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Abstract
In this text, we consider Gärdenfors’ conceptual spaces that are separable Hilbert
spaces. In particular, the results we obtained apply to finite-dimensional Euclidean
spaces. Our main contribution can be formulated as a combination of the theory of
opinion dynamics with the theory of conceptual spaces. This combination, in turn,
leads us to propose a newmodel for the time evolution of conceptual spaces. To achieve
this goal, we propose some extension of themultidimensional opinion dynamicsmodel
of Parsegov, Proskurnikov, Tempo and Friedkin to opinions with values in Hilbert
spaces.

Keywords Conceptual space · Prototypes · Opinion dynamics · Friedkin–Johnsen
model · Consensus
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1 Introduction

The main result of this work is to propose a model to describe the dynamics of con-
ceptual spaces. It seems to us that the approach we proposed in the construction of our
model, namely the use of opinion dynamics theory, is very interesting in that it leaves
a lot of freedom for the construction of other models in the future.

Our second main result, interesting in itself and somewhat independent of the first
one, is a generalization of the multidimensional model of opinion dynamics given in
the article by Parsegov et al. (2017), which is itself a multidimensional extension of
the classical Friedkin–Johnsen model (Friedkin, 1998; Friedkin & Johansen, 1999,
2011).

B Roman Urban
roman.urban@math.uni.wroc.pl

Piotr Lisowski
piotr.lisowski@cs.uni.wroc.pl

1 Institute of Computer Science, Wroclaw University, ul. Joliot-Curie 15, 50-383 Wroclaw, Poland

2 Institute of Mathematics, Wroclaw University, Plac Grunwaldzki 2/4, 50-384 Wroclaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-024-09422-8&domain=pdf
http://orcid.org/0000-0001-8931-3342


P. Lisowski, R. Urban

Our opinion dynamics model admits not only multidimensional opinions (i.e., vec-
tors in R

n) but also models with opinions in a separable Hilbert space (e.g., �2(N) -
see Sect. 2). This generalization allows us to model complex cognitive processes in
our paper.

Although we formulate our results and theorems in terms of infinite-dimensional
separable Hilbert spaces, we encourage the reader who is not interested in such far-
reaching generalizations to assume that Hilbert spaceH is simplyRn, for some n ∈ N.

Both the theory of opinion dynamics and the theory of conceptual spaces have
developed extremely rapidly in recent years and have attracted the interest of many
researchers: mathematicians, philosophers (in formulation of the notion of concep-
tual spaces), and engineers on the one hand and scientists in the social sciences on
the other. This interest in conceptual spaces is due to the fact that both theories have
extremely wide applications to other sciences. To name a few examples, which are far
from fully describing the capabilities of both theories, information theory, social sci-
ences such as sociology, political science, economics, psychology, cognitive science,
theory of cognition, and learning theory (see a recent survey on opinion dynamics by
Noorazar (2020) and also (Noorazar et al., 2020), a tutorial consisting of two parts
by Proskurnikov and Tempo (2017, 2018) a survey by Mossel and Tamuz (Mossel
& Tamuz, 2017), see also (Stamoulas & Rathinam, 2018; Aydoǧdu et al., 2017); for
conceptual spaces see works of Gärdenfors (2000, 2017); Kaipainen et al. (2019);
Zenker and Gärdenfors (2015) and literature cited therein).

At this point, we must emphasize that, as far as we know, this is the first time that
a combination of conceptual space theory and opinion dynamics has been proposed.

1.1 Conceptual Spaces

In his pioneering book (Gärdenfors, 2000) Gärdenfors introduces theory for knowl-
edge representation in geometric terms. It models how humans think, reason and
comprehend a knowledge. Basically it is widely assumed that some metric space S
(usually finite-dimensional Euclidean space) represents all that can be comprehended
by a human being. Every dimension (or finite set of dimensions) of S should be
understood as some measurable (or observable), numeric (or symbolic) information
(or property) and is called a quality. Pairwise, disjoint regions in S are called concepts
(or conceptual fields). This notions originate from the prototype theory of Kamp and
Partee (1995). Following (Kamp&Partee, 1995) and linguists’ language the most rep-
resentative subset of a concept is called its prototype. The idea of prototypes comes
from Rosch’s 1973 work (Rosch, 1973). Typically, in most of the literature the pro-
totype is considered as a point but this is not a necessary assumption, and there are
many applications showing that single-point prototypes are too limiting.

The problem of classifying objects into classes is one of the most natural cognitive
processes. It is performed by human beings upon the objects of their surrounding
reality constantly. The next process is the naming of the encountered objects. Hence
the importance of classification. Specifically, having a finite set of prototypes in a
conceptual space S it is important to partition the space S into domains determined by
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these prototypes. Usually such a partition is obtained using Voronoi diagrams (Okabe
et al., 2011).

Even though conceptual space theory originates in cognitive science it has found
many applications even in some seemingly exotic fields as music theory (Gärdenfors,
1988) and study of the concept of metaphor (Gärdenfors, 1996). So it seems strange
that no one so far (to our knowledge) considered it in a dynamical context.

The main objective of our work is to explore conceptual spaces from a dynamic
point of view. It is very natural to consider dynamics in conceptual spaces. Concepts
change over time. As an example, we canmention linguistics, where conceptual spaces
are used, among other things, to study the semantics of lexemes. Lexemes change their
meaning in time, which is a commonly noticed phenomenon.

To some extent, the dynamics of conceptual spaces have already been studied by
their creator, Gärdenfors, along with colleagues in papers (Masterton et al., 2017;
Gärdenfors & Zenker, 2013). They modeled physical theories (classical mechanics,
quantummechanics, general theory of relativity) bymeans of conceptual spaces. They
justified the possibility of equating phase spaces with conceptual spaces. This made it
possible to determine the similarity between the theories. Our approach to dynamics
is quite different and is used to model a different phenomenon.

