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Abstract
Pollination services provided by the different species of bee prove that they are indispensable to agriculture as well as natural ecosystems.
However, the decline or collapse of the bee population is a global concern. Among different reasons, pesticides, especially insecticides,
are responsible for bee decline or collapse. Not only exposure to lethal doses causes multiple negative impacts on the bee colony but the
sub-lethal doses  are  also  severely harmful to the bees. This paper presents the review of previously published studies on the effect of
sub-lethal doses of different commonly used pesticides in bee’s behavior.
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INTRODUCTION

Bees are indispensable components for both natural as
well as agricultural ecosystems1,2. About 75% of crops are
animal pollinated1,3 and bees significantly contribute to the
pollination4,5. Bee pollination improves both the quality and
quantity of crops production6-8. Similarly, insect-pollinated
crops are a vital  source  of  nutrition  throughout the world9

and among  the  insects,  bees  are important groups of
pollinators4.

However, the decline in the bee population is a huge
concern rising all over the world10-12. Among the different
reasons, the widespread use of pesticides is majorly
responsible for the decline of bees13-16. Pesticides exposure to
bees causes several negative impacts such as altered gut
microbiota17, susceptible to pest and diseases18,19, brood
development and function20, behavioral changes21-24 and bee
colony health25,15. Pesticides also impair on worker
performance as foraging efficiency and navigation ability26-30.
Further, it is reported that pesticide residue in brood comb
decreased adult life span, increased brood mortality and they
became more susceptible to pathogens which resulted in
reduced honeybee colony affecting their health31. These
effects disturbed normal colony cycle32 which led either in bee
decline or colony collapse.

Honeybees are social insect and all behaviors are essential
to run normally in a healthy colony. For example, foraging
behavior to collect pollen, nectar, water and resin33, hygienic
behavior for disease and parasite resistance34,35,
communication to inform the location of food source to other
foragers36, reviewed by I'Anson et al.37. Similarly, in a normal
healthy honeybee colony, nurse workers clean the cells, care
the broods and support to store the food whereas middle-
aged bee maintains the hive, receives and processes nectar.
Besides, they guard the nest entrance and after 21 days go for
forage38-41. Although there may not be immediate mortality
after exposure to sub-lethal doses of pesticides, it does have
chronic effects on bee health. Multiple review papers
discussed the negative impact of pesticides on bees e.g.38,42. In
addition to this recent review on the effects of sub-lethal dose
of pesticides on bees is hardly found. Although, Thompson43

and Desneux et al.44 reviewed on effects of sub-lethal doses of
pesticides after those multiple new findings have been
explored. So, this is essential to keep in account that doing the
review is the utmost need for the proper direction in further
studies. Hence, this paper mainly reviewed previously
published results and behavioral impairment due to different
types of pesticides on bee species.

FORAGING BEHAVIOR

Foraging behavior is important to collect the nectar,
pollen, water and propolis to the bees and to pollinate the
crop6,45,33. Several cultivated crops and wild plants depend on
the bee for effective and proper pollination so efficient bee
foraging is essential factor4,45,46. However, several previous
studies showed that sub-lethal doses of pesticides impair the
foraging behavior of bee24,47,48. Nectar or pollen detection in
bees is conducted by sophisticated nervous activity which was
found disrupted by neurotoxic pesticides49. The sub-lethal
dose of imidacloprid and clothianidin impaired the homing
and foraging  activities  of  worker  honeybees  as they failed
or delayed to return in the hives or their feeding sites23,24,47,48.
For  example,  imidacloprid  treated  orally  with  sugar water
at the lowest concentration  of  50  µg LG1 and higher than
1,200 µg LG1 resulted in delayed normal foraging interval and
abnormalities in revisiting the feeding sites24. Similarly,
another experiment reported that Cry1Ab protoxin,
deltamethrin and imidacloprid has been affecting the foraging
activity50. According to them, the mean number of foraging
honeybees visited was 43.4, 30.7 and 23.7 before, during and
after treatment by protoxin respectively. Likewise, in the case
of the deltamethrin test, the mean numbers were 1.7, 0.7 and
1.0 before, during and after the treatment respectively. Finally,
in imidacloprid mean visited numbers initially was 23.7, during
the treatment 4.8 and 20.4 after the treatment.

