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PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL

ALMOST CONTACT METRIC 3-MANIFOLDS

Ji-Eun Lee

Abstract. In this article, we show that a pseudo-Hermitian magnetic

curve in a normal almost contact metric 3-manifold equipped with the

canonical affine connection ∇̂t is a slant helix with pseudo-Hermitian

curvature κ̂ = |q| sin θ and pseudo-Hermitian torsion τ̂ = q cos θ. More-
over, we prove that every pseudo-Hermitian magnetic curve in normal

almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is

a slant helix as a Riemannian geometric sense. On the other hand we
will show that a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian

3-manifold M is a slant curve with curvature κ = |(t− α) cos θ + q| sin θ
and torsion τ = α+ {(t−α) cos θ+ q} cos θ. These curves are not helices,
in general. Note that if the ambient space M is an α-Sasakian 3-manifold,

then γ is a slant helix.

1. Introduction

Magnetic curves represent, in physics, the trajectories of the charged parti-
cles moving on a Riemannian manifold under the action of magnetic fields. A
magnetic field F on a Riemannian manifold (M, g) is a closed 2-form Φ and
the Lorentz force associated to F is an endomorphism field L defined by

g(LX, Y ) = F (X,Y ), X, Y ∈ Γ (TM).

The magnetic trajectories of F are curves γ satisfying the Lorentz equation:

∇γ′γ′ = Lγ′.

One can see that every magnetic trajectory has constant speed. Unit speed
magnetic curves are called normal magnetic curves.

Now let M = (M,ϕ, ξ, η, g) be an almost contact metric manifold with closed
fundamental 2-form Φ. Then Fξ,q = −qΦ gives a magnetic field on M , called
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the contact magnetic field on M . Here q is a constant called the strength of
Fξ,q. The associated Lorentz force is Lξ,q = qϕ. The Lorentz equation of a
magnetic curve with respect to Fξ,q is

(1) ∇γ′γ′ = qϕγ′.

A magnetic curve in a quasi-Sasakian 3-manifold M with respect to the
magnetic field Fξ,q is a slant curve. Moreover, the magnetic curve γ in a quasi-
Sasakian 3-manifold M with respect to the magnetic field Fξ,q has constant
curvature κ = |q| sin θ and torsion τ = α + q cos θ (see [10]). Since α is a
function on a quasi-Sasakian 3-manifold M , a magnetic curve γ is not a helix
in general. In case M is an α-Sasakian 3-manifold, γ is a slant helix with
curvature κ = |q| sin θ and torsion τ = α0 + q cos θ. In particular, if M is a
Sasakian 3-manifold, then α0 = 1.

Druţă-Romaniuc, Inoguchi, Munteanu and Nistor studied a magnetic curves
in cosymplectic manifolds in [5]. They proved that if a non-geodesic Legendre
curve is a magnetic curve in cosymplectic manifold, then it is a circle.

The trajectory equation (1) is valid for curves in arbitrary almost contact
metric manifolds even if Φ is not closed. We consider curves satisfying (1) in
normal almost contact metric 3-manifolds from a pseudo-Hermitian geomet-
ric point of view. More precisely we study magnetic curves by virtue of the
canonical affine connection ∇̂t (see (7)).

The first contribution on pseudo-Hermitian geometric studies of magnetic
curves were obtained by Ikawa when the ambient space is Sasakian [7]. He gave
an interpretation of contact magnetic curves in Sasakian manifolds in terms of
the canonical affine connection ∇̂1. Next contact magnetic curves in quasi-
Sasakian 3-manifolds are investigated by the canonical affine connection ∇̂t in
[5]. In this article we introduce a notion of pseudo-Hermitian magnetic curve
in the following manner.

A regular curve γ is said to be a pseudo-Hermitian magnetic curve in nor-
mal almost contact metric 3-manifolds if it satisfies the Lorentz equation with
respect to the canonical affine connection ∇̂t:

∇̂tγ′γ′ = qϕγ′.