To achieve our goal, that is, to give a satisfactory model of the dynamics of con-
ceptual spaces we use a recent model built by Parsegov et al. (2017) concerning the
opinion dynamics in a group consisting of a finite number of individuals.

1.2 Opinion Dynamics

Let’s assume that we have a group of individuals and that these individuals exchange
arguments on a particular topic of conversation, and then theymaymodify their opinion
to take into account what they have learned. At the end of the discussion, the group
will be characterized by what is known as a consensus of opinion or coexistence of
opinions (fragmentation). There are many approaches to describing the problem of
opinion formation. The resulting models, in turn, are characterized by varying degrees
of complexity (see, for example, Liggett (1997), Bernardo et al. (2024), Anderson et
al. (2020), Castellano et al. (2009)).

1.3 Our Opinion Dynamics Model

Here we generalize the multivariate model of opinion dynamics given in the paper by
Parsegov et al. (2017) which is a multidimensional extension of the classical Friedkin–
Johnsen model (FJ-model) (Friedkin, 1998; Friedkin & Johansen, 1999, 2011).

Specifically, in Parsegov et al. (2017) the following model is considered. There is n
agents. Each agent at time k has its opinion x j (k) ∈ R

m, j = 1, . . . , n on m different

topics. Let x(k) = (
x1(k), . . . , xn(k)

)T be the state at time k. We assume that there is
some interdependence between m topics which is described by the correlation matrix
C ∈ Mm×m(R). In each step, agents exchange their views on m topics. The exchange
is synchronous but not necessarily symmetric. The description of the structure of
agents’ influence on each other is stored in the matrix W ∈ Mn×n(R). The element
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wi, j specifies what influence the j-th agent has on the i-th agent. The last component
of the model is the � matrix, which reflects, let us call it, the stubbornness of the
agents. In each step an agent takes into account not only the opinions of the agents it
communicates with but also its initial opinion at time k = 0.

Finally, dynamics of the system is given by the following equation:

x(k + 1) = (
(�W ) ⊗ C

)
x(k) + (

(In − �) ⊗ Im
)
x(0),

where ⊗ denotes the Kronecker product of matrices (Gantmacher, 1959; Horn &
Johnson, 2013).

In our paper instead of Rn we admit an arbitrary separable Hilbert space H. This
requires a non-trivial Schechter’s result on the spectrum of the tensor product of linear
operators acting on Hilbert spaces (Schechter, 1969).

1.4 Our Conceptual Space Dynamic Model

The second goal is to apply the obtained opinion dynamics model in the theory of
conceptual spaces.

In our work we want to look at conceptual spaces from a dynamic point of view.
The model we consider in our work consists of n agents (or actors), except for

Corollary 4.18, where we consider an infinite network that is, a countably infinite
number of agents.1 Each agent has some idea of m given concepts (or notions) that
are encoded as elements of the conceptual space H. We can think that there are m
elements of the conceptual space p1i (k), . . . , p

m
i (k) ∈ H associated with the i-th

agent, here k ≥ 0 is a discrete time. These elements are called prototypes of concepts.
It is convenient to think that in fact each actor has its own conceptual space Hi = H
(although sometimes it is useful not to distinguish them). In our work, the conceptual
space is a separable Hilbert space H.

Now we introduce discrete-time dynamics into the conceptual spaces Hi .
The dynamics we propose is inspired by the multidimensional FJ-model taken

from opinion dynamics theory (Parsegov et al., 2017). In order to transfer opinion
dynamics model to our conceptual space we need a matrix W ∈ R

n×n of social
influences between agents, a diagonal matrix of prejudices � ∈ R

n×n . Recall that
qualities (dimensions) of conceptual spaces are (usually) dependent. This dependance
is described by the correlation operatorwhich is a bounded linear operatorC : H → H.

By observing the dynamics as time goes to infinity (k → ∞), we can observe the
process of agents learning from each other and changing their p j

i (k) which implies a
change of Voronoi diagrams in each conceptual space Hi .

In our work, we investigate what conditions allow us to say whether, given W , �

and C, we are dealing with convergence of prototypes in conceptual spaces or, using
geometric language, whether Voronoi diagrams are in some sense convergent.

1 Further research in this area can be of potential importance when studying finite complex networks but
composed of a very large number of agents.
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1.5 Structure of the Paper

This paper consists of the Introduction and six sections.
In Sect. 3, we define the notion of conceptual space. The next section, Sect. 4, is

devoted to recalling facts from opinion dynamics theory. In particular, the De Groot
and Friedkin–Johnsen models are discussed. A generalization of these models to mul-
tivariate models, in the sense that a finite number of topics that are correlated with
each other are discussed simultaneously, is presented. Next, in Sect. 4.3, our main
results are considering opinion dynamics are presented. Specifically, a generalization
of the multivariate model by Parsegov et al. (2017) to the case of infinitely many
topics discussed simultaneously. That is, the dynamics of the system takes place in
a separable Hilbert space. In the next Sect. 5, we show the relation of the infinite-
dimensional model built in the previous section to the dynamics of conceptual spaces.
There we present two examples of dynamics in conceptual spaces which are separable
Hilbert spaces. One of the conceptual spaces considered is the space of L2 functions
on the 2-dimensional torus. Sections 4.3 and 5 show what we think is an important
phenomenon of the analogy of certain models of opinion dynamics with dynamics in
conceptual spaces.

