
Research Article
A Methodology for an FPGA Implementation of a Programmable
Logic Controller to Control an Atomic Layer Deposition System

Peter Jamieson , Donald Blank, Janelle Ghanem , Tyler McGrew ,
and Giancarlo Corti

Miami University, Oxford, OH 45056, USA

Correspondence should be addressed to Peter Jamieson; jamiespa@miamioh.edu

Received 13 August 2020; Revised 25 October 2021; Accepted 30 March 2022; Published 6 May 2022

Academic Editor: Miriam Leeser

Copyright © 2022 Peter Jamieson et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we present an industrial cold walled Atomic Layer Deposition (ALD) system, which can be controlled by either a
traditional programmable logic controller (PLC) system or a �eld-programmable gate array (FPGA) prototyping board. �is work
presents an FPGA controlled system that takes ladder diagram (LD) control for a PLC and converts this control to Verilog HDL and
programs an FPGA such that the FPGA prototyping board is used to control a real industrial application. We explore this approach
since FPGA implementation of LD control could signi�cantly reduce the cost of implementing these controllers with other potential
advantages such as the improved granularity of timing control frommilliseconds to nanoseconds, additional available pins for inputs
and outputs far exceeding that of microprocessors, and lower power consumption for control. In this work, we provide details and
descriptions of our industrial system (ALD), the LD control of this system and its implementation, our software �ow to convert LDs
to Verilog HDL, and our FPGA prototype board design to replace the existing electronic controller. We show how our LD-Verilog
HDL converter in conjunction with FPGAs matches a PLC and demonstrate some of the bene�ts of using an FPGA.

1. Introduction

�e �ve major manufacturers of Programmable Logic
Controllers (PLCs) for controlling industrial
manufacturing processes include Allen-Bradley, Siemens,
Schneider Electric, Mitsubishi Electric, and Omron
(https://www.businesswire.com/news/home/20160502005493/
en/Technavio-Announces-Top-Vendors-Global-Micro-PLC
accessed March 10, 2020). �ese companies tend to provide
software for designing the controller, the hardware to execute
the control logic with, and several tools for advanced features
such as monitoring, safety, and data analytics.

One aspect of this space, which we believe can be im-
proved, is the hardware implementation for the actual
computational control.�e invention and use of ladder logic
(initially designed to control relays) to create these control
systems are somewhat antiquated.�e shift from relay-based
control to programmable electronic implementation has
resulted in the design of computational systems that enables
the implementation of control algorithms for a wide range of
applications.

PLCs consist of circuitry that senses inputs and generates
control signals and aCPU that generates the appropriate signals
for an industrial system to implement a control algorithm.�e
CPU implements this control using timers, counters, mathe-
matical operators, internal state, and signals of both analog and
digital inputs from the system. �is logic control can be ex-
ecuted on a broad range of computational substrates other than
a traditional CPU, and in particular for this work, an imple-
mentation of Field-Programmable Gate Arrays (FPGAs) has
the potential to signi�cantly reduce the cost of the controller
and reduce the execution time of the process from the milli-
second range to the nanosecond range. Not only is a small
FPGA, costing less than 50 USD, more than capable of running
the control logic speci�ed in LD, but it is also designed to
execute these types of designs e¡ciently. It can be wired into
these systems, and it uses less power than a traditional mi-
croprocessor-PLC controller [1] (noting, however, that power
is not a major issue in many industrial applications).

�e goal of this paper is to show a real industrial system
controlled via an FPGA. In particular, our contributions are
as follows:

Hindawi
International Journal of Reconfigurable Computing
Volume 2022, Article ID 8827417, 10 pages
https://doi.org/10.1155/2022/8827417

mailto:jamiespa@miamioh.edu
https://www.businesswire.com/news/home/20160502005493/en/Technavio-Announces-Top-Vendors-Global-Micro-PLC
https://www.businesswire.com/news/home/20160502005493/en/Technavio-Announces-Top-Vendors-Global-Micro-PLC
https://orcid.org/0000-0002-3741-0201
https://orcid.org/0000-0001-7023-1945
https://orcid.org/0000-0001-8798-6869
https://orcid.org/0000-0003-1450-507X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8827417


(1) A description and real implementation of the LD
control into an industrial system, an Atomic Layer
Deposition (ALD) system. (is is the second, as we
are aware of, demonstration of a real system being
controlled via LD control that is converted and
mapped to an FPGA.

(2) A tool (which is released open-source) to convert
LDs into Verilog.

(3) A high-level method to map ladder logic control
algorithms (using our open-source tool) to an FPGA
prototyping board and the wiring and interfacing of
that board into an industrial system. (ough this
may not be considered a major contribution, this
workflow is key to achieving our second contribution
and will help researchers and developers in the
future.

(4) A demonstration of why FPGAs can improve the
control of manufacturing as compared to traditional
PLC controllers for the ALD system.

(e remainder of this paper is organized as follows:
Section 2 provides some background information and re-
search, Section 3 describes the ALD system and the standard
PLC implementation and wiring, Section 4 describes our
software, the flow, and the wiring to use an FPGA to replace
the PLC, Section 5 provides some results of our comparison
of the two controllers, and Section 6 concludes the work and
provides ideas for future work.