Other activities in foraging behavior were also found to
be affected by the sub-lethal dose of imidacloprid like less
nectar or pollen collection23, delay in revisiting for foraging51.
Also, due to the reduction of olfactory capacity worker bees
became incapable to locate the food source49. In the case of
bumblebees, exposure to imidacloprid reduced foraging
motivation. They visited the less robotic flowers, slowed down
to commence for foraging and did not visit all three provided
flower colors compared to the control52.

Including these effects, precocious foraging was reported
by multiple studies53,54. For example, imidacloprid treatment
with a concentration of 5 µg kgG1, ppb induced precocious
foraging, fewer orientation flights and reduced lifetime
foraging flights by 28%52. Due to sensitivity towards the
stressors, less effective foraging and precocious foraging
remained seriously responsible for the colony collapse in
honeybee25,55,56. Similarly, the application of Diazinon also
found inducing precocious foraging in honeybees53.

COMMUNICATION

The application of pesticides also affected
communication in honeybees. Treatment with imidacloprid
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was found to affect the waggle dance perform by foragers57.
Similarly, it is reported that communication in honeybee was
impaired which  resulted  in   the   decline    of   social  
behavior   after 30-60  min  with  single-dose  and  ad libitum 
administration of 500 and 100 ppb imidacloprid respectively58.
Likewise, contamination with 20 ppb imidacloprid decreased
the frequency of waggle dances of forager bees59. Also,
treatment with parathion with 0.3 µg/bee caused the incorrect
direction (angle of dance) on a vertical surface and incorrect
distance on a horizontal surface60. Forager bees must
remember the location, direction and amount of the food
source to inform the colony with dance36.  But  after the 
application  of  the sub-lethal dose of pesticide, the memory
of the forager bees got to be impaired61,62 and they often
forgot the location or direction of the food source. Also, the
application of pesticides affected the development and
function of the mushroom body21,63,64  which  resulted  to
affect communication in the bee colony. Also, nAChRs is
responsible for memory and learning65,66 and social behavior
which are present in mushroom bodies67,68. However, nAChRs
were found impaired by the application of pesticides69.
Moreover, according to Schmuck 57 and Kirchner 70 probably
due to impairment by the insecticide on motor neurons signal
transmission communication in honeybees gets affected.

HYGIENIC BEHAVIOR

Hygienic behavior is a behavioral response of worker bees
that exhibit removing dead, diseased or pesticides infected
individuals from the colony71. Disease and parasite resistance
of the bee colony depends on the hygienic behavior of
workers34,35.  There  are  very  few  studies  on  the  effect of
sub-lethal doses of pesticides on hygienic behavior in the bee.
However, it is reported that the hygienic behavior of the
colony was significantly decreased when exposed to the
pesticides72. For example, honeybee colonies treated with 50
ppb and 100 ppb imidacloprid significantly reduced the
hygienic behavior along with the removal of freeze-killed
brood by 63.3 and 73.7%, respectively compared to 97.4% in
control72.

OTHER BEHAVIOR

All usual activities must go normally in a normal colony
but it has been found that the pesticides change such
activities. Neonicotinoids (imidacloprid, thiamethoxam,
clothianidin, dinotefuran)   affects in the motor function and
behavioral changes of adult workers of honeybees (Apis
mellifera)73. According to Migda» et al.74 aggression, walking,

grooming, reversal, mobility, rebuild of comb behavior of
honeybee colonies were found affected by the application of
different  pesticides.  Moreover,  imidacloprid  treated  with
100 and 500 ppb a.i., bees were less active, communication
capacity got affected and this also results to impair in social
behavior53. Sub-lethal doses of pesticides caused more time in
self-cleaning, trembling dance, abdomen trucking in
comparison to the control bees75. Pesticides cause direct
intoxication as trembling, tumbling, abdomen tucking and
cleaning, rubbing the hind legs together76.

LEARNING AND MEMORY

As presented the summary of sub-lethal doses of
pesticides on bees in Table 1, multiple previous studies
reported that learning and memory in bees were found
impaired by the application of pesticides10,49,62. For example,
exposure of 25.6 µg LG1 (20.8 ppb) imidacloprid concentration
for four days significantly impaired short-term learning by 87%
and memory retention by 85% as compared with control
bees62. In another separate study, testing a sub-lethal dose of
imidacloprid  affected  learning  performance  in honeybee
and increased the  cytochrome  oxidase  labeling in the
calyces of the mushroom bodies21. Similarly, both
neonicotinoid and  non-neonicotinoid  pesticide  groups
found causing a significant negative impact on memory and
learning in Apis species  and  Bombus  under  both chronic
and acute application22. Testing of sub-lethal toxicity of
different nine pesticides from 2.2-940 µg LG1 pesticides
concentrations in sucrose solution in Apis mellifera fipronil,
deltamethrin, endosulfan and  prochloraz, reduced the
learning performance whereas bees found to be lacking
learning abilities in k-cyhalothrin, cypermethrin, s-fluvalinate,
triazamate and dimethoate77.  It  is   also   reported   that  
exposure  to sub-lethal doses of pesticides (imidacloprid,
coumaphos or their combination) significantly reduced the
olfactory learning in bees61,73.

