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Abstract
Hereditary angioedema (HAE) is a rare genetic disease, characterized by recurrent and unexpected potentially life-threatening 
mucosal swelling. HAE may be further classified into HAE with C1‐inhibitor deficiency (C1‐INH‐HAE) and HAE with  
normal C1‐INH activity (nlC1‐INH‐HAE), mostly due to mutations leading to increased vascular permeability. Recent 
evidence implicates also the innate and adaptive immune responses in several aspects of angioedema pathophysiology. 
Monocytes/macrophages, granulocytes, lymphocytes, and mast cells contribute directly or indirectly to the pathophysiology 
of angioedema. Immune cells are a source of vasoactive mediators, including bradykinin, histamine, complement components, 
or vasoactive mediators, whose concentrations or activities are altered in both attacks and remissions of HAE. In turn, through 
the expression of various receptors, these cells are also activated by a plethora of molecules. Thereby, activated immune 
cells are the source of molecules in the context of HAE, and on the other hand, increased levels of certain mediators can, 
in turn, activate immune cells through the engagement of specific surface receptors and contribute to vascular endothelial 
processes that lead to hyperpemeability and tissue edema. In this review, we summarize recent developments in the putative 
involvement of the innate and adaptive immune system of angioedema.
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Abbreviations
AAE	� Acquired angioedema
ADM	� Adrenomedullin
ANGPT	� Angiopoietin
b-FGF	� Basic fibroblast growth factor
BKR	� Bradykinin receptor
BK	� Bradykinin
C1-INH	� C1-inhibitor
EAE	� Episodic angioedema with eosinophilia
EC	� Endothelial cell
ECP	� Eosinophil cationic protein
EDN	� Eosinophil-derived neurotoxin

EPX	� Eosinophil peroxidase
fMLP	� N-formyl-methionine-leucyl-phenylalanine
FXII	� Factor XII
GM‐CSF	� Granulocyte–macrophage colony‐stimulating 

factor
HAE	� Hereditary angioedema
His	� Histamine
HK	� High molecular weight kininogen
ICAM	� Intercellular adhesion molecule
INF	� Interferon
KKS	� Kallikrein-kinin system
LFA	� Lymphocyte function-associated antigen
LPS	� Lipopolysaccharide
MA	� Macrophage
MBP	� Major basic protein
MC	� Mast cell
M‐CSF	� Macrophage colony‐stimulating factor
MMP9	� Matrix metallopeptidase 9
MO	� Monocyte
MPO	� Mieloperoxydase
NE	� Neutrophil elastase
NET	� Neutrophil extracellular trap
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NGF	� Nerve growth factor
NK	� Natural killer
NLR	� Neutrophil-lymphocyte ratio
PLA2G2A	� Secretory phospholipase A2 group IIA
PMN	� Polymorphonuclear cells
PTX3	� Pentraxin 3
ROS	� Reactive oxygen species
sPLA2	� Secretory phospholipases A2
TCR​	� T cell receptor
TF	� Tissue factor
TGF	� Transforming growth factor
TLR	� Toll-like receptor
TNF	� Tumor necrosis factor
uPAR	� Urokinase receptor
VEGF	� Vascular endothelial growth factor

Introduction

Angioedema is a self‐limiting tissue swelling due to periodic 
increase in vascular permeability caused by the release of 
bradykinin (BK) and/or other cell–derived mediators. 
Recurrent swellings are localized to the skin and/or to the 
upper respiratory, gastrointestinal, and genitourinary tracts 
[1]. Angioedema can be hereditary or acquired. The most 
common form of hereditary angioedema (HAE) is caused 
by deficiency of C1 esterase inhibitor (C1‐INH‐HAE), but 
HAE can also occur with normal levels of C1‐INH (nl‐C1‐
INH‐HAE) [1].

C1-INH is a protein of the complement system which is a 
critical component of both the innate and adaptive immunity 
[2–4]. The immune system is typically divided in two 
branches: innate and adaptive, although these distinctions 
are not completely exclusive [5]. The fundamentals of HAE 
(or angioedema) have been extensively reviewed previously 
[1, 6]. In this paper, we focus our discussion on the roles 
played by the immune system in the pathophysiology of 
angioedema.