In this article, we find the necessary and sufficient condition for pseudo-
hermitian magnetic curve in normal almost contact metric 3-manifolds. From
this and Frenet-Serret equations, we study the relationship between pseudo-
Hermitian magnetic curve and magnetic curve. In Section 3, we show that a
pseudo-Hermitian magnetic curve in a normal almost contact metric 3-manifold
equipped with the canonical affine connection ∇̂t is a slant helix with pseudo-
Hermitian curvature κ̂ = |q| sin θ and pseudo-Hermitian torsion τ̂ = q cos θ.
In Section 4, we prove that every pseudo-Hermitian magnetic curve in normal
almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is a slant
helix as a Riemannian geometric sense. On the other hand we will show that
a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian 3-manifold M is
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a slant curve with curvature κ = |(t − α) cos θ + q| sin θ and torsion τ =
α+ {(t−α) cos θ+ q} cos θ. These curves are not helices, in general. Note that
if the ambient space M is an α-Sasakian 3-manifold, then γ is a slant helix.

2. Preliminaries

2.1. Normal almost contact manifolds

Let M be a manifold of odd dimension m = 2n + 1. Then M is said to be
an almost contact manifold if its structure group GLmR of the linear frame
bundle is reducible to U(n) × {1}. This is equivalent to existence of a tensor
field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying

ϕ2 = −X + η ⊗ ξ, η(ξ) = 1.

From these conditions one can deduce that

ϕξ = 0, η ◦ ϕ = 0.

Moreover, since U(n) × {1} ⊂ SO(2n + 1), M admits a Riemannian metric g
satisfying

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all X, Y ∈ X(M). Here X(M) = Γ (TM) denotes the Lie algebra of all
smooth vector fields on M . Such a metric is called an associated metric of
the almost contact manifold M = (M,ϕ, ξ, η). With respect to the associated
metric g, η is metrically dual to ξ, that is

g(X, ξ) = η(X)

for all X ∈ X(M). A structure (ϕ, ξ, η, g) on M is called an almost contact
metric structure, and a manifold M equipped with an almost contact metric
structure is said to be an almost contact metric manifold.

The fundamental 2-form of (M,ϕ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,ϕY ), X, Y ∈ X(M).

An almost contact metric manifold M is said to be a contact metric manifold if
Φ = dη. On a contact metric manifold, η is a contact form, i.e., (dη)n ∧ η 6= 0.

On the direct product manifold M ×R of an almost contact metric manifold
and the real line R, any tangent vector field can be represented as the form
(X, fd/dt), where X ∈ X(M) and f is a function on M × R and t is the
Cartesian coordinate on the real line R.

Define an almost complex structure J on M × R by

J(X,λd/dt) = (ϕX − λξ, η(X)d/dt).

If J is integrable, then M is said to be normal.
Equivalently, M is normal if and only if

[ϕ,ϕ](X,Y ) + 2dη(X,Y )ξ = 0,
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where [ϕ,ϕ] is the Nijenhuis torsion of ϕ defined by

[ϕ,ϕ](X,Y ) = [ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

for any X,Y ∈ X(M).
For more details on almost contact metric manifolds, we refer to Blair’s

monograph [1].
For an arbitrary almost contact metric 3-manifold M , we have ([12]):

(2) (∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ,

where ∇ is the Levi-Civita connection on M .
Olszak [12] showed that a 3-dimensional almost contact metric manifold M

is normal if and only if ∇ξ ◦ ϕ = ϕ ◦ ∇ξ or, equivalently,

(3) ∇Xξ = −αϕX + β(X − η(X)ξ), X ∈ Γ (TM),

where α and β are the functions defined by

(4) α =
1

2
Trace (ϕ∇ξ), β =

1

2
Trace (∇ξ) = div ξ.

We call the pair (α, β) the type of a normal almost contact metric 3-manifold
M .

Using (2) and (3) we note that the covariant derivative∇ϕ of a 3-dimensional
normal almost contact metric manifold is given by

(5) (∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX).

