
Component-distinguishable Co-location and Resource Reclamation

for High-throughput Computing

LAIPING ZHAO, YUSHUAI CUI, YANAN YANG∗, XIAOBO ZHOU, TIE QIU, and KEQIU
LI2, College of Intelligence and Computing, Tianjin University, Tianjin Key Lab. of Advanced Networking, China

YUNGANG BAO, Inst. of Computing Technology, CAS, China

Cloud service providers improve resource utilization by co-locating latency-critical (LC) workloads with best-efort batch
(BE) jobs in datacenters. However, they usually treat multi-component LCs as monolithic applications and treat BEs as
"second-class citizens" when allocating resources to them. Neglecting the inconsistent interference tolerance abilities of LC
components and the inconsistent preemption loss of BE workloads can result in missed co-location opportunities for higher
throughput.

We present Rhythm, a co-location controller that deploys workloads and reclaims resources rhythmically for maximizing
the system throughput while guaranteeing LC service’s tail latency requirement. The key idea is to diferentiate the BE
throughput launched with each LC component, that is, components with higher interference tolerance can be deployed
together with more BE jobs. It also assigns diferent reclamation priority values to BEs by evaluating their preemption losses
into a multi-level reclamation queue. We implement and evaluate Rhythm using workloads in the form of containerized
processes and microservices. Experimental results show that it can improve the system throughput by 47.3%, CPU utilization
by 38.6%, and memory bandwidth utilization by 45.4% while guaranteeing the tail latency requirement.

CCS Concepts: · Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: Datacenters, Resource Utilization, Tail latency, Co-locating.

1 INTRODUCTION

The multi-tenant sharing nature of cloud computing exacerbates contention for shared resources, including the
CPU cores, memory, cache, memory bandwidth, and networks. This resource contention leads to disordered
execution of cloud services, wherein the resource consumption becomes challenging to manage, resulting in long
tail latency [21]. For example, in Google’s latency-critical (LC) service, the luctuation range of tail latency can be
as wide as 0 and 500ms, with the highest variation diference exceeding 600× [47].

To mitigate the disorder caused by the contention, prior work seeks to isolate tenants through two approaches:
hardware methods and software methods. Hardware methods, such as the Intel RDT [68] and PARD [54], provide
open control interfaces that allow diferentiation of services at the hardware level for resourcing-on-demand.
Although they are efective in achieving performance isolation, their adoption requires new hardware support.

∗Corresponding author: ynyang@tju.edu.cn
2Corresponding author: keqiu@tju.edu.cn

Authors’ addresses: Laiping Zhao, laiping@tju.edu.cn; Yushuai Cui, cuiys@tju.edu.cn; Yanan Yang, ynyang@tju.edu.cn; Xiaobo Zhou,
xiaobo.zhou@tju.edu.cn; Tie Qiu, qiutie@tju.edu.cn; Keqiu Li, keqiu@tju.edu.cn, College of Intelligence and Computing, Tianjin University,
Tianjin Key Lab. of Advanced Networking, Tianjin, China; Yungang Bao, baoyg@ict.ac.cn, Inst. of Computing Technology, CAS, Beijing,
China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0734-2071/2023/11-ART
https://doi.org/10.1145/3630006

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3630006
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3630006&domain=pdf&date_stamp=2023-11-18

2 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

The software methods commonly rely on resource overprovisioning (i.e., provisioning more capacity than they
actually need) to reduce the interference. However, this approach leads to low resource utilization, resulting in
increased costs for cloud services. For example, traces from Aliyun [50] show that they merely achieve aggregate
CPU utilization of < 40% and aggregate memory utilization of < 60%. The average CPU utilization of Google’s
cluster is higher, but still < 60% [87].

..

Component-distinguishable deployment

(high throughput, low cost)

Increased

throughput

..

profiling

Profiling-based

Plan ahead

(high throughput, high cost)

machines

BE

..

LC

..

..

BE

LC

..

Conservative deployment

(low throughput, low cost)

..

..
lost

 throughput

BE

..

LC

..

Feedback-based

BE

..

LC

..

Hybrid

1

3 M

2 ..
..profiling

LC.1 2 3

M

Co-schedule

LCs and BEs

complementarily

W/o profile,

control BE

uniformly

Control LC/BE

at machines

differently

Fig. 1. Schematic overview of the workload deployment method.

It is possible to improve resource utilization by co-locating as many workloads as possible. However, it needs
more control from the management system to avoid violating the tail latency Service Level Objective (SLO) of the
LC service. We have identiied the two prevalent control approaches shown in Figure 1. Proiling-based control
strategy consolidates non-competitive applications based on their resource usage proiles [20, 24, 25, 59, 84, 92,
94, 100]. This strategy analyzes the resource needs of diferent applications and groups them together based
on their compatibility, thus optimizing resource allocation. Feedback-based control strategy deploys workloads
directly onto machines while continuously monitoring SLO violations. If violations occur, this strategy employs
actions such as system reconiguration [56] or resource reallocation [16, 51, 63] to address the issues and
maintain SLO compliance. However, the proiling-based strategy, while generating high throughput, incurs
signiicant proiling overhead. This makes it challenging to deploy this strategy widely in large-scale cloud
systems, especially considering the continuous emergence of new applications and potential consolidations in
the cloud. Feedback-based strategy does not involve proiling overhead. However, the existing feedback-based
approaches [16, 51, 56, 63] manage workload co-locations at the granularity of the entire LC service, disregarding
the variations among diferent parts of the service when it is distributively deployed. This coarse-grained design
results in low throughput. Furthermore, best-efort (BE) jobs are often treated as łsecond-class citizensž in this
approach, with limited resource allocation and the possibility of being reclaimed and rescheduled arbitrarily to
avoid SLO violations [35]. This conservative strategy further leads to wasted computation.
We suggest launching BE jobs more aggressively in a feedback way while capturing a little more proile

information about the LC service (i.e., the hybrid strategy in Figure 1). Leveraging an aggressive policy would
highly risk SLO violations; Therefore, it is crucial to carefully determine where and how to launch these jobs.
With virtualization techniques evolving from VMs to containers, the controllable objects on cloud providers’
side are becoming more varied and lightweight, ofering greater lexibility in control methods. This shift allows
for control at a iner level of granularity. In line with this, we propose a ine-grained controller built around the
hybrid strategy. It diferentiates the BE throughput launched with each LC Servpod, which is a new abstraction
representing a collection of LC service parts deployed on the same physical machine. A Servpod acts as a unit
for service deployment, deining the mappings between the LC structure and physical machines. By employing

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 3

this ine-grained controller, we can optimize the allocation and management of resources within the cloud
environment, taking into account the speciic characteristics and requirements of diferent Servpods.
To guide the launch of BE jobs, we conduct an analysis of the tail-latency contribution of each Servpod. This

allows us to measure the weights of each Servpod in terms of overall tail latency. There are several challenges
associated with this approach:
(1) How can we track a request and extract its sojourn time at each Servpod to achieve Servpods

diferentiation? As it is diicult to track a request in the public cloud due to the black-box design of VMs,
we only consider private clouds where the sojourn time at each Servpod can be measured. An LC workload
often includes multiple Servpods, and user requests may follow diferent paths within the service call. While
program instrumentation can provide precise measurements of the sojourn time for each request in each Servpod,
it typically requires a signiicant development cost. Therefore, we opt for a non-intrusive method, which involves
deriving latencies in each Servpod from the large number of system events generated by processes.
(2) How can we transform the sojourn times in each Servpod into BE launch decisions? When analyzing
the call path of an LC request, each Servpod plays a distinct role in the overall end-to-end tail latency. To guide
the deployment of BE jobs, we deine the contribution of each Servpod by considering its sojourn time mean,
variance, and correlation coeicient. Servpod with a small contribution to the tail latency can be deployed along
with more BE jobs.

As "second-class citizens", BE workloads may be suspended or even reclaimed whenever SLO violations occur.
To prevent unnecessary computation resulting from arbitrary reclamation, we propose selectively controlling
BEs based on their runtime behavior. Speciically, we prioritize the reclamation of BEs with lower preemption
loss. There are also two challenges to this problem:
(1) How to diferentiate the reclamation-priorities of BEs? Useless computation increases over the job
progress and fault tolerant costs. It is generally not desirable to reclaim a job that is nearly completed, as it
would result in wasted computation. However, certain types of jobs, such as distributed deep learning training,
can tolerate a few worker failures without signiicant throughput loss. Therefore, we leverage the varying job
progress and fault-tolerant abilities of BEs to determine their reclamation priorities.
(2) How can we implement the controller by making use of both the LC Servpod contributions and

BE reclamation priorities? By monitoring the QPS (Query per Second) and the slack between the current tail
latency and SLO target, the controller continuously makes decisions regarding resource allocation and release for
the BEs based on the contribution analysis of Servpods. Under SLO violations, BEs are reclaimed according to
their reclamation priorities.

To address these challenges, we present Rhythm, a cloud controller that maximizes the system throughput while
guaranteeing LC service’s tail latency SLO. Rhythm supports tracking the requests in all Servpods, and derives
the contribution of each Servpod to the end-to-end tail latency. It implements a runtime agent at each Servpod,
enabling the aggressive launch of BE jobs at Servpods with less contributions. For BE workloads, it monitors
the job progress of BEs and evaluates their preemption losses into a MLRQ (Multi-Level Reclamation Queue)
for discriminative BE reclamation. Rhythm carefully isolates interference between LC and BE jobs utilizing the
hardware features, including cache isolation and DVFS (Dynamic Voltage and Frequency Scaling) and software
isolation mechanisms (including core isolation, DRAM isolation and network traic isolation). In summary, the
contributions of this paper include:

• The insight of varying interference-tolerance abilities among diferent components of an LC service. (ğ 2)
• Introducing a new abstraction called Servpod and analyzing the tail-latency contributions of Servpods
enables the co-location of distinguishable workloads in a cloud system. (ğ 3)

• A new reclamation mechanism, referred to BE-distinguishable reclamation, has been introduced to address
the resource reclamation of BE jobs when there is a signiicant risk of SLO violations. (ğ 3)

ACM Trans. Comput. Syst.

4 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

• A prototype system, Rhythm, designed following the hybrid strategy: łproiling LC once, feedback control
BE.ž This design approach can be adopted in private clouds and ofers high extensibility and lexibility. (ğ 3
and ğ 4)

• A detailed comparative evaluation between Rhythm and non-component-distinguishable systems has been
conducted, highlighting the performance improvements achieved by Rhythm in terms of system throughput
while avoiding SLO violations. (ğ 5)

2 BACKGROUND AND MOTIVATION

In this section, we irst study the interference sensitivity of LC components. Then, we evaluate the preemption
loss experienced by BEs when SLO violations occur due to interference.

2.1 Inconsistent Interference Tolerance Ability

We study the interference sensitivity of LC components utilizing two typical LCs: the multi-tier E-commerce

website [62] consists of four components, namely, HAProxy, Tomcat, Amoeba and MySQL, and the fan-out Redis
[74] consists of two components, Master and Slave. In order to generate suicient interference, we use ive
synthetic microbenchmarks as BE jobs, namely, CPU-stress [57], stream-llc [23], stream-dram [23], DVFS and
iperf [88], which can put strong pressure on various shared resources. For evaluating the interference at diferent
intensities of pressure on DRAM bandwidth and LLC, we also extend stream_dram (or stream-llc) to two intensity
levels: big and small, where big means saturating the corresponding DRAM bandwidth (or LLC), while small

means occupying only half of the whole capacity.
Each LC service component is deployed together with a BE job on the same machine to measure the impact on

the overall 99�ℎ percentile latency. For measuring the contention on cores, we pin the component and CPU-stress
on the cores from the same socket. For measuring LLC interference, we pin the component and stream-llc to
diferent cores from the same CPU socket since they have separate L1/L2 cache but share L3. For measuring
interference on DRAM bandwidth, we use numactl [66] to place the component and stream-dram on the same
socket without CPU core usage overlap. In addition, we use DVFS to adjust the frequency of processors holding
the component to evaluate its impact on tail latency. All experiments share the same settings with those in ğ 5,
and each run is repeated 5 times for reducing errors.
We evaluate the performance degradations of two LC services under the interference over increased request

load, the characterization results are presented in Figure 2.
Redis: Figure 2a shows the increase in latency when we co-schedule the Master or Slave of Redis with BE jobs.

We see that the performance degradation under interference generally increases over the request load. Master is
more sensitive than Slave in most interference groups, and their diference varies with the BE jobs. In particular,
since the Master strongly relies on LLC, memory and network bandwidth for both requests distribution and
data operation, it is particularly more sensitive to interference caused by stream-dram (big), stream-llc (big) and
CPU-stress than Slave. The diference between Master and Slave even exceeds 28× under the same interference
from stream-llc (big). For interference from stream-dram (small), stream-llc (small) and DVFS, the diferences
of the latency increase between Master and Slave also reach 155.1%, 181.1% and 122%, respectively. CPU-stress
generates the least interference, which increases the latency by an average of 113.1% at the Master and 22% at the
Slave, resulting in 91.1% diference.