2. Background

(is section reviews the basic concepts of an ALD system,
ladder logic as ladder diagrams (LDs), and FPGA-based PLC
implementations.

2.1. Atomic Layer Deposition System. (e main idea of an
Atomic Layer Deposition (ALD) system, first proposed by
Aleskovskii [2], is to build up a physical material one atomic
layer at a time by sequentially introducing gaseous pre-
cursors into the system that chemically modifies the ma-
terial. Specifically, gases, called precursors, are introduced in
a time-based sequence to create the material.

Puurunen [3] published a history of ALD systems,
which is a nice introductory academic reference to this
topic. More recently, Oviroh et al. [4] wrote a compre-
hensive paper on the state of ALD systems providing in-
sights on new materials that this process may create and
how advances in computation and experimentation are
impacting this technology. In terms of the PLC integration
with the ALD system, the control is not overly complex,
and there has been little published research on this topic.
Maula’s research paper [5] briefly describes an industrial
ALD system and the existence of the PLC controller.
Additionally, there are several patents for this technology
(for example, Patent 10,186,426), but we do not include
those references here.

(e details of our ALD system are provided in Section 3,
including the LD algorithm.

2.2. Ladder Diagrams. (e control of PLCs includes the use
of ladder logic with what is called a ladder diagram (LD) and
is formalized in the IEC61131-3 standard [6]. LD is a design
language for describing control. Zhou and Twiss [7] pro-
vided an introduction explaining the workings of LDs
compared to Petri nets. Also, for more information on LDs,
there are many good basic introductions, for example,
Hooper’s book [8].

Figure 1 shows an example of an LD system that has
three inputs called Start, Stop, and Input and three outputs
called Out 0, Out 1, and Out 2.(ese signals are shown in the
diagram, labeling either contacts (two parallel vertical lines)
or coils (opening and closing round brackets). In this LD,
there are three rungs of a ladder (Rung 0, Rung 1, and Rung 2
colored green, red, and blue, respectively), where the term
ladder comes from how the LD looks like a ladder.

Processing LD is done from top to bottom; in Figure 1,
Rung 0, Rung 1, and Rung 2 are processed in that sequential
order, and the processing of all the rungs is known as a
“scan.” For Rung 0, we can interpret it as a logical AND,
where if both Input and Start have been pressed/activated,
then the coil Out 0 generates an on signal. Once Rung 0 is
evaluated, we next evaluate Rung 1, but the inputs for Rung 1
are the outputs of both Rung 0 and Rung 2 organized as a
logical OR operation. Since Rung 2 has not been evaluated
yet, we use the value of Out 2 from the previous scan. From a
finite state machine’s perspective, we would say we use the
previous state value of Out 2. It is important to understand
that LD proceeds from top to bottom as it suggests that an
LD needs to be sequentially evaluated to maintain the de-
signer’s intended functionality, but if there are no depen-
dencies in a rung, then, in theory (and as described by Milik
[9]), the rung can be calculated in parallel with other rungs.
Finally, the last rung is a latch (implemented with an OR
followed by an AND); in that, once the Start input is ac-
tivated, the Out 2 signal will stay on until a Stop signal is
pressed.

Other special-purpose functions (called block functions
or boxes by Siemens) can be defined in LDs, such as timers,
counters, conditionals, and more complex finite state ma-
chines. Our work uses some of these structures, in particular
timers and counters, and we will define them as they appear
in our designs.

2.3. FPGAs as PLCs. FPGAs are a type of Integrated Chip
(IC) that is reconfigurable devices, meaning that the func-
tionality can be programmed or, possibly, reprogrammed
after being manufactured. (is means that these ICs can be
programmed to implement a digital design. (e FPGAs
programmability, compared to ASICs, comes at a cost in
terms of speed, power, and area [10], but to create an IC for a
specific application is only viable for mass markets due to the
high cost of the nonrecurring engineering cost in the mil-
lions to hundreds of millions of dollars. FPGAs are a
common approach to designing digital systems in low-
volume markets and for prototyping designs. For these
reasons, an FPGA might be an appropriate device that could
replace the PLC, and FPGAs only cost from tens of dollars to

2 International Journal of Reconfigurable Computing



tens of thousands of dollars depending on capacity and
speed requirements. Intel and Xilinx are the two largest
FPGA companies.

Researchers have and are still working on how recon-
figurable devices can be used to implement LDs. (e first
implementation of an alternative control for Programmable
Logic Devices (PLDs) was by Adamski and Monteiro [11].
(e goal was to implement control on a PLD and to convert
existing PLC designs into a PLD.(ey followed up this work
with a later publication [12] that improved on their original
work. Also, this work was further extended with Wegrzyn
et al. [13], where they used the Petri net descriptions, but in
this case, mapped their design to VHDL [14] so that they
could target commercial CAD flows which map to devices
such as FPGAs and Application-Specific Integrated Chips
(ASICs).