Finally, in Sect. 5.1 we address the question of a measure of the distance of the
model’s stationary state from the consensus and in Sect. 6 we summarize our work
and outline directions for possible research.

2 Preliminaries

Herewe present some facts about linear algebra, matrix theory, and functional analysis
in Hilbert spaces, for details see (Laub, 2005; Horn & Johnson, 2013; Young, 1988).
Let Mm×n(F) denotes the set of all m × n-matrices with entries from the field F (here
F = R or C).

Definition 2.1 The Kronecker product of A = [ai j ] ∈ Mm×n(R) and B = [bi j ] ∈
Mp×q(R) is denoted by A ⊗ B and is defined to be the block matrix

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1n B
...

. . .
...

am1 · · · amn B

⎞

⎟
⎠ ∈ Mmp×nq(R).

In general, A ⊗ B �= B ⊗ A.

Definition 2.2 An inner product (or scalar product) on a complex vector space V is a
mapping 〈·, ·〉 : V × V → C such that, for all x, y, z ∈ V and all λ ∈ C,

(i) 〈x, y〉 = 〈y, x〉,
(ii) 〈λx, y〉 = λ〈x, y〉,
(iii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
(iv) 〈x, x〉 > 0 when x �= 0.
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Definition 2.3 An inner product space is a pair (V , 〈·, ·〉),where V is a complex vector
space and 〈·, ·〉 is an inner product on V .

A Hilbert space is an inner product space which is a complete metric space with
respect to the metric induced by its inner product.

Theorem 2.4 LetH be a separable Hilbert space. ThenH is isomorphic either to Cn

for some n ∈ N or to �2.

Definition 2.5 Let H1 and H2 be two Hilbert spaces with inner products 〈·, ·〉i , i =
1, 2, respectively. A tensor product of H1and H2 is a Hilbert space H1 ⊗ H2 and a
mapping (x, y) 
→ x ⊗ y of H1 × H2 into H1 ⊗ H2 such that

(x1 + x2) ⊗ y =x1 ⊗ y + x2 ⊗ y

(λx)⊗ =λ(x ⊗ y)

x ⊗ (y1 + y2) =x ⊗ y1 + x ⊗ y2
x ⊗ (λy) =λ(x ⊗ y)

and

(1) the vectors x ⊗ y form a total subset of H1 ⊗ H2, i.e. its closed linear span is
equal toH1 ⊗ H2,

(2) 〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉1 〈x2, y2〉2 .

A bounded linear operator between two Hilbert spacesH1, H2 is a continuous linear
map T : H1 → H2. We will denote by L(H1,H2) the space of all bounded linear
operator from H1 to H2. The space L(H1,H2) is a Banach space for the operator
norm

‖T ‖ = sup{‖T x‖2 : x ∈ H1, ‖x‖1 ≤ 1},

where ‖x‖i = 〈x, x〉1/2i . When H1 = H2 = H we simply write L(H) for L(H,H).

If we take the composition of operators as multiplication, then L(H) is a (usually non
commutative) Banach algebra with unit (the identity operator). In particular, ‖ST ‖ ≤
‖S‖‖T ‖, for S, T ∈ L(H).

Definition 2.6 Let, for i = 1, 2, Ti be a linear bounded operator on a Hilbert space
Hi . There exists a unique linear bounded operator T on H1 ⊗ H2 such that

T (x1 ⊗ x2) = T1x1 ⊗ T2x2

for all x1 in H1 and x2 in H2. This operator is called a tensor product of operators
T1and T2 and is denoted by T1 ⊗ T2.

Definition 2.7 Let T be in L(H), the spectrumof T is the setσ(T )of complex numbers
λ such that T − λI is not invertible.
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3 Conceptual Spaces

Definition 3.1 A conceptual space S is a subspace of some metric space (X , d),

together with family of prototypes P = {P1, . . . , Pk}, where every Pi ⊂ S ⊂ X .

The space S is divided (using appropriate methods) into k cells called conceptual
domains or concepts. The prototype Pi which belongs to i-th concept Ci is thought
of as "the most representative example" of Ci . Usually Pi are singleton sets and such
partitions are usually obtained using Voronoi diagrams (see (Okabe et al., 2011)).

Definition 3.2 Let (X , d) be a metric space. Let, for i = 1, . . . , n Pi ⊂ X . The
Voronoi cell Ci associated with Pi is the set of all points in X whose distance to Pi
is smaller than their distance to the other prototype Pj , where j is any index different
from i, i.e.

Ci = {x ∈ X : d(x, Pi ) < d(x, Pj ) for all j �= i},

where d(x, A) = inf{d(x, a) | a ∈ A} is the distance between the point x and the
subset A ⊂ X . The Voronoi diagram is the tuple of cells (Ci )1≤i≤n .

Usually conceptual space X is of higher dimension, e.g.RD, D ∈ N, in which each
dimension corresponds to quality of a concept. Typically, the dimensions of concep-
tual space are not independent of each other. As mentioned in the introduction, ties are
imposed on the dimensions describing the concept. This phenomenon is very nicely
illustrated by an example from thework (Rickard, 2006). There is considered an exam-
ple of the concept of apple described by dimensions corresponding to the following
qualities: red, green, yellow, brown, smooth, wrinkled. It is clear that these dimensions
are correlated with each other. It is more common to find a wrinkled apple among
brown apples than among green ones. When describing a concept with certain dimen-
sions, we can therefore speak of a covariance matrix between the dimensions. The
covariance matrix C can be constructed from observations using statistical methods
(see (Rickard, 2006)).

Getting a little ahead of our narrative, let us mention here that in the theory of
opinion dynamics, when considering a model in which agents discuss m dependent
topics an analogous covariance matrix will naturally appear.