E-commmerce website: Figure 2b shows the increase in latency when we co-schedule the Tomcat or MySQL
of E-commmerce with BE jobs. MySQL is more sensitive to interference generated by stream-dram (big), stream-llc
(big), CPU-stress and iperf. The diferences of the latency increase between Tomcat and MySQL reach 435.8% and
35.1% under the interference from stream-dram (big) and CPU-stress. In case of stream-llc (big), the diference
between Tomcat and MySQL reaches more than 35×. Tomcat is more sensitive to interference generated by

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 5

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12

9
9
%

 L
a
te

n
c
y
 I
n
c
re

.
(%

)

Master Slave

DVFS CPU_stressstream_dram(big) stream_dram(small) stream_llc(big) stream_llc(small) iperf

(a) Redis: Master vs Slave

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12
2

14

9
9
%

 L
a
te

n
c
y
 I
n
c
re

.
(%

)

Tomcat

Mysql

stream_dram(big) stream_dram(small) stream_llc(big) DVFS iperf CPU_stressstream_llc(small)

(b) E-commerce website: Tomcat vs MySQL

Fig. 2. Impact of interference on the 99�ℎ percentile latency of LC service: the X-axis represents the interference groups

of LC service components and BE jobs under diferent percent of the maximum request load. The Y-axis represents the

corresponding increase in 99�ℎ percentile latency normalized to the solo-run performance (presented in logarithmic scale).

DVFS, and the diferences between Tomcat and MySQL is 416.7%. In groups of stream-dram (small) and stream-llc
(small), the diferences are 71% and 13.2%, respectively.

Hence, the impact of interference on diferent components of LC service exhibits signiicant inconsistency.While
resource contention afects highly sensitive components and leads to SLO violations, less sensitive components
can accommodate more BE deployment. This highlights the ineiciency of existing approaches that uniformly
control the co-location of LC workload and BE jobs, as they overlook the varying interference tolerance abilities
of individual components (aka "Law of the Minimum" [33]).

2.2 Inconsistent Preemption Loss of BEs

The inconsistent preemption loss of BEs refers to the variation or disparity in the level of negative impact
experienced by diferent BEs when they are preempted whenever SLO violations occur. It means that some BEs
may sufer more severe consequences or incur higher costs when resources are reclaimed from them compared
to others. A typical reclamation process can be divided into three stages: (1) If the computing cluster still has idle
resources available, the controller will reschedule the co-located BEs to utilize these idle resources. This allows
the BEs to continue running without interruption. (2) If there are no idle resources in the cluster, the controller
will choose to reduce the resource allocation of the currently running BEs instead of terminating them. This
means that the resources assigned to the BEs will be reduced, which will result in the BEs running at a lower
speed or with limited capacity. (3) If the SLO is still being violated even after reducing the resources allocated
to the BEs, the controller will take a more aggressive approach. It will preempt the resources assigned to the
co-located BEs, efectively stop their execution, and allocate all those resources to the LCs. By doing so, the
controller prioritizes the performance of the LC service and ensures that it receives suicient resources to meet
the SLO requirements.

For evaluating the preemption losses, we deploy four real BE benchmarks with diferent fault tolerance ability
on our testbed (ğ 5). We evaluate their preemption losses by terminating one of its tasks at midway ranging in
[10%, 90%]. The preemption loss is deined as the lost service as below:

� = ����� − ����� = ���������� − ���������� (1)

ACM Trans. Comput. Syst.

6 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

BEs Description coniguration

Resnet20-ASP [4] Deep learning model for image classiication in asynchronous training mode Two workers (5 CPUs/worker)

Resnet20-BSP [4] Deep learning model for image classiication in synchronous training mode Two workers (5 CPUs/worker)

KMeans [82] Bigdata application implemented on Spark Three exectuors (2 CPUs/exectuor)

SciMark [2] A Java benchmark for scientiic and numerical computing Single binary ile (2 CPUs)

(a) BE workloads Description

10 30 50 70 90

% of progress

-1.5

-1.2

-0.9

-0.6

-0.3

0

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
3
)

Resnet20-ASP

10 30 50 70 90

% of progress

-0.6

-0.2

0.2

0.6

1.0

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
3
)

Resnet20-BSP

10 30 50 70 90

% of progress

-1

0

1

2

3

4

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
2
)

KMeans

10 30 50 70 90

% of progress

0

10

20

30

40

50

S
e

rv
ic

e
 L

o
s
s

SCIMARK

(b) Service Loss (���� ×���) of diferent BEs under resource reclaim

Fig. 3. BE benchmarks and their preemption losses.

where ����� (or �����) represents the makespan of the BE under preemption (or without preemption). ����� (or
�����) represents the resources (e.g., number of CPU cores) occupied by the BE under preemption (or without
preemption).

Figure 3 illustrates the signiicant variability in preemption loss among diferent BEs. In the case of Resnet20-
ASP, preemption actually beneits the workload because terminating a worker in asynchronous mode does
not result in job failure or the need for worker rescheduling. Despite the reduction in occupied resources, the
makespan of Resnet20-ASP remains relatively stable under preemption. Therefore, task preemption in Resnet20-
ASP improves service eiciency in our coniguration. However, for Resnet20-BSP, where workers need to be
synchronized and any failed worker requires restarting from the latest checkpoint, terminating a worker after
30% progress leads to service loss. It is common for a later preempted task to incur higher loss for a job. For
example, the preemption loss of Scimark grows linearly with progress (Figure 3b). Since we did not provide any
fault tolerance mechanism for Scimark, each preemption triggers resubmission and rerunning from the beginning.
Conversely, in the case of KMeans, we observe that later preemptions result in less loss. This can be attributed to
two factors: (1) The Resilient Distributed Datasets (RDDs) [98] ofer high fault tolerance for Spark applications,
enabling the Spark scheduler to quickly recover from task failures regardless of when they occur. (2) Applications
often execute in phases [78]. We ind that preemption at 70% progress generates minimal contention among
Spark executors. Thus, reclaiming resources at this stage has little efect on the overall makespan.
According to the varying preemption losses of BEs, it is feasible to design a BE-distinguishable reclamation

mechanism to further enhance system throughput. We deploy Redis as the LC on our testbed (ğ 5) and co-locate
it with 20 diferent BE workloads, comprising 5 bigdata analysis jobs, 5 distributed deep learning training jobs
(following the parameter-server architecture), and 10 scientiic computing jobs. We compare our Rhythm with
two BE-indistinguishable reclamation mechanisms: Resource delation [77] which aims to delay the preemption as
much as possible using a cascading reclamation technique across multiple levels (applications, operating systems,
and hypervisors); and Heracles [51] which rapidly restores LC’s latency by directly disabling co-located BEs when
the latency approaches the SLO target.
Figure 4 illustrates the changes in EMU, CPU utilization, and the 99�ℎ percentile latency of Redis over time.

EMU represents the efective machine utilization, which is the sum of LC throughput and BE throughput (ğ 5).
During the time intervals [261, 486] and [657, 855], the request load towards Redis increases from 65% to 85% of
the maximum QPS for creating signiicant interference. For example, at time 261, Redis experiences a sudden
increase in access load, requiring more resources to maintain the desired tail latency. In this scenario, Heracles

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 7

0.4

0.8

1.2

1.6

E
M

U

Heracles Resource-deflation Rhythm

0

20

40

60

80
C

P
U

 U
ti
ls

Heracles Resource-deflation Rhythm

0 261 363 486 657 855 1200

Timeline (s)

-0.1
0

0.1
0.2
0.3
0.4
0.5

S
la

c
k

Heracles Resource-deflation Rhythm

Fig. 4. A scheduling scheme that does not distinguish between BE loads is ineficient.

chooses to preempt all running BEs, prioritizing fast SLO recovery at the expense of resource utilization. On the
other hand, Resource Delation adopts a gradual but slow reclamation process, maintaining high CPU utilization
but failing to ensure the SLO during this period. In contrast, our Rhythm distinguishes between BE workloads
based on their preemption costs and selectively preempts the ones with lower costs. This approach achieves a
high EMU and CPU utilization while achieving a quicker recovery of tail latency.

2.3 Implications

In summary, by leveraging the inconsistent interference tolerance abilities of LC components, we can control the
co-locations at LC components diferently and aggressively. Speciically, co-locating more BE workloads with the
low-sensitive components of an LC is less likely to result in SLO violations. However, quantifying the interference
tolerance abilities of LC components can introduce overhead to the controller. To mitigate this overhead, we
propose quantifying the tail latency contribution of each LC component, which only requires a single solo-run
proiling process.

Similarly, by leveraging the inconsistent preemption loss characteristics of BEs, we can control the reclamation
process of BEs diferently when SLO violations occur. Speciically, BEs with lower preemption loss are given
higher priority for reclamation. To reduce the evaluation cost of preemption losses for BEs, we only consider their
runtime available information. This approach helps optimize the resource reclamation process while minimizing
the computational overhead.

3 RHYTHM DESIGN

In this section, we present the design of Rhythm and show where and how to launch or reclaim BEs making use
of the features of LC Servpods and BE workloads.

3.1 The Servpod Abstraction

We introduce Servpod, which refers to a collection of service components from a single LC workload that are
deployed together on the same physical machine. In the context of a directed acyclic graph (DAG) representation
of an LC service, where vertices represent LC components and edges indicate the precedence relation among them,

ACM Trans. Comput. Syst.

8 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

a Servpod can comprise multiple LC components that are scheduled on the same physical machine. Consequently,
Servpod provides insights into the mappings between physical machines and the service structure of the LC
workload. The number of Servpods corresponds to the number of deployed physical machines.

A Servpod could be one or multiple processes, containers or microservices [31]. We do not discuss the scheduling
problem of LC components here, but assume that an LC has already been scheduled on physical machines,
generating multiple Servpods. Given the distributed Servpods, we next explore how to deploy the number of BE
jobs diferently along with them.

Q1

Q2

……

Qn

BE jobs

1

2

3

4

Predictable

C1

C2

C3

C4

1. Request Tracer

LC service

…

servpod 1 servpod 2

LC

BE

servpod 3

LC

servpod 4

BE

LC

BE

LC
User

2
3

4
1

BE

…

2. Contribution Analyzer

Unpredictable…

User

4. BE Reclamation Queue3. Co-location Controller

Fig. 5. Design of Rhythm.

3.2 System Overview

The insight of Rhythm is that, the system throughput can be signiicantly improved through distinguishable
control over LC Servpods and BE workloads: (1) Servpods with larger contributions to the tail latency need to be
controlled conservatively to ensure adherence to the SLO. On the other hand, Servpods with lesser contributions
can be allowed to launch BE jobs aggressively, maximizing resource utilization. (2) In the event of SLO violations,
BEs with lower preemption losses are prioritized for suspension or termination. This approach helps reduce
unnecessary computation, improving overall system eiciency.
Figure 5 highlights the overall design of Rhythm. Quantifying the contribution of an LC Servpod can be done

through an oline proiling of Servpods or an online analysis of real-time monitoring. We choose the oline
proiling way for three reasons: (1) As the contribution of a Servpod depends on various factors, like the sojourn
time, the access load, an online exploration process may take a very long time until collecting suicient data,
resulting in frequent SLO violations during this period. (2) Oline proiling can be conducted along with the
necessary stress test before the launch of a service, saving much proiling cost. (3) Unlike short BEs, LCs are
commonly long-running services, and the proiling cost can be amortized over time. As shown in Figure 5, we
irst characterize the contributions of LC Servpods using two modules: request tracer and contribution analyzer.
Then, we manage the running of BE jobs using a controller at each physical machine.

The oline proiling of a Servpod’s contribution to the overall tail-latency includes two ways: The directed
way involves collecting the sojourn times of requests in each Servpod. The contribution can then be derived
through statistical modeling and analysis of these sojourn times. The indirected way, like "bubble pressure" [59],
applies a tunable pressure on individual Servpods to measure the performance degradation of the LC service
(e.g., increased tail latency or IPC). The contribution is deined as the "bubble size" that a Servpod can tolerate
while still guaranteeing the SLO. However, as shown in Figure 2, a Servpod exhibits varying sensitivities when
subjected to interferences from diferent bubbles [69]. In addition, the workload variation also signiicantly
afects the performance of the LC service. Relying solely on the "bubble pressure" approach, which generates

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 9

one-dimensional interference, is inadequate. For example, a CPU-intensive Servpod that contributes signiicantly
to the overall tail latency might be able to tolerate strong interferences from an I/O-intensive bubble. Furthermore,
designing a single bubble suite that can represent all types of BE jobs is impractical. Therefore, we choose the
directed way to characterize the contributions of Servpods.

