On the discretization of Darboux Integrable Systems

Kostyantyn Zheltukhin*
Department of Mathematics, Middle East Technical University, Ankara, Turkey
zheltukh@metu.edu.tr
Natalya Zheltukhina
Department of Mathematics, Faculty of Science, Bilkent University, Ankara, Turkey
natalya@fen.bilkent.edu.tr

Received 2 July 2019
Accepted 6 January 2020

Abstract

We study the discretization of Darboux integrable systems. The discretization is done using x-, y-integrals of the considered continuous systems. New examples of semi-discrete Darboux integrable systems are obtained.

Keywords: semi-discrete system; Darboux integrability; x-integral; discretization.
2000 Mathematics Subject Classification: 35Q51,35L70,37K60, 37K10.

1. Introduction

The classification problem of Darboux integrable equations has attracted a considerable interest in the recent time, see the survey paper [1] and references there in. There are many classification results in the continuous case. The case of semi-discrete and discrete equations is not that well studied. Discrete models play a big role in many areas of physics and discretization of existing integrable continuous models is an important problem. There is a currently discussed conjecture saying that for each continuous Darboux integrable system it is possible to find a semi-discrete Darboux integrable system that admits the same set of x-integrals. To better understand properties of semi-discrete and discrete Darboux integrable systems it is important to have enough examples of such systems. We can test the conjecture and obtain new semi-discrete Darboux integrable systems, corresponding to given continuous ones, following an approach proposed by Habibullin et al., see [2]. In this case we take a Darboux integrable continuous equation and look for a semi-discrete equation admitting the same integrals. The method was successfully applied to many Darboux integrable continuous equations, see [2]-[4]. In almost all considered cases such semi-discrete equations exist and they are Darboux integrable.

In the present paper we apply this method of discretization to Darboux integrable systems to obtain new Darboux integrable semi-discrete systems. Let us give necessary definitions and formulate the main results of our work.

[^0]
K. Zheltukhin and N. Zheltukhina / On the discretization of Darboux Integrable Systems

Consider a hyperbolic continuous system

$$
\begin{equation*}
p_{x y}=\mathscr{A}\left(p, p_{x}, p_{y}\right) \quad\left(p_{x y}^{i}=\mathscr{A}^{i}\left(p^{1} \ldots p^{N}, p_{x}^{1} \ldots p_{x}^{N}, p_{y}^{1} \ldots p_{y}^{N}\right) \quad i=1, \ldots, N\right) \tag{1.1}
\end{equation*}
$$

where $p^{i}(x, y), i=1, \ldots, N$, are functions of continuous variables $x, y \in \mathbb{R}$. We say that a function $F\left(x, y, p, p_{y}, p_{y y}, \ldots\right)$ is an x-integral of the system (1.1) if

$$
D_{x} F\left(x, y, p, p_{y}, p_{y y}, \ldots\right)=0 \quad \text { on all the solutions of the system }(1.1)
$$

The operator D_{x} represents the total derivative with respect to x. The y-integral of the system (1.1) is defined in a similar way. The system (1.1) is called Darboux integrable if it admits N functionally independent non-trivial x-integrals and N functionally independent non-trivial y-integrals.

Consider a hyperbolic semi-discrete system

$$
\begin{equation*}
q_{x 1}=\mathscr{B}\left(q, q_{x}, q_{1}\right), \quad\left(q_{x 1}^{i}=\mathscr{B}^{i}\left(q^{1} \cdots q^{N}, q_{x}^{1} \cdots q_{x}^{N}, q_{1}^{1} \cdots q_{1}^{N}\right), \quad i=1, \ldots, N\right) \tag{1.2}
\end{equation*}
$$

where $q^{i}(x, n), i=1, \ldots, N$, are functions of a continuous variable $x \in \mathbb{R}$ and a discrete variable $n \in$ \mathbb{N}. Note that we use notation $q_{1}(x, n)=D q(x, n)=q(x, n+1)$ and $q_{k}(x, n)=D^{k} q(x, n)=q(x, n+k)$, where D is the shift operator. To state the Darboux integrability of a semi-discrete system we need to define x - and n-integrals for such systems, see [5]. An x-integral is defined in the same way as in continuous case and a function $I\left(x, n, q, q_{x}, q_{x x}, \ldots\right)$ is an n-integral of system (1.2) if

$$
D I\left(x, n, q, q_{x}, q_{x x}, \ldots\right)=I\left(x, n, q, q_{x}, q_{x x}, \ldots\right) \quad \text { on all the solutions of the system (1.2). }
$$

The system (1.2) is called Darboux integrable if it admits N functionally independent non-trivial x-integrals and N functionally independent non-trivial n-integrals.

To find new Darboux integrable semi-discrete systems we applied the discretization method proposed in [2] to one of the continuous systems derived by Zhiber, Kostrigina in [6] and continuous systems derived by Shabat, Yamilov in [7]. In [6] the authors considered the classification problem for Darboux integrable continuous systems that admit the x - and y-integrals of the first and second order. In [7] the authors considered the exponential type system

$$
\mu_{x y}^{i}=e^{\sum a_{i j} \mu^{j}}, \quad i, j=1,2, \ldots, N
$$

It was shown that such a system is Darboux integrable if and only if the matrix $A=\left(a_{i j}\right)$ is a Cartan matrix of a semi-simple Lie algebra. Such systems are closely related to the classical Toda field theories, see [8]-[10] and references there in. In this case we obtain the Darboux integrable semi-discrete systems that were already described in [11].

First we consider the following system (see [6])

$$
\left\{\begin{array}{l}
u_{x y}=\frac{u_{x} u_{y}}{u+v+c}+\left(\frac{1}{u+v+c}+\frac{1}{u+v-c}\right) u_{x} v_{y} \tag{1.3}\\
v_{x y}=\frac{v_{x} v_{y}}{u+v-c}+\left(\frac{1}{u+v+c}+\frac{1}{u+v-c}\right) u_{x} v_{y}
\end{array}\right.
$$

where c is an arbitrary constant. This system is Darboux integrable and admits the following y integrals

$$
\begin{equation*}
I_{1}=2 v-\frac{v_{x}(u+v+c)}{u_{x}}+2 c \ln \frac{u_{x}}{u+v+c} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{u_{x x}}{u_{x}}-\frac{2 u_{x}+v_{x}}{u+v+c} . \tag{1.5}
\end{equation*}
$$

The x - integrals have the same form in $u, v, u_{y}, v_{y}, \ldots$ variables.
Now we look for semi-discrete systems admitting these functions as n-integrals. The obtained results are given in Theorems 1.1 and 1.2 below.

Theorem 1.1. The system

$$
\left\{\begin{array}{l}
u_{1 x}=f\left(x, n, u, v, u_{1}, v_{1}, u_{x}, v_{x}\right) \tag{1.6}\\
v_{1 x}=g\left(x, n, u, v, u_{1}, v_{1}, u_{x}, v_{x}\right)
\end{array}\right.
$$

possessing n-integrals (1.4) and (1.5), where c is a function of n satisfying $c(n) \neq c(n+1)$ for all $n \in \mathbb{Z}$, has the form

$$
\left\{\begin{array}{l}
u_{1 x}=\frac{\left(u_{1}+v_{1}+c_{1}\right) u_{x}}{u+v+c} \tag{1.7}\\
v_{1 x}=\frac{2\left(v_{1}-v\right) u_{x}}{u+v+c}+\frac{2\left(c_{1}-c\right) u_{x}}{u+v+c} \ln \frac{u_{x}}{u+v+c}+v_{x} .
\end{array}\right.
$$

Moreover, the system above also possesses x-integrals

$$
\begin{equation*}
F_{1}=\frac{\left(c-c_{1}\right)\left(v_{2}-v\right)-\left(c-c_{2}\right)\left(v_{1}-v\right)}{\left(c-c_{2}\right)\left(v_{3}-v\right)-\left(c-c_{3}\right)\left(v_{2}-v\right)} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}=\frac{\left(c_{1}-c_{2}\right) u+\left(c_{2}-c\right) u_{1}+\left(c-c_{1}\right) u_{2}}{\sqrt{\left(c_{1}-c_{2}\right) v+\left(c_{2}-c\right) v_{1}+\left(c-c_{1}\right) v_{2}}}-\sqrt{\left(c_{1}-c_{2}\right) v+\left(c_{2}-c\right) v_{1}+\left(c-c_{1}\right) v_{2}} . \tag{1.9}
\end{equation*}
$$