Petko and Karpiel [15] developed another technique to
create control algorithms for FPGAs and ASICs and map
them to Simulink so that their complete system environment
could be simulated both electrically and mechanically. (eir
methodology is not an autonomous flow, but they provide
many steps, both automated and manual, to map their
control designs to a silicon implementation in either Verilog
or VHDL.(e input to their system, however, is not LD, and
instead, the complete control is designed by an engineer
familiar with their flow.

Economakos and Economakos [16, 17] developed a fully
automated flow that takes in a PLC language input (Siemens
Statement List programming language of the well-known
SIMATIC S7-300/400 PLCs) and converts a design to a C
implementation which is then converted by the Catapult C
tool flow (created by Mentor Graphics) to target an FPGA.
(eir main motivation is to efficiently implement more
complex control designs that may not be feasibly imple-
mented on a PLC.

Du et al. [18] created a tool to map LDs to VHDL. (eir
motivation is to improve performance by using an FPGA,
and they target Xilinx FPGAs.(e limitation with their work
is the tool, which is not open-source, and there has been no
continuance or commercialization of their original work.

Milik [9] created a flow from IEC61131-3 LDs to FPGAs via
Verilog as the CAD flow design entry language. Milik spends
significant time on optimizations in the conversion using
compile-time approaches such as building a directed flow
graph and analyzing these graphs. More recently, Milik et al.
have furthered our understanding of compiling LD to
FPGAs by direct FPGA synthesis [19].

Ichikawa et al. [20] also demonstrate their conversion
tool from LDs to VHDL and map their hardware design to
Altera FPGAs. (is work demonstrated a real FPGA
interfaced with a real “perfect layer winder,” and they are the
first group to demonstrate a full and real system controlled
via an FPGA-based controller. Additionally, they created a
custom FPGA prototyping board for this work since they
could not find a board on the market that satisfied their
needs.

In Corti et al. [21], we created a tool to take Allen-
Bradley LD and convert it to synthesizable Verilog targetting
an FPGA. Similarly, Eassa et al. [22] implemented a RISC-V
processor on an FPGA that can execute the control logic.

3. Implementation of the ALD System

A schematic of the general ALD setup is depicted in Figure 2.
(e ALD reactor used for all experiments is a cold wall
thermal ALD reactor, meaning that all energy required for
the reaction is provided by heat, as opposed to plasma/
radical-enhanced ALD [23]. (e reactor uses an inert carrier
gas (N2) to carry the precursors into and out of the chamber.
Although the use of carrier gases results in less efficient
utilization of precursors, it also allows for shorter purge
times to effectively clear the chamber, allowing for shorter
cycle times overall [23].

3.1.Control ofOurALDSystemwithPLC. (eALD sequence
begins by pressing the start button (start), which prompts
the vacuum valves VV1 and VV2 to open and start the
controllers of the precursor bottles and reactor heater (Pbot
and RH), respectively.When the chamber pressure (Pstch) is
below 1mbar, the controller turns on the mass flow con-
trollers (MFC) to continuously flow N2 until the end of the
deposition sequence. With the N2 flowing, the ALD waits
until the PIDs signal the controller that the bottle (TP1) and
reactor (TR) temperatures reach their setpoint. When the
system is up to temperature, the deposition cycle shown in
Figure 3 begins by closing the VV1 and VV2 valves. (en,
the ALD controller follows the deposition pattern; first, it
activates precursor valve (SV1) for a precursor pulse of tpp1
msec, waits for twp1 msec, and activates vacuum valve one
(VV1) for tvp1 msec; when the VV1 closes, it activates the
water valve (SV4) for a water pulse of tw msec, waits for tww
msec, and then activates vacuum valve two (VV2) for tvw
msec, and when the VV2 closes, the controller counts one
cycle. Finally, when either the desired number of cycles have
occurred or the stop button (stop) is pressed, the controller
will shut down the heaters Pbot and RH and close the
vacuum valves VV1 and VV2. (e N2 must flow until the
pressure in the chamber equals to atmospheric pressure

Rung-0

Input Start

Start

Out0 Out1

Out2

Out2 Out2Stop

Out0

Rung-1

Rung-2

Figure 1: A simple LD example in diagram form.

International Journal of Reconfigurable Computing 3



(Patm). We have implemented this algorithm as an LD
design with 37 rungs for both Allen-Bradley PLCs and
Siemens PLCs, where the first is available to view on our
GitHub repository (https://github.com/ghanemja/senior-
design).

Figure 2 shows a picture of the ALD system at Miami
University. (e picture gives researchers a view of what this
type of manufacturing system is and how it is interfaced.(e
main chamber is held within the cabinet. Additionally, the
front panel has a red emergency stop button, a human-
machine interface (HMI), and another button to start op-
eration. When the FPGA is wired into the system, the PLC
(also contained in the cabinet) is disconnected, and the
FPGA interface replaces this controlling connection.

4. Replacing a PLC with an FPGA

(e two primary steps required to convert an LD to work on
an FPGA to control an industrial system are as follows: first,
converting the LD into a form that can be inputted and

passed through an FPGA CAD flow to program the FPGA,
and second, a wiring interface between the FPGA and the
industrial system to properly send the electrical signals to the
system.