Moreover M satisfies

2αβ + ξ(α) = 0.

Thus if α is a nonzero constant, then β = 0. In particular, a normal almost
contact metric 3-manifold is said to be

• cosymplectic (or coKähler) manifold if α = β = 0,
• quasi-Sasakian manifold if β = 0 and ξ(α) = 0.
• α-Sasakian manifold if α is a nonzero constant and β = 0,
• β-Kenmotsu manifold if α = 0 and β is a nonzero constant.

1-Sasakian manifolds and 1-Kenmotsu manifolds are simply called Sasakian
manifolds and Kenmotsu manifolds, respectively.

The exterior derivative dΦ of Φ is given by

dΦ = β η ∧ Φ.

Thus Φ is a magnetic field if and only if β = div ξ = 0, that is, M is quasi-
Sasakian.
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2.2. Frenet-Serret equations

Let γ : I →M3 be a curve parameterized by arc-length in an almost contact
metric 3-manifold M3. We may define a Frenet frame fields (T,N,B) along γ.
Then they satisfy the following

(6)

 ∇TT = κN,
∇TN = −κT + τB,
∇TB = −τN,

where κ = |∇TT | is the geodesic curvature of γ and τ its geodesic torsion.
A helix is a curve with constant geodesic curvature and geodesic torsion. In

particular, curves with constant nonzero geodesic curvature and zero geodesic
torsion are called (Riemannian) circles. Note that geodesics are regarded as
helices with zero geodesics curvature and torsion.

2.3. Canonical affine connections

Let M = (M,ϕ, ξ, η, g) be an almost contact metric manifold. Define a
tensor field A = At of type (1, 2) by

(7) AtXY = −1

2
ϕ(∇Xϕ)Y − 1

2
η(Y )∇Xξ − tη(X)ϕY + (∇Xη)(Y )ξ

for all vector fields X and Y . Here t is a real constant. We define an affine
connection ∇̂t on M by [9]:

∇̂tXY = ∇XY +AtXY.

We call the connection ∇̂t the canonical affine connection of M . Note that the
connection ∇0 is the (ϕ, ξ, η)-connection introduced by Sasaki and Hatakeyama

in [13]. Moreover ∇̂1 was introduced by Cho [2]. When M is a strongly pseudo-
convex CR-manifold,

∇̂tXY = ∇XY − tη(X)ϕY + η(Y )ϕ(I + h)X − g(ϕ(I + h)X,Y )ξ.

This formula shows that when M is a strongly pseudo-convex CR-manifold,
∇̂t|t=−1 is the Tanaka-Webster connection. The canonical affine connection

∇̂t on an almost contact metric manifold satisfies the following conditions:

∇̂ϕ = 0, ∇̂ξ = 0, ∇̂η = 0, ∇̂g = 0.

Remark 2.1 (Generalized Tanaka-Webster connection). Let M be a contact
metric manifold. Tanno introduced the following affine connection on M ([14]):

T∇XY := ∇XY + η(X)ϕY + η(Y )ϕ(I + h)X − g(ϕ(I + h)X,Y )ξ.

This affine connection is called the generalized Tanaka-Webster connection. In
case, the associated almost CR-structure S is integrable, generalized Tanaka-
Webster connection coincides with our canonical connection ∇̂t|t=−1. The

generalized Tanaka-Webster connection does not coincide with ∇̂t|t=−1 if S
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is non-integrable. In fact, ξ, η and g are parallel with respect to T∇ but for ϕ,
T∇ satisfies

(T∇Xϕ)Y = Q(Y,X)

holds. Here Q is the Tanno tensor field. Hence we notice that on a contact
metric manifold M , T∇ = ∇̂t|t=−1 if and only if its associated CR-structure is
integrable.

