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Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced
accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However,
apart from space charge repulsion, the internal bunch structure and its development along the beam line can
limit the achievable compression due to nonlinear phase space correlations. In order to improve such a
limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale
facilities like FLASH at DESY or the European XFEL, a higher harmonic cavity is installed for this purpose.
In this paper, another method is described and evaluated: Expanding the beam after the electron source
enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which
is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based
on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes.
The core of this article is an analytic model describing this approach, which is verified by simulations,
predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to
σE=E < 10−5 while keeping the bunch long is another interesting possibility, which finds applications,
e.g., in time resolved transmission electron microscopy concepts.
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I. INTRODUCTION

Modern accelerators like free-electron lasers require
ultrashort bunches on the femto-second scale. Apart from
design considerations like a sufficient peak current, the
bunch length ultimately determines the time resolution
achievable with such light sources. The latter is also true for
electron sources built to carry out time-resolved electron
diffraction experiments, like, for example, the Relativistic
Electron Gun for Atomic Exploration, REGAE [1,2], located
at DESY in Hamburg.
To compress an electron bunch, a linearly correlated

energy spread is impinged, making use of either subsequent
time of flight differences based on the velocity differences
of the particles (ballistic bunching, [3,4]) or on path length
differences as caused by magnetic chicanes [5]. The
compression is limited by two factors: space charge
repulsion and nonlinear phase space correlations.
For example, at REGAE the bunches are compressed

via a ballistic bunching scheme, leading to a longitudinal
extent of the bunches down to 2 μm according to simu-
lations using the code ASTRA [6], corresponding to 7 fs. A
further compression of the electron bunches down to even

shorter length is limited by phase space correlations,
originating from the curvature of the accelerating fields
and nonlinear shifts of the particles within a drift: In an
ideal focus, the phase space forms a straight upright particle
distribution without correlated distortions. The longitudinal
emittance, i.e., the product of bunch length and energy
spread at the focus, is minimal in this case, limited only by
uncorrelated contributions. Typically, however, the phase
space forms rather a parabolic shape. Emittance and bunch
length are hence enlarged due to correlated distortions.
One approach to eliminate the second and third order

correlations is the usage of a decelerating higher harmonic
rf field [7–9]. For example, an rf structure running at the
triple frequency of the accelerating cavities is routinely
operated at FLASH, DESY’s XUV free-electron laser [10],
and will also be employed at the European XFEL linac [11].
A simulation of REGAE with an added third harmonic
cavity yields bunch lengths of 600 as [3].
The need for a different (shorter) rf wavelength in order

to linearize the phase space curvature arises from the fact
that the use of the same frequency would require to also
apply the same amplitude—and, therefore, the bunch
would be completely decelerated. This is, however, only
true if there is no evolution of the bunch in between the
accelerating and the linearizing cavity. Thus, another
possibility to eliminate the nonlinearities is the acceleration
in the gun far off-crest, referred to as stretcher mode in this
article: The induced energy spread by such gun phase
settings leads to a controlled expansion of the bunch in the
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subsequent drift, and consequently the phase space curva-
ture and higher order correlations change as well. Hence,
the subsequent linearizing cavity—which can in this case
be simultaneously used for bunching—can be operated at
the same frequency as the gun, but the field of the linearizer
effectively acts like a higher harmonic structure, because
the associated field curvature is larger than the expanded

bunch nonlinearities. To illustrate the concept, a schematic
comparison of the three cases is shown in Fig. 1.
The stretcher mode approach for ballistic bunching is

developed and analyzed in the following article, which is
structured as follows. In Sec. II, the mathematical formal-
ism is derived, covering the nonlinear evolution of the
phase space coordinates of the bunch particles based on the

FIG. 1. The basic idea of the stretcher mode concept compared to an uncorrected bunch compression scheme and a third harmonic
approach. The plots from left to right show the energy gain/loss,Δγ, in the respective cavity in the longitudinal phase space of the bunch.
Previously acting fields are marked by dashed lines and the black line indicates the sum of all fields that acted up to the respective
location. The small insets depict the shape of the bunch in the longitudinal phase space, resulting from an acceleration at the marked
phase. Figures (a) depict the case without correction. The bunch acquires the curvature of the finite phase interval it covers in of the gun
field—where for simplicity slippage has been neglected. The curved shape is transported and conserved during the drift. After
the buncher cavity, a linear correlated energy spread has been imprinted on top by passing at the zero-crossing phase. However, the
curvature is still present in the resulting bunching configuration, limiting the maximal achievable compression. In case (b), the
introduction of a decelerating third harmonic cavity in the drift between gun and buncher flattens the phase space distributions, resulting
in an almost purely linear ζ-dependency of the energy distribution behind the buncher cavity. In (c), the stretcher mode, the bunch is
accelerated off-crest in the gun, leading to a controlled expansion within the drift—and an accompanied reduction in the curvature due to
the lengthening. Hence, it is possible to find a solution that linearizes the phase space by adding the negative (reduced) curvature in the
buncher cavity, while simultaneously adding a linearly correlated energy spread, resulting in a bunch similar to the case of a third
harmonic cavity. Please note, in this example only the action of the fields and the linear expansion for the off-crest case are considered.
In the full picture higher order effects in the bunch kinetics also need to be explored, as will be seen in the course of this article.

ZEITLER, FLOETTMANN, and GRÜNER Phys. Rev. ST Accel. Beams 18, 120102 (2015)

120102-2



kinetics in a free drift, while cavities are treated as thin
lenses, leading to an instantaneous kick in the energy
coordinate. The description enables conditions to be fulfilled
for a linearized longitudinal focus—or a minimization of
the energy spread. (It is, however, not limited to these two
cases.) The analytic treatment is completed by a discussion
of the longitudinal RMS emittance, which is a measure
for the nonlinearities present in the phase space distribution
of the bunch. Space charge forces are not treated in the
mathematical approach.
The outcome of the analytical calculations is used as set

of seed parameters—cavity amplitudes and phases—for
numerical simulations, which are used to validate the
method. First, a second order corrected bunching scheme
is compared for similar settings with both tools—whereby
ASTRA is used without space charge repulsion. In a second
step—including space charge forces—a third order correc-
tion is attempted, requiring additional conditions to be
fulfilled, which is achieved by the operation in the so-called
overcompensation mode, a special case of the stretcher
mode. Finally, in the last part of Sec. III, instead of a
compressed bunch, which resembles an upright line in
phase space, the capability to produce a bunch with
extremely low energy spread, i.e., a horizontal line, is
demonstrated.
For the calculations in the course of this article, a