Hence, semi-discrete system (1.7) is Darboux integrable.
Theorem 1.2. The system (1.6) possessing n-integrals (1.4) and (1.5), where c is a constant, is either

$$
\left\{\begin{array}{l}
u_{1 x}=\frac{\left(u_{1}+v_{1}+c\right) u_{x}}{u+v+c} \tag{1.10}\\
v_{1 x}=\frac{2\left(v_{1}-v\right) u_{x}}{u+v+c}+v_{x}
\end{array}\right.
$$

with x-integrals $F_{1}=\frac{v_{1}-v}{v_{2}-v_{1}}$ and $F_{2}=\frac{u_{2}-u+v-v_{2}}{\sqrt{v_{1}-v}}$, or

$$
\left\{\begin{array}{l}
u_{1 x}=\frac{\left(u_{1}+v_{1}+c\right) B u_{x}}{u+v+c} \tag{1.11}\\
v_{1 x}=\frac{2 B\left(v_{1}-v+c \ln B\right)}{u+v+c} u_{x}+B v_{x},
\end{array}\right.
$$

where B is defined by equality $H\left(K_{1}, K_{2}\right)=0$ with

$$
K_{1}=\frac{v_{1}-v B+B(1-B) u+c \ln B}{(B-1)^{2}}+c \ln (B-1)-c \ln B
$$

and

$$
K_{2}=\frac{u_{1}+c B-c-c \ln B}{B-1}+\frac{B^{2} v-B v_{1}-c B \ln B}{(B-1)^{2}}+c \ln (B-1)-c \ln B,
$$

and H being any smooth function.
Remark 1.1. We considered some special cases of the system (1.11) and get Darboux integrable systems.
(I) System (1.11) with $B=\frac{u-v+(-1)^{n} \sqrt{(u-v)^{2}+4 u v_{1}}}{2 u}$ is Darboux Integrable. (The expression for B is found from $K_{1}=0$, with $c=0$.)
(II) System (1.11) with $B=\frac{v_{1}-u_{1}+(-1)^{n} \sqrt{\left(v_{1}-u_{1}\right)^{2}+4 u_{1} v}}{2 v}$ is Darboux Integrable. (The expression for B is found from $K_{2}=0$, with $c=0$.)
Remark 1.2. Expansion of the function $B\left(u, v, v_{1}\right)$, given implicitly by $(B-1)^{2} K_{1}=0$, into a series of the form

$$
\begin{equation*}
B\left(u, v, v_{1}\right)=\sum_{n=0}^{\infty} a_{n}\left(v_{1}-v\right)^{n}, \tag{1.12}
\end{equation*}
$$

where coefficients a_{n} depend on variables u and v, yields $a_{0}=1$ and $a_{1}=\frac{1}{u+v-c}$. So B can be written as

$$
\begin{equation*}
B\left(u, v, v_{1}\right)=1+\frac{1}{u+v-c}\left(v_{1}-v\right)+\sum_{n=2}^{\infty} a_{n}\left(v_{1}-v\right)^{n} . \tag{1.13}
\end{equation*}
$$

By letting $u_{1}=u+\varepsilon u_{y}$ and $v=v+\varepsilon v_{y}$ and taking $\varepsilon \rightarrow 0$ one can see that the system (1.11) has a continuum limit (1.3).

Let us discuss the exponential type systems. We consider the discretization of such systems corresponding to 2×2 matrices, namely,

$$
\begin{align*}
& \mu_{x y}=e^{2 \mu-v} \\
& v_{x y}=e^{-c \mu-2 v} \tag{1.14}
\end{align*}
$$

where $c=1,2,3$. The obtained results are given in Theorem 1.3 below. The discretization of such systems was also considered in [11], where the form of the corresponding semi-discrete system was directly postulated and then the Darboux integrability proved. In our approach we do not make any specific assumptions about the form of the corresponding semi-discrete system. Note that the integrals corresponding to Darboux integrable exponential systems are given in the statement of Theorem 1.3.

Theorem 1.3.

(1) The system

$$
\left\{\begin{array}{l}
u_{1 x}=\widetilde{f}\left(u, v, u_{1}, v_{1}, u_{x}, v_{x}\right) \tag{1.15}\\
v_{1 x}=\widetilde{g}\left(u, v, u_{1}, v_{1}, u_{x}, v_{x}\right)
\end{array}\right.
$$

possessing n-integrals

$$
\begin{equation*}
I_{1}=u_{x x}+v_{x x}-u_{x}^{2}+u_{x} v_{x}-v_{x}^{2} \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}^{*}=u_{x x x}+u_{x}\left(v_{x x}-2 u_{x x}\right)+u_{x}^{2} v_{x}-u_{x} v_{x}^{2} \tag{1.17}
\end{equation*}
$$

has the form

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+A e^{u_{1}+u-v_{1}} \tag{1.18}\\
v_{1 x}=v_{x}+B e^{-u+v+v_{1}}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+A e^{u_{1}+u-v} \tag{1.19}\\
v_{1 x}=v_{x}+B e^{-u_{1}+v+v_{1}}
\end{array}\right.
$$

where A and B are arbitrary constants.
(2) The system (1.15) possessing n-integrals

$$
\begin{equation*}
I_{2}=2 u_{x x}+v_{x x}-2 u_{x}^{2}+2 u_{x} v_{x}-v_{x}^{2} \tag{1.20}
\end{equation*}
$$

and

$$
\begin{align*}
I_{2}^{*}=u_{x x x x}+u_{x}\left(v_{x x x}-2 u_{x x x}\right)+ & u_{x x}\left(4 u_{x} v_{x}-2 u_{x}^{2}-v_{x}^{2}\right) \\
& +u_{x x}\left(v_{x x}-u_{x x}\right)+v_{x x} u_{x}\left(u_{x}-2 v_{x}\right)+u_{x}^{4}+u_{x}^{2} v_{x}^{2}-2 u_{x}^{3} v_{x} \tag{1.21}
\end{align*}
$$

has the form

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+A e^{u+u_{1}-v_{1}} \tag{1.22}\\
v_{1 x}=v_{x}+B e^{-2 u+v+v_{1}}
\end{array}\right.
$$

where A and B are arbitrary constants.
(3) The system (1.15) possessing n-integrals

$$
\begin{equation*}
I_{3}=u_{x x}+\frac{1}{3} v_{x x}-u_{x}^{2}+u_{x} v_{x}-\frac{1}{3} v_{x}^{2} \tag{1.23}
\end{equation*}
$$