The request tracer of Rhythm identiies the service call paths of requests and records their sojourn time at each
Servpod when the LC service runs independently. This data is then used by the contribution analyzer to calculate
the contribution of each Servpod to the tail latency. The contribution is derived using statistical metrics such as
mean, variance, and the Pearson correlation coeicient of the sojourn times. This characterization is based solely
on the LC service itself, and its cost increases linearly with the number of Servpods. Compared to proiling-based

approaches that measure interference in combinations of � LC services and � BE jobs (resulting in � × �

measurements), Rhythm signiicantly reduces the cost to just � . The controller utilizes a contribution-based
threshold methodology to control resource allocation for BE jobs on each machine. It calculates control thresholds
for diferent Servpods using a thresholding algorithm and then employs a trial-and-error approach to deploy or
reclaim BEs.
The controller maintains a reclamation priority queue for all BEs and updates it periodically. When an SLO

violation occurs, the controller selects the BE with the highest priority from the queue for reclamation. The
BE workloads are categorized into two groups: predictable and unpredictable. Predictable BEs are those whose
makespan can be easily and accurately estimated. For example, the makespan of MapReduce or Spark applications
can be estimated based on the proportion of processed data. Rhythm can utilize oline proiling-free prediction
models like [71, 77] to estimate the makespan of these BEs. With the predicted makespan, the preemption losses
of the predictable BEs can be derived using Formula 1. The opposite of the preemption loss is considered as the
reclamation priority for these BEs. On the other hand, unpredictable BEs have makespans that are diicult to
estimate accurately. In such cases, it is not possible to derive their preemption losses under reclamation. Instead,
the unpredictable BEs are prioritized based on the direct computation loss, which is the amount of recomputation
required after preemption. To guide the reclamation process, the predictable and unpredictable priority queues
are combined using a Multi-Level Reclamation Queue (MLRQ) method based on the Borda count. This method
assigns weights to the priority queues and combines them to determine the overall reclamation priority.
For a newly deployed LC service, we activate both the request tracer and contribution analyzer only once

for characterizing its Servpods’ contributions. While each server controller continues running independently
for controlling BE jobs along with each Servpod, its thresholding algorithm (i.e., the only step that requires
coordination among Servpods) also runs only once to derive thresholds. Hence, the characterization cost is low
and Rhythm has good scalability.

3.3 Request Tracer

Each request towards an LC service may pass a number of diferent Servpods. The request tracer identiies the
causal path of a request and constructs a causal path graph (CPG), which is a directed acyclic graph � (� , �)

describing the request process. Vertices in � are event sets of Servpods, and edges � represent causal relations
between events. To record the sojourn time in which a request stays at a Servpod, we also need to record the
arrival and departure time at each Servpod. When there are multiple components in a Servpod, we only record the
arrival time at the entry component and the departure time at the exit component.

The key challenge is to capture the system events in � and ind the causality of them. We collect the relevant
system calls at LC Servpods. However, the calling stack in a Servpod could be associated with a depth of more
than hundreds of system calls due to the frequent switches between the user space and kernel. Many of them are
generated by other unrelated processes, including operating system processes or other applications. To ilter the
unrelated events, we record four speciic events in each LC Servpod: syscall_accept indicates the acceptance of a

ACM Trans. Comput. Syst.

10 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

request; tcp_sendmsg represents the sending of data package; tcp_rcvmsg represents the receiving of data package;
and syscall_close is the close of a request call, where we denote them as ACCEPT, RECV, SEND and CLOSE,
respectively. Each event is structured with four attributes: event type, timestamp, context identiier and message

identiier. In particular, the context identiier is deined as a quad: < ℎ�����, �����������, ���������, �ℎ������ >,
which can be used to ilter out noise system calls from unrelated processes. The message identiier is deined as a
ive-tuple: < ��������, ����������, ����������, �����������,����������� >, which can be used to ilter out noises
from unrelated communications.

Client

Haproxy

Tomcat

Amoeba

Mysql

)0(
1,0S

)0(
0,1R

)4(
4,3R

)4(
3,4S

)2(
2,1R

)2(
3,2S

)2(
2,3R

)2(
3,2S

)2(
2,3R

)2(
1,2S

)3(
3,2R

)3(
2,3S

)3(
3,2R)3(

4,3S
)3(
3,4R

)3(
2,3S

)1(
1,0R

)1(
2,1S

)1(
1,2R

)1(
1,0S

 event)(
,
k
jiS

message relation
context relation

Fig. 6. The CPG constructed by a request to e-commerce.

Next, we show how to identify the causality of these events, including intraServpod causality and interServpod

causality. IntraServpod causality denotes the causality of a pair of RECV and SEND events inside a Servpod. We
use the context identiier to identify their causality. That is, a RECV event happens before a SEND event if they
share the same hostIP, program name, process ID and thread ID. InterServpod causality denotes the causality of a
pair of SEND and RECV events between neighbor Servpods. A SEND event happens before a RECV event at the
neighbor Servpod if they share the same message identiier.

Denote by � (�)
�, � (or � (�)

�, �) the SEND (or RECV) event recorded in node � ; �, � represents the data low from node
� to � . Figure 6 shows an example CPG constructed by a request to E-commerce. Note that there may be hundreds
of system events in the process, we only list part of them here.

Client

CNode1

CNode2

)0(
1,0S

)2(
1,2S

)2(
2,1R

)2(
2,1R

)2(
1,2S

)1(
1,0R

)1(
1,0R

)0(
1,0S

)1(
2,1S

)1(
2,1S

)1(
1,2R

)1(
0,1S

)0(
0,1R

)1(
2,1R

)1(
0,1S

)0(
0,1R

Context Order

request A
request B

Fig. 7. IntraServpod causality: request B is issued earlier by Servpod1, but returned later than request A.

How is the intraServpod causality of nonblocking threads identiied? Each RECV event is matched
with a SEND event with respect to their order of occurrence (i.e., timestamp). If the LC thread runs in blocking
mode, this order can be detected easily using the context identiier. In case of nonblocking threads, a later-issued
request may return earlier than an earlier-issued request (Figure 7).

Since they may share the same context identiier, the mappings of RECV and SEND of them would be incorrect,
resulting in an incorrect calculation of sojourn time at the Servpod. In this case, we do not identify the accurate

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 11

intraServpod causality directly, but avoid its side efect on the calculation of the sojourn time through analyzing
the mean sojourn time of all requests. For example, the mean sojourn time of request A and B at Servpod 1 in Figure

7 is not afected by the mismatching, because we have (� (1)
1,2 −�

(1)
0,1) + (�

(1)
1,0 −�

(1)
2,1) + (�

′ (1)
1,2 −�

′ (1)
0,1) + (�

′ (1)
1,0 −�

′ (1)
2,1) =

(�
(1)
1,2 − �

′ (1)
0,1) + (�

(1)
1,0 − �

(1)
2,1) + (�

′ (1)
1,2 − �

(1)
0,1) + (�

′ (1)
1,0 − �

′ (1)
2,1).

How is the interServpod causality of persistent TCP connections identiied? If the communication
between LC neighbor Servpods is implemented using persistent TCP connections, multiple requests may share the
samemessage identiier. In this case, pairing SEND and RECV events with respect to their order of occurrence could
also lead to mismatching (i.e., incorrect interServpod causality). Similar to the calculation in the intraServpod
causality, we avoid its side efect by analyzing the mean sojourn time of communications of all requests in the
design of the contribution analyzer. That is, the mean sojourn time of communications between CNode 1 and

CNode 2 in Figure 7 is (�
′ (2)
1,2 − �

′ (1)
1,2) + (�

(2)
1,2 − �

(1)
1,2) + (�

(1)
2,1 − �

(2)
2,1) + (�

′ (1)
2,1 − �

′ (2)
2,1) = (�

′ (2)
1,2 − �

(1)
1,2) + (�

(2)
1,2 −

�
′ (1)
1,2) + (�

(1)
2,1 − �

′ (2)
2,1) + (�

′ (1)
2,1 − �

(2)
2,1). Note that errors still can be caused by unsynchronized clocks between

machines. Fortunately, it can be compensated if the Servpods are called following a nested chain model (i.e., a
Servpod invokes a callee Servpod and waits for the callee’s results before it can return). Otherwise, there will be a
skew in the derived communication sojourn time.

3.4 Contribution Analyzer

1 13 25 37 49 61 73 85

% of max load

0

50

100

150

200

250

L
a
te

n
c
y
 (

m
s
)

Haproxy

Tomcat

Amoeba

MySQL

99th

(a) Average sojourn time

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n

Haproxy

Tomcat

Amoeba

MySQL

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n

Haproxy

Tomcat

Amoeba

MySQL

(b) Normalized coeficient of variations

Fig. 8. The average sojourn time of Servpods in E-commerce website and their normalized coeficient of variations collected

in solo-run.

Figure 8a shows the average sojourn time of the four Servpods of E-commerce and the overall 99�ℎ percentile
latency under diferent request loads. Figure 8b shows the normalized coeicient of variation of their sojourn
times. We ind that, HAProxy contributes less than 5% of the overall latency, while its variance takes more than
20% among four Servpods. Amoeba’s sojourn time is also small but very stable, i.e., its coeicient of variance is
the smallest. For the MySQL and Tomcat, when the load is less than 50% of the max load, MySQL has a smaller
average sojourn time than Tomcat, and when the load exceeds 50%, its sojourn time increases much faster than
that of Tomcat. However, MySQL’s variance is always much larger than Tomcat. Based on the observation, we
consider three principles that guide our deinition of contribution:
(1) Servpods with a higher average sojourn time contribute more to tail latency. The irst principle highlights

the average sojourn time of each Servpod. Tail latency surely increases over each Servpod’s average sojourn time.
For example, MySQL contributes the most on 99�ℎ percentile latency when the load is high in Figure 8a.

(2) Servpods with higher sojourn time variance contribute more to tail latency. This principle relates tail latency
to the luctuation characteristic of each Servpod, since the luctuations constitute the "heavy-tail" of overall
latency. For example, while Tomcat and MySQL have a similar average sojourn time when the request load is in

ACM Trans. Comput. Syst.

12 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

the range [25%, 49%]. However, the 99�ℎ percentile latency increases signiicantly due to the high variance of
MySQL (Figure 8b).

(3) Servpods that are highly correlated with the tail latency contribute more to tail latency. Suppose there exists
a Servpod � which has a constant mean and coeicient of variance of sojourn times over diferent loads, then
the vary of tail latency would be independent of � if the contribution is derived merely based on the mean and
normalized and coeicient of variance. Hence, we also analyze the correlation between each Servpod’s sojourn
time and the tail latency, and take it as an important factor of the contribution.
Following the principles above, we next show how to derive the contribution of a Servpod. Since the request

sojourn time at each Servpod may be incorrect due to the mismatch of SEND and RECV, we use the mean sojourn
time in the deinition. Denote �� as the average sojourn time of Servpod � under all load levels and � �

� as the

average sojourn time of Servpod � under load � ; then, we have�� =
∑�

�=1�
�
� /�, where� is the number of loads we

used. We derive the weight of average sojourn time by Servpod �’s as follows, where � is the number of Servpods.

�� =
� �

�
∑

�=1
��

(2)

We use the Pearson Correlation Coeicient (��� ,�����) to evaluate the correlation between Servpod � and the overall
tail latency of the LC service (����� denotes the overall tail latency, and ���� could be the 99�ℎ, 99.9�ℎ percentile,
etc.). Let � �

����
be the ���� latency under load � , then, we have,

��� ,����� =

�
∑

�=1
(�

�
� −� �) (�

�

����
−� ����)

︄

�
∑

�=1
(�

�
� −� �)

2

︄

�
∑

�=1
(�

�

����
−� ����)

2

(3)

We denote� as the normalized coeicient of variation (�) to derive the contribution by the Servpod �’s variance
as follows,

�� =
1

� i

√

√

√

1

�(� − 1)

�︁

�=1

(�
�
� −� �)

2
(4)

Finally, we deine the contribution of Servpod � using their product:

�� = � (��� ,����� , �� ,��) = ��� ,��������� (5)

If there exists fan-out in a request, the end-to-end latency is determined by the latency of the critical path, i.e.,
the path (denoted by �) with the longest time. A Servpod � not on � can tolerate stronger interference than those
on �, and its contribution can be scaled down to:

�� = ����� ,��������� (6)

where �� =
∑

�∈�� ��/
∑

�∈� �� , and �� denotes the Servpod set on the path that is non-critical but longest among
all paths through Servpod � .

Note that Equation 6 may not be the only way to deine the contribution. We validate its rationality though a
comparative analysis between Servpod sensitivity and contribution. Figure 9 shows their correlation: The x-axis
depicts the contributions of the four Servpods of E-commerce, and the y-axis shows the sensitivity of them, which
is deined as the increase in the 99�ℎ percentile latency under interference compared to that under the solo-run.
We ind that the sensitivity is positively correlated with the contribution no matter what the BE is, proving that
a Servpod with higher contribution is usually more sensitive to interference. We implement the Servpod-level

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 13

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
mixed

Haproxy

Tomcat

Amoeba

MySQL

0 0.05 0.1 0.15 0.2
0

1.6

3.2

4.8

6.4

8
stream-dram

0 0.05 0.1 0.15 0.2
0

0.3

0.6

0.9

1.2
S

e
rv

p
o
d
 S

e
n
s
it
iv

it
y CPU-stress

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
stream-llc

Fig. 9. Servpod sensitivity vs contributions: the increase in the 99�ℎ percentile latency of E-commerce when a single Servpod

is interfered by diferent BEs: (1) mixed BEs of wordcount, imageClassify, LSTM, CPU-stress, stream-dram and stream-llc, (2)

Stream-dram, (3) CPU-stress, (4) Stream-llc.

control in algorithm 1 based on this contribution, and the experimental results show it works well. (See Figure
13-15).

3.5 Co-locating Controller

CPU/LLC

Subcontroller

Frequency

Subcontroller

Memory

Subcontroller

Network

Subcontroller

Top-level controller

Request load
Load-based

decisions

Load monitoring

and thresholding

Slack =
gap(Toverall, SLA)

Slack-based
decisions

Slack monitoring

and thresholding

Grow_LLC

Grow_Cores

Release

IncreaseFreq

LowerFreq

IncreaseMem

LowerMem
IncreaseNet

LowerNet

Contribution
AllowBEGrowth

CutBE();

Agent 1

Fig. 10. The architecture of a Rhythm agent
.