Innate Immune System

Monocytes

Monocytes (MO) originate from myeloid progenitors in 
the bone marrow (BM). These cells are rapidly recruited 
to tissues during infections and inflammation, where they 
differentiate into macrophages or dendritic cells [7]. There are 
three subsets of human MO: classical (~90%), intermediate, 
and non-classical (~10%) [8]. These subpopulations can be 
further characterized by different functions and expression 
of surface markers and chemokine receptors [9]. They 
display phagocytic and microbial activity and produce 

pro-inflammatory cytokines. Intravital microscopy studies 
have revealed that non-classical MO continuously monitor 
the vasculature under physiological conditions through an 
LFA/ICAM-dependent crawling mechanism on resting 
endothelial cells (EC) [10, 11]. The role of MO has been 
poorly studied in HAE. It would be interesting to evaluate 
whether the surveillance of EC integrity driven by non-
classical MO is altered in HAE patients which have an 
abnormal basal vascular permeability [12].

As an example, endothelial permeability is mediated by 
vasoactive mediator release, including vascular endothelial 
growth factors (VEGFs) [13] that were found increased in 
C1-INH-HAE patients and correlate with disease severity 
[14, 15]. VEGFs are produced by various cells including 
EC. They signal through the tyrosine kinase receptors, 
VEGFR‐1, VEGFR‐2, and VEGFR‐3 [16]. Indeed, MO 
express low levels of VEGFR‐1 and VEGFR-3 but do not 
express VEGFR‐2. MO produce high amounts of VEGF (in 
response to M‐CSF) or the antagonistic soluble VEGFR‐1 
(in response to GM‐CSF) [8]. Increased VEGF-A in 
C1-INH-HAE could be caused by MO activation or vice 
versa circulating VEGF through binding to VEGFR-1 could 
attract and activate circulating MO (Table 1; Fig. 1).

Additionally, MO secrete a wide spectrum of mediators 
including complement components such as C1-INH [17]. 
Hepatocytes are the major cellular source of plasma C1-INH 
[18]. MO contribute to C1-INH production, particularly at 
the site of inflammation where INF-γ is a potent inducer 
[19, 20]. Understanding the regulation of C1-INH synthesis 
by MO is essential to evaluate their potential role in 
C1-INH-HAE.

Lipopolysaccharide (LPS) does not trigger an increase in 
C1-INH levels in MO cultures, but it induces high levels of 
IL-1. LPS may play a role in regulation of C1-INH synthesis 
through the induction of IL-1, which is essential for T cell 
activation to yield IFN-γ through the induction of C1-INH 
in MO and hepatocytes [21]. LPS raised also C3 production 
by MO [22] but did not stimulate C1q and C1s secretion. 
Moreover, C2 was increased by IFN-γ to a similar extent as 
C1-INH [23, 24], whereas it did not affect C3 synthesis [23]. 
MO do not produce C4 in MO culture supernatants [17].

Another link to the pathophysiology of C1-INH-HAE 
might be the effect of BK on MO; BK is formed downstream 
the kallikrein-kinin system (KKS) and is unquestionably 
the most important mediator in C1-INH-HAE [25]. The 
vasoactive effects of BK are mediated by the cell surface 
BKR1 and BKR2 receptors expressed on several cell 
types. The existence and modulation of these receptors in 
MO are still limited. Activation of BKR1 promotes MO 
chemotaxis and arteriogenesis, whereas BKR2 signaling 
governs MO recruitment (Fig. 2) [26–28]. Therefore, it can 
be hypothesized that the BK increase in HAE could cause 
an activation of circulating MO.
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Expression of tissue factor (TF) by MO may represent 
another link between these cells and angioedema. TF 
may play a role in angioedema attacks by activating the 

coagulation pathway in association with reduced functions 
of C1‐INH [29]. TF, predominantly expressed in vessel 
wall, forms a complex with FVIIa and initiates the extrinsic 

Table 1   Mediators involved in HAE and their cellular sources

Baso basophil, Eos eosinophil, MA macrophage, MC mast cell, MO monocyte, PMN neutrophil
*Compared with healthy controls; **Compared with remission phase