and

$$
\begin{align*}
& I_{3}^{*}= \\
& +u_{(6)}-2 u_{(5)} u_{x}+v_{(5)} u_{x}+u_{(4)}\left(32\left(u_{x}\right)^{2}-30 u_{x} v_{x}+11\left(v_{x}\right)^{2}-40 u_{x x}-11 v_{x x}\right) \\
& +v_{(4)}\left(14\left(u_{x}\right)^{2}-15 u_{x} v_{x}+(13 / 3)\left(v_{x}\right)^{2}-10 u_{x x}-(13 / 3) v_{x x}\right)+19\left(u_{(3)}\right)^{2}+(13 / 6)\left(v_{(3)}\right)^{2}+16 u_{(3)} v_{(3)} \\
& \quad+u_{(3)}\left(-36 u_{x x} u_{x}+18 u_{x x} v_{x}+80 v_{x x} u_{x}-45 v_{x x} v_{x}\right)+v_{(3)}\left(-52 u_{x x} u_{x}+33 u_{x x} v_{x}-5 v_{x x} u_{x}\right) \\
& \quad+u_{(3)}\left(-64\left(u_{x}\right)^{3}+102\left(u_{x}\right)^{2} v_{x}-62 u_{x}\left(v_{x}\right)^{2}+13\left(v_{x}\right)^{3}\right)+v_{(3)}\left(32\left(u_{x}\right)^{3}-58\left(u_{x}\right)^{2} v_{x}\right. \\
& \left.\quad+38 u_{x}\left(v_{x}\right)^{2}-(26 / 3)\left(v_{x}\right)^{3}\right)+66\left(u_{x x}\right)^{3}+(26 / 3)\left(v_{x x}\right)^{3}-35\left(u_{x x}\right)^{2}\left(v_{x x}\right)-5 u_{x x}\left(v_{x x}\right)^{2} \\
& +\left(u_{x x}\right)^{2}\left(30\left(u_{x}\right)^{2}-18 u_{x} v_{x}-(11 / 2)\left(v_{x}\right)^{2}\right)+u_{x x} v_{x x}\left(-34\left(u_{x}\right)^{2}+32 u_{x} v_{x}-2\left(v_{x}\right)^{2}\right)-2\left(v_{x x}\right)^{2} u_{x} v_{x} \\
& +u_{x x}\left(6\left(u_{x}\right)^{4}-24\left(u_{x}\right)^{3} v_{x}+25\left(u_{x}\right)^{2}\left(v_{x}\right)^{2}-9 u_{x}\left(v_{x}\right)^{3}+\left(v_{x}\right)^{4}\right)+v_{x x}\left(-\left(u_{x}\right)^{4}+8\left(u_{x}\right)^{3} v_{x}-8\left(u_{x}\right)^{2}\left(v_{x}\right)^{2}\right. \tag{1.24}\\
& \left.\quad+2 u_{x}\left(v_{x}\right)^{3}\right)+\left(-2\left(u_{x}\right)^{6}+6\left(u_{x}\right)^{5} v_{x}-(13 / 2)\left(u_{x}\right)^{4}\left(v_{x}\right)^{2}+3\left(u_{x}\right)^{3}\left(v_{x}\right)^{3}-(1 / 2)\left(u_{x}\right)^{2}\left(v_{x}\right)^{4}\right)
\end{align*}
$$

has the form

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+A e^{u+u_{1}-v_{1}} \tag{1.25}\\
v_{1 x}=v_{x}+B e^{-3 u+v+v_{1}}
\end{array}\right.
$$

where A and B are arbitrary constants.
Remark 1.3. We note that while considering systems with integrals (1.20) and (1.21) we also obtain two degenerate systems

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x} \tag{1.26}\\
v_{1 x}=v_{x}+B e^{-(2+c) u+c u_{1}+v+v_{1}},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+A e^{u+u_{1}+2 c v-(2 c+1) v_{1}} \tag{1.27}\\
v_{1 x}=v_{x},
\end{array}\right.
$$

where A, B and c are arbitrary constants, which are equivalent to a Darboux integrable equation.
Remark 1.4. By letting $u=\mu^{1}, u_{1}=\mu^{1}+\varepsilon \mu_{y}^{1}, v=\mu^{2}, v_{1}=\mu^{2}+\varepsilon \mu_{y}^{2}$ and $A=\varepsilon, B=\varepsilon$ in equations (1.18), (1.22), (1.25) and taking $\varepsilon \rightarrow 0$ one can see that the considered systems have corresponding continuum limit given by (1.14).

2. Proof of Theorems 1.1 and 1.2

Let us find a semi-discrete system (1.6) possessing n-integrals (1.4) and (1.5), where c is an arbitrary constant, possibly dependent on n. Let $D c=c_{1}$. It follows from $D I_{2}=I_{2}$ that

$$
\frac{u_{1 x x}}{u_{1 x}}-\frac{2 u_{1 x}+v_{1 x}}{u_{1}+v_{1}+c_{1}}=\frac{u_{x x}}{u_{x}}-\frac{2 u_{x}+v_{x}}{u+v+c},
$$

that is

$$
\begin{equation*}
\frac{f_{x}+f_{u} u_{x}+f_{v} v_{x}+f_{u_{1}} f+f_{v_{1}} g+f_{u_{x}} u_{x x}+f_{v_{x}} v_{x x}}{f}-\frac{2 f+g}{u_{1}+v_{1}+c_{1}}=\frac{u_{x x}}{u_{x}}-\frac{2 u_{x}+v_{x}}{u+v+c} . \tag{2.1}
\end{equation*}
$$

Compare the coefficients by $v_{x x}$ and $u_{x x}$, we get $f_{v_{x}}=0$ and $\frac{f_{u_{x}}}{f}=\frac{1}{u_{x}}$. Hence

$$
\begin{equation*}
f\left(x, n, u, v, u_{1}, v_{1}, u_{x}, v_{x}\right)=A\left(x, n, u, v, u_{1}, v_{1}\right) u_{x} . \tag{2.2}
\end{equation*}
$$

It follows from $D I_{1}=I_{1}$ that

$$
\begin{equation*}
2 v_{1}-\frac{\left(u_{1}+v_{1}+c_{1}\right) g}{f}+2 c_{1} \ln \frac{f}{u_{1}+v_{1}+c_{1}}=2 v-\frac{v_{x}(u+v+c)}{u_{x}}+2 c \ln \frac{u_{x}}{u+v+c} . \tag{2.3}
\end{equation*}
$$

Using (2.2) we obtain

$$
2 v_{1}-\frac{\left(u_{1}+v_{1}+c_{1}\right) g}{A u_{x}}+2 c_{1} \ln \frac{A u_{x}}{u_{1}+v_{1}+c_{1}}=2 v-\frac{v_{x}(u+v+c)}{u_{x}}+2 c \ln \frac{u_{x}}{u+v+c}
$$

and find g as

$$
\begin{array}{r}
g=\left(\frac{2\left(v_{1}-v\right) A}{\left(u_{1}+v_{1}+c_{1}\right)}+\frac{2 A c_{1}}{\left(u_{1}+v_{1}+c_{1}\right)} \ln \frac{(u+v+c) A}{\left(u_{1}+v_{1}+c_{1}\right)}\right) u_{x}+\frac{2\left(c_{1}-c\right) A}{\left(u_{1}+v_{1}+c_{1}\right)} u_{x} \ln \frac{u_{x}}{u+v+c} \\
+\frac{(u+v+c) A}{\left(u_{1}+v_{1}+c_{1}\right)} v_{x} . \tag{2.4}
\end{array}
$$

Substituting the expressions (2.2) and (2.4) into equality (2.1) and comparing coefficients by u_{x}, v_{x}, $u_{x} \ln \frac{u_{x}}{u+v+c}$ and free term we get the following equalities

$$
\begin{equation*}
\frac{A_{x}}{A}=0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2\left(c_{1}-c\right) A_{v_{1}}}{\left(u_{1}+v_{1}+c_{1}\right)}-\frac{2\left(c_{1}-c\right) A}{\left(u_{1}+v_{1}+c_{1}\right)^{2}}=0 \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
\frac{A_{u}}{A}+A_{u_{1}}+\left(\frac{A_{v_{1}}}{A}-\frac{1}{\left(u_{1}+v_{1}+c_{1}\right)}\right)\left(\frac{2\left(v_{1}-v\right) A}{\left(u_{1}+v_{1}+c_{1}\right)}\right. & \left.+\frac{2 c_{1} A}{\left(u_{1}+v_{1}+c_{1}\right)} \ln \frac{(u+v+c) A}{\left(u_{1}+v_{1}+c_{1}\right)}\right) \\
& -\frac{2 A}{\left(u_{1}+v_{1}+c_{1}\right)}+\frac{2}{(u+v+c)}=0 \tag{2.7}
\end{align*}
$$

$$
\begin{equation*}
\frac{A_{v}}{A}+\frac{(u+v+c) A_{v_{1}}}{\left(u_{1}+v_{1}+c_{1}\right)}-\frac{(u+v+c) A}{\left(u_{1}+v_{1}+c_{1}\right)^{2}}+\frac{1}{(u+v+c)}=0 \tag{2.8}
\end{equation*}
$$

We have two possibilities: $c_{1} \neq c$ and $c_{1}=c$.