Given the contributions of LC Servpods, we next present how the controller operates to control the resource
allocation and reclamation for BE workloads. We design a coordinated controller running as an agent at every
server holding the LC Servpod. Figure 10 shows its hierarchical architecture: a top-level controller and four
subcontrollers. The top-level controller makes decisions on the BE jobs, including a load-based decision and a
slack-based decision. The four subcontrollers increase or decrease the resources allocated to BE jobs following
the control instructions by the top-level controller. In particular, top-level controllers irst coordinate with each
other to derive two thresholds: loadlimit and slacklimit using the threshold mechanism. Then, each controller
runs independently to control BE jobs according to thresholds. If the top-level controller decides to cut or stop
BEs, it reads the BE reclamation queue and selects the highest priority one for operation. The controller scales
well as the number of Servpods increases because they do not have interactions anymore after inding thresholds.

3.5.1 Thresholding Mechanisms. Under the solo-run of the LC service, we derive two thresholds of loadlimit

and slacklimit in each machine using the request load and contributions of Servpods. Since contributions vary over
LC Servpods, the thresholds are also diferent. In particular, loadlimit denotes the łswitchž determining whether
or not to run BE jobs; slacklimit decides how many resources are allocated to BE jobs.

ACM Trans. Comput. Syst.

14 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(a) MySQL

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(b) Tomcat

Fig. 11. The CoV of Servpod sojourn times increase over request loads. Determine the loadlimit of Servpods in E-commerce

using the first load point whose fluctuation is greater than the average. (CoV: normalized coeficient of variation).

Loadlimit: The threshold loadlimit denotes the upper bound of the request load of the LC service for allowing
the running of BE jobs along with an LC Servpod. We conigure this threshold using the CoV of sojourn times
across diferent requests at each Servpod. Figure 11a shows the volatility of ��� by the MySQL Servpod over the
request load. We see that the luctuation tends to increase signiicantly when the request load exceeds 76% of
the maximum allowable load. We choose loadlimit as the irst load point whose luctuation is greater than the
average. That is, we have ��������� = 76% for the MySQL of the E-commerce website, meaning that if the load
towards MySQL exceeds 76% of the maximum allowable load, we have to suspend all BE jobs on this MySQL
machine. In the case of Tomcat, the loadlimit is 87% (Figure 11b).
Slacklimit: Let slack be the gap between the current tail latency and latency target in SLO. The threshold

slacklimit denotes the lower bound of slack for allowing the growth of BE jobs. It is inversely related to the
Servpod’s interference-tolerance factor. If a Servpod has a small contribution to the overall latency, we only need
a small ���������� so that more BE jobs can be deployed in this machine, or the subcontrollers can allocate more
resources to BE jobs. We design an iterative algorithm to ind the best ���������� for each machine based on LC
Servpods’ contributions.
Algorithm 1 presents the details. We irst normalize the contribution of each Servpod among all LC Servpods

and initialize the slacklimit of each Servpod with 1.0. The normalized contribution will be used as a stepsize for
updating the slacklimit. The algorithm proceeds in a while loop until inding the minimum slacklimit with the
SLO guarantee. In each loop, we gradually decrease the value of the ���������� of each Servpod by their respective
�������� . Then, we run the LC workload at this coniguration for a while. If the SLO is violated, we step backward
and update the slacklimit.

Algorithm 1 may have diferent outputs of ���������� depending on the BE used during ���_������ (��������).
We recommend to run the algorithm with representative, mixed-intensive BEs and run multiple times to increase
its accuracy. In our experiment, the best ���������� for Tomcat and HAProxy are 0.078 and 0.032, respectively,
whereas for MySQL and Amoeba, they are 0.347 and 0.04, respectively. Hence, we can launch many more BE jobs
on Amoeba, Tomcat and HAProxy than on MySQL.

3.5.2 Control Operation. Loadlimit and slacklimit deine a reliable boundary for startup and adjustment of
BE jobs, enabling Rhythm to implement more precise control over BEs based on Servpod while ensuring SLO
compliance.
Top controller: Rhythm compares the real-time request load and slack with the Loadlimit and slacklimit and
manages the running of BE jobs through the ive decisions released: StopBE, CutBE, DisallowBEGrowth, Allow-
BEGrowth and SuspendBE. In particular,

(1) StopBE immediately kills the top job in BE reclamation queue and releases all its resources.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 15

Algorithm 1: indSlacklimit(��)

Input: contribution of Servpod: �� , ∀� ∈ [1..�];
Output: slacklimit for Servpod �;

1 �������� = 1 −��/
∑�

�=1�� ;
2 ���������� = �������� = 1.0; // Initialization ;
3 ���_��������� = � ���� ;
4 while �������� > 0 do
5 �������� = �������� − �������� ;
6 run_system (��������) ;

// Running for 10 minutes ;
7 ���_���������=SLO_evaluation() ;
8 if SLO_violation = true then

9 ���������� = ������ .pop() ;
10 break;
11 else

12 ������ .push(��������) ;

Algorithm 2: Decision making by top controller

1 Estimate slack based on monitored latency and SLO;
2 while True do

3 ����� = (� ���
����

−�����)/�
���
����

;

4 if ����� < 0 then
5 StopBE();
6 else if �������� > ��������� then

7 SuspendBE();
8 else if 0 < slack < ����������/2 then

9 CutBE();
10 else if ����������/2 < slack < ���������� then

11 DisallowBEGrowth();
12 else

13 AllowBEGrowth();

14 sleep(2 seconds);

(2) SuspendBE pauses all of the running BE jobs, but they can still keep their memory space.
(3) CutBE allows the existing BE jobs to continue running, but reclaims part of the allocated resources from

the top job in BE reclamation queue.
(4) DisallowBEGrowth does not allow the number of BE jobs increase, but the existing BE jobs can still hold

their resources and run continually.
(5) AllowBEGrowth allows subcontrollers to allocate more resources to BE jobs and increase the number of BE

jobs.

ACM Trans. Comput. Syst.

16 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Denote � ���
����

as the tail latency requirement stated in SLO. The decision-making algorithm is shown in
Algorithm 2.

Subcontroller: There are four subcontrollers in each machine. They periodically adjust the resource allocations
between LC service and BE jobs following instructions from top controller and BE reclamation queue. While
frequent monitoring and adjustment are efective to detect the load burst and protect the SLO of LC workload,
it also causes more runtime overhead. To assess the tradeofs between eiciency and performance, we set the
operation period of each controller thread to 2 seconds. The experimental results also validate the reliability of
our design. (Figure 19).

(1) CPU/LLC subcontroller: We adopt the same control as in Heracles [51] for allocating cores, LLC, and
memory bandwidth. When it is allowed to deploy BE jobs, a BE job is activated and conigured with one
core, 10% memory bandwidth, and 10% LLC. Both CutBE and AllowBEGrowth adjust the cores, MB and LLC
of BE jobs at the granularity of one core, 10% memory bandwidth and 10% LLC, until no more resources
are available or all BE’s resources have been released.

(2) Frequency subcontroller: It monitors the power of the CPU periodically and adjusts the frequency using
DVFS. If the power has exceeded 80% of TDP (thermal dissipation power) and the frequency of the LC
service is less than the minimum allowable frequency (for meeting SLO), it will reduce the operating
frequency of BE jobs at the stepsize 100 MHz to ensure suicient power for the LC service.

(3) Memory subcontroller: It monitors the memory utilization of the LC service. A newly started BE job is
initialized with 2 GB of memory, and the adjustment stepsize for CutBE and AllowBEGrowth is 100 MB.

(4) Network subcontroller: It continuously monitors the bandwidth of LC services (���), and allocates band-
width of ����� − 1.2��� to BE jobs.

3.6 BE Reclamation

While operations StopBE and CutBE are activated by Algorithm 2, the reclaimed resources from BEs are redis-
tributed to LCs in order to restore the SLO. However, selecting the appropriate BE to reclaim can be challenging,
as it requires inding a balance between quick SLO recovery and minimal throughput degradation. We have
observed that the majority of running BEs in datacenters can be categorized into three groups: big data, artiicial
intelligence (AI) and scientiic computing. Big data applications, such as MapReduce and Spark [3, 36, 82, 90], in-
volve processing large datasets, and their running time can be estimated based on the progress of data processing.
AI training [4, 61, 85] focuses on achieving a desired level of accuracy for neural models, and their running time
depends on the convergence rate of the models rather than data processing. Scientiic computing [1, 53] primarily
involves short-term computations that don’t involve extensive data processing.

Diferent BE applications have varying structures, with some being monolithic and others consisting of multiple
components. Reclaiming resources from diferent BE components can have diverse efects on the BE throughput.
It may simply reduce the processing speed or, in some cases, even prevent the BE from running altogether. To
minimize these negative impacts, we evaluate how resource reclamation afects the occupied service of each BE.
The occupied service is calculated using �������� × ���� . In Formula 1, if the occupied service of a BE increases
after reclamation, it indicates a preemption loss (� > 0). This preemption loss quantiies the negative impact on
the BE due to resource reclamation.

To derive �, we need to know the running time of the BE, i.e., ����� and ����� . We classify BEs into two categories
based on their predictability. If a speciic BE has a predicting model that can accurately estimate its running time,
we classify it as predictable. Otherwise, it is classiied as unpredictable. Here are examples of predicting models for
diferent types of BEs: (1) Spark-based big data applications: These applications can adopt the slowdown model
in [77] to estimate the job completion time after reclamation. The model takes inputs such as job completion
statistics (�), elapsed time (�), and the proportion of resource (�) under preemption. The expected completion

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 17

time can be calculated using ����� = ((�/�) × (1 − �)/�) + � . The job completion statistics � can be obtained
through the HTTP API exposed by Spark. (2) Deep learning training: These workloads can employ the white box
model proposed in [49, 71] to predict the completion time under diferent resource conigurations. The model
takes inputs such as the remaining number of training steps (�), elapsed time (�), and step processing speed (�).
The expected completion time can be calculated using ����� = (�/�) + � . The remaining number of steps can be
updated according to the real-time loss value of the training job, while � and � can be estimated through model
itting. Other predicting models, such as those proposed in [91, 104], can be used for estimating the completion
time of MapReduce and GPU workloads. It is important to note that Rhythm does not design its own predicting
models but instead utilizes existing models if available for accurate estimation of running times.
For unpredictable BEs that cannot be accurately predicted, we prioritize them for reclamation based on the

amount of useless computation they generate. useless computation (�) refers to the repeated computation caused
by reclamation. If a task becomes slower after resource reclamation but does not require recomputation,� = 0. In
cases where multiple BEs have � = 0, we break the tie using their attained service, i.e., BE elapsed time × resource.
If a task fails, a portion of its computation becomes useless, resulting in� > 0. Useless computation is related to
the fault-tolerant mechanism of BE. The existing fault-tolerant mechanisms can be broadly categorized into two
types:

• Temporal redundancy-based mechanisms involve rescheduling failed tasks on a backup server to resume
execution, which can result in delayed task execution [105]. To mitigate the repeated computation caused by
rescheduling, checkpointing is often employed. Checkpointing allows a failed task to be restarted from the
latest saved checkpoint instead of starting from the beginning [28]. Thus, we derive the useless computation

as follows,

����� = ���������� (7)

where ����� represents the computation time since the latest checkpoint time.
• Space redundancy-based mechanisms involve creating multiple replicas of the same task to improve eiciency
[13, 14]. These replicas run concurrently, and the task is considered successful if at least one of the replicas
completes successfully. In this case, if a task has more than one replica, reclamation does not generate
any repeated computation, resulting in ������ = 0. However, if all replicas of a task fail, the task needs
to be rescheduled, and the useless computation is calculated using the same formula as in Formula 7, i.e.,
������ = ����� .

Rhythm adopts a priority-based reclamation algorithm for BE tasks to reduce the system preemption loss. For
unpredictable BE tasks, we mainly consider their useless computation (�) after resource reclamation. For predictable
BE tasks, the priority is deined based on its estimated preemption loss (�). Predictable and unpredictable BEs
are categorized into two separate reclamation queues, which poses a challenge when selecting the "best" BE for
reclamation. To address this issue, we utilize the Borda count voting method [8] to merge the Predictable and
unpredictable queues into a single BE reclamation queue. The Borda count is a voting mechanism that considers
multiple inluencing factors. Each voter ranks the candidates based on their preferences, and the inal ranking is
determined by integrating the rankings from diferent voters. In our case, each BE receives points based on its
ranking in each sequence, and the BE with the lowest sum of points across all sequences is preempted irst.
Figure 12 shows our design of how to merge the predictable and unpredictable BE queues. We use the Borda

counting method [9], a voting system used for winner elections in which each voter ranks the list of candidates
in order of preference. A job � receives a number of points (denoted by �������) from a sequence. It is derived as
follows,

�������� = � − �� (8)

ACM Trans. Comput. Syst.