4.1. Converting LDs to Verilog HDL. In previous work, we
created Hashigo and released the open-source code at
https://github.com/NigoroJr/hashigo that was a complete
LD to Verilog conversion system using Flex and Bison to
parse the LD and back-end code that compiles the LD to
Verilog [21]. We, however, learned that a complex full
compiler approach is not needed to process LDs to Verilog.
Instead, in this version of our work, we present a complex
Python script that can perform the same conversion process
and has support for timers and counters, the latter of which
Hashigo could only implement via alternative methods.

Algorithm 1 shows the high-level steps the Python script
and the associated environment take to convert LDs to
Verilog files. Note that specific details, such as read, write,
and processing details of the conversion, can be seen in the
open-source code: https://github.com/ghanemja/senior-
design. (is file type is structured in XML format, shown
in Figure 4, and contains all the information about an Allen-
Bradley ladder logic program and environment needed to
convert the program to HDL. (is .L5X file is parsed using
the ElementTree XML python library to obtain the root of
the XML tree.

Using an XML input format, shown in Figure 4, from the
LD programming environment and Algorithm 1, we parse
each rung of the ladder sequentially and convert the rungs
into a simplified, intermediate data structure, as shown in
Figure 5. Once this intermediate file exists, it is then con-
verted into a Verilog file that represents the LD, shown in
Figure 6.(is logical Verilog expression is created by using a
dictionary or look-up table, shown in Table 1, where each
node type corresponds directly to a string segment which is
added to the overall expression string, as shown in Figure 6.

(is approach interprets each LD rung sequentially and
creates the Verilog assignment statements. (en, the system
creates an extra rung to assign each register’s memory value

(a)

MFC

SV1
RH

VV1 VV2

TR

Reactor heater

Dispersion Lid

ALD Chamber
Pstch

MFC

SV4

TP1

Pbot

Patm

TP1

Pbot
Prec

Prec
VAC

H2O
VAC

H2O Flow

H2O

Prec Flow

Reactor

(b)

SV1
Out

SV4
VV1
VV2
MFC

RH
Pbot

Start

G
PI

O

PLC

FPGA

OR

Stop
TP1

Pstch
Patm

TR

0
1
2
5
6
7

0
2
3
4
5
6
7

In

(c)

Figure 2: An image of our ALD system (a), schematic with valves and sensors (b), and corresponding signals as a general-purpose I/O pin
layout (c).

Cycle
Starts

SV1

SV4

VV1

VV2

tpp1 twp1 tvp1 tw tww tvw

Figure 3: A timing diagram of the valve signals for our ALD
system.

4 International Journal of Reconfigurable Computing

https://github.com/ghanemja/senior-design
https://github.com/ghanemja/senior-design
https://github.com/NigoroJr/hashigo
https://github.com/ghanemja/senior-design
https://github.com/ghanemja/senior-design


and the register declarations and assignments based on the
information from the date structures previously created.
(en, the system creates module instantiations for each
function module used in the ladder logic (timers, counters,
etc.) and wires these modules into the main module. Finally,
the system uses all of the text sections to write the final
Verilog file to the directory. Our Python approach is easy for
researchers to understand and extend, and our controller
implementation on an FPGA results in an implementation

that is fast enough to process the control required by the
industrial applications we are targeting.

4.1.1. Timer and Counterimplementation Details. Our pre-
vious research and software in this space, Hashigo, sup-
ported LD conversion, but it did not include the
implementation of timers and counters. However, our tool
flow in the Python version has a way of implementing both
timers and counters, and we added this functionality since
we needed both for interfacing with the ALD system.

To implement timers or counters (or, in theory, any
functional block), we implement a configurable Verilog
module that has inputs and outputs of a timer, where the
inputs can be set to parametrize the needed functionality.
(e Python scripts read the type of functional block in the
LD and set the appropriate signals. (ese blocks have been
previously added to the dictionary or look-up table, shown
in Table 1. Specific details on the generation of these function
blocks can be found on the open-source code: https://github.
com/ghanemja/senior-design. Our system, however, targets
a Verilog implementation but is not provided with the

Figure 5: An example of the logical rung converted from XML to
the intermediate data structure.

Figure 6: Verilog assignment statement created from the inter-
mediate data structure.

Figure 4: An example of a logical rung found in an L5X XML tree.

Table 1: Dictionary of ladder logic functions with their Verilog
equivalents.