2.1. \boldsymbol{c} depends on n

First we consider the case $c_{1} \neq c$, that is c depends on n and satisfies $c(n) \neq c(n+1)$ for all n. Then equations (2.6)-(2.8) are transformed into

$$
\begin{align*}
& \frac{A_{v_{1}}}{A}-\frac{1}{\left(u_{1}+v_{1}+c_{1}\right)}=0 \tag{2.9}\\
& \frac{A_{u}}{A}+A_{u_{1}}-\frac{2 A}{\left(u_{1}+v_{1}+c_{1}\right)}+\frac{2}{(u+v+c)}=0 \tag{2.10}\\
& \frac{A_{v}}{A}+\frac{1}{(u+v+c)}=0 \tag{2.11}
\end{align*}
$$

Equations (2.9) and (2.11) imply that

$$
\begin{equation*}
A=\frac{\left(u_{1}+v_{1}+c_{1}\right)}{(u+v+c)} M\left(n, u, u_{1}\right) \tag{2.12}
\end{equation*}
$$

Substituting the above A into (2.10) we get that M satisfies

$$
\begin{equation*}
(u+v+c) \frac{M_{u}}{M}+\left(u_{1}+v_{1}+c_{1}\right) M_{u_{1}}+(1-M)=0 \tag{2.13}
\end{equation*}
$$

Differentiating equation (2.13) with respect to v and v_{1} we get that $M_{u}=0$ and $M_{u_{1}}=0$ respectively. Thus, equation (2.13) implies that $M=1$. So in the case $c_{1} \neq c$ we arrive to the system of equations (1.7). We note that the system (1.7) is Darboux integrable. It admits two n-integrals (1.4) and (1.5) and two x-integrals (1.8) and (1.9). The x-integrals can be found by considering the characteristic x-ring for system (1.7).

2.2. c does not depend on n

Now we consider the case $c=c_{1}$, that is c is a constant independent of n. Then we have equations (2.7) and (2.8). Introducing new variable $B=\frac{(u+v+c)}{\left(u_{1}+v_{1}+c\right)} A$ we can rewrite the equations as

$$
\begin{align*}
& \frac{B_{u}}{B}+\frac{\left(u_{1}+v_{1}+c\right)}{(u+v+c)} B_{u_{1}}+2 \frac{\left(v_{1}-v+c \ln B\right)}{(u+v+c)} B_{v_{1}}+\frac{1-B}{(u+v+c)}=0 \tag{2.14}\\
& \frac{B_{v}}{B}+B_{v_{1}}=0 \tag{2.15}
\end{align*}
$$

The set of solutions of the above system is not empty, for example it admits a solution $B=1$. Setting $B=1$ we arrive to the system of equations (1.10). We note that the system (1.10) is Darboux integrable. It admits two n-integrals (1.4) and (1.5) and two x-integrals

$$
F_{1}=\frac{v_{1}-v}{v_{2}-v_{1}}, \quad F_{2}=\frac{u_{2}-u+v-v_{2}}{\sqrt{v_{1}-v}}
$$

The x-integrals are calculated by considering the characteristic x-ring for system (1.10).

Now let us consider case when $B \neq 1$ identically. For function $W=W\left(u, v, u_{1}, v_{1}, B\right)$ equations (2.14) and (2.15) become

$$
\begin{align*}
& \frac{W_{u}}{B}+\frac{\left(u_{1}+v_{1}+c\right)}{(u+v+c)} W_{u_{1}}+2 \frac{\left(v_{1}-v+c \ln B\right)}{(u+v+c)} W_{v_{1}}+\frac{B-1}{(u+v+c)} W_{B}=0 \tag{2.16}\\
& \frac{W_{v}}{B}+W_{v_{1}}=0 . \tag{2.17}
\end{align*}
$$

After the change of variables $\widetilde{v}=v+c, \widetilde{v_{1}}=v_{1}+c-(v+c) B, \widetilde{u}=u, \widetilde{u_{1}}=u_{1}, \widetilde{B}=B$ equations (2.17) and (2.16) become $W_{\widetilde{v}}=0$ and

$$
\frac{\widetilde{u}+\widetilde{v}}{\widetilde{B}} W_{\widetilde{u}}+\left(\widetilde{u_{1}}+\widetilde{v_{1}}+\widetilde{v} \widetilde{B}\right) W_{\widetilde{u_{1}}}+\left(2 \widetilde{v_{1}}+2 c \ln \widetilde{B}+\widetilde{v}(\widetilde{B}-1)\right) W_{\widetilde{v_{1}}}+(\widetilde{B}-1) W_{\widetilde{B}}=0
$$

We differentiate the last equality with respect to \widetilde{v}, use $W_{\widetilde{v}}=0$, and find that W satisfies the following equations

$$
\begin{gathered}
\frac{W_{\widetilde{u}}}{\widetilde{B}}+\widetilde{B} W_{\widetilde{u_{1}}}+(\widetilde{B}-1) W_{\widetilde{v_{1}}}=0 \\
\frac{\widetilde{u}}{\widetilde{B}} W_{\widetilde{u}}+\left(\widetilde{u_{1}}+\widetilde{v_{1}}\right) W_{\widetilde{u_{1}}}+\left(2 \widetilde{v_{1}}+2 c \ln \widetilde{B}\right) W_{\widetilde{v_{1}}}+(\widetilde{B}-1) W_{\widetilde{B}}=0
\end{gathered}
$$

After doing another change of variables $u_{1}^{*}=\widetilde{u_{1}}-\widetilde{B^{2}} \widetilde{u}, v_{1}^{*}=\widetilde{v_{1}}+\widetilde{B}(1-\widetilde{B}) \widetilde{u}, u^{*}=\widetilde{u}, B^{*}=\widetilde{B}$, we obtain that $W_{u^{*}}=0$ and

$$
\left(u_{1}^{*}+v_{1}^{*}\right) W_{u_{1}^{*}}+\left(2 v_{1}^{*}+2 c \ln B^{*}\right) W_{v_{1}^{*}}+\left(B^{*}-1\right) W_{B^{*}}=0
$$

The first integrals of the last equation are

$$
K_{1}=\frac{v_{1}^{*}}{\left(B^{*}-1\right)^{2}}+\frac{c \ln B^{*}}{\left(B^{*}-1\right)^{2}}-c \ln B^{*}+c \ln \left(B^{*}-1\right)+\frac{c}{B^{*}-1}
$$

and

$$
K_{2}=\frac{u_{1}^{*}-c-c \ln B^{*}}{B^{*}-1}-\frac{B^{*} v_{1}^{*}}{\left(B^{*}-1\right)^{2}}-\frac{c B^{*} \ln B^{*}}{\left(B^{*}-1\right)^{2}}+c \ln \left(B^{*}-1\right)-c \ln B^{*}
$$

They can be rewritten in the original variables as

$$
K_{1}=\frac{v_{1}-v B+B(1-B) u+c \ln B}{(B-1)^{2}}+c \ln (B-1)-c \ln B
$$

and

$$
K_{2}=\frac{u_{1}+c B-c-c \ln B}{B-1}+\frac{B^{2} v-B v_{1}-c B \ln B}{(B-1)^{2}}+c \ln (B-1)-c \ln B
$$

Therefore, system (1.6) becomes (1.11) due to (2.2) and (2.4).

2.3. Proof of Remark 1.1

Function B is any function satisfying the equality $H\left(K_{1}, K_{2}\right)=0$, where H is any smooth function. (I) By taking function H as $H\left(K_{1}, K_{2}\right)=K_{1}$ we obtain one possible function B. It satisfies the equality $-u B^{2}+(u-v) B+v_{1}=0$ and can be taken as $B=\frac{u-v+(-1)^{n} \sqrt{(u-v)^{2}+4 u v_{1}}}{2 u}$.
(II) By taking function H as $H\left(K_{1}, K_{2}\right)=K_{2}$ we obtain another possible function B. It satisfies the equality $v B^{2}+\left(u_{1}-v_{1}\right) B-u_{1}=0$ and can be taken as $B=\frac{v_{1}-u_{1}+(-1)^{n} \sqrt{\left(v_{1}-u_{1}\right)^{2}+4 u_{1} v}}{2 v}$.