18 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

A

A B

D E

Predictable BE Queue

Unpredictable BE Queue

Predictor

C AB C

Preemption Loss

A BC

D E

Useless computation
:1+0=1 : 2 C : 3Score B

: 2*2=4 E : 2D

Ranking

Points

1 2 3

2 1

AB C

A BC

D E

Predictable L-Queue

Predictable U-Queue

Unpredictable U-Queue

0

Borda Count

MLRQ

A

E B

… … …

C1 C2 C3 C4

…

D

C

Q1

Q2

Qn

Fig. 12. ueue merging through the Barda count voting method.

where �� denotes the ranking of � and � denotes the number of jobs in the sequence. The sum of �’s points from
diferent sequences decides the winner. That is, the task with the highest ������ is selected irst for reclamation.

������� =
︁

�−��������,� −��������

�������� (9)

Since it is not possible to derive the preemption loss (�) for unpredictable BEs (i.e., unpredictable BEs will
not appear in the L-sequence), it would be unfair to directly apply the Borda counting method. Therefore, we
also maintain a useless computation sequence for predictable tasks. Similar to unpredictable tasks, the BEs in
the sequence are sorted in ascending order of useless computation (�). The predictable useless computation
sequence (U-sequence) is then combined with the preemption loss sequence (L-sequence) to calculate scores for
all predictable tasks using Formula 9. Since unpredictable BEs only appear in one sequence while predictable
BEs appear in two sequences, we double the score obtained by unpredictable BEs for a fair comparison, i.e.,
������ = 2×������� . Then, the rankings of predictable and unpredictable BEs are combined and sorted in descending
order of their scores.
Given the global BE reclamation queue, the operations StopBE or CutBE always select the top entry in the

queue to execute under SLO violation. If the irst entry is not available on the local server, the BEs are sequentially
substituted until a match is found. To expedite the SLO recovery process, we further organize the BE reclamation
queue into a Multi-Level Reclamation Queue (MLRQ), where BEs are categorized into multiple levels, and StopBE

(or CutBE) always chooses the top level for reclamation. In Figure 12, each server maintains a local MLRQ and has
a long subqueue in each MLRQ level if its local Servpod contributes more to tail latency. When executing StopBE

(or CutBE), resources are reclaimed simultaneously from all BE workloads in the top MLRQ level. This means that
more resources are reclaimed from the BEs that are co-located with the Servpod making larger contributions. The
number of BEs in an MLRQ level (�����) is determined based on the Servpod contributions. That is, we have,

������ = ��� ×
��

∑�
�=1��

(10)

where ��� is the number of BEs in the system and�� is the contribution of Servpod � . In the example of Figure 12,
the four servers keep 1, 3, 1, 2 BEs in each MLRQ level respectively, corresponding to the Servpod contributions.

4 IMPLEMENTATION

We have developed a prototype of Rhythm using approximately 6.6K lines of code (KLOC) of C, Java, Python, and
Linux Shell. It runs on the Linux operating system, and supports the automatic proiling of Servpods using a load
generator for generating a broad spectrum of access loads and a SystemTap [40]-based system events analysis
tool. It cooperates with Linux container technology to manage the resource allocation for LC services and BE jobs.
It also provides APIs on latency and system status monitoring, contribution analysis, parameters exchanging, BE
deploying and resource allocation updating in each Servpod agent. The interactions with the operating system
are mainly implemented through JDK runtime library and Linux shell interface.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 19

Table 1. LC workloads and BE jobs.

LCWorkloads BE Jobs

Applications Domain Servpods MaxLoad SLO Containers Workload Domain -intensive

Redis [74] Key-Value database Master, Slave 86K QPS 1.15ms 18 Stream-llc [23] LLC-benchmark in iBench LLC

Elasticsearch [27] Index engine Index, Kibana 750 QPS 200ms 12 Stream-dram [23] DRAM-benchmark in iBench DRAM

E-commerce[62] TPC-W website
Haproxy, Tomcat,

Amoeba, MySQL
1300 QPS 250 ms 16

CPU-stress [57] CPU stress testing tool CPU

LSTM Time series prediction service mixed

Solr [81] Web search Apache+Solr, Zookeeper 400 QPS 350ms 15 ImageClassify Image classiication on CycleGAN[107] mixed

Elgg[29] Social network
Nginx+PHP-FPM,

Memcached, MySQL
200 QPS 320ms 8 Spark-Bench [82]

Wordcount, KMeans,

LogisticRegression, LinearRegression
mixed

SNMS[32] Microservice
UserService,Frontend,

MediaService
1500 QPS 380ms 30 TensorFlow-Bench[4] Resnet50, Lenet, Alexnet mixed

Hotel Reservation[22] Microservice Fontend, Reserver, Database 1400 QPS 300ms 19 SciMark[2] Scientiic computing mixed

Isolation: For mitigating the performance interference between the LC service and BE jobs, we utilize resource
isolationmechanisms as follows: (1) Core/thread isolation: Rhythm uses the cpuset cgroups of the Linux operating
system to bind LC and BE jobs on diferent physical cores to reduce the interference caused by thread contention.
(2) LLC/Memory Bandwidth isolation: Rhythm uses Intel CAT (cache allocation technology) and MBA (Memory
Bandwidth Allocation) to partition the LLC and Memory Bandwidth resources. By dividing these resources,
Rhythm dedicates a portion to the LC service and reserves the remaining portion for BE jobs. (3) Network isolation:
Rhythm uses the qdisc in the Linux operating system to control bandwidth allocation for the traic lows of both
LC and BE jobs. (4) Power isolation: Rhythm uses the running average power limit (RAPL) to monitor the CPU
power consumption in each CPU socket and DVFS to redistribute power among diferent cores.
Interact with scheduler: When an LC arrives, the scheduler irst decides the schedule for its components.
Components that are co-located form Servpods, which are proiled using a load generator. This proiling helps
derive loadlimit and slacklimit. Then, the thresholding mechanism decides whether it is appropriate to deploy
or reclaim BEs. If deployment is allowed, the scheduler checks the waiting queue of BE jobs and dispatches
them to physical machines that have suicient available resources. When resources need to be reclaimed from
BEs, the top-controller selects BEs in the top MLRQ level for reclamation. Once the decision about which BEs
to reclaim is made, the subcontrollers at the local physical machines take charge of determining the speciic
resource allocation for those BEs. They ensure that the reclaimed resources are appropriately allocated to other
tasks or components as needed.
System integration: Rhythm can be integrated into container management framework like Kubernetes [48]
or serverless cloud system. To integrate Rhythm into a container management framework like Kubernetes,
several steps need to be taken: (1) Extend the cAdvisor in kubelet of Kubernetes to support the measurement of
utilization of memory bandwidth, frequency&power and network traic; (2) Enhance the coniguration module of
Kubernetes to support the runtime control of the resource allocation as Rhythm’s controller agent; (3) Associate
the scheduler of Kubernetes with the top-controller agent for providing feedback to scheduling algorithms.

5 EVALUATION

5.1 Methodology

Workloads: Table 1 summarizes the LC and BE workloads we used to evaluate the eiciency of Rhythm. In
particular, the maximum allowable request load (i.e., max load) is measured when the arrival speed approaches
the maximum processing speed. Their SLOs are not deined arbitrarily, but following the principle: each LC

service runs at its maximum allowable request load without interference over 30 minutes, and we record the 99�ℎ
percentile latency per second and set the worst one as the SLO.We also deploy multiple BE workloads on our testbed,
including synthetic microbenchmarks that put strong pressure on a speciic resource (i.e., LLC, CPU and DRAM),

ACM Trans. Comput. Syst.

20 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount improvement

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h

ro
u

g
h

p
u

t (a) Tomcat/E-com

5 25 45 65 85

% of max load

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

Fig. 13. The BE throughput at Servpods under diferent loads.

big data, AI, and scientiic computing benchmarks. In particular, we use the synthetic microbenchmarks, LSTM
and imageClassify for evaluating the co-location eiciency. We further extend BEs with more big data, AI and
scientiic computing workloads for evaluating the eiciency of BE-distinguishable reclamation.
Metrics:We co-locate an LC service with the BE jobs, and measure the system’s CPU and memory utilization,
and power consumption. We also use the metric of EMU to measure the overall system throughput. In particular,
��� = �� �ℎ����ℎ��� + �� �ℎ����ℎ��� , where �� �ℎ����ℎ��� denotes the request load for LC service nor-
malized to its maximum allowable load, and �� �ℎ����ℎ��� denotes the average number of BE jobs successfully
inished per hour normalized to when it runs alone on a machine. Note that EMU may exceed 100% due to the
resource sharing between the LC service and BE jobs.
Testbed: LC service and BE jobs are deployed on a cluster with seven physical machines, four of which are
conigured with 40 cores of a quad-socket Intel Xeon E7-4820 v4 @ 2.0 GHz and 64 GB of DRAM per socket and
the other three are conigured with 40 cores of a dual-socket Intel(R) Xeon(R) Gold 6230 @ 2.0 GHz and 64 GB of
DRAM per socket. The operating system is Ubuntu 14.04 with kernel version 4.4.0-31. We utilize containers for
deploying multiple instances for LC workloads. The detailed conigurations of workloads are shown in Table 1.
Although each container is conigured with a speciic capacity initially, its unused resources can be allocated to
BE jobs through the container resource control interface.
Overhead: After deploying Rhythm in the system, we measure its overhead and ind that the request tracer
only consumes approximately 6% of the CPU and 3 MB of memory, and each controller runs every 2 seconds
only consumes 3.6% of the CPU and less than 50 MB of memory. Rhythm collects request sojourn time in each
Servpod by solo-run LC service only once, the of-line proiling takes negligible overhead. For the collection of BE
information and the maintenance of the BE reclamation queue, Rhythm only needs 2 logical cores for supporting
both predicting and reclamation. Among them, big data workloads such as Spark are proiled by invoking the
Restful interface; for sciMark workloads, Rhythm only needs to record the timestamp of the start and the ������
operation; for AI jobs, Rhythm needs to scan its output log to check its progress.

5.2 Component-distinguishable Co-location

We irstly evaluate the component-distinguishable co-location ability of Rhythm, i.e. Rhythm-CDC. That is, when-
ever SLO violation occurs, we just reclaim resources from all the co-located BE workloads without distinguishing
their priorities. All the experimental results are compared against Heracles [51], which is a feedback-based method,
but does not distinguish between Servpods: (1) It disables BE jobs at all machines whenever the load exceeds
85%. (2) It disallows the growth of BE jobs whenever the slack between the current tail latency and SLO target
is less than 10%. We observe that the measured SLO on our testbed is larger than those in Heracles because
of the diferent software conigurations and hardware environments we used. To make a fair comparison, our
implementation of Heracles [51] also conducts its control using the same SLO as in Table 1.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 21

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
l.
 (

%
)

(a) Tomcat/E-com

5 25 45 65 85

% of max load

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

Fig. 14. The CPU utilization at Servpods under diferent loads.

5 25 45 65 85

% of max load

0

25

50

75

100

M
e

m
B

W
 U

ti
l.
 (

%
) (a) Tomcat/E-com

5 25 45 65 85

% of max load

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

Fig. 15. The Memory bandwidth utilization at Servpods under diferent loads.

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount

5 25 45 65 85

% of max load

0

15

30

45

60

E
M

U
 (

%
)

(a) E-commerce

5 25 45 65 85

% of max load

(b) Redis

5 25 45 65 85

% of max load

(c) Solr

5 25 45 65 85

% of max load

(d) Elgg

5 25 45 65 85

% of max load

(e) Elasticsearch

Fig. 16. EMU improvements ((����ℎ��ℎ�−��� − �����������)/�����������) under diferent loads.

5.2.1 Servpod Analysis under Constant Load. Figures 13-15 show the BE throughput, CPU utilization and memory
bandwidth utilization at the Servpods of Tomcat/E-commerce, Slave/Redis, Zookeeper/Solr, Memcached/Elgg,
and Kibana/Elasticsearch. We see that the Rhythm-CDC is particularly efective when the load exceeds 65% of the
max load. While Heracles can launch BE jobs at a lower load, no co-location exists when the load is set as 85%
of the max load because Heracles does not allow co-location when the load > 0.85. Hence, in this case, the BE
throughput, CPU utilization and memory bandwidth utilization by BE jobs are all zero. In contrast, Rhythm-CDC
allows deploying BE jobs at the load > 0.85 since the loadlimits of Tomcat, Slave, Zookeeper, Memcached and
Kibana are 0.87, 0.91, 0.93, 0.87 and 0.9, respectively.

5.2.2 Overall Performance under Constant load. In Figure 13, we see that Rhythm-CDC increases BE throughput by
an average of 0.196, 0.296, 0.41, 0.185, and 0.194 compared with that of Heracles for the ive LC Servpods. In particu-
lar, Zookeeper is deployed with the most BE jobs due to its large ��������� = 0.93 and small ���������� = 0.035. As
we increase the load of the LC service, the BE throughput is reduced due to the operation control by the controller.
For the CPU utilization in Figure 14, when we co-schedule Servpods with CPU-stress, the CPU utilization at all
machines could approach 80% at the 5% load due to the CPU-intensive nature of CPU-stress. LSTM can also utilize
CPU resources at more than 70%, because the training phase of LSTM heavily consumes CPU resources. When
they are co-located with other BE jobs, although they cannot achieve the same CPU utilization, Rhythm-CDC still
improves CPU utilization by an average of 7.98%, 11.44%, 27.59%, 8.4%, and 10.44%. For the memory bandwidth

ACM Trans. Comput. Syst.