The space X is usually endowed with a (dis)similarity measure s = s(x, y), x, y ∈
X which is a function of the metric d.

As a simple example let, for x �= y,

s(x, y) = 1

d(x, y)
or s(x, y) = e−d(x,y).

Then, a small value of s(x, y) indicates a small degree of similarity between x and y,
whereas conversely a large value of s(x, y) signifies strong similarity between objects
(concepts) x and y.

Let us now consider an example in which objects can be described by means of
D = 3 real parameters. That is our conceptual space is now R

3 and each point in R
3
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corresponds to a color concept. Each color can be defined by three parameters - namely,
through the wavelength, saturation and hue. It is clear that, for example, the concept
of ’red’ is not only its prototype (one single point x in 3-dimensional space) but also
colors in the close vicinity of the prototype (i.e. some set in 3-dimensional space called
a conceptual domain or conceptual field, which contains a point-prototype x). In this
example, conceptual space will be the union of all concept domains corresponding to
different colors.

From a linguistic point of view, concepts usually correspond to the grammatical
category of a noun or verb if time is one of the dimensions of conceptual space. The
qualities correspond to the adjective descriptions.

An important issue is the division - partition - of conceptual space. Let us consider
the simplest example. Let Euclidean space X = R

D be a conceptual space. We have n
prototypes p1, . . . , pn ∈ R

D .Wewant to knowwhich concept fields (which subsets of
R

D) these prototypes designate. That is to say: if we are given an element x ∈ R
D, to

which concept field does it belong? This is a particular example of data classification
(see (Gordon, 1999; Suthaharan, 2016; Aggarwal, 2015; Dougherty, 2013)). Applying
Definition 3.2 with Pi = {p} the conceptual field Ci corresponding to the prototype
pi is simply a set of all points of RD whose �2-distance to pi is less than to any other
p j with j �= i, i.e.

Ci = {x ∈ R
D : d(x, pi ) < d(x, p j ) for all j �= i},

where d(x, y) = ‖x − y‖�2 =
(∑D

i=1(xi − yi )2
) 1

2
.

In this way we get a partition of the spaceRD for polygonal regions, some of which
may be unbounded (Okabe et al., 2011).

4 Opinion Dynamics

4.1 The One-Dimensional Friedkin–JohnsenModel

Let us first consider the one dimensional opinions held by n agents or actors in the
network. We denote these opinions as a vector x = (x1, . . . , xn)T ∈ R

n . By x(k) we
mean the distribution of opinions among agents at stage (or time) k ∈ N.

Definition 4.1 A model M is a transformation of distribution of the opinions of n
agents at the stage k to the distribution in the next stage,

x(k)
M
→ x(k + 1).

Definition 4.2 A fixed-point (or invariant distribution) of the model M, i.e. a distri-
bution x� such that M(x�) = x� is called a limit state of the model M .

Consider the easiest case where opinions are just real numbers and agents can have an
influence on each other. Let the non-negative coefficients or in other words weights
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0 � wi j � 1, 1 ≤ i, j ≤ n denote what influence agent j has on agent i or stating
it symmetrically: how susceptible agent i is to the arguments of agent j . We assume
that

∑

1�i�n
wi j = 1. Then the influence matrix W = (wi j )

n
i, j=1 ∈ Mn×n(R) is row-

stochastic.
The simplest model is the famous one due to Degroot (1974):

x(k + 1) = Wx(k). (4.1)

Definition 4.3 According to Meyer and Plemmons (1977) we say that a matrix A is
called semi-convergent if there exists a matrix A� such that

A� = lim
n→∞ An .

Clearly, a system (4.1) can only reach a limit state provided that the stochastic matrix
of influences W is semi-convergent.

At this point it is required to tell how such a state can be reached. We can define
two notion of convergence for a model.

Definition 4.4 We say that the model M is convergent if

∀ x(0) ∃ x� such that lim
k→∞ x(k) = x� �⇒ x� M
→ x�.

In other words for a given initial opinion distribution themodel iteration over it reaches
a limit.

It is obvious that convergence of the DeGroot model is equivalent to the semi-
convergence of its matrix of influences W , as was mentioned earlier.

First meaningful extension of above is the Friedkin–Johnsen model (the FJ-model,
for short), see (Friedkin, 1998; Friedkin & Johansen, 1999, 2011). Now we also need
actors’ vulnerability to social influence given as diagonal matrix � = (λi j ) where
0 � λi j � 1. Then the updating equation has the following form:

x(k + 1) = �Wx(k) + (I − �)x(0). (4.2)

A matrix � ought to be interpreted as stubbornness of agents. So at every step of
iteration an agent not only takes for consideration neighboring agents’ opinions but
also his own initial opinion. It is clear that the DeGroot model is a special case of the
FJ-model when � = I . Sufficient conditions for convergence obtained in Frasca et al.
(2013); Friedkin and Johansen (1999) are going to be presented in the next section.

Definition 4.5 With the matrix W we associate the finite graph G(W ) = (V , E(W )).

The set of nodes V = {1, . . . , n} of this graph is in one-to-one correspondence with
the agents and the edges stand for the inter-personal influences, that is (i, j) ∈ E(W )

if and only if wi j > 0. A positive self-influence weight wi i > 0 corresponds to the
self-loop (i, i). We call G = G(W ) the interaction graph of the social network. A
sequence of nodes i = i0 
→ i1 
→ . . . 
→ ir = i ′ such that (i j , i j+1) ∈ E(W ),

j = 0, . . . , r − 1, is called a walk from i to i ′.
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4.2 TheMultidimensional Friedkin–JohnsenModel

Parsegov et al. (2017) gave a multidimensional extension of the FJ-model dealing with
interdependent topics of discussion.