LD function LD XML Verilog text
and and &&
or or
NO contact xic(a) a
NC contact xio(a) !a
Comparator ≥ GEQ(a, b) (a≥b)
Comparator �� EQu(a, b) (a��b)
One shots relay ONS(a) (a&&!prev_a)
FB timer TON() Timer()
FB counter CTU() Counter()

(1) function Ladder2Verilog(L5X_filename)
(2) L5X File � read(L5X_file.l5x)

(3) Find physical IOs, logical rungs, and function modules information
(4) write(Hashigo_File.hshg)

(5) Hashigo_File � read(Hashigo_File.hshg)

(6) Verilog_File � read(Verilog_Template.v)

(7) Assign physical IOS to FPGA pins
(8) for all rungs do
(9) Convert rung to nodes_list
(10) Make output_functions list from nodes_list
(11) Create Verilog logical_expression from nodes_list
(12) Construct Verilog rung_text assignment statements
(13) end for
(14) Add rung assigning memory registers to outputs
(15) Create register declarations and reset assignments
(16) Create function module instantiations
(17) for all placeholders do
(18) Verilog_File � Verilog_File.replace(placeholder, text)
(19) end for
(20) write(Verilog_File.v)

(21) end function

ALGORITHM 1: Pseudocode for steps taken to convert LDs to Verilog HDL.

International Journal of Reconfigurable Computing 5

https://github.com/ghanemja/senior-design
https://github.com/ghanemja/senior-design


clocking speed of the FPGA prototype board, and therefore,
the designer of the FPGA control system will have to do
some calculations to set up the parameters for the required
timer rate.

4.2. FPGAPrototype Board as a Controller. Once the Verilog
files have been generated by the script, the next step is to map
the design onto an FPGA and interface the FPGA with the
system replacing the PLC. Our replacement PLC is a DE2-
115 FPGA prototyping board from Terasic that includes a
Cyclone IV Intel FPGA.(is board is commercially available
and used by universities and undergraduate students to learn
how to use FPGAs.

To map the Verilog files onto the FPGA, we use a
commercial CAD tool that converts design files into pro-
grammable bit files that, when loaded on a specific FPGA,
implements the logic design on the FPGA. Since we are using
Intel FPGAs, the corresponding Intel tool is Quartus [24].
Within Quartus, we create a project, set up the appropriate
Verilog design files, and most importantly, map the pins of
the FPGA to particular signals in the design. Pin-mapping
maps the inputs and outputs of the ALD system to the pins
of the FPGA controller, and on the DE2-115 board, the
general-purpose input-output (GPIO) pins allow for these
connections.

Once the digital signals are mapped to the GPIO pins,
the next step is to take the three to five volt signal with low
amperage output and convert the control signals to the
industrial standard 24 volts [25]. Once the signals are
conditioned to meet the ALD input and outputs, we can
connect the FPGA board into the system to control it.

Figure 7 shows the printed circuit board (PCB) devel-
oped to interface the FPGA GPIOs with the ALD systems’
circuitry. Since both ALD and the FPGA use a 40-pin
connection, we developed this PCB to interface the two
systems with two integrated circuits (IC) components.

To convert the 24V digital of the ALD signal to 3.3V
level for FPGA input, a TA ULN2003AN IC is used. (is 7-
channel Darlington transistor array, commonly used for
switching applications, is operated in an inverting, common-
emitter configuration, as can be seen in Figure 8(a), where
VIN is a 0–24V digital signal from the ALD,VCC is 3.3 V, and
RL is a digital input to the FPGA.

However, this low-side driver configuration cannot be
used to drive ALD inputs (solenoid valves, relays, etc.) from
FPGA signals because this topology is not able to deliver the
required 400mA of current to inductive loads, ZL. Instead, a
high-side driver topology based on the MIC2981 IC is used
to drive the ALD inputs from the FPGA, as shown in
Figure 8(b), where VIN is a 0–3.3V digital signal from the
FPGA, VCC is 24V, and ZL is an ALD valve coil.

5. Results and Testing

For our experiments, we run two tests. First, we show that
the FPGA implementation is equivalent to the PLC by
comparing the signals generated by both systems and
verifying them. For our second result, we show how the

FPGA has the potential for finer timing-granularity
compared to a PLC. Finally, we describe our complete
system where the FPGA controls the ALD system in a real-
world test.

5.1. ALD Equivalent Control with FPGA Prototyping Board.
In our first experiment, we show how the signals generated
by the FPGA (which are mapped by our Python scripts and
used to create the design files that are programmed to the
FPGA) are timing equivalent to the PLC-generated signals
programmed from the Allen-Bradley tool andmapping flow.

Figure 9 shows a screenshot of our comparison method.
(e full video can be viewed at https://www.youtube.com/
watch?v�cyB6Dcb55wc, and the comparison of the FPGA
(top) and PLC (bottom) starts at timestamp 4 : 30 of the
video. In Figure 9, we can see that the FPGA has lit two of the
LEDs on the FPGA prototyping board, which matches the
two LEDs, 6 and 7, on the PLC. In the film, we show how the
prototyping board LEDs match the PLC lights. (is is a
functional demonstration of the equivalency of the two
controllers, and it also shows how our alternative flow that
maps to the FPGA is equivalent to the PLC program noting

Figure 7: Our PCB developed for interfacing the FPGA with the
ALD.

VIN
RB

VCC

RL

RC

(a)

VIN
RB

VCC

ZL

RC

(b)

Figure 8: Simplified switching topologies used for interfacing the
FPGA and ALD: (a) the switch used as an inverting, low-side switch
to convert 24V ALD signals to 3.3V FPGA signals and (b) the
switch used as a noninverting high-side switch to drive 24V in-
ductive ALD loads from a 3.3V FPGA signal.