22 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

5 25 45 65 85

% of max load

0

30

60

90

120

C
P

U
 u

ti
l.
 (

%
)

(a) E-commerce

5 25 45 65 85

% of max load

(b) Redis

5 25 45 65 85

% of max load

(c) Solr

5 25 45 65 85

% of max load

(d) Elgg

5 25 45 65 85

% of max load

(e) Elasticsearch

Fig. 17. CPU utilization improvements ((����ℎ��ℎ�−��� −�����������)/�����������) under diferent loads.

5 25 45 65 85

% of max load

0

50

100

150

M
e

m
B

W
 u

ti
l.
 (

%
) (a) E-commerce

5 25 45 65 85

% of max load

(b) Redis

5 25 45 65 85

% of max load

(c) Solr

5 25 45 65 85

% of max load

(d) Elgg

5 25 45 65 85

% of max load

(e) Elasticsearch

Fig. 18. Memory bandwidth utilization improvements ((����ℎ��ℎ�−��� − �����������)/�����������) under diferent

loads.

utilization in Figure 15, we see that Rhythm-CDC can drive the utilization up to 82% when co-scheduling stream-llc
and stream-dram with LC Servpods. CPU-stress does not require much memory bandwidth, so the utilization
is quite low. Generally, Rhythm-CDC can improve memory bandwidth utilization by an average of 11.4%, 13.1%,
18.9%, 10.44%, and 10.57% compared with that of Heracles.

Rhythm-CDC improves the throughput and resource utilization not only when LC is scheduled together with
the extreme BEs, such as stream-llc, stream-dram, and CPU-stress, but also when BE jobs are normal ones (LSTM,
imageClassify and wordcount). Speciically, the average improvements on BE throughput by extreme BEs and
normal ones are 17.56% and 21.7%, respectively. Improvements in CPU utilization are 25.54% and 29.53%, and
improvements in memory bandwidth are 21.03% and 39.13%, respectively.

We next show the overall improvements in EMU and resource utilization by Rhythm-CDC. Figures 16-18 show
that it generates a much higher EMU and resource utilization than Heracles in all interference groups. Since both
Rhythm-CDC and Heracles can deploy BE jobs at low load, the improvements generally increase over the load,
indicating that Rhythm-CDC is more efective when the load towards the LC service is intensive.

In Figure 16, we see that Rhythm-CDC generates 11.6%, 18.4%, 24.6%, 14%, and 12.7% more EMU on average than
Heracles in E-commerce, Redis, Solr, Elgg, and Elasticsearch, respectively. In particular, when Solr is co-located
with imageClassify/TensorFlowBench and wordcount/SparkBench, improvements of up to 57% can be achieved
because of the signiicant improvements in Zookeeper. Figure 17 shows the CPU utilization improvements for the
ive LC services. Rhythm-CDC can improve the CPU utilization by 22.2%, 19.1%, 35.3%, 20.6%, and 23% on average
compared with that of Heracles. co-locating LSTM and CPU-stress with the LC service performs much better
utilization than others because they both require CPU resources heavily, and an improvement of up to 112%
can be achieved in the case of Elasticsearch. Figure 18 shows that Rhythm-CDC can improve memory bandwidth
utilization by 28.1%, 16.8%, 33.4%, 28.9%, and 19.5% on average compared with that of Heracles. co-locating
stream-dram (or wordcount/SparkBench) with the LC service shows much higher improvements than the other
BE jobs since they both consume considerable memory bandwidth. The improvement even reaches 120% when
co-locating stream-dram with Elasticsearch.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 23

5.2.3 Overall Performance under Production Load. We also evaluate Rhythm-CDC using a production request
load from ClarkNet [19] to capture its improvement on resource utilization. The request load illustrates clear
periodicity (see the top in Figure 17), and the period length is 24 hours. In our experiment, we scale down ive
days of the ClarkNet trace to six hours of workload for shortening the experimental period, and the traic load
and luctuating pattern are kept the same. Then, we collect the resource eiciency in the period.

15.4

16.2

27.4

16.1

21.7

23.2

21.2

12.7

20.5

20.7

20.0

18.2

26.2

25.0

18.2

14.0

30.3

23.4

24.5

22.4

18.8

17.3

31.7

25.2

16.8

16.6

12.4

31.2

14.5

21.2

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

15.0

20.0

25.0

30.0

(a) EMU (%)

12.1

12.8

22.8

12.7

17.7

19.1

17.3

9.7

16.7

16.8

16.2

14.6

21.8

20.7

14.6

10.9

25.4

19.3

20.3

18.4

15.2

13.9

26.6

20.8

13.4

13.2

9.5

26.2

11.3

17.3

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

10.0

15.0

20.0

25.0

(b) CPU Utilization (%)

17.1

17.1

34.0

19.7

22.1

29.5

28.9

15.5

32.1

24.7

27.4

29.0

18.9

20.5

21.7

23.9

16.5

32.7

22.6

13.4

16.3

14.7

27.2

22.6

14.0

SL SD LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

15.0

20.0

25.0

30.0

(c) MemBW Utilizaiton (%)

0.74

0.98

0.99

0.87

0.72

0.77

0.81

0.95

0.70

0.71

0.75

0.89

0.92

0.89

0.84

0.86

0.79

0.92

0.76

0.91

0.76

0.81

0.89

0.93

0.72

0.98

0.93

0.85

0.83

0.83

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

0.75

0.80

0.85

0.90

0.95

(d) 99�ℎ latency/SLO

Fig. 19. The average performance improvements by Rhythm-CDC on EMU (a), CPU utilization (b), and membw utilizaiton (c)

under production load. (d) represents the 99�ℎ percentile latency normalized to the latency stated in SLO. (E-com: E-commerce,

ES: Elasticsearch, SL: Stream-llc, SD: Stream-dram, CS: CPU-stress, LS: LSTM, IC: ImageClassify/TensorFlowBench, WC:

Wordcount/SparkBench.)

Figures 19a-19c show the average performance improvements compared to those of Heracles on EMU, CPU
utilization and memory bandwidth utilization under the production load, respectively. We see that Rhythm-CDC
can improve EMU by at least 12.4% in the Redis-Wordcount group and at most by 31.7% in the Solr-ImageClassify
group. For CPU utilization, Rhythm-CDC can achieve an improvement of 26.2% in the Solr-Wordcount group. For
memory bandwidth utilization, Rhythm-CDC can achieve an improvement of 34% in the Solr-Wordcount group.
Generally, while Rhythm-CDC can improve the performance in all interference groups, Solr beneits the most on
EMU, CPU utilization and memory bandwidth utilization among all of the ive LC services.
Figure 19d presents the worst 99�ℎ percentile latency normalized to the SLO latency of Rhythm-CDC in

production request loads. The actual 99�ℎ latency increases with the request load due to the increasing pressure
in server end. Meanwhile, interference from the co-located BE jobs will also cause performance degradation
of LC service. But we see that Rhythm-CDC can strictly guarantee the SLO in all cases (the worst case is 0.99×
SLO). The result shows the efectiveness of Servpod-level control in Rhythm-CDC, which can improve throughput
without hurting the SLO.

5.3 BE-distinguishable Reclamation

We further evaluate the BE-distinguishable reclamation ability of Rhythm, i.e., Rhythm-CDC-BR, which supports
both component-distinguishable co-location and BE-distinguishable reclamation. We choose the resnet50, lenet,
and alexnet from TensorFlow-Bench [4] as AI workloads, the kMeans, logisticRegression, and linearRegression from
Spark-Bench [82] as big data workloads, and sciMark [2] as scientiic computing workloads. They are submitted to
the system following a Poisson process, meaning they are randomly selected for submission whenever there is a
new request. When the SLO of an LC service is violated, Rhythm-CDC-BR uses a predictor (if available) to obtain
the BE preemption loss. As introduced in Section 3.6, our predictor currently supports the prediction models
proposed by Optimus [71] and Resource Delation [77], which can estimate the completion time of Spark and AI
workloads without relying on oline characterization.

We irstly compare Rhythm-CDC-BR with Resource Delation [77], a state-of-the-art approach that employs a
dynamic, multi-level cascading reclamation technique. We evaluate them using the two LC services of Redis

ACM Trans. Comput. Syst.

24 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

0 0.5 1.0 1.5 2

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

SLA=1.15

0 20 40 60 80 100

CPU Util.(%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

(a) Redis

0 100 200 300 400

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

SLA=200

0 20 40 60 80 100

CPU Util.(%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

(b) Elastic-Search

Fig. 20. The performance comparison on latency, CPU utilization under the resource management of Rhythm-CDC-BR and

Resource-Deflation methods.

and Elastic-search. Figure 20 shows that although Resource Delation can achieve a higher CPU utilization than
Rhythm-CDC-BR, it can only guarantee the SLO within 80% and 58.4% of the time. Meanwhile, Rhythm-CDC-BR
can achieve 92.1% and 94.5% of the time SLO guarantee. Clearly, as the intensity of co-location increases, the
risk of SLO violations also increases. This situation can be addressed by adjusting the loadlimit and slacklimit to
enhance the guarantee of SLO. In a real production environment, the determination of SLO is based on business
requirements. For example, LC services like search engines typically set the SLO as the 99�ℎ percentile latency not
exceeding 100 milliseconds. Administrators can adjust the loadlimit and slacklimit based on the actual business
SLO to achieve full SLO guarantee (see ğ 5.6). Resource Delation [77] nearly impossible to provide a guarantee for
SLOs due to its overly conservative approach. It always aims to reclaim as few resources as possible, which can
lead to SLO violations. The strategy iteratively checks resources that can be reclaimed from higher layers, such
as the application and the guest OS, before considering lower layers like the hypervisor. The lower layer is only
checked if the reclamation at the previous layer is insuicient to recover the latency of the LC service. However,
since it takes time for new conigurations to take efect, this conservative strategy often leads to SLO violations.
Considering the signiicant degradation in user experience caused by Resource Delation, we exclude it from the
following experiments.

5.3.1 ServpodAnalysis under Constant Load. Figures 21-23 demonstrate the efectiveness of Rhythm’s reclamation
technique in terms of Servpod-level improvements in BE throughput, CPU utilization, and memory bandwidth
utilization. Rhythm-CDC-BR, compared to Rhythm-CDC, achieves further enhancements in BE throughput with
average increases of 0.107, 0.153, 0.162, 0.112, and 0.091 on the ive LC Servpods, respectively. While BE throughput
tends to decrease as the access load on the LC increases, Rhythm-CDC-BR exhibits increased improvements because
the BE reclamation strategy becomes more active under high load conditions. Notably, at 85% of the maximum
load, Rhythm-CDC-BR achieves a 0.193 increase in BE throughput for the co-located Zookeeper service. This result
is attributed to Zookeeper’s low contribution rate of 0.075, which leads to the reclamation of only one BE at a time
during StopBE or CutBE operations. In contrast, Kibana/ES maintains three BEs in each MLRQ level due to its high
contribution rate of 0.32. Alongside the improvements in BE throughput, Rhythm-CDC-BR also demonstrates
average increases of 9%, 11.3%, 10.7%, 12.7%, and 8.7% in CPU utilization, as well as average increases of 11.4%,
12.6%, 10.3%, 8.8%, and 9.3% in system memory bandwidth utilization compared to Rhythm-CDC.

5.3.2 Overall Performance under Constant load. Figures 24-26 illustrate the overall performance improvements
achieved by BE-distinguishable reclamation in Rhythm-CDC-BR. The results demonstrate that Rhythm-CDC-BR
efectively enhances system throughput and resource utilization. When the load is low, the LC service experiences
fewer SLO violations, and the improvements brought by Rhythm-CDC-BR are less apparent. However, as the load

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 25

(a) Tomcat/E-com

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h

ro
u

g
h

p
u

t

Rhythm-CDC

Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

5 25 45 65 85

% of max load

Fig. 21. The BE throughput at Servpods under diferent loads.

(a) Tomcat/E-com

5 25 45 65 85

% of max load

0

25

50

75

100

C
P

U
 u

ti
l.
 (

%
) Rhythm-CDC

Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

5 25 45 65 85

% of max load

Fig. 22. The CPU utilization at Servpods under diferent loads.

(a) Tomcat/E-com

5 25 45 65 85

% of max load

0

20

40

60

80

M
e

m
B

W
 u

ti
l.
 (

%
)

Rhythm-CDC

Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85

% of max load

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

(d) Memcached/Elgg

5 25 45 65 85

% of max load

(e) Kibana/ES

5 25 45 65 85

% of max load

Fig. 23. The memory bandwidth utilization at Servpods under diferent loads.

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0
0.2
0.4
0.6
0.8

1
1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)
Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 24. The EMU improvements under diferent loads.

increases, more CutBE and StopBE operations are executed. At this point, the BE-reclamation strategy signiicantly
reduces preemption losses, thereby enhancing resource utilization and throughput.
For instance, at 85% load for the Zookeeper service, Rhythm-CDC triggers a total of 11 CutBE and 8 StopBE

operations to protect latency SLOs for the Solr service. Enabling the BE-distinguishable reclamation technique
leads to smoother preemption of BE tasks. Although this may result in more CutBE/StopBE operations, the
number of stopped BE tasks decreases from 17 to 9 (as a StopBE operation can terminate multiple tasks),
reducing throughput loss by approximately 50%. Notably, Rhythm-CDC-BR achieves further improvements of
11.4%, 13.7%, 17.4%, 10.7%, and 16.1% in EMU for E-commerce, Redis, Solr, Elgg, and Elasticsearch, respectively.
Regarding resource utilization, Figure 25 demonstrates that Rhythm-CDC-BR increases average CPU utilization
by an additional 9.4%, 11.2%, 12.7%, 10.8%, and 13.8%. Figure 26 shows that Rhythm-CDC-BR further enhances
memory bandwidth utilization by 9.1%, 14.6%, 10.1%, 9.8%, and 11.4% for the respective services.