machine like REGAE is assumed, although the concept
can, in principle, be generalized and adapted to other
machines, as briefly discussed in Sec. IV. REGAE is a
conventional accelerator designed to perform time-
resolved electron diffraction experiments [12], where
the time resolution is given by the length of the bunch
on target. Another goal—executed within the LAOLA
collaboration at DESY—is the demonstration and analysis
of the injection of a REGAE bunch into a laser-driven
plasma wakefield [13]. The machine is currently being

upgraded for this purpose and connected to a 200 TW high
power laser system.
REGAE consists of a 1.5 cell rf gun cavity (the cathode

plane is located at zG ¼ 0 m) and a four cell buncher
cavity (zB ¼ 1.39 m), both operated at 3 GHz. The
electron bunches are produced by ultraviolet light pulses
of a frequency tripled titanium-sapphire laser which have
an FWHM length of about 500 fs, i.e., around 200 fs RMS.
The machine is designed to produce electron bunches of
low charge (Q ≈ 100 fC), low transverse beam emittance
(ϵtr < 100 nm rad), and ultra-short length (σt < 10 fs) at
the position of the target, zF ¼ 5.50 m [2]. The geometry,
which is depicted in Fig. 2, is used for all calculations
in Sec. III, while the pulse length of the laser (and
consequently the initial electron bunch length) is set to
τRMS ¼ 1 ps. The charge in the numerical simulations
in Secs. III B and III D is only 50 fC in contrast to the
values quoted above.
The aim of this article is to present and demonstrate the

validity of our approach, which can be realized in various
configurations. An extensive feasibility study with toler-
ance analysis for the shortest bunches possible is beyond
the scope.

II. ANALYTICAL FORMULATION

A. Phase space development within a free drift

The compression mechanism discussed here is com-
pletely treated in the longitudinal phase space of the bunch.
Each particle has coordinates ðζ; γÞ, where γ is the
relativistic Lorentz factor and ζ is the relative longitudinal
position in the bunch. The particle distribution is assumed
to lie on a line, i.e., there is no uncorrelated energy spread.
The aim of the analytical treatment is to formulate a

framework which yields parameter settings for the cavities
which linearize the phase space at the location of the

FIG. 2. Schematic of the cavity positions at REGAE and the drift spaces up to the longitudinal focus; an exemplary bunch length
evolution is indicated by the red line. The electron gun is at (I), followed by a first drift section, (II), until the buncher cavity is reached at
(III); the dashed, white line indicates the thin lens approximation of the buncher cavity. The second drift is marked by (IV) and delimited
by the longitudinal focus, (V). The shaded zones will be kept for all drift plots throughout this article for illustration purposes. The
parameters ~Gi, Gi, gi, ~Bi, Bi and bi will be used in the course of the article to describe the energy of the bunch as a polynomial in the
respective zones, while χi and Xi are the polynomial coefficients for the description of the spatial shift of particles in the longitudinal
phase space of the bunch.
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longitudinal focus. The formalism is based on two basic
assumptions: (1) Within a drift of the bunch (segments II,
IV of Fig. 2), the energy coordinate γ is unchanged; space
charge effects are neglected. (2) Within a cavity (segments
I, III) the ζ-coordinate does not change. (Thin lens
approximation.)
The relative shift of the electrons in a drift is given by the

velocity difference within the bunch. Since the velocity
spread is based on the energy spread imprinted in an
accelerating structure, a general formulation has to include
the nonlinear evolution of the relative shift originating from
the nonlinear correlation γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, where β is the

velocity (in units of speed of light). For a drift from z0 to a
point z this can be expressed by [3]:

ΔζðzÞ ≔ ΔvðzÞðtðzÞ − tðz0ÞÞ ¼
1

β
ΔβðγÞðz − z0Þ

¼ 1

β̄

�
dβ
dγ

����
γ̄

δγ þ 1

2

d2β
dγ2

����
γ̄

ðδγÞ2

þ 1

6

d3β
dγ3

����
γ̄

ðδγÞ3 þ � � �
�
z0

ðz − z0Þ; ð1Þ

where β̄ and γ̄ are the velocity/energy of the central particle
of the bunch (ζ ¼ 0) respectively, which marks the center
of the Taylor expansion. δγ denotes the energy difference
from γ̄.
The coefficients of this Taylor polynomial are given by:

η1ðγ̄Þ ≔
1

β̄

dβ
dγ

����
γ̄

¼ 1

γ̄3β̄2

η2ðγ̄Þ ≔
1

2β̄

d2β
dγ2

����
γ̄

¼ 2 − 3γ̄2

2γ̄6β̄4

η3ðγ̄Þ ≔
1

6β̄

d3β
dγ3

����
γ̄

¼ 2 − 5γ̄2 þ 4γ̄4

2γ̄9β̄6
: ð2Þ

The consequence of the kinetics is that for any energy
distribution that does not yield a linear velocity spread, a
curvature and higher order distortions are generated in the
longitudinal phase space of the bunch, solely due to the
drift. The magnitude of these effects is strongly suppressed
for high energies.

B. Cavity effects on the phase space

In addition, within the gun (or any other accelerating
structure), the bunch acquires a curvature based on the
shape of the accelerating field gradient, since the finite
bunch length covers an interval �δϕ around the nominal
phase, ϕ. A general description of this effect can be given
again by a Taylor expansion of the respective function
describing the energy gain within the cavity in dependence
on the phase. In the cases treated here, the function for the
gun originates from a numerical phase scan using ASTRA,

which is fitted by a polynomial. An analytic calculation is
difficult, due to the slippage of the electrons with respect
to the phase of the field at the start [14]. The buncher,
in contrast, is easily described by a sine function. Both
equations can be expanded into a Taylor series in δϕ
around a phase ϕ—which directly yields the change in the
phase space coordinate γ. Using the correlation δϕ ¼ −ζk,
where k represents the wave vector of accelerating field,
the energy gain (or loss) can be expressed by

ΔγðζCÞ ¼ ~A0 þ ~A1ζC þ ~A2ζ
2
C þ ~A3ζ

3
C þ � � � ; ð3Þ

where ζC denotes the phase space coordinate at the position
z ¼ zC of the cavity, and the ~Ai are the respective Taylor
coefficients.
If the incoming distribution γ̂ is described in ζC, the

resulting energy distribution after a cavity thus can be
expressed in a polynomial form as well:

γðζCÞ ¼ γ̂ðζCÞ þ ΔγðζCÞ
¼ A0|{z}

γ̄

þ A1ζC þ A2ζ
2
C þ A3ζ

3
C þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δγ

; ð4Þ

where the coefficients Ai ¼ Âi þ ~Ai are determined by the
sums of the coefficients of γ̂ðζCÞ and the ~Ai.
The resulting expressions for the energy of the central

particle, γ̄, and the energy spread δγ can be inserted into
Eq. (1) to describe the dynamics in the following drift.
Since δγ is a polynomial in ζC, the shifted coordinates due
to the drift, ζðzÞ ¼ ζC þ Δζ can be expressed in this cavity
coordinates ζC. Multiplying out ðδγðζCÞÞ2 and ðδγðζCÞÞ3,
neglecting terms of fourth and higher orders, and rearrang-
ing leads to

ζðzÞ ¼ χ1ðzÞζC þ χ2ðzÞζ2C þ χ3ðzÞζ3C; ð5Þ

with the coefficients χi defined by

χ1ðzÞ ¼ 1þ ðz − z0Þ½η1A1�
χ2ðzÞ ¼ ðz − z0Þ½η1A2 þ η2A2

1�
χ3ðzÞ ¼ ðz − z0Þ½η1A3 þ 2η2A1A2 þ η3A3

1�: ð6Þ

Equations (5) and (6) thus describe the evolution of
the longitudinal phase space coordinate ζ of a particle along
a drift section behind a cavity, depending on the start
coordinates ζC and the known, initial energy γðζCÞ at the
exit of the preceding cavity, which is determined by Eq. (4).
The magnitude of γ as phase space coordinate is

unchanged along the drift, since the energy is constant.
But, the functional description—respecting the polynomial
structure—must reflect the change in the position ζ of each
particle. In that sense, Eq. (4) is a special case of a general
expression, to which it can be equated, due to the constant
magnitude of γ:
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γðζCÞ ¼ A0 þ A1ζC þ A2ζ
2
C þ A3ζ

3
C

≡ a0 þ a1ζ þ a2ζ2 þ a3ζ3 ¼ γðζÞ: ð7Þ

The capital letters are used for the coefficients at the
cavity, in contrast to small letters which describe the
development of the coefficients within a drift. This nomen-
clature will be used throughout the following derivation.
Using Eq. (5) in the right-hand side of Eq. (7) yields the
general coefficients

a0 ¼ A0 ¼ γ̄ a1 ¼
A1

χ1

a2 ¼
A2 − a1χ2

χ21
¼ � � � ¼ A2χ1 − A1χ2

χ31

a3 ¼
A3 − a1χ3 − 2a2χ1χ2

χ31
: ð8Þ

These coefficients compensate for the changes in ζ, such
that γ is kept constant within the particle coordinates
ðζ; γðζÞÞ.
Equations (5) and (7), with the respective coefficients

χiðzÞ and aiðzÞ, characterize the phase space coordinates of
each particle at an arbitrary bunch position z along the drift
after a cavity which defines the starting polynomial of γ in
ζ. Thus, the phase space at the entrance of a subsequent
cavity can be calculated.

C. Start to end description: Iterative application

Equations (3)–(8) provide, in principle, all tools to
describe the development of the longitudinal phase space,
and thus of the bunch length for an accelerator like REGAE.
To generalize this formalism for such a machine with two
cavities, as described in Sec. I, the following notation will
be used: The parameters Ai and ai of the energy poly-
nomials [Eqs. (7) and (8)] are replaced by either Gi=gi for
the electron gun, or Bi=bi for the buncher cavity. Capital
letters denote the initial parameter set at the exit position of
a cavity, while small letters are used for the subsequent
drift, as stated above. Please note that, in the case of the
gun, the distribution at the exit is taken from a numerical
simulation, such that Gi is directly known and serves as the
starting distribution for the formalism.
Thus, to describe the whole system, the distribution

arising from the gun and the drift toward the buncher cavity
is evaluated at the position zB of the buncher, leading to the
phase space coordinates ðζB; γ̂ðζBÞÞ, where

γ̂ðζBÞ ¼ g0ðzBÞ þ g1ðzBÞζB
þ g2ðzBÞζ2B þ g3ðzBÞζ3B: ð9Þ

Using Eq. (4), the energy polynomial after the action of
the buncher cavity is thus

γBðζBÞ ¼ ðg0 þ ~B0Þ þ ðg1 þ ~B1ÞζB
þ ðg2 þ ~B2Þζ2B þ ðg3 þ ~B3Þζ3B

¼ B0 þ B1ζB þ B2ζ
2
B þ B3ζ

3
B: ð10Þ

Finally, from Eq. (10), the shift in the following drift can
be calculated, applying the same pattern as above:

ζðz ≥ zBÞ ¼ ζB þ Δζðz ≥ zBÞ
¼ X1ζB þ X2ζ

2
B þ X3ζ

3
B; ð11Þ

with the coefficients

X1 ≔ 1þ ðz − zBÞ½H1B1�
X2 ≔ ðz − zBÞ½H1B2 þH2B2

1�
X3 ≔ ðz − zBÞ½H1B3 þ 2H2B1B2 þH3B3

1�; ð12Þ

where Hi are the coefficients ηi, Eq. (2), evaluated for the
overall mean energy γ̄B ¼ B0 ¼ g0 þ ~B0; all effects up to
the buncher are already included in gi.H and X are the label
for a capital η and χ respectively, to reflect that the same
structure lies beneath the coefficients.
In a last step, analogous to (8), the coefficients for the

function γBðζÞ in the second drift can be determined, such
that a complete description of the longitudinal phase space
in that section is obtained—and such for the whole system.
For the bunch length determination this evaluation is not
required, since this only relies on the change in ζ which is
already described by Eq. (11). However, the result is
required for the calculation of the emittance. It is given by

γBðζÞ ¼ b0 þ b1ζ þ b2ζ2 þ b3ζ3

b0 ¼ B0 ¼ γ̄B b1 ¼
B1

X1

b2 ¼
B2 − b1X2

X2
1

¼ � � � ¼ B2X1 − B1X2

X3
1

b3 ¼
B3 − b1X3 − 2b2X1X2

X3
1

: ð13Þ

D. Summary

In the following, a summary of the general approach is
given—with the bullets corresponding to the respective
segments in Fig. 2 and the phase space coordi-
nates ðζðzÞ; γðζ; zÞÞ:
(I) The phase space at the gun is characterized by the

start distribution in ζG ≡ ζðzGÞ and the corresponding
γ-coordinate from a simulation, which can be expressed
as a function of ζG. It is expanded into a Taylor polynomial
around the nominal phase of the cavity field, where the
central particle is located. The gun polynomial yields the
coefficients Gi.
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�
ζG;

X
Giζ

i
G

�
:

(II) The start configuration from above is typically curved,
and acquires an additional curvature in the subsequent drift
due to the nonlinear correlation of energy and velocity—
included in the ηi factors of Eq. (1). The phase space
coordinate ζðzÞ for each particle, depending on the bunch
position z, is described by Eq. (5)—a polynomial in the
start coordinate ζG and the χiðzÞ coefficients [Eqs. (6)],
which include the nonlinear correlations as well as the
z dependence. To describe the phase space γðζ; zÞ as a
function of z, the change in this function is calculated—
making use of the fact that the magnitude of γ for each
particle is unchanged, leading to Eq. (7) with the giðzÞ
coefficients analogous to Eq. (8).�X

χiðzÞζiG;
X

giðzÞζðzÞi
�
:

(III) Evaluating the phase space at the buncher position
z ¼ zB enables the application of this cavity’s field by a
simple summation of the evolved phase space function
γ̂ðζBÞ and the effect of the cavity field ΔγðζBÞ [Eq. (4)],
which amounts to the sums of the evolved coefficients
giðzBÞ and buncher coefficients ~Bi [Eq. (10)], denoted by
Bi. The transported ζðzBÞ ¼ ζB coordinates are unchanged
in this region, since the cavity is treated as a thin lens: The
action of the buncher amounts to an instantaneous kick in
this approximation.�X

χiðzBÞζiG;
X

BiðzBÞζiB
�
:

(IV) Knowing the phase space after the action of the second
cavity as described above, the same formalism as in (II) is
applied in the second drift. The ζðzÞ coordinate is described
by a polynomial in the ζB coordinates at the buncher. The
corresponding coefficients Xi are simply Eqs. (6) evaluated
for the evolved phase space at zB. In a similar manner, the
phase space function γBðzÞ can also be determined, keeping
the magnitude of γB for each particle constant, which
results in Eq. (13) with the coefficients biðzÞ.�X

XiðzÞζiB;
X

biðzÞζðzÞi
�
:

(V) Since with (IV) the phase space can be determined
in the corresponding second drift, the ζ-coordinate of
each particle at the focus position zF—which marks the
end of region (IV)—can be determined by evaluating
Eq. (11) with the coefficients Xi at zF. The energy function
typically can no longer by calculated at this point, since
the description of the phase space as a function breaks
down due to ambiguities. However, each particle’s

γ ¼ γB is known, since—once again—the magnitude of
γ is unchanged in a drift. Hence, the phase space still can
be depicted. �X

XiðzFÞζiB;
X

BiðzBÞζiB
�
:

With the formulation in the last step, a closed description
from gun to focus is achieved. It maps the start coordinates
ζG onto the respective coordinate at the focus position,
ζðzFÞ ¼ ζF (or at any other position in between). The
optimal focus—a straight, perpendicular line in phase
space—is achieved, when ζF ¼ 0 for all ζG. This happens
if the Xi coefficients vanish simultaneously. Since they only
depend on the parameters Gi and Bi, which are functions of
the cavity amplitudes EG, EB and phases ϕG, ϕB, there are
four (and thus sufficient) free parameters to solve three
equations. The solution is independent of the start distribu-
tion, as far as the phase space can be approximated as a line.
Finally, please note, that a real higher harmonic cavity

can be implemented into the analytic calculations as well.

E. Longitudinal emittance

A measure for the nonlinearities present in the longi-
tudinal phase space distribution is the longitudinal RMS

emittance. This value is not the phase space volume (and
thus a constant of motion), but includes phase space
correlations of second and higher orders. It is given by

ϵ1;RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hζ2ihE2

kini − hζEkini2
q

; ð14Þ

where h·2i defines the second central moment or variance of
the (normalized) density distribution, ρ, while the second
term is the co-variance of ρ, which removes the linear
correlations from the RMS emittance calculation [14]:

hfðxÞ2i ¼
Z

ρðxÞfðxÞ2dx −
�Z

ρðxÞfðxÞdx
�

2

hfðxÞgðxÞi ¼
Z

ρðxÞfðxÞgðxÞdx

−
Z

ρðxÞfðxÞdx
Z

ρðxÞgðxÞdx: ð15Þ

The emittance can be determined for a discrete distri-
bution, like an electron bunch in a simulation, by evaluating
the corresponding sums over all particle coordinates
present in the simulation. This approach is also possible
and partly used in the course of this article, since the
function γðζÞ ¼ Ekin=Erest þ 1 is evaluated and visualized
for a finite particle set; Ekin and Erest denote the kinetic
energy and rest energy of an electron.
However, more insight can be gained by applying the

analytic approach from above. From Eq. (14) one can
deduce that the longitudinal RMS emittance is proportional

ZEITLER, FLOETTMANN, and GRÜNER Phys. Rev. ST Accel. Beams 18, 120102 (2015)

120102-6



to the product of the bunch length and the nonlinear energy
spread [14]:

ϵ1;RMS ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδγ2nlihζ2i

q
¼ δγnl;RMSσζ; ð16Þ

where the nonlinear energy spread δγnl is given by:

δγnl ¼ δγ −
hζδγi
hζ2i ζ: ð17Þ

From this, the emittance can be calculated directly, if the
density distribution ρðζÞ is known. For example, assuming
a uniform density distribution,

ρðζÞ ¼
	 1

2ζm
; for jζj ≤ ζm

0; else;
ð18Þ

the nonlinear energy spread according to Eq. (18) and the
integral calculus above amounts to

δγnl ¼ a2ζ2 þ a3ζ3 −
3

5
a3ζ2mζ; ð19Þ

i.e., the nonlinear terms of the energy polynomial (7),
minus a correction that removes the linear contribution of
the third order.
It is straightforward to calculate σζ ¼

ffiffiffiffiffiffiffiffi
1=3

p
ζm, and

finally the RMS of the nonlinear energy spread results in

δγnl;RMS ¼
�

1

2ζm

Z
ζm

−ζm

�
a2ζ2 þ a3ζ3 −

3

5
a3ζ2mζ

�
2

dζ

−
�
1

3
a2ζ2m

�
2
�1

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

45
a22ζ

4
m þ 4

175
a23ζ

6
m

r
≈

2ffiffiffi
5

p ja2jσ2ζ : ð20Þ

The second term in the square brackets originates from the
mean of δγ—which differs by this value from γ̄, describing
the energy of the central particle of the distribution in ζ.
The proportionality of δγnl;RMS ∝ ja2jσ2ζ in the leading
order is valid for any symmetric distribution, with the
constant of proportionality depending on the kind of
distribution. Hence, for such conditions, the longitudinal
RMS emittance at a certain point z can be described as

ϵ1;RMSðzÞ ¼ DðzÞja2ðzÞjσζðzÞ3
≈ DðzÞja2ðzÞχ1ðzÞ3jζ3C;RMS

¼ DðzÞjA2χ1ðzÞ − A1χ2ðzÞjζ3C;RMS: ð21Þ

Here, DðzÞ denotes the constant of proportionality and
ζC;RMS ≔ σζðzCÞ is the RMS of the distribution at the gun.