In both cases ((I) and (II)) let us consider the corresponding x-rings. Denote by $X=D_{x}, Y_{1}=$ $\frac{\partial}{\partial u_{x}}, Y_{2}=\frac{\partial}{\partial v_{x}}, E_{1}=\frac{u+v}{B}\left[Y_{1}, X\right], E_{2}=\frac{1}{B}\left[Y_{2}, X\right], E_{3}=\left[E_{1}, E_{2}\right]$. Note that $X=u_{x} E_{1}+v_{x} E_{2}$. We have,

$\left[E_{i}, E_{j}\right]$	E_{1}	E_{2}	E_{3}
E_{1}	0	E_{3}	$\alpha_{1} E_{2}+\alpha_{2} E_{3}$
E_{2}	$-E_{3}$	0	0
E_{3}	$-\left(\alpha_{1} E_{2}+\alpha_{2} E_{3}\right)$	0	0

where

$$
\alpha_{1}=\frac{2 v_{1}(u-v)+2\left(u v-v^{2}+2 u v_{1}\right) B}{v_{1}(u-v)+\left((u-v)^{2}+2 u v_{1}\right) B}, \quad \alpha_{2}=-3+\frac{2}{B}
$$

in case (I) and

$$
\alpha_{1}=\frac{2 u_{1}^{2}+4 u_{1} v-2 u_{1} v_{1}+2\left(-\left(u_{1}-v_{1}\right)^{2}+v v_{1}-3 v u_{1}\right) B}{u_{1}\left(v_{1}-u_{1}\right)+\left(\left(u_{1}-v_{1}\right)^{2}+2 u_{1} v\right) B}, \quad \alpha_{2}=-3+\frac{2}{B}
$$

in case (II).

3. Proof of Theorem 1.3

3.1. Case (1)

Let us find a system

$$
\left\{\begin{array}{l}
u_{1 x}=\widetilde{f}\left(x, n, u, v, u_{1}, v_{1}, u_{x}, v_{x}\right) \tag{3.1}\\
v_{1 x}=\widetilde{g}\left(x, n, u, v, u_{1}, v_{1}, u_{x}, v_{x}\right)
\end{array}\right.
$$

possessing n-integrals (1.16) and (1.17). The equality $D I=I$ implies

$$
\begin{equation*}
u_{1 x x}+v_{1 x x}-u_{1 x}^{2}+u_{1 x} v_{1 x}-v_{1 x}^{2}=u_{x x}+v_{x x}-u_{x}^{2}+u_{x} v_{x}-v_{x}^{2} \tag{3.2}
\end{equation*}
$$

or the same

$$
\begin{align*}
\widetilde{f}_{x}+\widetilde{f}_{u} u_{x}+\widetilde{f}_{v} v_{x} & +\widetilde{f}_{u_{1}} \widetilde{f}+\widetilde{f}_{v_{1}} \widetilde{g}+\widetilde{f}_{u_{x}} u_{x x}+\widetilde{f}_{v_{x}} v_{x x}+\widetilde{g}_{x}+\widetilde{g}_{u} u_{x}+\widetilde{g}_{v} v_{x} \\
& +\widetilde{g}_{u_{1}} \widetilde{f}+\widetilde{g}_{v_{1}} \widetilde{g}+\widetilde{g}_{u_{x}} u_{x x}+\widetilde{g}_{v_{x}} v_{x x}-\widetilde{f}^{2}+\widetilde{f} \widetilde{g}-\widetilde{g}^{2}=u_{x x}+v_{x x}-u_{x}^{2}+u_{x} v_{x}-v_{x}^{2} \tag{3.3}
\end{align*}
$$

We consider the coefficients by $u_{x x}$ and $v_{x x}$ in (3.3) to get

$$
\begin{align*}
\widetilde{f}_{u_{x}}+\widetilde{g}_{u_{x}} & =1 \tag{3.4}\\
\widetilde{f}_{v_{x}}+\widetilde{g}_{v_{x}} & =1 \tag{3.5}
\end{align*}
$$

The equality $D I_{1}^{*}=I_{1}^{*}$ implies

$$
\begin{equation*}
u_{1 x x x}+u_{1 x}\left(v_{1 x x}-2 u_{1 x x}\right)+u_{1 x}^{2} v_{1 x}-u_{1 x} v_{1 x}^{2}=u_{x x x}+u_{x}\left(v_{x x}-2 u_{x x}\right)+u_{x}^{2} v_{x}-u_{x} v_{x}^{2} . \tag{3.6}
\end{equation*}
$$

Since $D I_{1}^{*}=u_{1 x x x}+\cdots=\widetilde{f}_{u_{x}} u_{x x x}+\ldots$, where the remaining terms do not depend on $u_{x x x}$, the equality (3.6) implies

$$
\begin{equation*}
\widetilde{f}_{u_{x}}=1 \tag{3.7}
\end{equation*}
$$

Note that $J=D_{x} I_{1}-I_{1}^{*}=v_{x x x}+v_{x}\left(u_{x x}-2 v_{x x}\right)+v_{x}^{2} u_{x}-u_{x}^{2} v_{x}$ is an n-integral as well. Since $D J=J$ and $D J=v_{1 x x x}+\cdots=\widetilde{g}_{v_{x}} v_{x x x}+\ldots$, where the remaining terms do not depend on $v_{x x x}$, then

$$
\begin{equation*}
\tilde{g}_{v_{x}}=1 . \tag{3.8}
\end{equation*}
$$

It follows from equalities (3.4), (3.5), (3.7) and (3.8) that $\widetilde{f}_{v_{x}}=0$ and $\widetilde{g}_{u_{x}}=0$. Therefore the system (3.1) and equality (3.3) become

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+f\left(x, n, u, v, u_{1}, v_{1}\right) \tag{3.9}\\
v_{1 x}=v_{x}+g\left(x, n, u, v, u_{1}, v_{1}\right)
\end{array}\right.
$$

and

$$
\begin{gather*}
f_{x}+f_{u} u_{x}+f_{v} v_{x}+f_{u_{1}}\left(u_{x}+f\right)+f_{v_{1}}\left(v_{x}+g\right)+g_{x}+g_{u} u_{x}+g_{v} v_{x}+g_{u_{1}}\left(u_{x}+f\right) \\
+g_{v_{1}}\left(v_{x}+g\right)-2 u_{x} f-f^{2}+u_{x} g+v_{x} f+f g-2 v_{x} g-g^{2}=0 . \tag{3.10}
\end{gather*}
$$

By considering coefficients by u_{x}, v_{x} and $u_{x}^{0} v_{x}^{0}$ in the last equality, we get

$$
\begin{align*}
(f+g)_{u}+(f+g)_{u_{1}}+(f+g)-3 f & =0, \tag{3.11}\\
(f+g)_{v}+(f+g)_{v_{1}}+(f+g)-3 g & =0, \tag{3.12}\\
f(f+g)_{u_{1}}+g(f+g)_{v_{1}}+(f+g)_{x}-(f+g)^{2}+3 f g & =0 . \tag{3.13}
\end{align*}
$$

Now let us rewrite inequality (3.6) for the system (3.9)

$$
\begin{align*}
& D_{x}\left(f_{x}+f_{u} u_{x}+\right.\left.f_{v} v_{x}+f_{u_{1}}\left(u_{x}+f\right)+f_{v_{1}}\left(v_{x}+g\right)\right) \\
& \quad+\left(u_{x}+f\right)\left(g_{x}+g_{u} u_{x}+g_{v} v_{x}+g_{u_{1}}\left(u_{x}+f\right)+g_{v_{1}}\left(v_{x}+g\right)+v_{x x}\right) \\
& \quad+\left(u_{x}+f\right)\left(-2 f_{x}-2 f_{u} u_{x}-2 f_{v} v_{x}-2 f_{u_{1}}\left(u_{x}+f\right)-2 f_{v_{1}}\left(v_{x}+g\right)-2 u_{x x}\right) \\
&+\left(u_{x}^{2}+\right.\left.2 u_{x} f+f^{2}\right)\left(v_{x}+g\right)-\left(v_{x}^{2}+2 v_{x} g+g^{2}\right)\left(u_{x}+f\right)=u_{x}\left(v_{x x}-2 u_{x x}\right)+u_{x}^{2} v_{x}-u_{x} v_{x}^{2} . \tag{3.14}
\end{align*}
$$

By comparing the coefficients by $u_{x x}$ and $v_{x x}$ in the last equality, we get

$$
\begin{align*}
& f_{u}+f_{u_{1}}=2 f \\
& f_{v}+f_{v_{1}}=-f . \tag{3.15}
\end{align*}
$$