ACM Trans. Comput. Syst.

26 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

20

30

40

50

60

70

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

20
30
40
50
60
70
80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

20

30

40

50

60

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 25. The CPU utilization improvements under diferent loads.

5 25 45 65 85

% of max load

0

20

40

60

M
e
B

(%
)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e
B

(%
)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e
B

(%
)

Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

M
e
B

(%
)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e
B

(%
)

Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 26. The memory bandwidth utilization improvements under diferent loads.

5.3.3 Overall Performance under Production Load. Figure 27 demonstrates the improvements in resource utiliza-
tion and SLO guarantee achieved by Rhythm-CDC-BR using the production load of Clarknet [19]. It is observed that
Rhythm-CDC provides a better SLO guarantee, as shown in Figure 27d, due to its non-discriminatory reclamation
strategy for BEs. However, this also results in a lower resource utilization rate for Rhythm-CDC over an extended
period. Under the production load, Rhythm-CDC-BR signiicantly increases EMU, CPU utilization, and memory
bandwidth utilization by 17.7%, 14.5%, and 19.6%, respectively (Figure 27a-27c). In summary, compared to Heracles,
Rhythm-CDC-BR, which incorporates both component-distinguishable co-location and BE-distinguishable recla-
mation, improves the average system throughput by 47.3%, CPU utilization by 38.6%, and memory bandwidth
utilization by 45.4%.

5.4 Running with Microservice

Rhythm demonstrates its efectiveness in managing processes, containers, or microservices. In this section, we
evaluate its eiciency using two representative microservice benchmarks from DeathStarBench [32]: SNMS (social
network in microservice) and HR (hotel reservation). SNMS consists of 30 unique microservices that communicate
through RPC (Remote Procedure Call). These microservices are divided into three Servpods: media service (13
microservices for media data processing), frontend (3 microservices including nginx-thrift, media-frontend, and
jaeger), and user service (14 microservices for user operations). Similarly, HR consists of 19 unique microservices,
grouped into three Servpods: frontend (3 microservices), reservation (7 microservices related to the reservation
process), and data service (9 microservices for data storage and processing). Each Servpod is allocated 20 CPU cores
and 64 GB of memory, and they are deployed in a distributed manner. For the evaluation of these microservice
benchmarks, Rhythm does not require its own request tracer. Instead, the benchmarks support a built-in jaeger
[41], which is a distributed tracing system similar to Dapper [79]. Jaeger can record the sojourn time of each
request at each microservice, providing the necessary data for analysis and evaluation.

Figure 28 shows the overall performance evaluation results. Since the contributions of the three Servpods are
0.295, 0.14, and 0.565, respectively, and their slackLimits are 0.189, 0.054, and 0.381, respectively, the improvements
mainly beneit from the media service and frontend Servpods. Compared with Heracles, Rhythm achieves an
average improvement of 14.3%, 30.2%, and 45.8% in the EMU, CPU utilization, and memory bandwidth utilization,
respectively. In particular, Rhythm achieves an EMU improvement of 23.27% in the wordcount group because
wordcount performs many computations and IO operations, which afects the tail latency signiicantly. The

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 27

EC Redis Solr Elgg ES
20

40

60

80

100

120

E
M

U
 (

%
)

Rhythm-CDC

Improvements

(a) EMU (%)

EC Redis Solr Elgg ES
20

40

60

80

C
P

U
 U

ti
l.
(%

)

Rhythm-CDC

Improvements

(b) CPU Utilization (%)

EC Redis Solr Elgg ES
20

40

60

80

M
e
B

 U
ti
l.
(%

)

Rhythm-CDC

Improvements

(c) MemBW Utilizaiton (%)

EC Redis Solr Elgg ES
0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

Rhythm-CDC

Improvements

(d) 99%ile/SLO

Fig. 27. The average performance improvements by Rhythm-CDC-BR on EMU (a), CPU utilization (b), and MemBw utilizaiton

(c) under production load. (d) represents the 99�ℎ percentile latency normalized to the latency stated in SLO. (EC: E-commerce,

ES: Elasticsearch)

stream-llc

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

E
M

U

stream-dram

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
LSTM

20 40 60 80 100
0

0.3

0.6

0.9

1.2
CPU-stress

20 40 60 80 100
0

0.3

0.6

0.9

1.2
imageClassify

20 40 60 80 100
0

0.3

0.6

0.9

1.2
wordcount

20 40 60 80 100
0

0.3

0.6

0.9

1.2

stream-llc

20 40 60 80 100
0

10

20

30

40

50

C
P

U
 U

ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

10

20

30

40

50
LSTM

20 40 60 80 100
0

15

30

45

60
CPU-stress

20 40 60 80 100
0

20

40

60

80
imageClassify

20 40 60 80 100
0

15

30

45

60
wordcount

20 40 60 80 100
0

10

20

30

40

50

stream-llc

20 40 60 80 100
0

20

40

60

80

100

M
e
B

 U
ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

20

40

60

80

100
LSTM

20 40 60 80 100

% of max load

0

5

10

15

20

25
CPU-stress

20 40 60 80 100
0

5

10

15

20
imageClassify

20 40 60 80 100
0

20

40

60

80
wordcount

20 40 60 80 100
0

20

40

60

80

Fig. 28. Performance comparison when running with SNMS microservice. Improvements are color-coded as follows: -

represents the EMU or resource utilization of LC itself; - represents the improvements achieved by Heracles; - represents

the further improvements achieved by Rhythm.

Colocation strategies
0

20

40

60

80

100

C
P

U
 u

ti
l.
 (

%
)

Heracles

Rhythm-CDC

Rhythm-CDC-BR

43.4

58.9

69.1

(a) CPU utilization

Colocation strategies
0

20

40

60

80

100

M
e

m
B

W
 u

ti
l.
 (

%
)

61.9

73.1

39.5

(b) Memory bandwidth

Colocation strategies
1

1.1

1.2

1.3

1.4

E
M

U

1.34

1.13

1.25

(c) EMU

Fig. 29. Performance evaluation when running with hotel reservation microservice.

sciMark group also shows the best improvements in CPU utilization, but the least in memory bandwidth utilization
for the same reason as in previous experiments.

ACM Trans. Comput. Syst.

28 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Figure 29 presents a comprehensive performance comparison amongHeracles, Rhythm-CDC, and Rhythm-CDC-BR
when co-locating HR (hotel reservation) with BE tasks. The results show that Rhythm-CDC launches more BEs
compared toHeracles, resulting in a signiicant improvement in CPU utilization and memory bandwidth utilization
by 35.7% and 56.7% respectively. Furthermore, Rhythm-CDC-BR enhances system eiciency even further, with a
notable increase in CPU utilization, memory bandwidth utilization, and EMU by approximately 17.3%, 18.4%, and
7.2% respectively. These indings demonstrate the efectiveness of the component-distinguishable co-location
mechanism and the BE-distinguishable reclamation technique in scenarios involving multiple microservices with
varying workload behaviors and resource dependencies in each component.

5.5 Example of Running Process

0.25

0.5

0.75

1

L
o

a
d

Load LoadLimit

-0.4
0

0.4
0.8

S
la

c
k

Slack SlackLimit

0
3
6
9

12
15

B
E

 I
n

s
t.

ES-Index ES-Kibana

0

40

80

C
P

U
(%

) ES-Index ES-Kibana

0
6

12
18
24

B
E

 C
o

re
s ES-Index ES-Kibana

0

4

8

B
E

 L
L

C

ES-Index ES-Kibana

0 5 6.2 7.1 12 20 25 30

Timeline (min)

0
0.2
0.4
0.6
0.8

1

B
E

 T
h

ro
u

g
h

p
u

t ES-Index ES-Kibana

Fig. 30. The timeline of Rhythm’s running process.

Figure 30 illustrates the timeline of Rhythm’s operation on two Servpods (Index and Kibana) of Elasticsearch
when they are co-located with 20 BEs under the production load. Initially, Rhythm allows the BE workload to grow
as there is suicient slack between the actual latency and the SLO target. This results in continuous increases in
BE throughput, BE instances, BE cores, BE LLC, and CPU utilization. At time 5, Rhythm triggers the SuspendBE
operation because the request load exceeds the loadlimit. As a result, even though the allocated resources for the
BE jobs remain unchanged, CPU utilization rapidly decreases, and the BE throughput stops increasing. During
the SuspendBE period, the memory occupied by the BE may still cause SLO violations, leading to the activation of
the StopBE operation. At time 6.2, when the request load drops below the loadlimit, the BE jobs resume their
growth until time 7.1. However, a sudden decrease in slack prompts Rhythm to initiate the StopBE operation.
During this operation, Rhythm selects the BEs with fewer preemption losses for reclamation. Since the Index
Servpod has a higher contribution rate than Kibana, three BEs co-located with Index are reclaimed. At time 12,

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 29

Table 2. SLO violations and BE kills when varing the loadlimit (slacklimit).

Fixed Loadlimit=0.76 Fixed Slacklimit=0.347

Level Slacklimit SLO Violation BE kills Loadlimit SLO violation BE kills

70% 0.243 22 7 0.532 0 0

80% 0.278 16 5 0.608 0 0

90% 0.312 13 3 0.684 0 0

100% 0.347 0 0 0.760 0 0

110% 0.382 0 0 0.836 12 5

120% 0.416 0 0 0.912 14 8

130% 0.451 0 0 - - -

the CutBE operation is triggered. Although the number of BE instances remains unchanged, their LLC and core
allocations are reduced. This operation helps optimize resource allocation and management in the system.

5.6 Loadlimit and Slacklimit Analysis

We also evaluate the impact of loadlimit and slacklimit on the BE throughput. By ixing the slacklimit and loadlimit

of HAProxy, Tomcat, Amoeba, but varying the ones of MySQL, Figure 31 shows how the BE throughput varies
over the loadlimit and slacklimit. We see that the BE throughput peaks when the loadlimit is at the 90% level (i.e.,
90% of the actual derived values). In the case of "ixing loadlimit, varying slacklimit", the BE throughput at the
80% and 90% levels are both higher than that at the 100% level. However, Table 2 shows that setting the slacklimit

at 90% also causes 13 SLO violations and kills 3 BE jobs in the period. For loadlimit, the number of SLO violations
and BE kills at the 90% level is the same as that at the 100% level, indicating that the 90% level is a better choice.

70% 80% 90% 100% 110% 120% 130%

Threshold Setting

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 B

E
 T

h
ro

u
g
h
p
u
t

Fixing loadlimit=0.76, varying slacklimit

Fixing slacklimit=0.347, varying loadlimit

Fig. 31. Trade-of between loadlimit (slacklimit) and BE throughput.

6 RELATED WORK

Request Tracer: Tracking the service path of a request has been extensively studied in earlier work. They can be
classiied into two categories: execution tracing and communication tracing. Execution tracing [5, 11, 18, 30, 43, 75,
79, 86, 93, 108] records the low-level system events (e.g., system calls) or log messages generated during execution,
and identiies the request path through pairing analysis. Communication tracing [6, 10, 15, 17] discovers the
dependency between components by analyzing the network traic. While the communication tracing cannot
identify the intraServpod causality easily, we choose the execution tracing, which is further implemented through
either the intrusive method [11, 30, 43, 79, 86, 108] or the non-intrusive method [5, 18, 40, 52, 75, 93]. As the

ACM Trans. Comput. Syst.