Let’s assume that the opinion concerns m topics. That is, a given opinion x is
represented by an m-dimensional vector x ∈ R

m . We will now be interested in the
dynamics of the opinions of n agents at discrete time k. At each time k ∈ N there is an
interaction between agents. As a result of this interaction, the agents can change their
opinions. More formally, at time k we have n vectors x1(k), . . . , xn(k) ∈ R

m, where
the j-th coordinate (1 ≤ j ≤ m) of the i-th vector x j

i (k) denotes the opinion of the
i-th agent regarding the j-th subject at time k.

When dealing with interdependent discussion topics, we need to equip the model
with information about the level of entanglement or the dependencies between topics.
This information is given by the matrix C ∈ Mm×m(R). The following equations
generalize the model given by (4.2) to the situation of interdependence of opinions

xi (k + 1) = λi iC
n∑

j=1

wi j x j (k) + (1 − λi i )xi (0), i = 1, . . . , n. (4.3)

To write this system of equations in a compact form, we combine all xi (k), i =
1, . . . , n, into a single column vector x(k) ∈ R

nm, i.e.

x(k) =
(
x11(k), . . . , x

m
1 (k), x12(k), . . . , x

m
2 (k), . . . , x1n(k), . . . , x

m
n (k)

)T
.

Introducing the Kronecker multiplication operator ⊗ (see Appendix) we get

x(k + 1) = (
(�W ) ⊗ C

)
x(k) + (

(In − �) ⊗ Im
)
x(0). (4.4)

Remark 4.6 It is worth mentioning that the FJ-model and its multidimensional exten-
sion were originally designed to operate on opinions. Vector-valued opinion is
supposed to be multiple opinions on certain potentially interdependent topics. The
conceptual space perspective is, in a sense opposite. We have one object of interest
that we want to describe with its (also potentially dependent) attributes.

Remark 4.7 In the theory of opinion dynamics proposed in the work of Parsegov et al.
(2017), the dimensions of the opinion vectors of individual agents are dependent on
each other as they discuss dependent topics. This is the reason for introducing the C
matrix into the model. Parsegov et al. call this matrix amulti-issues dependence struc-
ture matrix (MiDS matrix). Consequently, in applying the theory to practical cases,
the problem of MiDS matrix estimation arises. Two convex optimization methods
have been proposed in Parsegov et al. (2017). One is based on a recursive equation
describing the dynamics of the agent system, and the other is based on the limit form
of this equation. We refer the interested reader for details to [(Parsegov et al., 2017),
Sect. VIII].
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Remark 4.8 Ye et al. (2020) consider models similar to those in the article (Parsegov
et al., 2017), but considered in continuous time. In their models alsoC-matrix appears
to play a similar role. In the context considered by by Ye et al. this matrix is referred
to as a logical matrix.

4.3 Opinion Dynamics in a Separable Hilbert Space

The theory of conceptual spaces is mainly developed in metric spaces (Gärdenfors,
2000). However, there is often a need to consider spaces with additional structures.
For example, in some applications (see e.g. [(Derrac & Schockaert, 2015), p. 72], the
notion of an angle between the points of the space is necessary, and thus spaces with
a scalar product play an important role. So Hilbert spaces are natural in this context.

Our main contribution to the theory of conceptual spaces is to define the dynamics
of conceptual spaces that are separable Hilbert spaces. As we noted in Remark 4.6,
there is a connection betweenmultidimensional opinions on various interrelated topics
on the one hand and concepts and their interrelated attributes on the other.

Following this correspondence our first aim is to extend the multidimensional FJ-
model from Parsegov et al. (2017) to the case of a separable Hilbert space.

Let H be a separable Hilbert space. The state space is the Cartesian product Hn,

n ∈ N.We denote the state of opinions at time k as x(k) = (x1(k), . . . , xn(k))T ∈ Hn .

In this setting C : H → H is a linear operator. Now the Kronecker product ⊗ has to
be replaced by a tensor product (Aubin, 2000). We can think of an operation�W ⊗C,

where � is again a ’stubbornness’ matrix, in two equivalent ways:

(a) either as it would be a matrix of linear operators written as:

�W ⊗ C =
⎡

⎢
⎣

λ11w11C · · · λ11w1nC
...

. . .
...

λnnwn1C · · · λnnwnnC

⎤

⎥
⎦

(b) or a linear operator obtained as a tensor product of two operators�W and C acting
on two Hilbert spaces H and R

n , respectively. Thus �W ⊗ C acts on R
n ⊗ H in

a usual way:

(�W ⊗ C)(x ⊗ y) = (�Wx) ⊗ (Cy).

Formally, the equation describing the dynamics inHn does not differ from the equation
(4.4) and takes the following form:

x(k + 1) = (
(�W ) ⊗ C)

x(k) + (
(In − �) ⊗ I)

x(0), (4.5)

where I is the identity operator defined in H. In order to use notation (b) we need to
decompose x(k) as an element in the tensor product space Rn ⊗ H. Let {e1, . . . , en}
be the standard basis in Rn . BecauseH is separable we know that there is a countable
orthonormal basis {h1, h2, . . .} of H. Then {ei ⊗ h j } forms the basis of Rn ⊗ H in
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which we can write

x(k) =
(
x11(k), x

2
1 (k), . . . , x

1
2(k), x

2
2 , . . . , x

1
n(k), x

2
n (k), . . .

