8ultx + 8vVx + 8u, (ux+f>
+ g (Ve +8) = 2(te+ )7 +2(a + 1) (Ve +8) — (e +8)7 = 2t + Ve — 205 + 210, — V3
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By comparing the coefficients by u,, v, and u%? in the last equality we obtain the system of equa-
tions

2fu+fu1 +gu+gu1 _4f+2g = 07
2fv+2fv1+gv+gv1+2f*2820>
2f fur +28f 0 + fQu, + 88w —2f>+2fg—g> = 0.

That suggests the following change of variables
u="~°P, uy—u=90, v=_S, vi—v="T
to be made. In new variables the system (1.15) becomes

{Qx:F(PaQasvT>7

T, = G(P.O.S.T). (.24

The comparison of coefficients in DI, = I, by P,, Sy and P)?Sg gives

—4F +2G+2Fp+Gp =0,
2F —2G+2Fs+Gs =0, (3.25)
—2F*+G(—G+2Fr +Gr)+ F(2G+2Fp+Gg) = 0.

The coefficients in DI; =I5 by Sy and Py, are compared and we obtain the following equalities

F—l—FS:O,

—2F +Fp=0. (3:20)

It follows from (3.25) and (3.26) that Gs = 2G, Gp = —2G, Fs = —F and Fp = 2F. Therefore,
system (3.24) can be written as

0 =A(Q,T)e 52,
T, = B(Q,T)e* .

We compare the coefficient in DI; = I3 by S, and get
3647242 _ 342544, = 0,

that is A = Ap. Hence, A(Q,T) = ¢2A(T). Now we compare the coefficient in DI, = I, by P?S? and
get

- ~ 1 A
A+Ar = 56_4P+3S_Q(B —Br)— EBQ- (3.27)

Since functions A(T) and B(Q,T) do not depend on variable P, then it follows from (3.27) that

B = Br, that is B = B(Q)e” . Now (3.27) becomes
X—FZT - EQ
A B’

-2

Note that the right side of the last equality depends on Q only, while the left side depends on T only.

_2% —(2c+1)T 4pnd

B . ~
Hence, = c and 79 = ¢, where c is some constant. One can see that A = cje
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B= c2¢°? and therefore system (3.24) becomes

{ 0, = cje ST2PT0-Qc+1)T

_ 2S—2P+T
7} = e + +CQ’

where ¢, c; and ¢, are some constants. Equality DI, — I, = 0 becomes —3cclczes+("+1)Q_2"T =0,
which implies that either ¢ = 0, or ¢; = 0, or ¢; = 0. Note that the DI = I; is also satisfied if either
c=0orc; =0orc; =0. So we have three cases:

* when ¢ = 0 the system (1.15) becomes (1.22) with ¢; = A and ¢, = B.
* when ¢; = 0 the system (1.15) becomes (1.26) with ¢, = B.
* when ¢; = 0 the system (1.15) becomes (1.27) with ¢; = A.

3.3. Case (3)

Let us find system (1.15) possessing n-integrals (1.23) and (1.24). We compare the coefficients in
DIz = I3 by uy, and vy, and get

f:;,h. + %:gvu_,, =1,
h v T %57 ve = 1.
We also compare the coefficients in DI =I5 and D(D{ —I}) = (D3 — I) by u) and V(6) TESpec-

tively and get ﬁu =1 and g, = 1. It follows from (3.28) that fvx =0 and g, = 0. Therefore, our
system (1.15) becomes

(3.28)

{ulx = uy + f(u,v,us,v1),
Vix = Vx+g(u,V,M1,V1)-

By comparing the coefficients by u,, v, and u2v? in DI; = I; we obtain the system of equations
Jut fu + %gu+ %gul —-2f+g=0,

S+t +%gv+%gv1 +f- %g =0,
Ffu+8fo +5/8u + 388 — [P+ fg— 38> =0.

That suggests the following change of variables
u="~°P ,uy—u=0Q, v==_S, vi—v="T
to be made. In new variables the system (1.15) becomes

{Qx:F(P)Q7S7T)7

T, = G(P.O.S.T). (.29

The comparison of coefficients in DIs = I3 by P, Sy and PBSB gives

6F —3G—3Fp—Gp =0,
—3F+2G—3Fs—Gs =0, (3.30)
F>—FG+3G?—2GFy — 3GGr —FFy — 1FGy = 0.

The comparison of coefficients in DI = I3 by S(s) and 5 gives

F+Fs=0,

—2F +Fp=0. (3-31)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
630



K. Zheltukhin and N. Zheltukhina / On the discretization of Darboux Integrable Systems

Using equations (3.30) and (3.31) we get Gs = 2G, Gp = —3G, Fy = —F, and Fp = 2F . Therefore,
system (3.29) can be written as

O =A(Q,T)e ST,
T, = B(Q,T)e* %,

where A and B are some functions depending on Q and T only. We compare the coefficients in
DI; —I; = 0 by SYP? and the coefficients in DIy — Iy = 0 by Py), S(4) and P3P respectively and
get

anAr +apBr +aizAg+aisBo+b1 =0,
azlAT + ClzzBT +023AQ +a24BQ + b2 = 0,
az1Ar +azBr +a3zAg +azuBg+b3 =0,
a41AT +aspBr +aAg +asuBg+by =0,

(3.32)

where
-p 1,—6P+4 4P—2 1,-P
ajy = —e 5B, app=—ze FTBB a3 =4, aig = —ze PS4,
a1 = —33¢ PTSB,  ay = —11e 8B, ay3 = —28* 254, ap = —11e 154,
a3l = —136_P+SB, azy = —%6_6P+4SB, azz = —1664P—2SA, azy = —ge_P+SA,

as = 18¢ PHSB,  anp = —79¢ PB4y = 3286254, auq = 6e PHSA,
and

bl — e4PfZSA2 o e*P+SAB 4 %676P+4SBZ ’

b2 — 28€4P72SA2 _ 33€7P+SAB +1 1676P+4SBZ 7

b3 — 16e4P72SA2 _ 13€7P+SAB 4 %676P+4SB2 ,

by = —328¢*P 2542 1 18 PTSAB +79¢ 6P +45p2 .

We solve the linear system of equations (3.32) with respect to A7, Ag, Br and By and get the
following system of differential equations A7 = —A, Agp = A, By = B and Bp = 0. Thus the system
(3.29) is written as

_ 2P+Q—-S-T
O, = 1?12 )
_ —3P4+25+T
T;C = (e et )

where ¢ and c; are arbitrary constants. It is equivalent to system (1.25) with A = ¢; and B = ¢3.
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