6 International Journal of Reconfigurable Computing

https://www.youtube.com/watch?v=cyB6Dcb55wc
https://www.youtube.com/watch?v=cyB6Dcb55wc


that we use the same LD, our Python tool converts this LD
design to be implemented on the FPGA on the DE2-115.

(e current processing cost on the FPGA (which we call
a duty-cycle, equivalent to a PLC scan) is 37 rungs plus one
cycle to update all the outputs. On the FPGA, we execute
this; this means that the duty-cycle is 760 ns. Note that this
duty-cycle could be decreased if we included the optimi-
zation capabilities to analyze the dependencies between
rungs and parallelizing independent rungs. However, the
current scan of 760 ns is already fast compared to the PLC
emulation.

5.2. Finer Grain Timing Implementation on an FPGA.
Next, we show how the granularity of control timing possible
on the FPGA is significantly faster than what PLCs are
currently capable of doing. Most PLCs smallest granularity
of timing is one millisecond to implement a toggling signal
(clock). On the DE2-115, it is possible to implement a
granularity of toggling that is equal to the clock speed of the
FPGA.

(e clock on the DE2-115 prototyping board is 50MHz,
meaning the clock period is 20 ns, and the granularity of the
timing toggle would be 20 ns or 10,000 times faster than the
1ms granularity of the PLC (note that the phase-locked loop
functional units on this FPGA allow us to control the clock,
but this is unnecessary). We note, however, that not many
mechanical and manufacturing systems need this small
granularity of control, but it is possible with this capability
that new applications for this could be introduced within the
field.

5.3. Real FPGA as Controller for ALD. (e testing setup for
the full ALD system with the FPGA controller is shown in
Figure 10. An interfacing PCB (previously described) is
connected to the FPGA and the ALD using two 40-pin
ribbon cables, which fit into the 40-pin connectors on the
PCB. Two wires are used to connect 24 V and ground from
the ALD to the PCB through screw terminals. (e 3.3 V

and ground from the FPGA are connected to the PCB
through two of the connections on the 40-pin ribbon cable.
A BI1-EG05-AP6X inductive proximity sensor is attached
to the SV1 valve to measure its physical actuation. (is
valve was powered at 24 V using a DC power supply.
Finally, a Keysight oscilloscope is attached to both the
FPGA control signal and the valve sensor to compare the
intended and physical response of the SV1 valve within the
ALD system.

With the hardware integration between the FPGA and
ALD completed, we test the system to determine the ca-
pabilities of the FPGA. Initially, valve timings with the ALD
cycle are programmed in seconds. (is works well when
simulating the outputs of the FPGA in simulation tests;
however, since we could not physically see the outputs of the
PLC and FPGA turning on and off at speed, we were unsure

Figure 9: A comparison of the output signals on an FPGA (top with red LEDs) to the PLC controller (bottom with orange LEDs).

Figure 10: Our ALD system interfaced with the DE2-115 (bottom
right).

International Journal of Reconfigurable Computing 7



how the system would respond once switching speed is
increased. To test whether the system is operating as desired,
we attached an oscilloscope probe to the output of SV1 on
the FPGA and a valve position sensor on the corresponding
valve on the ALD. (is valve is the first valve that is opened
during the ALD cycle (as can be seen in Figure 2), so
measuring its response allows us to determine the cycle time
of the ALD by measuring the rising edge to rising edge
period of the valve position feedback. (e valve position
sensor is an on/off switch, and the rising edges are easy to
identify in the waveforms.

We measure the response time of the ALD valve to
determine what is the minimum cycle time the valve can be
operated at. Figure 11 shows the switching waveform in red
(lower peaks) and the valve’s physical response to a switch in
blue (larger peaks). As can be seen in Figure 11, once valve
timing is at 5-6ms (Figure 11(b)), the valve can still respond,
but at a switching speed of 600 μs, the valve fails to respond
(Figure 11(c)). (erefore, to ensure that the system is stable,
valve timing on the FPGA is set to 20ms.

Next, to show what the FPGA controller is capable of
compared to a PLC, we reduce the timing of the internal

Ti
m

e R
es

po
ns

e
–2.6 –2.4 –2.2 –2 –1.8 –1.6 –1.4 –1.2

60 ms Actuation

–1 –0.8 –0.6

Control Signal
Valve Response

(a)

Ti
m

e R
es

po
ns

e

1.6 1.7 1.8 1.9 2 2.11.5

6 ms Actuation

Control Signal
Valve Response

(b)

Ti
m

e R
es

po
ns

e

2.44 2.452.432.422.412.42.39

Control Signal
Valve Response

600 µs Actuation

(c)

Figure 11: Control and response of the valve for decreasing actuation times: valve actuated for (a) 60ms, (b) 6ms, and (c) 0.6ms.