Mediators Concentration in HAE Cellular source References

During remission* During attack**

Adrenomedullin Unchanged Increased MO [135, 147]
ANGPT1 Increased Increased Baso, MA, MC, PMN [14, 41, 46, 47, 148]
ANGPT2 Increased Unchanged Baso, MA, MC [14, 41, 47, 148]
CXCL8 Unchanged Increased Baso, MA, MC, MO, PMN [41, 63, 97, 149–151]
Elastase Unchanged Increased MC, PMN [63, 152]
Histamine Increased Unknown Baso, MC [109], this article
Myeloperoxidase Unchanged Increased PMN [63, 153]
PAF-AH Increased Reduced MC [114, 154]
Pentraxin Unchanged Increased MA, PMN [155, 156]
ROS Increased Unknown MA, MC, MO, PMN [57, 157–159]
sPLA2 Increased Reduced Eos, MC, PMN, T cell [46, 80, 114, 160, 161]
Tissue factor Increased Unchanged MO [29]
TNF-α Decreased Increase MA, MC, MO, [162–164]
Tryptase Unchanged Unknown Baso, MC [109] this article,
VCAM-1 Increased Unknown MA [165, 166]
VEGF Increased Unchanged Baso, MA, MC, MO, PMN [14, 41, 47, 80, 95, 167]

Fig. 1   Schematic representation of the effects of mediators increased in C1-INH-HAE on different immune cells
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coagulation pathway. TF is also present in the cytoplasm 
and on the surface of MO and can be released by various 
exogenous/endogenous inflammatory stimuli. The TF 
expression is up-regulated by LPS, immune complexes, 
C5a, cytokines, and oral contraceptives, which have been 
suggested as risk factor for angioedema [29]. TF is expressed 
in urticarial skin lesions with evidence of activation of the 
extrinsic pathway [30]. An increase of TF was demonstrated 
on MO of patients with C1-INH-HAE during remission 
compared with healthy controls [29]. C1‐INH efficiently 
inhibited LPS‐induced TF on MO, suggesting that MO of 
HAE due to C1‐INH deficiency are susceptible to induction 
TF expression. This is supported by four‐fold increase in 
TF expression a day after the infusion of C1‐INH [31]. 
However, no difference in TF expression was shown 
between remission and attack of HAE [31]. Taken together, 
in HAE the combination of low C1‐INH activity, subclinical 
activation of extrinsic coagulation pathways triggered by TF, 
may be important to the pathophysiology of angioedema. 
Further studies are needed to confirm whether the increase 
of TF expression on MO and the coagulation system 
activation observed is the cause or just an epiphenomenon 
in HAE attacks [29]. The role of MO in the pathophysiology 
of angioedema involves several mediators that can modulate 
MO activation (Table 1; Figs. 1 and 2).

Macrophages

The barrier properties of EC are critical for the maintenance 
of fluid and protein balance between the intravascular and 
extravascular compartments [32]. Imbalance of these 
barriers is implicated in the genesis or progression of 
angioedema [12]. The altered barrier function is linked to 

the release of a variety of soluble mediators acting on EC 
[32, 33] produced by resident cells, including macrophages 
[34].

Macrophages (MA) are innate immune cells that are 
localized in various tissues [35]. Most MA are derived 
from MO that migrate into connective tissues [36]. MA 
exert a variety of functions like phagocyting foreign 
agents, digesting dead cells, and regulation of innate 
immune response by releasing of several molecules [37]. 
Mediator secretion by MA is implicated in several disease 
states ranging, from chronic inflammation to allergy [36]. 
MA release upon inflammatory stimulation a plethora of 
inflammatory (e.g., TNF-α, IL-1, IL-6, CXCL8, IL-12) 
and anti-inflammatory cytokines (IL-10 and TGF-β) [36]. 
Several MA-derived cytokines are altered in serum of HAE 
patients [38] (Table 1). Concentrations of IL-1, IL-6, and 
TGF-β are significantly higher in HAE patients in remission 
compared with healthy controls [38]. These cytokines, plus 
IL-10, are further increased in HAE patients during attacks 
compared with asymptomatic period. In addition, IL-1 and 
TNF-α have been reported to stimulate EC and augment 
activation of the prekallikrein (PK)–high molecular weight 
kininogen (HK) complex, suggesting a possible role in the 
pathophysiology of HAE [39].

MA are a major source of VEGFs and angiopoietins 
(ANGPTs) [40, 41]. Their concentrations are increased in 
C1-INH-HAE patients and correlate with disease severity 
[14, 15] (Table 1).