It follows from equality $D J=J$ that

$$
\begin{align*}
& D_{x}\left(g_{x}+g_{u} u_{x}+\right.\left.g_{v} v_{x}+g_{u_{1}}\left(u_{x}+f\right)+g_{v_{1}}\left(v_{x}+g\right)\right) \\
&+\left(v_{x}+g\right)\left(f_{x}+f_{u} u_{x}+f_{v} v_{x}+f_{u_{1}}\left(u_{x}+f\right)+f_{v_{1}}\left(v_{x}+g\right)+u_{x x}\right) \\
& \quad-2\left(v_{x}+g\right)\left(g_{x}+g_{u} u_{x}+g_{v} v_{x}+g_{u_{1}}\left(u_{x}+f\right)+g_{v_{1}}\left(v_{x}+g\right)+v_{x x}\right) \\
&+\left(u_{x}+f\right)\left(v_{x}^{2}+2 v_{x} g+g^{2}\right)-\left(v_{x}+g\right)\left(u_{x}^{2}+2 u_{x} f+f^{2}\right)=v_{x}\left(u_{x x}-2 v_{x x}\right)+v_{x}^{2} u_{x}-u_{x}^{2} v_{x} . \tag{3.16}
\end{align*}
$$

By comparing the coefficients by $u_{x x}$ and $v_{x x}$ in the last equality, we get

$$
\begin{align*}
& g_{u}+g_{u_{1}}=-g \tag{3.17}\\
& g_{v}+g_{v_{1}}=2 g .
\end{align*}
$$

Note that the equalities (3.11) and (3.12) follow from equalities (3.15) and (3.17). Let us use equalities (3.15) and (3.17) to rewrite equality (3.14)

$$
\begin{aligned}
& D_{x}\left(f_{x}+2 f u_{x}-f v_{x}+f_{u_{1}} f+f_{v_{1}} g\right)+\left(u_{x}+f\right)\left(g_{x}+g_{u_{1}} f+g_{v_{1}} g+v_{x x}-4 f u_{x}-2 f_{x}\right) \\
& +\left(u_{x}+f\right)\left(2 f v_{x}-2 f_{u_{1}} f-2 f_{v_{1}} g-2 u_{x x}+u_{x} v_{x}+f v_{x}+f g-v_{x}^{2}-g^{2}\right) \\
& \\
& =u_{x}\left(v_{x x}-2 u_{x x}\right)+u_{x}^{2} v_{x}-u_{x} v_{x}^{2} .
\end{aligned}
$$

We note that the consideration of the coefficients by $u_{x x}, v_{x x}, u_{x}^{2}, v_{x}^{2}, u_{x} v_{x}$ in the above equality give us equations that follow immediately from (3.15) and (3.17). Considering coefficient by u_{x} we get

$$
\begin{aligned}
& \quad f_{x u}+f_{x u_{1}}+2 f_{x}+2 f f_{u_{1}}+2 f_{v_{1}} g+f f_{u_{1} u}+f_{u_{1}} f_{u}+f_{u_{1}}^{2}+g f_{v_{1} u} \\
& +g f_{u_{1} v_{1}}+f_{v_{1}} g_{u}+f_{v_{1}} g_{u_{1}}+f_{u_{1} u_{1}} f+g_{x}+g_{u_{1}} f+g_{v_{1}} g-2 f_{x}-2 f_{u_{1}} f-2 f_{v_{1}} g+f g-g^{2}-4 f^{2}=0 .
\end{aligned}
$$

Using equations (3.15) and (3.17) we get

$$
2 f_{x}+g_{x}+4 f f_{u_{1}}+f_{v_{1}} g+g_{u_{1}} f+g_{v_{1}} g+f g-g^{2}-4 f^{2}=0
$$

or using equation (3.13),

$$
\begin{equation*}
f_{x}+3 f\left(f_{u_{1}}-f\right)=0 . \tag{3.18}
\end{equation*}
$$

Considering coefficient by v_{x} we get

$$
\begin{aligned}
f_{x v}+f_{x v_{1}}-f_{x}-f f_{u_{1}}-f_{v_{1}} g+f f_{u_{1} v}+f f_{u_{1} v_{1}} & +f_{u_{1}} f_{v}+f_{u_{1}} f_{v_{1}} \\
& +g f_{v_{1} v}+g f_{v_{1} v_{1}}+f_{v_{1}} g_{v}+f_{v_{1}} g_{v_{1}}+3 f^{2}=0 .
\end{aligned}
$$

Using equations (3.15) and (3.17) we get

$$
\begin{equation*}
2 f_{x}+3 f\left(f_{u_{1}}-f\right)=0 \tag{3.19}
\end{equation*}
$$

It follows from equations (3.18) and (3.19) that $f_{x}=0$ and $f\left(f_{u_{1}}-f\right)=0$. Thus either $f=0$ or

$$
\left\{\begin{array}{l}
f=f_{u_{1}}, \tag{3.20}\\
f=f_{u} .
\end{array}\right.
$$

Now we consider the coefficient by $u_{x}^{0} v_{x}^{0}$ in (3.14) we get

$$
\left.\begin{array}{rl}
f^{2} f_{u_{1} u_{1}}
\end{array}\right) f g f_{u_{1} v_{1}}+f f_{u_{1}}^{2}+f_{u_{1}} f_{v_{1}} g+f g f_{u_{1} v_{1}}+g^{2} f_{v_{1} v_{1}}+f_{v_{1}} g_{x}+f f_{v_{1}} g_{u_{1}} .
$$

First assume that $f \neq 0$ then using (3.20) we can rewrite the above equality as

$$
\begin{equation*}
f g f_{v_{1}}+g^{2} f_{v_{1} v_{1}}+f_{v_{1}} g_{x}+f_{v_{1}} g_{u_{1}} f+f_{v_{1}} g_{v_{1}} g+f g_{x}+f^{2} g_{u_{1}}+f g g_{v_{1}}+f^{2} g-f g^{2}=0 \tag{3.21}
\end{equation*}
$$

Also we can rewrite equality (3.16), using equations (3.15), (3.17) and (3.13) then considering coefficients by u_{x} and v_{x} we obtain

$$
\begin{aligned}
2 g_{x}+3 g\left(g_{v_{1}}-g\right) & =0 \\
g_{x}+3 g\left(g_{v_{1}}-g\right) & =0
\end{aligned}
$$

From above equalities and (3.17) it follows that $g_{x}=0, g_{v_{1}}=g$ and $g_{v}=g$ (we assume that $g \neq 0$). We have

$$
\begin{array}{lrr}
f_{u_{1}}=f, & f_{u}=f, & f_{v}+f_{v_{1}}=-f \\
g_{v_{1}}=g, & g_{v}=g, & g_{u}+g_{u_{1}}=-g \tag{3.22}\\
& & f_{v_{1}} g+g_{u_{1}} f=-f g
\end{array}
$$

Using (3.22), the equality (3.21) takes form $g_{u_{1}} f_{v_{1}}(-g+f)=0$. This equality implies that under assumptions that $f \neq 0$ and $g \neq 0$ we have three possibilities: (I) $g_{u_{1}}=0$, (II) $f_{v_{1}}=0$ and (III) $g=f$. Let us consider these possibilities.
Case (I) From $g_{u_{1}}=0$, using (3.22), we get that $g_{u}=-g, g_{v_{1}}=g, g_{v}=g$. Thus $g=B e^{-u+v+v_{1}}$, where B is a constant. We also get that $f_{u}=f, f_{u_{1}}=f, f_{v}=0$ and $f_{v_{1}}=-f$. Thus $f=A e^{u_{1}+u-v_{1}}$, where A is a constant. So the system (3.9) takes form (1.18).
Case (II) From $f_{v_{1}}=0$, using (3.22), we get that $f_{u}=f, f_{u_{1}}=f, f_{v}=-f$. Thus $f=A e^{u_{1}+u-v}$, where A is a constant. We also get that $g_{u}=0, g_{u_{1}}=-g, g_{v}=g$ and $g_{v_{1}}=g$. Thus $g=B e^{-u_{1}+v_{1}+v}$, where B is a constant. So the system (3.9) takes form (1.19).
Case (III) From $g=f$, using (3.22), we get that $f=0$ and $g=0$. So the system (3.9) takes form