Ti
m

e R
es

po
ns

e

Valve Acutated for 20 ms, 1 ms internal timers

0.1 0.2 0.3 0.4 0.5 0.70.60

Control Signal
Valve Response

Se
co

nd
 D

er
iv

at
iv

e

0.1

X 0.1189
Y 10150000

X 0.1243
Y 11720000

X 0.2874
Y 10450000

X 0.2929
Y 11770000

X 0.4558
Y 10610000

X 0.4613
Y 11570000

0.2 0.3

Time (s)

0.4 0.5 0.70.60

Control Signal
Valve Response

Figure 12: Control and response of the valve when using 1ms internal timers. Rising and falling edge times are labeled in the bottom of the
two timing waveforms.

8 International Journal of Reconfigurable Computing



timers within the ALD cycle called “twait1” and “twaitw”
first to the minimum time that the PLC can control them,
which is 1ms.(e cycle time for the ALD cycle is recorded as
the peak-to-peak timing of the rising edge of the valve re-
sponse, as can be seen in Figure 12. (e ALD cycle time (a
complete control cycle) takes 168ms when controlled by the
PLC.

By changing these two internal timers so that they are
faster than what the PLC is capable of, we record the ALD
cycle time for the FPGA. As shown in Figure 13, the internal
timers are reduced to 1 μs, which results in a 2ms reduction
in one ALD deposition cycle. For example, a 50 nm copper
oxide layer deposited via ALD has an average growth per
cycle of ≈ 0.15 [26], which represents a 3.3 sec reduction per
batch. (is shows that an FPGA controller (even a simple,
cheap one) is able to improve the overall production time a
PLC controller can achieve. Note, however, that we are
showing these results to demonstrate the capability of an
FPGA-based controller and not stating that this would be
recommended for the ALD system.

6. Conclusion

(is work demonstrates how an ALD system is controlled
with an FPGA prototyping board that replaces the typical
PLC. To achieve this, we describe our ALD system, its
control requirements, and the tools we have created to
automatically convert LD (the design method for PLCs) into
Verilog files that can then be synthesized and programmed
to an FPGA. (e FPGA with electronic conditioning of
signals can then be used to replace the existing PLC, and we
show that we can match the control signals designed in LD
for a PLC to the FPGA.(is means that our ALD system can
be controlled via this system.

Additionally, we show that the potential for using an
FPGA instead of PLC systems has the capability to increase
the granularity of control. Note that the parallel capabilities

and number of pins available on the FPGA mean that these
devices have great potential to revolutionize control in
manufacturing. (is benefit comes at no cost as the tradi-
tional design flow used for these devices can be used, and our
flow can convert the designs to the FPGA. Additionally,
FPGAs are off-the-shelf components that are not overly
expensive.

(e future of the FPGA as a standard device in the
control systems is promising; however, FPGAs are difficult
to design for, and manufacturing engineers are not trained
in their use. We have shown, in two cases, that if LD
continues to be the design entry system of choice, then it is
not too difficult to build tools to convert these designs to
map to an FPGA. (e real future of this work is for either a
PLC company or a startup to embrace the idea of the FPGA,
create a tool flow, and generate prototyping boards and
breakout boards with a focus on PLC controlled
manufacturing.

Data Availability

(ere are no significant data in this work, but all design files
are available at https://github.com/ghanemja/senior-design.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] P. Jamieson, T. Becker, P. Y. K. Cheung, W. Luk, T. Rissa, and
T. Pitkänen, “Benchmarking and evaluating reconfigurable
architectures targeting the mobile domain,” ACM Transac-
tions on Design Automation of Electronic Systems, vol. 15,
no. 2, pp. 1–24, 2010.

[2] V. Aleskovskii,Matrix hypothesis and way of synthesis of some
active solid compounds, PhD (esis, 1952.

Se
co

nd
 D

er
iv

at
iv

e X 0.1854
Y 10610000

X 0.1909
Y 11720000

X 0.3518
Y 9545000

X 0.3573
Y 11870000

X 0.5182
Y 10300000

X 0.5237
Y 11460000

Time (s)

0.1 0.2 0.3 0.4 0.5 0.70.60

Control Signal
Valve Response

Ti
m

e R
es

po
ns

e

0.1 0.2 0.3 0.4 0.5 0.70.60

Control Signal
Valve Response

Valve Acutated for 20 ms, 1 µs internal timers

Figure 13: Control and response of the valve when using 1 μs internal timers. Rising and falling edge times are labeled in the bottom of the
two timing waveforms.

International Journal of Reconfigurable Computing 9

https://github.com/ghanemja/senior-design


[3] R. L. Puurunen, “A short history of atomic layer deposition:
tuomo suntola’s atomic layer epitaxy,” Chemical Vapor De-
position, vol. 20, no. 10–12, pp. 332–344, Wiley, Hoboken, NJ,
USA, 2014.

[4] P. O. Oviroh, R. Akbarzadeh, D. Pan, R. A. M. Coetzee, and
T.-C. Jen, “New development of atomic layer deposition:
processes, methods and applications,” Science and Technology
of Advanced Materials, vol. 20, no. 1, pp. 465–496, 2019.

[5] J. M. Jarmo Maula, “Atomic layer deposition for industrial
optical coatings,” Chinese Optics Letters, vol. 8, no. S1,
pp. 53–58, 2010.