Extracellular or secreted phospholipases A2 (sPLA2s) 
also modulate EC and vascular permeability. PLA2s 
enzymes hydrolyze membrane glycerol-phospholipids to 
release arachidonic acid and lyso-phospholipid [42, 43]. 
sPLA2s can modulate vascular permeability either by 

Fig. 2   Schematic representation 
of bradykinin effects on differ-
ent immune cells
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directly activating EC or by catalyzing the production/
degradation of vasoactive molecules [43]. MA are a target 
for sPLA2 (Fig. 1). These enzymes activate MA and induce 
the production of cytokines, chemokines, VEGFs, and 
ANGPTs [40, 44, 45]. We found that sPLA2 activity is 
increased in biological fluid of C1-INH-HAE patients during 
symptom-free period compared with healthy controls [46]. 
sPLA2 group IIA (PLA2G2A) in C1-INH-HAE increases 
endothelial permeability and impairs C1-INH functional 
activity in vitro [46]. ANGPT1, a unique vascular stabilizer, 
is further increased during angioedema attack, whereas 
sPLA2 activity is decreased [46, 47] (Table 1).

Since BK is a potent vasodilator, promoter of vascular 
permeability [25]. It hypothesized that activated BKR2 on 
EC and/or on MA and/or mast cells may account for the 
altered levels of cytokines, angiogenic/lymphangiogenic 
factors, and sPLA2 in C1-INH-HAE patients [16, 48, 
49]. MA express both BKR1 and BKR2 [50]. BK also 
induces TNF-α and IL-1 release from murine MA cell 
lines [52, 53] and stimulates prostaglandin E2 production 
from rat peritoneal MA [54] (Fig. 2). The activation of 
BKRs increases intracellular free calcium, which activates 
sPLA2 and consequently induces arachidonic acid release 
and its metabolites [51]. BK is more potent to activate 
intermediate-size MA compared with smaller peritoneal and 
alveolar MA [50]. Collectively, these findings indicate that 
overproduction of BK in HAE patients may affect the MA 
activation and their inflammatory responses in vivo.

MA are well known for their phagocytic activity and are 
highly specialized in removal of dying or dead cells [37]. 
Phagocytosis is facilitated by opsonization, a process by 
which serum components tag pathogens for recognition by 
MA and neutrophils. Opsonization is mediated by C1, C3, 
and C4 which are components of the complement classical 
pathway [3].

In C1-INH-HAE patients, low concentration/activity 
of C1-INH causes a gradual consumption of complement 
proteins in serum. Sera from HEA patients reduced the 
ability of MA to phagocyte apoptotic cells compared with 
sera from healthy donors [55]. Therefore, C1-INH-HAE 
patients can have immunological abnormalities due to 
decreased levels of complement components, which give 
rise to a lower capacity for opsonization from phagocyte 
cells including MA [55].

In conclusion, the role of MA in the pathophysiology of 
HAE is not yet completely understood. However, the ability 
of MA (1) to modulate vascular permeability by catalyzing 
the production of vasoactive molecules; (2) to be activated 
by key mediators of HAE, such as BK and sPLA2; and (3) to 
modify opsonization capacity suggests that these cells play 
an important role in both asymptomatic and symptomatic 
phases of HAE.

Neutrophils

Neutrophils, or polymorphonuclear leukocytes (PMN), are 
major effectors in innate immunity and acute inflammation 
[56]. They are circulating cells that must be lured into 
inflamed tissue by crossing the endothelial barrier. 
Sequential adhesive interactions between PMN and ECs 
are required for PMN extravasation. Adhesion molecules 
(i.e., ICAM-1, VCAM) lead to adhesion and arrest onto the 
endothelium and a subsequent PMN transmigration in the 
tissue where they play a critical role in pathogen elimination 
and tissue repair by releasing several cytotoxic products and 
reactive oxygen species (ROS) [57]. New evidences have 
highlighted our knowledge on PMN as cells playing a role 
beyond the acute infection including HAE [58].