The equality σζðzÞ¼ χ1ðzÞζC;RMS is a strong assumption:
It demands that the particle at the RMS position of the initial
particle distribution stays at the RMS position of the bunch
along the drift. This is only fulfilled for linear changes
(which are exactly described by χ1ðzÞ); deviations, how-
ever, are order ζ4 and thus neglected per definition. This
also implies that the kind of distribution does not change
in the drift in the leading order, keeping DðzÞ≡D also
constant in z. For a more accurate description, one could
absorb changes in the distribution into DðzÞ, as long as
the symmetry is not spoiled; this also implies a certain
independence of the functional description of the emittance
from the distribution—which is based on the fact that the
functional description of the drift behavior itself does not
depend on the distribution. The validity of Eq. (21) breaks
down close to the focus, since around that point the density
distribution ρ is no longer symmetric.
The main point of the emittance discussion lies in the

term jA2χ1ðzÞ − A1χ2ðzÞj. Since this is proportional to ja2j,
ϵ1;RMSðzÞ describes the behavior of the second order. It thus
has to vanish—if evaluated in leading order—at the focal
spot zF, if the second order should be corrected. (Since
higher orders are still present, and the symmetry breaks
down, in general it will have a local minimum, where the
magnitude of ϵ1;RMSðzFÞ is determined by the higher order
nonlinearities.)

III. APPLICATION

A. Optimized bunching: Second order correlations

To illustrate the functionality of the approach described
above, an optimized case (i) is chosen from a numerical
solution of Eqs. (12), where X1 and X2 are set to zero at
z ¼ zf ¼ 5.50 m. X1=2 ¼ 0 ensures that during the drift
all particles are shifted such that they reach ζ ¼ 0 at the
same time at zf . Hence, the beam is focused longitudinally
up to the second order. The parameter set determined
is EGðiÞ ¼ 100.0 MV=m, ϕGðiÞ ¼ 34.1 deg and EBðiÞ ¼
21.2 MV=m, ϕBðiÞ ¼ −109.3 deg, resulting in a beam
with an energy of about EkinðiÞ ¼ 3.2 MeV. (ϕG ¼
ϕB ¼ 0.0 corresponds to the maximum accelerating
gradient of the respective cavity.)
Case (i) is now compared with two scenarios. On the one

hand, case (ii), the gun amplitude is kept at EGðiiÞ ¼
100.0 MV=m, while for case (iii) the gun amplitude is
set to EGðiiiÞ ¼ 70.0 MV=m. For both cases, the gun
phase is set to the maximum accelerating phase
(ϕGðii; iiiÞ ¼ 0.0 deg) and the buncher cavity is adjusted
to ϕBðii; iiiÞ ¼ −90.0 deg. The amplitudes of the buncher
cavity are tuned to EBðiiÞ ¼ 17.6 MV=m and EBðiiiÞ ¼
6.6 MV=m respectively, resulting in a bunched beam at zF.
The kinetic energy of these beams is EkinðiiÞ ¼ 4.6 MeV
and EkinðiiiÞ ¼ 3.2 MeV. The phase settings are
illustrated in Figs. 3 and 4. Figure 5 shows a comparison
of the calculation from the respective longitudinal phase
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spaces at the focal spot. For cases (ii) and (iii), a clear
signature of the quadratic term is present, which limits
the minimal bunch length. According to the calculation,
the RMS bunch lengths are σζðiiÞ ¼ 6.6 μm b¼ 22 fs
and σζðiiiÞ ¼ 5.9 μm b¼ 20 fs. In contrast, for case (i) the
quadratic contribution to the curvature is eliminated,
leading to a much shorter bunch of σζðiÞ ¼ 230 nm b¼ 770
as, limited by the third order.
The longitudinal density distribution at the start, which

mimics the temporal distribution of the laser at the cathode
surface, is set to an inverted parabola for all cases treated
in this article. This distribution is suitable to reduce
space charge effects [3], which is relevant for case (iv) in
Sec. III B and the energy spread compensation scheme
discussed in Sec. III D. The RMS length at the cathode is

kept at σt ¼ 1 ps for the ASTRA simulations. For the
analytic calculations, this value has to be multiplied by
the bunch compression factor of the gun [14] to achieve the
same start conditions for both models, since this factor
corrects the initial bunch length for changes within the gun.
Comparing the value at the cathode to the bunch length in
the focus, one obtains a compression factor of the second
order corrected scheme which is larger than 1000.
To further demonstrate the validity of the approach, it is

analyzed by ASTRA studies (without space charge). The
parameters need to be slightly adjusted in ASTRA to account
for deviations arising from the thin lens approximation of
the buncher in the numerical approach, as well as for gun
dynamics and transverse effects. The mathematical model
in that sense yields seed parameters for the particle tracker.
Figure 6 shows the evolution of case (i) in ASTRA and
the mathematical model, as well as the calculated bunch
length along the beamline for case (iii). The mathematical
approach yields a very close result compared to the particle
tracker.
As can be seen, for (i) the electron bunch is first stretched

until it reaches the buncher cavity, which now acts as a
pseudoharmonic structure: Due to the significant length-
ening, the electron bunch covers a phase interval δϕB that
differs from the phase interval δϕG at the gun. Hence, for
δϕB > δϕG—i.e., a decompression within the first drift—the
second cavity effectively has a shorter wavelength from
the point of view of the bunch compared to the gun, despite
the fact that both cavities are operated at the same frequency
of 3 GHz. As a consequence, the electrons are decele-
rated in the buncher cavity (EkinðiÞ ¼ 4.0 MeV down to
EkinðiÞ ¼ 3.1 MeV) and longitudinally focused—including
the second order, similar to a third harmonic system [3,8].
For case (iii), in contrast, there is no bunch length evolution
visible up to the buncher, since the particles originate from
the on-crest phase of the gun where the slope is zero; the
minimal bunch length is limited by the second order.

FIG. 4. Calculated energy gain of the buncher cavity in
dependency of the phase. For case (i) a decelerating phase is
set, determined by the analytic model for a curvature corrected
focus at z ¼ 5.50 m. Cases (ii,iii) are set to the zero crossing and
the amplitude is tuned for a bunch length minimum at the same
focus position.

FIG. 5. Comparison of the calculated phase space distributions
in the focus for cases (i,ii,iii). Cases (ii,iii) are clearly limited by the
second order in contrast to scenario (i), which is much shorter. It is
almost a straight, upright line with a signature of the third order.