[6] M. Tiegelkamp and K. H. John, IEC 61131-3: Programming
Industrial Automation Systems, Springer, Berlin, Germany,
2010.

[7] M. C. Zhou and E. Twiss, “Design of industrial automated
systems via relay ladder logic programming and petri nets,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
(Applications and Reviews), vol. 28, no. 1, pp. 137–150, 1998.

[8] J. Hooper, Introduction to PLCs, Carolina Academic Press,
Durham, NC, USA, Second Edition, 2006.

[9] A. Milik, “On hardware synthesis and implementation of PLC
programs in FPGAS,” Microprocessors and Microsystems,
vol. 44, pp. 2–16, 2016.

[10] I. Kuon and J. Rose, “Measuring the gap between FPGAs and
ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, pp. 203–215, 2006.

[11] M. A. Adamski and J. L. Monteiro, “PLD implementation of
logic controllers,”vol. 2, pp. 706–711, in Proceedings of the
IEEE International Symposium on Industrial Electronics,
vol. 2, pp. 706–711, IEEE, Athens, Greece, July 1995.

[12] M. Adamski and J. L. Monteiro, “From interpreted petri net
specification to reprogrammable logic controller design,”-
vol. 1, pp. 13–19, in Proceedings of the 2000 IEEE International
Symposium on Industrial Electronics (Cat. No.00TH8543),
vol. 1, pp. 13–19, IEEE, Cholula, Mexico, December 2000.

[13] M. Wegrzyn, M. A. Adamski, and J. L. Monteiro, “(e ap-
plication of reconfigurable logic to controller design,” Control
Engineering Practice, vol. 6, no. 7, pp. 879–887, 1998.

[14] IEEE, IEEE Standard VHDL Language Reference Manual,
IEEE, Manhattan, NY, USA, 1987.

[15] M. Petko and G. Karpiel, “Semi-automatic implementation of
control algorithms in ASIC/FPGA,” in Proceedings of the 2003
IEEE Conference on Emerging Technologies and Factory Au-
tomation, pp. 427–433, Lisbon, Portugal, September 2003.

[16] C. Economakos and G. Economakos, “FPGA implementation
of PLC programs using automated high-level synthesis tools,”
in Proceedings of the IEEE International Symposium on In-
dustrial Electronics, pp. 1908–1913, IEEE, Cambridge, UK,
June 2008.

[17] C. Economakos and G. Economakos, “Optimized FPGA
implementations of demanding PLC programs based on
hardware high-level synthesis,” in Proceedings of the 2008
IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 1002–1009, IEEE, Hamburg, Ger-
many, September 2008.

[18] D. Du, X. Xu, and K. Yamazaki, “A study on the generation of
silicon-based hardware PLC bymeans of the direct conversion
of the ladder diagram to circuit design language,” Interna-
tional Journal of Advanced Manufacturing Technology, vol. 49,
no. 5–8, pp. 615–626, 2010.

[19] A. Milik, M. Kubica, and D. Kania, “Reconfigurable logic
controller-direct FPGA synthesis approach,” Applied Sciences,
vol. 11, no. 18, p. 8515, 2021.

[20] S. Ichikawa, M. Akinaka, H. Hata, R. Ikeda, and
H. Yamamoto, “An FPGA implementation of hard-wired
sequence control system based on PLC software,” IEEJ
Transactions on Electrical and Electronic Engineering, vol. 6,
no. 4, pp. 367–375, 2011.

[21] G. Corti, D. Brunner, N. Mizuno, and P. Jamieson, “Trans-
forming ladder logic to verilog for fpga realization of pro-
grammable logic controllers,” in Proceedings of the
International Conference on Embedded Systems, Cyber-Phys-
ical Systems, and Applications (ESCS), pp. 35–38, Las Vegas,
NV, USA, July 2017.

[22] H. Eassa, I. Adly, and H. H. Issa, “RISC-V based imple-
mentation of programmable logic controller on FPGA for
industry 4.0,” in Proceedings of the 2019 31st International
Conference on Microelectronics (ICM), pp. 98–102, IEEE,
Cairo, Egypt, December 2019.

[23] S. M. George, “Atomic layer deposition: an overview,”
Chemical Reviews, vol. 110, no. 1, pp. 111–131, 2010.

[24] Altera, Quartus II Handbook: Volumes 1, 2, and 3, Intel, Santa
Clara, CA, USA, 2004.

[25] J. C. (ompson and D. B. Durocher, “24 V DC control-an
emerging alternative to legacy 120 vac control applications in
north America,” in Proceedings of the Conference Record of the
2002 Annual Pulp and Paper Industry Technical Conference
(Cat. No.02CH37352), pp. 70–75, Toronto, Canada, June
2002.

[26] T. Iivonen, M. J. Heikkilä, G. Popov et al., “Atomic layer
deposition of photoconductive Cu2O thin films,” ACS Omega,
vol. 4, no. 6, pp. 11205–11214, 2019.

10 International Journal of Reconfigurable Computing