3. Pseudo-Hermitian magnetic curves in normal almost contact
metric 3-manifolds

In this section we assume that M is a normal almost contact metric 3-
manifold (or more generally, trans-Sasakian manifold of general dimension) of
type (α, β). Then (7) is reduced to

(8) AtXY = α{g(X,ϕY )ξ + η(Y )ϕX}+ β{g(X,Y )ξ − η(Y )X} − tη(X)ϕY.

The torsion tensor field Tt of ∇̂t is given by

T̂t(X,Y ) = α{2g(X,ϕY )ξ − η(X)ϕY + η(Y )ϕX}(9)

+ η(X)(βY − tϕY )− η(Y )(βX − tϕX).

For a Sasakian manifold (α = 1 and β = 0) we get

AtXY = g(X,ϕY )ξ + η(Y )ϕX − tη(X)ϕY,(10)

T̂t(X,Y ) = 2g(X,ϕY )ξ − (1 + t)η(X)ϕY + (1 + t)η(Y )ϕX.

On a Sasakian 3-manifolds, canonical affine connection ∇̂t coincides with the
linear connection introduced by Okumura. In particular, ∇̂1 is called the Oku-
mura connection [11].

Now, let us consider a contact magnetic curve in normal almost contact
metric 3-manifolds from a pseudo-Hermitian geometrical point of view.

Definition. A regular curve γ is said to be a pseudo-Hermitian magnetic curve
in an almost contact metric manifold M if it satisfies the Lorentz equation with
respect to the canonical affine connection:

(11) ∇̂tγ′γ′ = qϕγ′.

It should be remarked that the notion of pseudo-Hermitian magnetic curve
is introduced by Güvenç and Özgür [6], independently to ours. However their
notion is different from ours. A regular curve in a Sasakian manifold M is said
to be a pseudo-Hermitian magnetic curve in the sense of Güvenç and Özgür if
it satisfies

∇̂tγ′γ′|t=−1 = (q + 2η(γ′))ϕγ′.

Obviously their notion coincides with ours when and only when γ is a Legendre
curve, i.e., η(γ′) = 0.
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3.1. Frenet-Serret equations

Let γ = γ(s) : I → M3 be a curve parameterized by arc-length in normal
almost contact metric 3-manifold M3. We may define the Frenet frame field
F̂ = (T̂ , N̂ , B̂) along γ with respect to the canonical affine connection ∇̂t,
since ∇̂t is a metric connection. Then F̂ satisfies the following Frenet-Serret
equations with respect to ∇̂t:

(12)


∇̂tγ′ T̂ = κ̂N̂ ,

∇̂tγ′N̂ =− κ̂T̂ + τ̂ B̂,

∇̂tγ′B̂ = − τ̂ N̂ ,

where κ̂ = |∇̂tγ′ T̂ | is the pseudo-Hermitian curvature of γ and τ̂ its pseudo-

Hermitian torsion for the canonical affine connection ∇̂t. A non-geodesic curve
γ is said to be a pseudo-Hermitian circle if κ̂ is nonzero constant and τ̂ = 0. A
pseudo-Hermitian helix is a non-geodesic curve with nonzero constant pseudo-
Hermitian curvature κ̂ and pseudo-Hermitian torsion τ̂ .

3.2. Pseudo-Hermitian magnetic curves

From the equation (11) and Frenet-Serret equations (12) for the canonical

affine connection ∇̂t we have the pseudo-Hermitian curvature

κ̂ = |q|
√

1− η(γ′)2,

and the normal vector field N̂ = εϕγ′√
1−η(γ′)2

, where ε = q
|q| .

Differentiating the pseudo-Hermitian normal vector field N̂ then

∇̂tγ′N̂ = ∇̂tγ′
εϕγ′√

1− η(γ′)2
(13)

= ε

[
− q√

1− η(γ′)2
γ′ +

η(γ′)η(γ′)′

(
√

1− η(γ′)2)3
ϕγ′ +

qη(γ′)√
1− η(γ′)2

ξ

]
.

The pseudo-Hermitian binormal vector field B̂ is calculated by

B̂ = γ′ × N̂ =
ε√

1− η(γ′)2
{ξ − η(γ′)γ′}.