FIG. 3. Phase scan of the gun cavity. For case (i), an expanding
phase is chosen, while for the comparisons (ii,iii) the maximum
accelerating phase, ϕG ¼ 0, is applied.
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As discussed, a good measure for the minimization
of higher orders is the longitudinal RMS emittance.
Elimination of the second order curvature at a certain point
should lead to a minimum of the RMS emittance at that
spot. Thus, matching this minimum to the minimum bunch
length should yield a focused, second order corrected phase
space distribution. As can be seen from Fig. 6, this
condition holds for case (i), while the longitudinal RMS

emittance for (iii) is slightly increasing behind the buncher
cavity. Note that the longitudinal emittance is in general
not constant in a drift due to the dynamics described by
Eq. (2). For case (i) an overcompensation of the second
order nonlinearity is hence required in the buncher cavity
(compare with [3]).

A direct comparison of case (i) calculated with the
analytical model and the according ASTRA simulation with
similar parameters is presented in Fig. 7, showing four
snapshots of the longitudinal phase space. The analytic
method models the resulting bunch structure very well.
Both phase space distributions are taken at four positions
around the shortest bunch length. The RMS focus in both
cases is actually at an offset Δz ¼ −2 mm in front of the
ideal spot zF: Due to the dominant third order present—
which determines the S-shape—the RMS bunch length is
shorter at this position, since the third order effect is partly
compensated by a small first order, such that the slope
is not yet completely perpendicular. The minimal RMS

extent of the beam for the simulation is even shorter

FIG. 6. Evolution of the bunch length σζðzÞ, the longitudinal emittance ϵ1;RMSðzÞ and the energy γðzÞ along the beam line for the
case (i)—analytical calculation and simulation—and case (iii), calculation only. Both versions of (i) are in very good agreement. The
bunch length in (i) is first increasing, since the gun is set for an expanding phase, in contrast to (iii), where it does not change.
The position of the minimum coincides for all cases, but the bunch is shorter for case (i) in the minimum. The emittance has a local
minimum at the same position, indicating the vanishing of the second order of (i), while in (iii) there is almost no change. The bunch
energy for case (iii) stays constant as well, while in (i) a deceleration takes place in the buncher.
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with σζðiÞsim ¼ 190 nm b¼ 630 as compared to σζðiÞcalc ¼
230 nm. In contrast, at Δz ¼ 0 mm—the location where
the slope is nearly infinite, corresponding to the definition
of the longitudinal focus of the analytic treatment—the

FWHM width of the beam is minimal. It has a size of
FWHM ¼ 232 nm. Due to the slight difference in param-
eters, the mean energy of the simulated bunch is about
80 keV smaller than predicted by the analytical model. A

FIG. 7. Comparison of the longitudinal phase space of case (i) at four different positions around the shortest bunch length. For both
versions, an inverted parabolic density distribution with an emission time of τRMS ¼ 1 ps is launched. The analytic calculation, depicted
by the red line, resembles the tracked distribution (without space charge) to a very good degree—despite the thin lens approximation of
the buncher description. The gray dashed line depicts the current profile of the distribution, determined by the local particle density of
the ASTRA simulation results. AtΔz ¼ 0 mm, the slope is (almost) infinite, which resembles the focus definition of the analytical model:
all particles have the same longitudinal position at the same time (up to the second order). At this position, the FWHM width—evaluated
from the current profile—is minimal. The minimal RMS bunch length is reached at (Δz ¼ −2 mm), since the third order present is partly
compensated by a negative slope.

TABLE I. Overview of the parameter settings for the different bunching configurations discussed.

Case Method Space charge EG (MV=m) ϕG (deg) EB (MV=m) ϕB (deg) Ekin (MeV) σζðzFÞ (μm) σtðzFÞ (fs)
(i) analytic 100.00 34.13 21.21 −109.29 3.17 0.23 0.77
(i) simulation no 100.00 34.13 21.66 −111.99 3.12 0.19 0.63
(ii) analytic 100.00 0.00 17.60 −90.00 4.60 6.58 21.95
(iii) analytic 70.00 0.00 6.60 −90.00 3.19 5.89 19.66
(iv) analytic 100.00 42.75 20.94 −94.45 3.35 0.01 0.04
(iv) simulation no 100.00 38.00 21.77 −104.15 3.25 0.11 0.38
(iv) simulation 50 fC 100.00 42.00 21.63 −97.42 3.32 0.24 0.80
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comparison of the parameters used in all the different cases,
as well as the results, are given in Table I.

B. Optimized bunching: Third order
correlations and space charge

So far, only the second order has been corrected. Since
only the buncher settings have been used for this, only two
of the four free parameters (phases and amplitudes of the
two cavities) have been used. A scan through the gun
phase, while still optimizing buncher phase and amplitude
for a second order corrected focus at zF ¼ 5.50 m, yields
a set of parameter combinations for gun and buncher.
Evaluating the third order coefficient, X3 of Eq. (12), for
these settings shows a change of sign at around ϕG ¼ 43
deg for the case of EG ¼ 100.0 MV=m; see Fig. 8. Hence,
there are settings—case (iv)—for which the third order
vanishes as well.
Case (iv) is determined by EG ¼ 100.0 MV=m, ϕG ¼

42.8 MV=m and EB ¼ 20.9 MV=m, ϕG ¼ −94.5 deg.
A comparison of the longitudinal phase space of case
(i) with the latter at the focus zF reflects this behavior, as
can be seen from Fig. 9. The change of sign of the third
order term becomes evident in the transition from an
S-shape in case (i) to a Z-shape in case (iv). Since the
longitudinal phase space is described by a line and only
correlations up to third order are taken into account in our
analytical model, the theoretical bunch length approaches
zero for a complete correction. In the simulation, the bunch
length becomes completely dominated by the uncorrelated
energy spread and space charge repulsion with the third
order correction in place. Testing and optimizing these
parameters with ASTRA (without space charge) leads to a
bunch length of about 115 nm which is an improvement of
about 50% compared to case (i).

Adding space charge to the simulations again requires
some parameter tweaking. To keep space charge effects
low, a charge of 50 fC has been assumed, which is a typical
value for diffraction experiments at REGAE [12]. The
shortest bunch length with these parameters achieved here
is about 240 nm, just below 1 fs. Further parameter scans
could even improve this value. The phase space plot in
focus, Fig. 10, clearly shows signs of space charge
repulsion. The compression factor even with space charge
is still larger than 1000.