)T

and

x(k + 1) = (
�W ⊗ C)

x(k) + (
(In − �) ⊗ I)

x(0)

= (
�W ⊗ C)( n∑

i=1

∞∑

j=1

x j
i (k)(ei ⊗ h j )

)+

+ (
(In − �) ⊗ I)( n∑

i=1

∞∑

j=1

x j
i (0)(ei ⊗ h j )

)

=
n∑

i=1

∞∑

j=1

(
x j
i (k)

(
(�Wei ) ⊗ C(h j ) + x j

i (0)
(
(ei − �ei ) ⊗ h j

)))
.

4.4 Convergence

In examining the convergence for ourmodel, wewill follow almost the same procedure
as can be found in Friedkin and Johansen (1999); Parsegov et al. (2017). We start with
some useful definitions. LetH be a separable Hilbert space. Recall, that by L(H) we
denote the space of all bounded linear operators in H.

Definition 4.9 A sequence of operators Tn ∈ L(H) converges in norm to T if

‖Tn − T ‖L(H) −→
n→∞ 0,

where ‖ · ‖L(H) denotes the operator norm in the space L(H).

Definition 4.10 A sequence of operators Tn ∈ L(H) strongly converges to T if for
every x ∈ H,

‖Tnx − T x‖ −→
n→∞ 0.

Definition 4.11 We call the i-th agent stubborn if λi i < 1 and totally stubborn if λi i =
0. An agent that is neither stubborn nor influenced by a stubborn agent (connected to
some stubborn agent by a walk in the interaction graph G(W )) is called oblivious.

Notice that it is possible that there are agents that are neither stubborn nor oblivious.
Notice also that the set of all oblivious agents obey (the Hilbert space extended) the
DeGroot model dynamic. This can be easily seen when we decompose matricesW ,�
and vector x(k) simply by rearranging rows in such a way that all oblivious agents are
at the bottom (compare with the paragraph before Dfinition 3 on page 4 in Parsegov
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et al. (2017)). Now

W =
[
W11 W12
0 W22

]
, � =

[
�11 0
0 I

]
, x(k) =

[
x(k)
x(k)

]
.

We will denote the number of rows in the matrix W11 by n, and the number of rows
of the matrix W22 by n.

The above observation allows us to formulate the following theorem.

Theorem 4.12 (Necessary conditions) If the model (4.5) contains oblivious agents
then its convergence implies that

• {Cn}∞n=1 is strongly convergent to some C� and W22 is semi-convergent

or

• {Cn}∞n=1 strongly converges to the null operator O.

Proof Assume that the model converges. Then after row permutation, as explained
earlier, iteration of bottom part of equations gives,

x(k + 1) = (
W22 ⊗ C)

x(k)

= (
W22 ⊗ C)k+1

x(0)

= Wk+1
22 y(0) ⊗ Ck+1y′(0),

where y(k) ⊗ y′(k) is a tensor space representation of x(k) in Rn ⊗ H.
So the convergence of {x(k)}∞k=0 implies the strong convergence of {Ck}∞k=1 and the
semi-convergence ofW22. There is also possibility of the convergence {Ck}∞k=1 to zero
operatorO thenWk

22y(0)⊗Ck y′(0) −→
k→∞ 0. The operatorW22 cannot converge to the

zero operator since it is stochastic by our assumption. ��
Theorem 4.13 (Sufficient condition) If the spectral radius ρ(�W ⊗ C) < 1 then the
model (4.5) converges and its fix-point is

x� = (In ⊗ I − �W ⊗ C)−1((In − �) ⊗ I)
x(0).

Proof It is easy to prove by induction that after iteration of recursive equation (4.5)
one would get that

x(k + 1) = [
(�W ⊗ C)k +

( k−1∑

i=0

(�W ⊗ C)i
)(

(In − �) ⊗ I)]
x(0).

So from the assumption on spectral radius we know that these two operator sequences
converge in norm:

(1) lim
k→∞(�W ⊗ C)k = O,
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(2) lim
k→∞

k−1∑

i=0
(�W ⊗ C)k = (In ⊗ I − �W ⊗ C)−1.

Hence,

lim
k→∞ x(k + 1) = (In ⊗ I − �W ⊗ C)−1((In − �) ⊗ I)

x(0).

��
From Theorem 4.13 it is easy to conclude the following corollary.

Corollary 4.14 If ρ(C) < ρ(�W )−1 then the model converges.

We will see that a proof of this statement is trivial having the following Lemma 4.15
and its Corollary 4.16.

Before we formulate the Lemma 4.15 we need to specify the setting.
LetH1 andH2 be separable Hilbert spaces and T a linear operator acting between

them, i.e. T : H1 → H2.

Let σ(T ) denote the spectrum of the operator T . Recall also that the spectral radius
ρ(T ) of the operator T is the supremum of the moduli of the (complex) numbers from
the spectrum σ(T ) of the operator T .

The following Lemma 4.15 provides a fact of crucial importance for the proof of
our theorems on opinion dynamics, where opinions can be elements of a separable
Hilbert space.

Lemma 4.15 Let T1 and T2 be bounded linear operators Ti : H1 
→ H2, i = 1, 2,
acting between separable Hilbert spaces Hi , i = 1, 2. Then the following equation
holds

σ(T1 ⊗ T2) = σ(T1)σ (T2) = {xy | x ∈ σ(T1), y ∈ σ(T2)}.

Proof See the paper by Brown and Pearcy (1966). One can extract proof from the
one given in Schechter (1969), as a special case for polynomial P(z1, z2) = z1z2,
z1, z2 ∈ C. ��
Corollary 4.16 Let the setting be as in Lemma 4.15. Then the spectral radii of T1 and
T2 have the following property:

ρ(T1 ⊗ T1) = sup
{|λ| : λ ∈ σ(T1 ⊗ T1)

}

= sup
{|λ| : λ ∈ σ(T1)σ (T2)

}

= sup
{|λ1||λ2| : λ1 ∈ σ(T1), λ2 ∈ σ(T2)

}

= sup
{|λ| : λ ∈ σ(T1)

}
sup

{|λ| : λ ∈ σ(T2)
}

= ρ(T1)ρ(T2).