From the equation (13) and the Frenet-Serret equations (12) for the canon-

ical affine connection ∇̂t we get pseudo-Hermitian torsion

τ̂ = qη(γ′)

and η(γ′) is a constant.
As a generalization of Legendre curve (in contact metric manifold), the no-

tion of slant curves was introduced in [3]. A unit speed curve γ in an almost
contact metric manifold (M,ϕ, ξ, η, g) is said to be slant if its tangent vector
field makes constant contact angle θ with ξ, i.e., cos θ := η(γ′) is constant
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along γ [3]. By definition, slant curves with constant angle 0 are trajectories
of ξ. Slant curves with constant angle π/2 are called almost Legendre curves
or almost contact curves. We studied almost contact curves in normal almost
contact metric 3-manifolds, see also [8].

Hence we have:

Theorem 3.1. Let γ be a pseudo-Hermitian magnetic curve in an almost
contact metric 3-manifold with the canonical affine connection ∇̂t. Then γ is
a slant helix with

(14) κ̂ = |q| sin θ, τ̂ = q cos θ.

Moreover, its ratio of κ̂ and τ̂ is constant.

Conversely, let γ be a non-geodesic slant helix with constant curvature κ̂
and torsion τ̂ . Since γ is a slant curve, it is defined by g(γ′, ξ) = cos θ for a
constant angle θ.

Differentiating g(γ′, ξ) = cos θ, since γ is a non-geodesic curve, we get

η(N̂) = 0. So N̂ is orthogonal to both γ′ and ξ. Thus N has the form

N̂ = λξ × γ′. This implies

1 = |N̂ | = |λ| sin θ.

Hence λ is a constant. Note that since we assumed that γ is non-geodesic,
sin θ 6= 0. Thus N̂ has the form

N̂ =
ε

sin θ
ϕγ′.

This formula implies that

∇̂tγ′γ′ = qϕγ′

with

q =
ε

sin θ
κ̂.

Hence γ is a magnetic curve with respect to the pseudo-Hermitian magnetic
field of strength q.

The pseudo-Hermitian binormal B̂ is given by

B̂ = γ′ × N̂ =
ε

sin θ
(ξ − cos θ γ′).

The pseudo-Hermitian torsion of γ is computed as

τ̂ =
ε cos θ

sin θ
κ̂.

Theorem 3.2. Let γ be a non-geodesic slant helix in a normal almost contact
metric 3-manifold with the canonical affine connection ∇̂t. Then γ is a pseudo-
Hermitian magnetic curve with strength q = εκ̂/ sin θ.
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4. Magnetic curves in normal almost contact metric 3-manifolds

As we have seen before pseudo-Hermitian magnetic curves are slant curves.
In this section, we study pseudo-Hermitian magnetic curves from Riemannian
geometric point of view by virtue of (3).

Proposition 4.1. Let M be a normal almost contact metric 3-manifold. Then
γ is a pseudo-Hermitian magnetic curve if and only if it satisfies

(15) ∇γ′γ′ = {(t− α) cos θ + q}ϕγ′ + β{cos θ γ′ − ξ}.

4.1. Quasi-Sasakian 3-manifold

From the equation (15), we get:

Proposition 4.2. Let M be a quasi-Sasakian 3-manifold. Then γ is a pseudo-
Hermitian magnetic curve if and only if it satisfies

(16) ∇γ′γ′ = {(t− α) cos θ + q}ϕγ′.

Remark 4.3. In quasi-Sasakian 3-manifolds, a pseudo-Hermitian magnetic curve
means a contact magnetic curve with non-constant strength (t− α) cos θ + q.

From the above equation (16) and Frenet-Serret equations (6) we have the
geodesic curvature

κ = |(t− α) cos θ + q| sin θ,
and the normal vector field N = ε

sin θϕγ
′, where ε = (t−α) cos θ+q

|(t−α) cos θ+q| .