PMN count is increased in C1-INH-HAE patients during 
edematous episodes. This PMN imbalance was attributed 
to the hemoconcentration caused by plasma extravasation 
during angioedema attack [59–62]. Veszeli et  al. 
demonstrated a higher PMN count also in C1-INH-HAE 
patients during symptom-free period compared with healthy 
controls [63]. These authors described an increased release 
of neutrophil granule-derived enzymes in plasma (i.e., 
myeloperoxidase (MPO), elastase (NE), and pentraxin 3 
(PTX3)) during attacks but not during attack-free period and 
in healthy controls. Plasma concentration of these enzymes 
was correlated with neutrophil counts. The increased plasma 
levels of MPO, NE, and PTX3 were attributed to neutrophil 
extracellular trap (NETs) release. Interestingly, CXCL8 
and TNF-α levels, both involved in PMN activation and/or 
released by neutrophils, were also altered in C1-INH-HAE 
patients during acute phase compared with symptom-free 
period [63] (Table 1). Grymova and colleagues confirmed 
PMN activation and dysregulation in C1-INH-HAE type I 
and II patients [64]. mRNA expression of 10 genes related 
to PMN activation (CD274, IL1β, IL1RN, CXCL8, MMP9, 
and TLR4) was increased in HAE patients in symptom-
free periods compared with healthy donors in addition 
to increased CD11b, decreased CD16 plasma membrane 
deposition, and increased relative CD274+ and CD87+ 
neutrophil counts, but not by increased NE or MPO plasma 
levels (Table  1). In addition, a co-culture of PMN and 
T-cells/PBMC showed a suppressive function of patient’ 
PMN resulted from a decreased CD25+ and IFN-γ+ T-cell/
PBMC ratio in patients [64].

PMN can interact with the contact system in order to 
boost neutrophil extravasation induced by BK-mediated 
vasodilatation [65]. Brower et  al. reported that NE can 
inactivate C1-INH allowing to contact system activation 
[66]. In addition, in vitro studies showed that BKR1 on 
ECs regulates neutrophil trafficking [67, 68]. BK levels are 
increased in HAE patients compared with healthy controls 
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leading to PMN activation. In fact, BK increased the PMN 
adhesion to ECs [69, 70] and induced only a moderate 
migration of human peripheral PMN in BKR2-manner [51]. 
In addition, BK mediated NE release by PMN [71] (Fig. 2).

Neutrophil-derived proteinase 3 can proteolyze HK and 
liberate proteinase 3-kinin, thereby initiating kallikrein-
independent activation of the kinin pathway [72]. 
Wachtfogel et al. reported that kallikrein (PKa) and Factor 
XIIa (FXIIa) can induce PMN degranulation [73]. Finally, it 
has been shown that NETs can activate FXII through several 
mechanisms. The negative charge of DNA could contribute 
to auto-activation of FXII or can sequester FXII and present 
it for activating cleavage [74].

PMN are source and/or target of several mediators 
and play a role in different context (i.e., inflammation, 
angiogenesis) [75]. Different isoforms of sPLA2s (e.g., 
groups II, V, and X) can activate human PMN inducing 
NE, CXCL8, or angiogenic factors (VEGFs and ANGPTs) 
release [76–80]. Therefore, increase of PLA2G2A in 
C1-INH-HAE patients could affect the activation of PMN 
and be responsible of release for the VEGFs and ANGPTs 
[14, 46, 47] (Fig. 1). Taken together, these results confirm 
the involvement of PMNs in the pathophysiology of 
angioedema by releasing mediators and induce endothelial 
preconditioning state, thereby predisposing HAE patients 
to edema formation.

Eosinophils and Basophils

Eosinophils and basophils are immune cells activated in 
several pathological conditions (e.g., allergic diseases, 
infections, cancer) [81, 82]. These cells are characterized 
by different phenotypes and by the ability to respond to 
specific stimuli, activating and inhibiting surface receptors 
[83]. Eosinophils derive from CD34+CD117+ hematopoietic 
stem cells in the BM. After their maturation they enter 
the circulation [84]. Activated eosinophils release pro-
inflammatory cationic proteins, cytokines and chemokines, 
angiogenic [49, 85], and lipid mediators [86]. They also 
migrate to the inflammatory sites through the adhesion to 
activated ECs [84, 87, 88]. The involvement of eosinophils 
in HAE has not been investigated. They could be the source 
of VEGFs, TNF-α, and sPLA2 found in plasma of HAE 
patients. Moreover, eosinophils can be activated by BK 
leading to elastase release [71] and chemotaxis [89] (Fig. 2).