Now let us prove Corollary 4.14.
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Proof of Corollary 4.14 By Lemma 4.15 we get that the following two inequalities are
equivalent

• ρ(�W )ρ(C) = ρ(�W ⊗ C) < 1,
• ρ(C) < ρ(�W )−1.

��
Remark 4.17 Theorem 4.13 gives us sufficient condition for the convergence of the
model (4.5). If the model has no oblivious agents it is also necessary. Indeed, without
oblivious agents matrices W12 and W22 are absent. However, if there are oblivious
agents condition of Theorem 4.13 is not necessary. We can construct an example
of convergent model where condition from Theorem 4.13 is not met. Simply take
ρ(�W ) = ρ(C) = 1 but also with ρ(�11W11) < 1 and semi-convergent matrix W22.

By Theorem 4.12 cn → C� as n tends to infinity. Then we have convergence to the
limit x� = (x� x�)T , where

x� = (In ⊗ I − �W ⊗ C)−1((In − �) ⊗ Ix(0) + (�11W12W
�
22) ⊗ CC�x(0)

)

and

x� = W �
22 ⊗ C�x(0).

A detailed proof follows easily from Parsegov et al. (2017).

We can easily generalize Theorem 4.13 to the situation of a model in which we
have an infinite number of agents.

Corollary 4.18 Suppose that the infinite matrix W is a bounded operator acting on the
Hilbert space �2(N) = {(a1, a2, . . .) : ∑∞

n=1 a
2
n < ∞}, i.e.

W : �2(N) → �2(N)

and

‖W‖�2(N)→�2(N ) ≤ M .

Suppose also that the spectral radius ρ of the bounded operator

�W ⊗ C : �2(N) ⊗ H → �2(N) ⊗ H

satisfies

ρ(�W ⊗ C) < 1

then the model (4.5) converges and its fix-point is

x� = (In ⊗ I − �W ⊗ C)−1((In − �) ⊗ I)
x(0).

Proof The same as the proof of Theorem 4.13. ��
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5 Dynamics in Conceptual Spaces

When we have the model (4.5) defined it is not difficult to see how to combine it with
the theory of conceptual spaces.

Let H be a conceptual space. There are n actors and every one of them has his m
prototypes. Denote them by pi1, . . . , p

i
m ∈ H, 1 � i � n. We also have a matrix of

social influences W ∈ Mn×n(R) and a diagonal matrix of prejudices2 � ∈ Mn×n(R).
The last missing piece is an operator C of correlation between dimensions.

Now we can run m independent extended FJ-models and combine the results if the
models are convergent. At any stage k we can combine the set of resulting prototypes
into n conceptual spaces. One for each actor. In this way we can find out how dynamic
of learning process changes world comprehension of all agents.

Example 1 Let us consider a simplified, easy to visualize, 2-dimensional example,
where we can visualize this first state of a system as four conceptual spaces showed
in Fig. 1.

p1 =

⎡

⎢⎢⎢
⎢
⎣

(8.5, 3)
(4.5,−4.5)
(10,−2)
(−3.5, 3)

(−9.7, 9.7)

⎤

⎥⎥⎥
⎥
⎦
p2 =

⎡

⎢⎢⎢
⎢
⎣

(0.11, 5)
(4.2,−4.2)
(−1.2, 2.8)
(−3, 3.1)
(−9.7, 0)

⎤

⎥⎥⎥
⎥
⎦
p3 =

⎡

⎢⎢⎢
⎢
⎣

(1.8, 5.3)
(4.7,−4.2)
(1.1,−1.8)
(−5.2, 0.1)
(−8,−1)

⎤

⎥⎥⎥
⎥
⎦
p4 =

⎡

⎢⎢⎢
⎢
⎣

(6, 4.2)
(4,−8)

(1.2,−2.5)
(−3.1, 2.2)

(−5, 4)

⎤

⎥⎥⎥
⎥
⎦

Dependencies between dimensions can also be presented in form of a matrix C
since the space in this example is finitely dimensional. Also for simplification we set
a stubbornness matrix � to be I − W . Thus

C =
[
0.8 0.2
0.3 0.7

]

.
To show a difference between dynamics of the oblivious and non-oblivious agents

we consider two cases. In the first one W = W1 we have 3 oblivious agents and in
W = W2 we have none. The agents’ dependencies W are presented in Fig. 2.

For the first dependencies matrix the model almost converges after 8 steps and next
iteration barely changes anything. As said, here we have 3 oblivious agents 1, 3, 4.
This means that they are not bound to any point in space longer than one step. Hence
they have a lot more freedom and they obey the DeGroot dynamic. In the picture one
can see that the agents reached consensus or in other words they agreed upon some
common vision of the world. Whereas the second stubborn agent agrees with them to
some extent, nevertheless he sticks to his initial biases or beliefs Fig. 3 .

In the second case the model reaches equilibrium after a dozen or so steps. The
result can be seen in Fig. 4. Now there is no oblivious agent. Reaching stable state
takes more time, and the final equilibrium state is certainly not a consensus. It is close
to the consensus, but since each agent considers its own stage k = 0 prototype in every

2 If such data is difficult to obtain one can simply set � = In − W .
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Fig. 1 Conceptual spaces at k = 0.