Thus, the binormal vector field B is computed as

(17) B = γ′ ×N =
ε

sin θ
{ξ − cos θγ′}.

Differentiating the above equation (17) then we have

∇γ′B = ∇γ′
ε

sin θ
{ξ − η(γ′)γ′}

=
ε

sin θ
{−αϕγ′ − g(κN, ξ)− g(γ′,−αϕγ′)γ′ − η(γ′)κN}

= − ε

sin θ
{α+ ((t− α)η(γ′) + q) cos θ}ϕγ′.

Since the normal vector field N = ε
sin θϕγ

′, using the Frenet-Serret equations
(6) we have:

Theorem 4.4. Let γ be a pseudo-Hermitian magnetic curve in quasi-Sasakian
3-manifolds M . Then γ is a slant curve with

κ = |(t− α) cos θ + q| sin θ, τ = α+ {(t− α) cos θ + q} cos θ.

Moreover, the ratio of κ and τ − α is constant.

Remark 4.5. If M is an α-Sasakian 3-manifold, then γ is a slant helix.

For a Sasakian 3-manifold with respect to the Tanaka-Webster connection,
that is t = −1 and α = 1, we have:
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Corollary 4.6 (cf. [6]). Let γ be a pseudo-Hermitian magnetic curve in Sasak-
ian 3-manifolds M . Then γ is a slant helix with

κ = |q − 2 cos θ| sin θ, τ = 1 + {q − 2 cos θ} cos θ.

Moreover, the ratio of κ and τ − 1 is constant.

Example 4.7 (cf. [3, 4]). The Heisenberg group H3 is a Cartesian 3-space
R3(x, y, z) furnished with the group structure

(x′, y′, z′) · (x, y, z) = (x′ + x, y′ + y, z′ + z + (x′y − y′x)/2).

Define the left-invariant metric g by

g =
dx2 + dy2

4
+ η ⊗ η, η =

1

2
{dz +

1

2
(ydx− xdy)}.

We take a left-invariant orthonormal frame field (e1, e2, e3):

e1 = 2
∂

∂x
− y ∂

∂z
, e2 = 2

∂

∂y
+ x

∂

∂z
, e3 = 2

∂

∂z
.

Then the commutative relations are derived as follows:

(18) [e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

Then the 1-form η is a contact form and the vector field ξ = e3 is the charac-
teristic vector field on H3.

We define a (1,1)-tensor field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕξ = 0.

Then we find

(19) dη(X,Y ) = g(X,ϕY ),

and hence, (η, ξ, ϕ, g) is a contact Riemannian structure. Moreover, we see that
it becomes a Sasakian structure.

Now, for a slant curve in the Heigenberg group H3, we put the tangent vector
field

T (s) = sinα0 cosβ(s)e1 + sinα0 sinβ(s)e2 + cosα0e3,

then we get

(20) ∇γ′γ′ = sinα0(β′(s)− 2 cosα0)(− sinβ(s)e1 + cosβ(s)e2).

Since ϕγ′ = sinα0(− sinβ(s)e1 + cosβ(s)e2), from (16) and (20) we have
β′ = q and β(s) = qs+ b, b ∈ R.

Hence every pseudo-Hermitian magnetic curve in H3 is represented as
x(s) = 1

q sinα0 sin(qs+ b) + x0,

y(s) = − 1
q sinα0 cos(qs+ b) + y0,

z(s) = {cosα0+sin2 α0/(2q)}s− sinα0

2q {x0 cos(qs+b)+y0 sin(qs+ b)}+z0,

where q, b, x0, y0, z0 are constants.
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From the equation (16) if γ is an almost Legendre curve, then it satisfies
∇γ′γ′ = qϕγ′, hence we have:

Corollary 4.8. If γ is an almost Legendre curve in a quasi-Sasakian 3-manifold
M , then γ is a pseudo-Hermitian magnetic curve if and only if γ is a contact
magnetic curve. Moreover, it has

κ = |q|, τ = α.