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x} \\
v_{1 x}=v_{x}
\end{array}\right.
$$

3.2. Case (2)

Let us find system (1.15) possessing n-integrals (1.20) and (1.21). We compare the coefficients in $D I_{2}=I_{2}$ by $u_{x x}$ and $v_{x x}$ and get

$$
\begin{align*}
& 2 \widetilde{u}_{u_{x}}+\widetilde{g}_{u_{x}}=2, \\
& 2 \widetilde{f}_{v_{x}}+\widetilde{g}_{v_{x}}=1 \tag{3.23}
\end{align*}
$$

We also compare the coefficients in $D I_{2}^{*}=I_{2}^{*}$ and
$D\left(D_{x}^{2} I_{2}-2 I_{2}^{*}\right)=\left(D_{x}^{2} I_{2}-2 I_{2}^{*}\right)$ by $u_{x x x x}$ and $v_{x x x x}$ respectively and get $\widetilde{f}_{u_{x}}=1$ and $\widetilde{g}_{v_{x}}=1$. It follows from (3.23) that $\widetilde{f}_{v_{x}}=0$ and $\widetilde{g}_{u_{x}}=0$. Therefore, our system (1.15) becomes

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+f\left(u, v, u_{1}, v_{1}\right) \\
v_{1 x}=v_{x}+g\left(u, v, u_{1}, v_{1}\right)
\end{array}\right.
$$

We write equality $D I_{2}=I_{2}$ and get

$$
\begin{aligned}
& 2 u_{x x}+2 f_{u} u_{x}+2 f_{v} v_{x}+2 f_{u_{1}}\left(u_{x}+f\right)+2 f_{v_{1}}\left(v_{x}+g\right)+v_{x x}+g_{u} u_{x}+g_{v} v_{x}+g_{u_{1}}\left(u_{x}+f\right) \\
& \quad+g_{v_{1}}\left(v_{x}+g\right)-2\left(u_{x}+f\right)^{2}+2\left(u_{x}+f\right)\left(v_{x}+g\right)-\left(v_{x}+g\right)^{2}=2 u_{x x}+v_{x x}-2 u_{x}^{2}+2 u_{x} v_{x}-v_{x}^{2}
\end{aligned}
$$

By comparing the coefficients by u_{x}, v_{x} and $u_{x}^{0} v_{x}^{0}$ in the last equality we obtain the system of equations

$$
\begin{aligned}
2 f_{u}+f_{u_{1}}+g_{u}+g_{u_{1}}-4 f+2 g & =0, \\
2 f_{v}+2 f_{v_{1}}+g_{v}+g_{v_{1}}+2 f-2 g & =0, \\
2 f f_{u_{1}}+2 g f_{v_{1}}+f g_{u_{1}}+g g_{v_{1}}-2 f^{2}+2 f g-g^{2} & =0
\end{aligned}
$$

That suggests the following change of variables

$$
u=P, u_{1}-u=Q, v=S, v_{1}-v=T
$$

to be made. In new variables the system (1.15) becomes

$$
\left\{\begin{array}{l}
Q_{x}=F(P, Q, S, T) \tag{3.24}\\
T_{x}=G(P, Q, S, T)
\end{array}\right.
$$

The comparison of coefficients in $D I_{2}=I_{2}$ by P_{x}, S_{x} and $P_{x}^{0} S_{x}^{0}$ gives

$$
\begin{align*}
-4 F+2 G+2 F_{P}+G_{P} & =0 \\
2 F-2 G+2 F_{S}+G_{S} & =0 \tag{3.25}\\
-2 F^{2}+G\left(-G+2 F_{T}+G_{T}\right)+F\left(2 G+2 F_{Q}+G_{Q}\right) & =0
\end{align*}
$$

The coefficients in $D I_{2}^{*}=I_{2}^{*}$ by $S_{x x x}$ and $P_{x x x}$ are compared and we obtain the following equalities

$$
\begin{align*}
F+F_{S} & =0 \tag{3.26}\\
-2 F+F_{P} & =0
\end{align*}
$$

It follows from (3.25) and (3.26) that $G_{S}=2 G, G_{P}=-2 G, F_{S}=-F$ and $F_{P}=2 F$. Therefore, system (3.24) can be written as

$$
\left\{\begin{array}{l}
Q_{x}=A(Q, T) e^{-S+2 P} \\
T_{x}=B(Q, T) e^{2 S-2 P}
\end{array}\right.
$$

We compare the coefficient in $D I_{2}^{*}=I_{2}^{*}$ by $S_{x x}$ and get

$$
3 e^{4 P-2 S} A^{2}-3 e^{4 P-2 S} A A_{Q}=0
$$

that is $A=A_{Q}$. Hence, $A(Q, T)=e^{Q} \widetilde{A}(T)$. Now we compare the coefficient in $D I_{2}=I_{2}$ by $P_{x}^{0} S_{x}^{0}$ and get

$$
\begin{equation*}
\widetilde{A}+\widetilde{A}_{T}=\frac{1}{2} e^{-4 P+3 S-Q}\left(B-B_{T}\right)-\frac{\widetilde{A}}{2 B} B_{Q} \tag{3.27}
\end{equation*}
$$

Since functions $\widetilde{A}(T)$ and $B(Q, T)$ do not depend on variable P, then it follows from (3.27) that $B=B_{T}$, that is $B=\widetilde{B}(Q) e^{T}$. Now (3.27) becomes

$$
-2 \frac{\widetilde{A}+\widetilde{A}_{T}}{\widetilde{A}}=\frac{\widetilde{B}_{Q}}{\widetilde{B}}
$$

Note that the right side of the last equality depends on Q only, while the left side depends on T only. Hence, $-2 \frac{\widetilde{A}+\widetilde{A}_{T}}{\widetilde{A}}=c$ and $\frac{\widetilde{B}_{Q}}{\widetilde{B}}=c$, where c is some constant. One can see that $\widetilde{A}=c_{1} e^{-(2 c+1) T}$ and
$\widetilde{B}=c_{2} e^{c Q}$ and therefore system (3.24) becomes

$$
\left\{\begin{array}{l}
Q_{x}=c_{1} e^{-S+2 P+Q-(2 c+1) T} \\
T_{x}=c_{2} e^{2 S-2 P+T+c Q}
\end{array}\right.
$$

where c, c_{1} and c_{2} are some constants. Equality $D I_{2}-I_{2}=0$ becomes $-3 c c_{1} c_{2} e^{s+(c+1) Q-2 c T}=0$, which implies that either $c=0$, or $c_{1}=0$, or $c_{2}=0$. Note that the $D I_{2}^{*}=I_{2}^{*}$ is also satisfied if either $c=0$ or $c_{1}=0$ or $c_{2}=0$. So we have three cases:

- when $c=0$ the system (1.15) becomes (1.22) with $c_{1}=A$ and $c_{2}=B$.
- when $c_{1}=0$ the system (1.15) becomes (1.26) with $c_{2}=B$.
- when $c_{2}=0$ the system (1.15) becomes (1.27) with $c_{1}=A$.