Episodic angioedema with eosinophilia (EAE), also 
known as Gleich syndrome, is a rare disorder characterized 
by recurrent episodes of angioedema, urticaria, fever, and 
marked eosinophilia that occur at 3–4 week intervals [90]. 
A peak of marked eosinophilia is preceded by a rise in 
serum IL-5 and IL-13 in EAE patients [91]. These findings 
suggest that immune cell-derived Th2-like cytokines are 
involved in this form of angioedema. However, the etiology 

of the cycling angioedema and eosinophilia remains to be 
elucidated.

Basophils represent less than 1% of peripheral blood 
leukocytes, and their activation leads to histamine release 
[92]. They are rarely present in tissues unless inflammation 
occurs [93, 94]. Basophil activation induces the release of 
VEGF-A [95, 96] and ANGPT1 and ANGPT2 (Table 1). 
Human basophils also produce CXCL8 [97]. Some of those 
mediators (e.g., VEGFs, ANGPTs, sPLA2, and CXCL8) 
were altered in HAE contributing to alteration of vascular 
homeostasis. Collectively, these data may suggest a potential 
role of eosinophils and basophils in the pathophysiology of 
certain forms of HAE.

Mast Cells

Mast cells (MC) can be identified in blood vessels, within 
mucosal and epithelial tissues and in the terminal nerve 
endings [98]. These cells release several preformed pro-
inflammatory mediators (e.g., histamine, tryptase, chymase) 
[99]. MC derive from CD34+CD117+ (KIT) hematopoietic 
stem cells in the BM [100] and migrate as immature 
progenitor cells through the bloodstream to peripheral 
tissues where they complete maturation [101].

In this paper, we discuss the role of MC in angioedema 
without  wheals .  MC-mediated angioedema is 
pathophysiologically similar to urticaria, although it occurs 
in deeper levels of the dermis and involves probably different 
mediators. Except for C1-INH-HAE, the pathophysiology 
of angioedema without wheals is not completely clear. 
MC release several vasoactive mediators (e.g., histamine, 
prostaglandins, cysteinyl leukotrienes) contributing to 
extravasation of fluid in the deeper layers of the skin/mucosa 
of angioedema patients [102]. The canonical mechanism of 
MC activation is IgE-mediated [101]. However, in most 
patients, angioedema develops without an interaction 
between IgE-antigen complex bound to MC. Several non-
IgE-mediated stimuli (e.g., drugs, C5a, C3a) can induce 
human MC degranulation [103].

Histamine is a relevant vasoactive amine contained in 
MC granules. It binds to H1-receptors on ECs, inducing 
vasodilatation; increases blood flow; and causes vessel [104]. 
Histamine stimulates nitric oxide expression and increases 
blood flow and plasma extravasation causing angioedema 
[105]. Most cases of angioedema are attributable to the 
vasoactive mediator BK and histamine. MC express 
BKR2 through which BK induces histamine release 
[106–108] (Fig. 2). Angioedema attacks of HAE patients 
are unresponsive to antihistamines and glucocorticoids 
[109]. Histamine is presumably not the main mediator 
of angioedema. In this paper, we present original results 
indicating that 102 patients with C1-INH-HAE in remission 
have increased concentrations of histamine compared with 
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64 healthy controls (Fig. 3a). We also measured the tryptase 
concentrations in these patients. Tryptase is a specific 
marker of MC activation [110]. We found that tryptase 
levels in C1-INH-HAE patients in remission are not altered 
compared with controls (Fig. 3b). These results are of some 
interest because histamine is secreted by basophils and MC, 
whereas tryptase is essentially released by MC [92, 111]. 
Therefore, it is possible to hypothesize that the increase in 
blood histamine in patients with C1-INH-HAE in remission 
derives essentially from basophils rather than MC. It would 
be interesting to evaluate tryptase and histamine levels 
during attacks in order to better understand their roles and 
the cellular sources (MC and/or basophils) in acute phase 
of angioedema.

Tryptase releases BK mainly through plasma kallikrein 
(PKa) activation and enhanced vascular permeability [112]. 
Sala-Cunill et  al. demonstrated that tryptase levels are 
correlated to plasma HK cleavage during anaphylaxis [113]. 
These findings could indicate that tryptase might contribute 
to kinin cleavage and consequently BK production in 
angioedema.