Lemma 4.9 ([10]). Let γ be a contact magnetic curve in quasi-Sasakian 3-
manifolds M . Then γ is a slant curve with

κ = |q| sin θ, τ = α+ q cos θ,

and the ratio of κ and τ − α is constant.

4.2. β-Kenmotsu 3-manifold

From the equation (15), we get:

Proposition 4.10. Let M be a β-Kenmotsu 3-manifold. Then γ is a pseudo-
Hermitian magnetic curve if and only if it satisfies

(21) ∇γ′γ′ = {t cos θ + q}ϕγ′ + β{cos θ γ′ − ξ}.

From the equation (21) and the Frenet-Serret equations (6) we have the
constant curvature

κ =
√

(β2 + (t cos θ + q)2) sin θ,

and the normal vector field N = 1
κ [β(cos θγ′ − ξ) + (t cos θ + q)ϕγ′].

The binormal vector field B is computed as

B = γ′ ×N =
1

κ
[βϕγ′ + (tη(γ′) + q)(ξ − η(γ′)γ′)].

Differentiating the binormal vector field B we have

(22) ∇γ′B = − 1

κ
cos θ(t cos θ + q)[β(η(cos θγ′ − ξ) + (t cos θ + q)ϕγ′].

From (22) and Frenet-Serret equations (6) we have the constant torsion

τ = cos θ(t cos θ + q).

Hence we have:

Proposition 4.11. Let γ be a pseudo-Hermitian magnetic curve in β-Kenmo-
tsu 3-manifold. Then γ is a slant helix with

κ =
√

(β2 + (t cos θ + q)2) sin θ, τ = cos θ(t cos θ + q).

Thus, from the equation (21), if γ is a Legendre curve, since η(γ′) := cos θ =
0, it satisfies ∇γ′γ′ = qϕγ′ − βξ. So, we have:

Corollary 4.12. Let γ be pseudo-Hermitian Legendre magnetic curves in a
β-Kenmotsu 3-manifold. Then it is an almost Legendre circle with

κ =
√
β2 + q2, τ = 0.
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Remark 4.13. Let γ be a contact magnetic curve in a β-Kenmotsu 3-manifold
M . Then it is a slant helix with

κ =| q | sin θ, τ = q cos θ.

4.3. In cosymplectic 3-manifold

From the equation (15), we get:

Proposition 4.14. Let γ be a pseudo-Hermitian magnetic curve in cosymplec-
tic 3-manifold if and only if

(23) ∇γ′γ′ = {t cos θ + q}ϕγ′.
From the equation (23) and Frenet-Serret equations (6) we have the constant

curvature
κ =

√
(t cos θ + q)2 sin θ,

and normal vector field N = 1
κ (t cos θ + q)ϕγ′.

The binormal vector field B is computed as

B = γ′ ×N =
1

κ
(t cos θ + q)(ξ − cos θ γ′).

Differentiating the binormal vector field B we have

∇γ′B = − 1

κ
cos θ(t cos θ + q)2ϕγ′.

From (4.3) and Frenet-Serret equations (6) we have the constant torsion

τ = cos θ(t cos θ + q).

Hence we have:

Proposition 4.15. Let γ be a pseudo-Hermitian magnetic curve in cosymplec-
tic 3-manifold. Then γ is a slant helix with

κ = |t cos θ + q| sin θ, τ = (t cos θ + q) cos θ,

and its ratio of κ and τ is constant.

Thus, from the equation (23) we have:

Corollary 4.16. If γ is an almost Legendre curve in a cosymplectic 3-manifold
M , then γ is a pseudo-Hermitian magnetic curve if and only if γ is a contact
magnetic curve. Moreover, it is a Legendre circle with

κ = |q|, τ = 0.

Remark 4.17. If γ is a contact magnetic curve in a cosymplectic 3-manifold M ,
then it satisfies

κ = |q| sin θ, τ = q cos θ.

Moreover, for an almost Legendre curve γ, it is a circle with κ = |q|, τ = 0.
([5])
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