Fig. 2 Agent dependencies
coefficients

iteration they are all influenced by their initial beliefs. Also they are all connected to
each other. Therefore every initial condition has a small impact on every agent. At this
point it is clear that we need to be more precise and some kind of a measure of such a
"non-consensusness" is required. We consider this problem in the next section.

In the next example we will exploit the full potential that Hilbert space extension
gives us. But since a visualization of, say, �2(N) space is not a trivial task we only
describe the nature of the problem and we leave a numerical simulation as well as
more detailed study for future research.
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Fig. 3 The model with W1 after 8 steps of iteration

Example 2 The problem is to model a classification of what actors see in the picture.
There can be many different ways to comprehend image but we only focus on an edge
detection. For example we can process only black and white drawings of shapes or
cards used in Rorschach test (Searls, 2017).

So consider a model with the conceptual space being L2([0, 1]2). We identify an
element of this space, i.e. L2-function, with a 2-dimensional picture located in the
[0, 1] × [0, 1]-square. In the experiment actors looking at a picture (i.e. prototype of
a concept in the conceptual space theory) detect edges using some form of Fourier
transform,3 which takes place in their brain processes, then place the result in form of a
point in L2([0, 1]2)-space. Then picture is taken away and after a while agents discuss
with other participants. There are three major aspects of the experiment that force the
dynamics. First of all, agents have influence on each other. Secondly, comprehension
of an image is certainly different for every agent. And finally, memories fade away in
time. The prototype shown earlier should "lose its precision" in their consciousness.
Unimportant parts are forgotten. Therefore, at the end of the experiment agents should
have their prototypes changed since by discussion they can convince each other that
some parts of their own view is the right one.

3 Edge detection and is beyond the scope of this paper. Therefore, we only point to some (almost random)
resources about this topic: (Tang et al., 2000; Jaffard et al., 2001; Bishop, 2006)
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Fig. 4 Model with W2 after 13 steps of iteration

Now suppose that we want to model this experiment. If we assume that the picture
was very simple and the agents are able to make a hand drawn picture, then we can
assume that we have a given initial condition in terms of prototypes that are functions
from L2([0, 1]2). Finding the matrix W should not be difficult since we have finitely
many agents and this is no different from classical situations.

So suppose that we already have data in form of agents’ conceptual spaces and we
know the matrix W .

Another problem is to formulate how dimensions in L2([0, 1]2) are correlated.
Since L2([0, 1]2) is separable be need to do that only on some countable basis.
For example for L2([0, 1]2) one could use standard trigonometric orthonormal basis
{e2π i(nx+my)}∞n,m=−∞. It seems that statisticalmethods can be used for this purpose and
an infinite correlation matrix C can be estimated as was done in the finite dimensional
case.

Now we can start iterating our algorithm that models our situation and compare the
theoretical result with the experimental one.

5.1 Consensus andMeasure of Agreement in Conceptual Spaces

As seen in previous section even though the model converges it doesn’t mean that all
agents have reached a state of consensus. They can no longer learn from each other
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but they still can have distinct perception or knowledge about some concept. So in
order to capture this idea more formally let us introduce the following definition.

Definition 5.1 Measure of agreement (MoA) is a function

μ
j
d Hn → [0,∞),

such that for any x1, . . . , xn ∈ H the following condition holds

μ
j
d(x1, . . . , xn) = 0 ⇐⇒ x1 = x2 = . . . = xn (5.1)

This function is parameterized by metric d from domain space and by j to emphasize
that all input prototypes x1, . . . , xn comes from common concept j . The simplest
example of such a functions would be a sum of all distances between prototypes

μ
j
d(x1, . . . , xn) =

n∑

i=1

n∑

k=i+1

d(xi , xk)

or smallest radius r of an open ball B containing all prototypes in natural topology
generated by the metric d

μ
j
d(x1, . . . , xn) = inf

{
r

∣∣∣ B(x; r) ⊇ {x1, . . . , xn}, x ∈ H
}
.

It is easy to check that for those functions condition 5.1 holds.
At this point we can finally delimit that to reach a consensusmeans to have a consensus
degree equal to 0 for some family of MoAs {μ j

d} j .
Definition 5.2 A consensus degree ε∗ is a sum of all measures of agreement of con-
cepts.

ε∗ =
m∑

j=1

μ
j
d(p

1
j , p

2
j , . . . , p

n
j ).

At the end we would like to notice that if iteration of some model M over conceptual
spaces has ε∗ = 0 it does not imply that it has a limit. So in conclusion those two
properties are independent and more research on this topic is needed.

6 Conclusions and Future Research

Our main contribution in this paper is the application of opinion dynamics theory to
the study of conceptual spaces from a dynamic point of view.

The second major contribution is that we can consider conceptual spaces that are
separable Hilbert spaces. This allows us to model complex concepts.
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There are several potential directions for further research. In the context of Theo-
rem 4.18, the first research problem should be to study the situation of infinitely many
agents carefully. Besides convergence, what can be said for this situation? In particu-
lar, it is very interesting to ask about what kind of new information about conceptual
spaces we can gain in this context.

In this work we consider only separable Hilbert spaces. Of course, one can also ask
about analogous theorems for Banach spaces. It is interesting what insight we obtain
in the theory of conceptual spaces by considering the transition to infinite dimensional
Banach spaces.

Let us mention the possibility of extending the theorems obtained in this paper to
the situation of non-synchronous models in opinion dynamics theory. By this wemean
models in which in each step not all agents communicate with each other.

Last but not least, the consensus problem remains. Here, any kind of result that
allows us to conclude that there is consensus, i.e. that all actors have the same opinion,
is extremely important.

What has been written in this paper is only the first step in the study of conceptual
spaces using methods of opinion dynamics theory. Further problems stand open and
waiting to be solved.
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