There are both chronic and sub-lethal doses of pesticides
that harm the brain as well as mushroom body64,78,79 which
lowers down the learning ability and memory80-82. In addition,
nicotinic acetylcholine receptors (nAChRs) respond to
cholinergic neural signaling play a vital role in honeybee
learning and memory65 was found affected by the application
of pesticides70. As a result, it harms the olfactory learning and
memory in honeybees21,47 because of the change in the way
that neurons in the honeybee’s mushroom bodies function83.
Moreover, the application of the neonicotinoid, imidacloprid
down-regulates nAChRs in their brains70, causes brain cell
death84,   motor   function   reduced85,73,   decreased   the  hive
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entrance activity47, predator avoidance ability23, harms
foraging48, impaired visual learning86,  impaired navigation to
the nest29,87 and deficient rewarded olfactory learning61,88,89.
Finally, different biological processes like ribosomes, the
oxidative phosphorylation pathway, tyrosine metabolism
pathway, pentose and glucuronate interconversions and drug
metabolism were also found to be affected by the sub-lethal
dose of pesticides90, which also might impair the learning and
memory of bees.

Therefore,  this  clearly  shows  that even a small amount
of pesticides causes severe negative effects on bees learning
and memory. As a result, different behavioral changes
occurred as they were unable to learn or memorize the
activities.

MUSHROOM BODY

The behavior described above primarily depends on the
mushroom body in social insects91,92. It plays a vital role in
olfactory learning, memory and other behavior in honeybees
e.g.93-95. But the application of pesticides found impaired
growth, development and function of the mushroom
body21,63,64 which resulted in different behavioral changes in
bees.

The calyces are important sensory input regions in the
mushroom bodies, while sub-lethal doses of imidacloprid
affected the neural development of the honey bee brain by
immune-labeling synaptic units in the calyces of mushroom
bodies. The density of the synaptic units in the region of the
calyces, responsible for olfactory and visual functions, found
to be decreased after being exposed to a sub-lethal dose of
imidacloprid64. Similarly, it was found that sub-lethal doses of
neonicotinoid insecticides decreased the synaptic density of
the mushroom body calyx of honey bees and the bees
exposed to 0.04 µg imidacloprid per bee larvae in the larval
stage exhibit an impaired olfactory associative behavior in the
adult stage89. Also, the growth and development of the
mushroom body of Stingless Bee (Melipona quadrifasciata
anthidioides) were found negatively affected by the
application of imidacloprid96. They found that untreated bees
mushroom body volume was normally increased, whereas,
treated with 56 µg a.i./bee with imidacloprid was reduced by
36% by volume at eight days of emergence. Similarly, the
mushroom body calyces, relatively volumes were significantly
small in worker bees exposed to pesticides as compared to
control97. Nicotinic acetylcholine receptors (nAChRs) are
responsible for cholinergic synaptic transmission and play vital
roles in cognitive and behavioral processes65 which are located
in  the  mushroom  bodies67,68. They were also found impaired

by the application of pesticides70. Also, it is reported that
treatment with 8100 ppb imidacloprid induced mushroom
bodies cell death after 1 day of treatment98.

CONCLUSION

It is concluded that pesticides, especially insecticides,
impaired the different behavioral activities in honeybees. Not
only pesticides contaminated forager bees but the collected
nectar or pollen by them contained pesticides even in trace
amounts which caused problems in the colony. Bee behavior
depends on the higher functionality of the sensory and
integrative nervous system which is affected by exposure to
even a small amount of pesticides both at larval and adult
stages.

SIGNIFICANCE STATEMENT

This review paper will be the basis to the researchers to
explore further the effect of sub-lethal doses of pesticides in
the bee. This review explored that even trace amounts of
pesticides impaired bees’ behaviors. Hence, not only exposure
to lethal doses causes multiple negative impacts on the bee
but the sub-lethal doses are also harmful to the bees.
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