3.3. Case (3)

Let us find system (1.15) possessing n-integrals (1.23) and (1.24). We compare the coefficients in $D I_{3}=I_{3}$ by $u_{x x}$ and $v_{x x}$ and get

$$
\begin{align*}
& \widetilde{f}_{u_{x}}+\frac{1}{3} \widetilde{g}_{u_{x}}=1, \tag{3.28}\\
& \widetilde{f}_{v_{x}}+\frac{1}{3} \widetilde{g}_{v_{x}}=1 .
\end{align*}
$$

We also compare the coefficients in $D I_{3}^{*}=I_{3}^{*}$ and $D\left(D_{x}^{4} I_{3}-I_{3}^{*}\right)=\left(D_{x}^{4} I_{3}-I_{3}^{*}\right)$ by $u_{(6)}$ and $v_{(6)}$ respectively and get $\widetilde{f}_{u_{x}}=1$ and $\widetilde{g}_{v_{x}}=1$. It follows from (3.28) that $\widetilde{f}_{v_{x}}=0$ and $\widetilde{g}_{u_{x}}=0$. Therefore, our system (1.15) becomes

$$
\left\{\begin{array}{l}
u_{1 x}=u_{x}+f\left(u, v, u_{1}, v_{1}\right), \\
v_{1 x}=v_{x}+g\left(u, v, u_{1}, v_{1}\right) .
\end{array}\right.
$$

By comparing the coefficients by u_{x}, v_{x} and $u_{x}^{0} v_{x}^{0}$ in $D I_{3}=I_{3}$ we obtain the system of equations

$$
\begin{aligned}
f_{u}+f_{u_{1}}+\frac{1}{3} g_{u}+\frac{1}{3} g_{u_{1}}-2 f+g & =0, \\
f_{v}+f_{v_{1}}+\frac{1}{3} g_{v}+\frac{1}{3} g_{v_{1}}+f-\frac{2}{3} g & =0, \\
f f_{u_{1}}+g f_{v_{1}}+\frac{1}{3} f g_{u_{1}}+\frac{1}{3} g g_{v_{1}}-f^{2}+f g-\frac{1}{3} g^{2} & =0 .
\end{aligned}
$$

That suggests the following change of variables

$$
u=P,, u_{1}-u=Q, v=S, v_{1}-v=T
$$

to be made. In new variables the system (1.15) becomes

$$
\left\{\begin{array}{l}
Q_{x}=F(P, Q, S, T), \tag{3.29}\\
T_{x}=G(P, Q, S, T)
\end{array}\right.
$$

The comparison of coefficients in $D I_{3}=I_{3}$ by P_{x}, S_{x} and $P_{x}^{0} S_{x}^{0}$ gives

$$
\begin{align*}
6 F-3 G-3 F_{P}-G_{P} & =0, \\
-3 F+2 G-3 F_{S}-G_{S} & =0, \tag{3.30}\\
F^{2}-F G+\frac{1}{3} G^{2}-2 G F_{T}-\frac{1}{3} G G_{T}-F F_{Q}-\frac{1}{3} F G_{Q} & =0 .
\end{align*}
$$

The comparison of coefficients in $D I_{3}^{*}=I_{3}^{*}$ by $S_{(5)}$ and $P_{(5)}$ gives

$$
\begin{align*}
F+F_{S} & =0 \tag{3.31}\\
-2 F+F_{P} & =0
\end{align*}
$$

Using equations (3.30) and (3.31) we get $G_{S}=2 G, G_{P}=-3 G, F_{S}=-F$, and $F_{P}=2 F$. Therefore, system (3.29) can be written as

$$
\left\{\begin{array}{l}
Q_{x}=A(Q, T) e^{-S+2 P}, \\
T_{x}=B(Q, T) e^{2 S-3 P},
\end{array}\right.
$$

where A and B are some functions depending on Q and T only. We compare the coefficients in $D I_{3}-I_{3}=0$ by $S_{x}^{0} P_{x}^{0}$ and the coefficients in $D I_{3}^{*}-I_{3}^{*}=0$ by $P_{(4)}, S_{(4)}$ and $P_{(3)} P_{x}$ respectively and get

$$
\begin{align*}
& a_{11} A_{T}+a_{12} B_{T}+a_{13} A_{Q}+a_{14} B_{Q}+b_{1}=0 \\
& a_{21} A_{T}+a_{22} B_{T}+a_{23} A_{Q}+a_{24} B_{Q}+b_{2}=0 \tag{3.32}\\
& a_{31} A_{T}+a_{32} B_{T}+a_{33} A_{Q}+a_{34} B_{Q}+b_{3}=0 \\
& a_{41} A_{T}+a_{42} B_{T}+a_{43} A_{Q}+a_{44} B_{Q}+b_{4}=0
\end{align*}
$$

where

$$
\begin{array}{llll}
a_{11}=-e^{-P+S} B, & a_{12}=-\frac{1}{3} e^{-6 P+4 S_{B}} B, & a_{13}=-e^{4 P-2 S} A, & a_{14}=-\frac{1}{3} e^{-P+S} A \\
a_{21}=-33 e^{-P+S_{B}} B, & a_{22}=-11 e^{-6 P+4 S_{B}} B, & a_{23}=-28 e^{4 P-2 S_{A}} A, & a_{24}=-11 e^{-P+S} A \\
a_{31}=-13 e^{-P+S} B, & a_{32}=-\frac{13}{3} e^{-6 P+4 S_{B}} B, & a_{33}=-16 e^{4 P-2 S_{A}} A, & a_{34}=-\frac{13}{3} e^{-P+S} A \\
a_{41}=18 e^{-P+S} B, & a_{42}=-79 e^{-6 P+4 S} B, & a_{43}=328 e^{4 P-2 S} A, & a_{44}=6 e^{-P+S} A
\end{array}
$$

and

$$
\begin{aligned}
& b_{1}=e^{4 P-2 S} A^{2}-e^{-P+S} A B+\frac{1}{3} e^{-6 P+4 S} B^{2} \\
& b_{2}=28 e^{4 P-2 S} A^{2}-33 e^{-P+S} A B+11 e^{-6 P+4 S} B^{2} \\
& b_{3}=16 e^{4 P-2 S} A^{2}-13 e^{-P+S} A B+\frac{13}{3} e^{-6 P+4 S} B^{2} \\
& b_{4}=-328 e^{4 P-2 S} A^{2}+18 e^{-P+S} A B+79 e^{-6 P+4 S} B^{2}
\end{aligned}
$$

We solve the linear system of equations (3.32) with respect to A_{T}, A_{Q}, B_{T} and B_{Q} and get the following system of differential equations $A_{T}=-A, A_{Q}=A, B_{T}=B$ and $B_{Q}=0$. Thus the system (3.29) is written as

$$
\left\{\begin{array}{l}
Q_{x}=c_{1} e^{2 P+Q-S-T} \\
T_{x}=c_{2} e^{-3 P+2 S+T}
\end{array}\right.
$$

where c_{1} and c_{2} are arbitrary constants. It is equivalent to system (1.25) with $A=c_{1}$ and $B=c_{2}$.

References

[1] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, and A.B. Shabat, Characteristic Lie rings and integrable models in mathematical physics, Ufa Math. J., 4 (3) (2012) 17-85.
[2] I.T. Habibullin, N. Zheltukhina, and A. Sakieva, Discretization of hyperbolic type Darboux integrable equations preserving integrability, J. Math. Phys., 52 (2011) 093507-093519.
[3] I.T. Habibullin and N. Zheltukhina, Discretization of Liouville type nonautonomous equations, J. Nonlinear Math. Phys., 23 (2016) 620-642.
[4] K. Zheltukhin and N. Zheltukhina, On the discretization of Laine equations, J. Nonlinear Math. Phys., 25 (2018) 166-177.
[5] I.T. Habibullin, A. Pekcan, Characteristic Lie algebra and the classification of semi-discrete models, Theoret. and Math. Phys., 151 (2007) 781-790.
[6] O.S. Kostrigina and A.V. Zhiber, Darboux-integrable two-component nonlinear hyperbolic systems of equations, J. Math. Phys., 52 (2011) 033503-033535.

K. Zheltukhin and N. Zheltukhina / On the discretization of Darboux Integrable Systems

[7] A.B. Shabat and R.I. Yamilov, Exponential Systems of Type I and the Cartan Matrices (Russian), Preprint BBAS USSR Ufa (1981).
[8] N.H. Ibragimov, A.V. Aksenov, V.A. Baikov, V.A. Chugunov, R.K. Gazizov and A.G. Meshkov, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2., Applications in Engineeringand Physical Science, edited by Ibragimov, Boca Raton, FL: CRC Press (1995).
[9] E.I. Ganzha and S.P. Tsarev, Integration of Classical Series An, Bn, Cn, of Exponential Systems, Krasnoyarsk: Krasnoyarsk State Pedagogical University Press (2001).
[10] A.N. Leznov and M.V. Savel'ev, Group Methods of Integration of Nonlinear Dynamical Systems, Progress in Physics 15, Birkhäuser Verlag, Basel (1992).
[11] I.T. Habibullin, K. Zheltukhin, and M. Yangubaeva, Cartan matrices and integrable lattice Toda field equations, J. Phys. A, 44 (2011) 465202-465222.

[^0]: *Corresponding author