C. Overcompensation mode

It is interesting to note that, in order to remove the third
order, the second order (g2) has to change sign before the
bunch enters the buncher cavity:

FIG. 8. The coefficient X3, describing the third order shift in ζ
at z ¼ zF, solved for parameter sets determined by X1ðzFÞ ¼
X2ðzFÞ ¼ 0 for a gun amplitude EG ¼ 100 MV=m and gun phase
ϕG varying from about 30 deg to 60 deg. X3 is negative for
smaller values and crosses zero at about 43 deg, where a change
of sign happens. The third order contribution should hence vanish
for ϕG ≈ 43 deg as well.

FIG. 9. Comparison of case (i) and (iv) at the focus position
zF ¼ 5.50 m. The second order contribution vanishes in both
cases, however, in case (i) a strong, negative third order is visible—
expressed by the S-shaped phase space figure. In case (iv), the
magnitude of the third order is much less; in addition, the S-shape
changed to Z, meaning thatX3 is slightly positive for the parameter
set chosen.

FIG. 10. Longitudinal phase space of an ASTRA simulation
close to the focus. The bunch length in the focus with an
eliminated third order and a charge of Q ¼ 50 fC is about
σζ ¼ 240 nm, corresponding to 800 as. The prominent wings
result from space charge repulsion happening mostly in the gun.
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X3 can be expressed as

X3 ¼ 0 ¼ H1B3 þ 2H2B1B2 þH3B3
1

¼ � � � ¼ H1B3 þ
�
H3 − 2

H2
2

H1

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

<0

B3
1: ð22Þ

In order to achieve a bunching configuration, B1 ¼ g1 þ
~B1 needs to be negative, since this describes the slope in
the phase space. This implies two things: First of all,
~B1 < 0, since g1 is positive to achieve the expansion in
Sec. II. Second, the second term in Eq. (22) is positive,
meaning that H1B3 must be negative, resulting in B3 < 0,
since H1 ¼ γ−3β−2 is always positive. Since ~B3 is propor-
tional to the second derivative of ~B1, which is given by a
sine function, ~B3 has always the opposite sign of ~B1.
Thus, ~B3 needs to be positive and, from B3 ¼ g3 þ ~B3,
one obtains g3 < 0. Since G3 ¼ g3ðz ¼ 0Þ > 0 (resulting
from a numerical derivation of the curve in Fig. 3),
g3 needs to change sign along the drift. However, this
also requires a change of sign in g2—which must be prior
to the change in g3: From (8) it is apparent that g2 ¼
ðG2 − g1χ2Þ=χ21 starts with a negative value (G2 < 0),
but increases, since g1 > 0 while χ1 is negative and
a function proportional to z. At the point g2 ¼ 0, an
evaluation of g3 yields

g3 ¼
G3 − g1χ3 − 2g2χ1χ2

χ31

¼ G3 − g1χ3
χ31

¼ G3 þ G2χ3=χ2
χ31

> 0; ð23Þ

since G2 and χ2 are negative while G3, χ3 and χ1 are
positive.
Thus, in summary: For a vanishing third order, it is

required that g3 is negative and, thus, g3 needs to change
sign in the drift between gun and buncher (since gi are
constants in the formalism from the buncher onwards). g2,
which starts negative, can also change sign if the drift space
is long enough, meaning that g2 will reach zero at that
flipping point. However, g3 is still positive at the position
where g2 ¼ 0. Since both functions g2=3 should be mono-
tone (multiple changes of the curvature and third order in
phase space due to a mere drift are not physical), it is
impossible that g3 changes sign without a preceding flip in
the second order curvature. Thus, there must be a minimum
in the longitudinal emittance between gun and buncher
cavity, indicating that behavior of the second order. This
effect, which is necessary for the minimization of the third
order correlation (see III B), is referred to as overcompen-
sation mode in the subsequent paragraphs. It is depicted
in Fig. 11.

D. Energy spread compensation

Not all experiments demand a short bunch. In some cases,
a long bunch with small energy spread is required instead.
For example, in the case of transmission microscope experi-
ments [15,16], also planned at REGAE [12], the beam needs

FIG. 12. ASTRA simulation for a parameter set determined by
the condition Bi ¼ gi þ ~Bi ≡ 0 for i ∈ f1; 2; 3g. The gun is set
to EG ¼ 100.0 MV=m and ϕG ¼ 45.7 deg, while the buncher
settings are EB ¼ 14.1 MV=m and ϕB ¼ −69.9 deg. The result-
ing energy spread is about σEkin

¼ 15 eV for a bunch energy of
Ekin ¼ 3.9 MeV, i.e. σEkin

=Ekin ¼ 4 × 10−6. The red line results
from a third order polynomial fit, clearly demonstrating that the
first three orders vanish almost completely.

FIG. 11. Comparison of the longitudinal RMS emittance for case
(i) and case (iv), resulting from ASTRA simulations. For case
(i), space charge was not included, and only the second order is
eliminated, while case (iv) is tracked including space charge and
aimed for a minimization of second and third order correlations in
the focus. As can be seen, there is a minimum of the emittance
in between gun and buncher cavity for case (iv), where the
second order changes sign, which is illustrated by the insets
showing the longitudinal phase space before and after the
minimum; the linear correlation has been subtracted for demon-
stration purposes. Without this overcompensation mode—as in
case (i)—a minimization of the third order is impossible.
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to be transversely focused to a tight spot onto the target. In
this case, space charge effects limit the achievable resolution
in the case that a bunch is too short, while the rf induced
energy spread in combination with chromatic aberrations
limits the resolution when the bunch is too long. Operating
the gun on a debunching phase and compensating the energy
spread with the buncher cavity offers a possibility to generate
long bunches with minimal energy spread. For this case, it is
enough to transport the phase space up to the buncher, using
Eqs. (5)–(10) and cancel the polynomial coefficients gi with
respective coefficients ~Bi for i ∈ f1; 2; 3g. In other words:
B1 ¼ B2 ¼ B3 ≡ 0 from Eqs. (10) and (12).
A possible parameter set to achieve such a bunch

configuration is, for example, EG ¼ 100.0 MV=m,
ϕG ¼ 48.1 deg and EB ¼ 13.5 MV=m, ϕB ¼ −64.8 deg,
according to the formalism. Using these parameters as a

seed for ASTRA simulations results in a remarkably low
energy spread of σEkin

¼ 15 eV, which corresponds to
σEkin

=Ekin ¼ 4 × 10−6. Space charge forces are included
in this simulation with a charge of 50 fC; the cavity
parameters for the gun are tuned to EG ¼ 100.0 MV=m
and ϕG ¼ 45.7 deg, while the buncher is set to EB ¼
14.1 MV=m and ϕB ¼ −69.9 deg.
In this case, it is instructive to look at the longitudinal