Stimulation of MC can release PLA2. Human lung MC 
express and release multiple sPLA2s when activated by 
anti-IgE [114]. The sPLA2s released by MC contribute 
to leukotriene C4 production by acting in an autocrine 
fashion. PLA2 plasma activity was increased in patients 
with C1-INH-HAE during remission and was decreased 
during acute attack perhaps because of their activation and 
internalization in EC [46]. The cellular sources of these 
mediators remain unclear but could be partially attributable 
to MC activation in C1-INH-HAE (Table 1).

The proteoglycan matrix in MC cytoplasmic granules 
is mostly composed by heparin [115]. Heparin can initiate 
in vivo the contact system cascade activating FXIIa [116] 
and in turn BK production. Heparin appears to have a dual 
function in FXII activation: it has the negatively charged 

surface for binding and activation of plasmatic FXII [117]. 
and it blocks FXII inhibition binding antithrombin III [118]. 
Oschatz et al. described a paracrine mechanism by which 
MC-released heparin induces contact system-driven edema 
in mice [119]. These results suggest that MC activation and 
heparin can contribute to attacks in HAE patients [119].

Another MC mediator potentially capable of activating 
the contact system is elastase. It cleaves the light chain 
of HK and seems to be a positive regulator of the contact 
system activation [120]. Taken together, these findings 
indicate that MC degranulation may trigger FXII activation 
and the generation of BK through the release of heparin, 
tryptase, and elastase or other mediators. The potential roles 
of other MC mediators in contact system activation need to 
be further explored.

Adaptive Immune System

Lymphocytes

Lymphocytes mediate adaptive immune responses by 
providing the lifelong immunity following exposure to 
antigens [4]. These cells originate in the BM and migrate 
to tissues by circulating in the blood and in the lymphatic 
system [121]. There are several different lymphocytes 
including B and T cells, natural killer cells (NK cells), and 
innate lymphoid cells [122, 123]. Activated B lymphocytes 
differentiate into plasma cells, which secrete antibodies. T 
cells include by two main classes: CD8+ cytotoxic T cells 
and CD4+ T cells [124]. T and B cells express different 
receptors to recognize a wide spectrum of antigens [124]. 
The antigen receptor of B lymphocytes is the membrane 
isoform of IgM [125]. The T cell receptor (TCR) on T cells 
recognizes protein antigens or metabolized by dendritic cells 
and MAs.

Fig. 3   Plasma concentrations of histamine and tryptase in C1-INH-
HAE patients. The graph depicts plasma histamine (a) and tryptase 
(b) in 64 controls (Healthy) and in 102 patients with C1-INH-HAE 
in remission. Histamine was measured by ELISA. Tryptase was 

measured by fluoro-enzyme immune assay using Uni-CAP100. Data 
are shown as the median (horizontal black line), the 25th and 75th 
percentiles (boxes) and the 5th and 95th percentiles (whiskers) of 64 
controls and 102 patients
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Adaptive immunity has been poorly studied in HAE. Few 
reports have reported abnormal T and B cell counts, abnor-
mal distribution of T cell surface IgG-receptors, and reduced 
Langerhans cell numbers in HAE patients [126, 127].

Several studies examined the involvement of cytokines 
in HAE. Arcoleo et al. comparing C1-INH-HAE patients 
before and after the acute attack with matched control 
subjects observed several modifications of IL-17 lymphokine 
network [38]. IL-17 concentrations were increased, whereas 
IL-23 levels were unmodified and TGF-β3 concentrations 
were reduced [38]. Comparing healthy and HAE subjects 
in remission, they found a significant difference for IL-17, 
GM-CSF, IL-21, and TGF-β1/2 [38]. These suggests that in 
HAE subjects there is a cytokine milieu favoring expansion 
of Th17 or Th17-type subsets capable of producing cytokines 
associated with contact activation by BK leading to local 
angioedema formation responsible of increase in permeability 
and subcutaneous swelling [38, 128, 129]. Th17 expansion 
could down-modulate inflammatory response favoring the 
natural resolution of angioedema [38, 130–133].