RMS emittance once again. As can be seen from Fig. 13,
there is a minimum in the emittance in between the two
cavities, i.e., the machine is set to overcompensation mode,
the curvature flips over and changes sign along the drift.
As a consequence, the curvature compensation can be
achieved on an accelerating phase in the buncher, which
has the same sign in the curvature as the gun cavity.
The result is a slight increase of energy to about

FIG. 13. Evolution of energy γ, RMS energy spread σγ and longitudinal RMS emittance ϵ1;RMS of a bunch for the energy spread
compensation parameters discussed in the text and Fig. 12. Due to the change in sign in the second order correlation, indicated by the
local minimum of the emittance between the cavities, the energy spread compensation is achieved on an accelerating phase, meaning
that the overall energy, γ, is increasing in the second cavity, while σγ almost vanishes.
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Ekin ¼ 3.9 MeV—corresponding to γ ¼ 8.6—in contrast
to the deceleration present in the bunching configurations.
Such a low energy spread will of course be hard to

measure and might be polluted by uncorrelated energy
deviations, for example, by the work function of the
cathode. However, if the approach can be verified, it will
be a very interesting topic for (ultrafast) transmission
electron microscopy (UEM/TEM), which is also one of
the REGAE goals: Such a low energy spread drastically
reduces chromatic aberrations, enabling higher resolution.
The method presented here is especially interesting as it
does not require a higher harmonic cavity and the increase
in energy, in contrast to energy loss accompanied by a third
harmonic structure.

E. Comment on the transverse dynamics

The standard operating phase of an rf gun, where
typically the minimal transverse emittance is achieved, is
close to the phase of maximal energy gain (ϕG ¼ 0 deg).
Operation at a debunching phase is quite unusual. A
detailed study of the transverse dynamics in the debunching
phase range, especially with significant space charge, is
beyond the scope of this article. However, a few comments
can be made.
Due to phase slippage of the emitted electron with

respect to the accelerating field, the extraction field at
the standard operation point during emission is only about
60% of the maximal gradient, because the emission phase
is about ϕem ¼ 40 deg, as can be seen from Fig. 14.
A higher extraction field leads in general to a smaller
emittance because the spot size of the laser beam on the
cathode can be reduced. At the debunching phase the
emission phase is close to ϕem ¼ 90 deg, i.e., the sinus-
oidal extraction field is almost maximal, which thus allows

to produce a beam with higher initial phase space density.
Furthermore, the initial bunch length can be increased—as
in the case of a setup with higher harmonic cavity—which
leads to a reduction and—via the beam aspect ratio—to a
linearization of the space charge forces. The large induced
correlated energy spread is, however, detrimental, at least in
a high bunch charge case where an emittance compensation
process needs to be employed [17]. This case requires
detailed studies, but it is expected that emittance compen-
sation is less effective for a beam with large energy spread
unless new concepts are found. Also, rf-induced emittance
deserves attention for the long bunches envisioned here.
As pointed out in [14], a chromatic emittance variation in
the rf gun and the following drift can lead to an increase
of the rf induced emittance at high emission phase, which
needs to be controlled. An optimization of the transverse
emittance for the low charge cases discussed in this article
has not been attempted, but comparisons to the case where
the bunch is emitted on the standard phase show only a
slight degradation. Studies on further improvements are
ongoing.

IV. DISCUSSION AND OUTLOOK

In summary, in this article a method is developed and
analyzed which allows for the compensation of nonlinear
correlations in the longitudinal phase space of an electron
bunch. The concept relies on the expansion of the bunch
(stretcher mode) in order to cover an increased phase
interval in a subsequent accelerating cavity—which thus
acts similar to a higher harmonic structure in phase space
coordinates.
The formalism based on an analytic description of the

bunch evolution up to the third order agrees very well
with simulations using ASTRA. It predicts the feasibility to
generate bunches with a length below 1 fs for low charge
without the use of a higher harmonic system. This is
interesting for time-resolved electron diffraction or the
external injection experiment at REGAE, where a bunch
of this conventional accelerator is planned to be injected
into a laser-driven plasma wakefield [13]. Alternatively,
flat bunches in terms of energy spread well below 100 eV
can be produced, which could enhance the resolution of
ultrafast transmission electron microscope experiments
due to the reduced chromatic aberrations.
The numbers determined are only exemplary, since the

focus lies on the demonstration of the approach and not on
the shortest bunch possible. Tolerance studies and neces-
sary synchronization requirements, as well as higher charge
cases, have to be explored in the future work. The latter is
especially interesting, since the off-crest acceleration in the
gun coincides with a higher field strength at the cathode,
reducing space charge influence at the extraction.
Also accompanied with the off-crest acceleration is the

so-called overcompensation mode, characterized by a first
minimum of the longitudinal RMS emittance before the

FIG. 14. Comparison of the emission phase, ϕem, and the gun
phase, ϕG. There is a constant offset between these two phase
definitions of about 40 deg in this example. The extraction field
(red solid line) is about 60 MV=m at ϕG ¼ 0 deg and increases
towards higher gun phases. The gray dash-dotted line depicts the
energy gain in the gun.
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bunch enters the second cavity, meaning that the second
order correlation in phase space flips over and changes its
sign. This enables the energy spread compensation on an
accelerating phase and is also a requirement in order to
eliminate the third order contribution in the longitudinal
focus of a bunching configuration. Since the calculations
for this article are made with the REGAE configuration
in mind, the parameter space for possible solutions is
limited. Allowing for a longer drift between gun and
buncher could result in an overcompensation configura-
tion at lower gun phases (and thus higher energy), and/or
even in an accelerating bunching phase in the buncher
cavity.
Very short bunches can be reached at a few MeV beam

energies only at very low bunch charge, since space charge
repulsion is too strong. An increase of charge and energy in
a ballistic bunching scenario is conceivable by injecting the
bunch before the longitudinal focus is reached into another
acceleration section, in order to freeze out the longitudinal
focus at higher energy. (A partly comparable method has
been successfully used at the CEBAF injector, however for a
very different machine configuration [18].) Furthermore,
the basic concept of our approach, i.e., to stretch the bunch
in order to linearize the longitudinal phase space with the
fundamental rf frequency, can be applied also to magnetic
bunch compression scenarios. Thus it is applicable at
higher energies and higher charge, which is especially
interesting for facilities based on X-band technology where
higher harmonic rf systems are not readily available.
Limitations of such a generalization arise from space
charge in the low energy section at the start and the
high energy spread imprinted at the gun which can spoil
the transverse beam dynamics in that region. This is, for
example, a possible scenario if a so-called emittance
compensation scheme is used, which relies on a delicate
transverse focusing optics. The absence of a buncher cavity
is not a limitation, but requires an adaption of the
mathematical formulation, since for that case the thin lens
approximation breaks down.
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