The alterations of circulating cytokines suggest HAE is 
a complex disorder caused by generation of BK associated 
with increase in several cytokines (Fig. 3). Lopez-Lera et al. 
evaluated the expression of HAE by profiling the RNA 
expression of peripheral blood mononuclear cells (PBMC) 
from C1-INH-HAE families [134]. This study did not reveal 
alterations in the expression pattern of PBMC in association 
to frequency and severity of disease [134]. Castellano et al., 
using a different approach, explored the involvement of 
several putative genes by performing a microarray gene 
expression analysis on RNA isolated from PBMC of HAE 
patients during attacks and in remission. They demonstrated 
the up-regulation of adrenomedullin (ADM) and cellular 
receptor for urokinase plasminogen activator (uPAR), 
during the acute attack. These gene activations involved 
in vascular tone regulation and in inflammatory response 
might have a pathogenic role by amplifying BK production 
and edema formation in HAE patients [135]. uPAR is a 
glycosylphosphatidylinositol-anchored protein [136] that 
binds uPA [137]. The function of uPA is the conversion 
of plasminogen to plasmin. uPAR is expressed by resting 
granulocytes and monocytes and by activated lymphocytes 
[138]. uPAR interacts with components of the BK-forming 
cascade. The neutralization of uPAR expressed on T cells 
leads to a reduction of BK. This observation highlights a 
potential role for adaptive immunity to modulate the edema 
formation through regulation of BK production [135].

Patients with HAE tend to produce autoantibodies. Kessel 
et al. demonstrated that HAE patients have an increase of 
autoantibodies presumably due to the activation of B cells 
associated with over-expression of TLR9 which plays a role 
in the induction and maintenance of autoimmunity [139].

Infection/Inflammation

As previously mentioned, an interesting aspect is the 
possibility that infections trigger angioedema attacks [140]. 
Bacteriuria and Helicobacter pylori could represent triggers 
of angioedema attacks [141, 142]. The observations were 
attributed to the excessive consumption of complement by 
antibodies directed against bacteria. The antibody response 
and the formation of immune complexes may trigger the 
consumption of already reduced C1-INH in HAE patients 
[134, 143].

Neutrophil-lymphocyte ratio (NLR) is a simple and easily 
used parameter for the assessment of inflammation. It has 
been found a positive correlation between the angioedema 
attack and NLR [144] suggesting that the NLR could be 
useful as a predictive biomarker for prediction of the attack 
in HAE patients.

To conclude this section, the roles of different subsets of 
lymphocytes in the pathophysiology of angioedema have not 
been thoroughly studied. Cells of adaptive immunity could 
have a role in the regulation of the severity of this disease 
in different forms of angioedema. Further studies with 
RNA sequencing and proteomic technologies will clarify 
the possible roles of multiple cells involved in adaptative 
immunity in the pathophysiology of angioedema attack.

Conclusions

In this review, we have summarized the results of relatively 
few studies examining the roles played by immune cells 
presumably involved in HAE. We have tried to distill the 
contribution that each immune cell can exert directly or 
indirectly in the pathophysiology of angioedema. The 
genetics and the resulting protein alterations of the majority 
of HAE patients are well characterized.

Acute phase of a disease is characterized by a transient 
increase of vascular permeability followed by the formation 
of local edema. Current research is focusing on EC 
receptors and the mechanisms of their activation in different 
phenotypes of angioedema. There is compelling evidence 
that the endothelium actively participates in both innate and 
adaptive immune responses. EC are in a strategic location 
to activate the circulating immune cells and those that 
transmigrate across the endothelium into the tissues. The 
roles played by EC in the recruitment of immune cells into 
lymph nodes and tissues highlight an intimate relationship 
between EC and immune cells [145, 146]. Therefore, the 
altered vascular permeability in both remission and acute 
phase of HAE can affect the effector functions of several 
immune cells.
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The circulating levels of several mediators are altered in 
remission and/or during attack in HAE patients (Table 1). 
Activated immune cells might be the source of these 
molecules in the context of HAE. Moreover, the increased 
levels of several mediators can, in turn, activate the immune 
cells through the engagement of specific surface receptors 
(Fig. 1). In this paper, we have also discussed the effects of 
a variety of mediators on immune cells (Fig. 2).

In summary, it appears that the role of the multiple cells of 
innate and adaptive immune system in the pathophysiology 
of angioedema has not been thoroughly investigated. A 
better knowledge of these mechanisms could open new 
diagnostic and therapeutic opportunities for the different 
forms of angioedema.
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