30 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

intrusive method causes high instrumentation cost, we simply use the easy-to-use systemTap [40] for deriving
the mean sojourn time of each request at each Servpod.
Interference analysis: A signiicant body of work has studied the interference in cloud computing systems.
The studies show that the performance of cloud services varies signiicantly due to multiple reasons [12, 38, 76],
including hardware heterogeneity [67], virtualization [89], or the contention on various resources [44, 72, 80]. In
particular, contention on cache [20, 34, 58, 83] and I/O [80] are two main sources for performance interference.
These contentions are not only from the same core [97, 100] but also possibly from cross-cores [102, 103]. However,
these works mainly focus on the evaluation of the overall performance of an application, e.g., the latency of a
web application [72], a multimedia service [12], or the execution time of a bigdata analysis job [26]. They never
study the performance variation of any one of Servpods under interference, while most applications consist of
multiple Servpods.
Proiling-based QoS management: Given the precisely characterized interference features of cloud services,
previous work can guarantee QoS through interference-aware QoS management. For example, Bubble-Up [60] and
Bubble-Flux [96] predict the impact of interference from potential corunners through the instantaneous pressure
generated by a dynamic bubble. DeepDive [65] infers performance loss due to interference by clustering low-level
metrics. Dirigent [106] and Wrangler [95] supports to control QoS based on the prediction of execution time.
Stay-away [73] throttles the batch jobs to avoid contention by predicting any progression towards a QoS violation
at runtime. SMiTe [101] achieves precise interference prediction on real-system architectures. Quasar [25] and
Paragon [24] use classiication techniques to quickly estimate the impact of interference, and improve resource
utilization while guaranteeing QoS. Pythia [94] predicts the combined contention of multiple applications using
a simple linear regression model to improve utilization. Harvest VM [7] only considers the unallocated resources
in cluster. It characterizes the time-varying features of unallocated resources and proposes to leverage them for
more workloads. These approaches rely on accurate prediction models, which may be costly in practice.
Other related work like Ubik [46], CQoS [39], CPI2 [99], iAware [92] and [42] present how to guarantee the

QoS with cache or memory bandwidth isolation mechanisms. For core isolation, PerfIso [37] co-locates batch
jobs with production latency-sensitive services using CPU binding isolation to protect SLO from burst workloads.
Retro [55] presents resource management framework to improve eiciency using these isolation mechanisms.
Feedback-based QoS management: Although the interference-aware QoS management works well in many
scenarios, it’s impossible to characterize the interference behaviors of all applications. Moreover, it is hard to
achieve zero error on interference predictions. Hence, another approach for improving the resource utilization is
using the feedback-based method, that is, response immediately after a possible SLO violation is detected. ICE [56]
works in the application layer, and it improves the web server performance during interference by reconiguring
the balancer and middleware to reduce the load on the impacted server. In the system layer, Q-Clouds [63] uses
online feedback to capture interference, and tunes resource allocations to mitigate performance interference
efects. Heracles [51] enables the safe co-location of BE jobs and LC service through a conservative thresholding
method. PARTIES [16] and CLITE [70] further increases the number of co-scheduled LC services per server to
improve the throughput. CoPart [69] analyzes the characteristics of workloads and allocates the LLC and memory
bandwidth for BE jobs to improve fairness. Twig [64] employs a deep reinforcement learning model for improving
the energy-eiciency of co-located latency-critical services. Resource delation[77] extends to dynamically shrink
resource allocation in response to resource pressure, instead of being preempted outright. It helps to reduce the
useless computation yielded by preempted BEs, but cannot guarantee SLO well. The feedback-based method may
cause oscillations in the control loop especially when the tail latency is unstable. While the use of loadlimit can
reduce such oscillations, we can also mitigate this problem by introducing bufer resources, like in PerfIso [37].

GrandSLAm [45] is another work considering the diferent characteristics of each service component. It enables
consolidated execution of requests belonging to multiple jobs in a microservice-based computing framework.
There are four diferences between Rhythm and GrandSLAm: (1) GrandSLAm co-locates multiple LCs, while

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 31

Rhythm co-locates an LC and multiple BEs. (2) GrandSLAm is efective when multiple LCs share microservices,
while Rhythm is also efective when LC has no shared microservices with BEs. (3) The execution time of each
microservice is highly predictable in GrandSLAm given the batch size at each microservice, while it is diicult to
predict the execution time in each Servpod due to the uncertain interference. (4) GrandSLAm uses the end-to-end
latency in SLO, while Rhythm considers the tail latency, which is a statistical result over all latencies. Hence,
GrandSLAm is orthogonal to Rhythm.

7 DISCUSSION

Application Scenarios: Rhythm can be adopted in the private Infrastructure-as-a-Service (IaaS) cloud or public
serverless computing. Serverless computing is essentially a Platform-as-a-Service (PaaS) where the user’s ap-
plication is split into multiple stateless functions, and the user only needs to focus on their business code. In
serverless, cloud providers ofer runtime environments for tenant functions, expanding the system’s scope of
control compared to IaaS. Function execution times and even the end-to-end latency of a worklow can be easily
measured at the cloud provider side, giving serverless computing an inherent advantage for integrating Rhythm.
The deployment of Rhythm in the serverless computing scenario is similar to the one in the microservices

scenario. Rhythm’s subcontrollers can be deployed within each server to manage local functions. In particular,
functions located in the same physical server can also be grouped as a Servpod, while latency-insensitive functions
can be treated as BE tasks. Note that Rhythm’s control algorithm incurs low overhead and is scalable with the
function scales in a serverless platform. This enables Rhythm to be highly adaptive in serverless computing.
Co-location in multi-LC scenarios: The current Rhythm can only support the co-location of a Servpod with
multiple BEs. It is possible that multiple Servpods from diferent LCs are deployed in the same machine. In this
case, Rhythm can be combined with existing methods such as CLITE[70] and Twig [64] to address the problem.
Speciically, we can employ the methods in CLITE or Twig to address the service-level workload co-location
challenge among diferent LCs. In addition, Rhythm’s component-level workload collocation approach can be
used to achieve iner-grained resource management and SLO guarantees within each LC.

8 CONCLUSIONS

In this paper, we present Rhythm, a system that manages resource allocation between LC service and BE jobs in
the proiling-feedback hybrid way. Rhythm allows the aggressive deployment of BE jobs on machines contributing
less to tail latency based on Servpod-level control. Rhythm also adopts a BE-distinguishable reclamation scheme
that reduces the useless computation yielded by BE reclamation under SLO violations. We evaluate Rhythm with
typical LC services and BE jobs under diferent load scenarios, and ind it can improve the resource eiciency
signiicantly. Rhythm can be deployed easily in a private cloud, where we can conduct deep analysis on LC
services. The characterization cost is low, as (1) it only relies on the LC service itself, (2) the request tracing
and performance monitoring have always been an important component in the cloud, even without deploying
Rhythm.
In the future, we would like to further improve system resource eiciency through co-locating multi-tenant

LCs and BEs. For the public cloud where we know little about the LC service, we will explore the design space of
co-locations using the evolved software and hardware isolation mechanisms.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Development Program of China No.2022YFB
4500702; project ZR2022LZH018 supported by Shandong Provincial Natural Science Foundation; the National
Natural Science Foundation of China under grant 62141218, 62372322 and the open project of Zhejiang Lab
(2021DA0AM01/003).

ACM Trans. Comput. Syst.

32 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

REFERENCES

[1] 2020. https://parsec.cs.princeton.edu/.
[2] 2020. Scimark:A benchmark for scientiic and numerical computing. https://openbenchmarking.org/test/pts/scimark2-1.3.2.
[3] 2020. The SPEC Cloud IaaS 2018 benchmark is SPEC’s second benchmark suite to measure cloud performance. https://www.spec.org/.
[4] 2020. Tensorlow-Bench: A benchmark framework for TensorFlow. https://github.com/tensorlow/benchmarks.
[5] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. 2007. E2EProf: Automated End-to-End Performance Management for Enterprise

Systems. In The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07). 749ś758.
[6] Marcos K. Aguilera, Jefrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen. 2003. Performance Debugging

for Distributed Systems of Black Boxes. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (Bolton
Landing, NY, USA) (SOSP ’03). Association for Computing Machinery, New York, NY, USA, 74ś89.

[7] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda,
Sameh Elnikety, Marcus Fontoura, and Ricardo Bianchini. 2020. Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. USENIX
Association, USA.

[8] Javed A. Aslam and Mark Montague. 2001. Models for Metasearch. In Proceedings of the 24th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (New Orleans, Louisiana, USA) (SIGIR ’01). Association for Computing Machinery,
New York, NY, USA, 276ś284.

[9] Javed A. Aslam and Mark H. Montague. 2001. Models for Metasearch. In SIGIR 2001: Proceedings of the 24th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA, W. Bruce
Croft, David J. Harper, Donald H. Kraft, and Justin Zobel (Eds.). ACM, 275ś284.

[10] Paul Barham, Richard Black, Moises Goldszmidt, Rebecca Isaacs, John MacCormick, Richard Mortier, and Aleksandr Simma. 2008.
Constellation: automated discovery of service and host dependencies in networked systems. Technical Report MSR-TR-2008-67. 1ś14
pages.

[11] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using Magpie for request extraction and workload modelling.
In Proceedings of the Sixth USENIX Symposium on Operating Systems Design and Implementation (OSDI) 2004 (proceedings of the sixth
usenix symposium on operating systems design and implementation (osdi) 2004 ed.). 259ś272.

[12] Sean Kenneth Barker and Prashant Shenoy. 2010. Empirical Evaluation of Latency-sensitive Application Performance in the Cloud. In
Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems (Phoenix, Arizona, USA) (MMSys ’10). ACM, New York,
NY, USA, 35ś46.

[13] Anne Benoit, Mourad Hakem, and Yves Robert. 2008. Fault tolerant scheduling of precedence task graphs on heterogeneous platforms.
In 2008 IEEE International Symposium on Parallel and Distributed Processing. 1ś8.

[14] Anne Benoit, Mourad Hakem, and Yves Robert. 2009. Contention awareness and fault-tolerant scheduling for precedence constrained
tasks in heterogeneous systems. Parallel Comput. 35, 2 (2009), 83ś108.

[15] P. Chen, Y. Qi, and D. Hou. 2019. CauseInfer: Automated End-to-End Performance Diagnosis with Hierarchical Causality Graph in
Cloud Environment. IEEE Transactions on Services Computing 12, 2 (March 2019), 214ś230.

[16] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive
Services. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating

Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 107ś120.
[17] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramvir Bahl. 2008. Automating Network Application Dependency Discovery: Experiences,

Limitations, and New Solutions. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (San
Diego, California) (OSDI’08). USENIX Association, USA, 117ś130.

[18] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. 2014. The Mystery Machine: End-to-end Performance
Analysis of Large-scale Internet Services. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomield, CO, 217ś231.

[19] The Internet Traic Archive ClarkNet. 2017. http://ita.ee.lbl.gov/html/traces.html.
[20] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A Patterson, and Krste Asanovic. 2013. A hardware evaluation of cache

partitioning to improve utilization and energy-eiciency while preserving responsiveness. In ACM SIGARCH Computer Architecture

News, Vol. 41. ACM, 308ś319.
[21] Jefrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56, 2 (Feb. 2013), 74ś80.
[22] DeathStarBench. 2019. https://github.com/delimitrou/DeathStarBench.
[23] Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantifying interference for datacenter applications. In 2013 IEEE

international symposium on workload characterization (IISWC). IEEE, 23ś33.
[24] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters. In ACM SIGPLAN

Notices, Vol. 48. ACM, 77ś88.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 33

[25] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-eicient and QoS-aware cluster management. ACM SIGPLAN

Notices 49, 4 (2014), 127ś144.
[26] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-Eicient Provisioning in Shared Cloud Systems. SIGPLAN Not.

51, 4 (March 2016), 473ś488.
[27] Elasticsearch. 2021. Elasticsearch: a search engine based on the Lucene library. https://lucene.apache.org/solr/.
[28] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A Survey of Rollback-Recovery Protocols in

Message-Passing Systems. ACM Comput. Surv. 34, 3 (Sept. 2002), 375ś408.
[29] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel

Popescu, Anastasia Ailamaki, and Babak Falsai. 2012. Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware. SIGPLAN Not. 47, 4 (March 2012), 37ś48.

[30] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker. 2007. X-Trace: A Pervasive Network Tracing Framework. In 4th

USENIX Symposium on Networked Systems Design & Implementation (NSDI 07). USENIX Association, Cambridge, MA.
[31] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications of Cloud Microservices. IEEE Computer Architecture Letters 17,

2 (July 2018), 155ś158.
[32] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon
Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). ACM, New York, NY, USA, 3ś18.

[33] Alexander N. Gorban, Lyudmila I. Pokidysheva, Elena V. Smirnova, and Tatiana A. Tyukina. 2011. Law of the Minimum Paradoxes.
Bulletin of Mathematical Biology 73 (2011), 2013ś2044.

[34] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011. Cuanta: Quantifying Efects of Shared On-chip Resource
Interference for Consolidated Virtual Machines. In Proceedings of the 2Nd ACM Symposium on Cloud Computing (Cascais, Portugal)
(SOCC ’11). ACM, New York, NY, USA, 22:1ś22:14.

[35] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. 2019. Who Limits the Resource Eiciency of
My Datacenter: An Analysis of Alibaba Datacenter Traces. In Proceedings of the International Symposium on Quality of Service (Phoenix,
Arizona) (IWQoS ’19). ACM, New York, NY, USA, Article 39, 10 pages.

[36] HiBench. 2020. HiBench: HiBench is a big data benchmark suite that helps evaluate diferent big data frameworks in terms of speed,
throughput and system resource utilizations. https://github.com/Intel-bigdata/HiBench.

[37] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita,
Alex Chen, Jack Zhang, and Junhua Wang. 2018. PerfIso: Performance Isolation for Commercial Latency-Sensitive Services. In 2018

USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 519ś532.
[38] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the Performance Variability of Production Cloud Services. In 2011 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 104ś113.
[39] Ravi R. Iyer. 2004. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In International Conference on Supercomputing.

257ś266.
[40] Bart Jacob, Paul Larson, B Leitao, and SAMM Da Silva. 2008. SystemTap: instrumenting the Linux kernel for analyzing performance

and functional problems. IBM Redbook (2008).
[41] jaeger. 2019. https://www.jaegertracing.io/.
[42] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. 2012. A QoS-aware memory controller for dynamically balancing GPU and CPU

bandwidth use in an MPSoC. In DAC Design Automation Conference 2012. 850ś855.
[43] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,

Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An End-to-End Performance
Tracing And Analysis System. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31,

2017. ACM, 34ś50.
[44] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. 2012. Measuring interference between live datacenter applications. In High

PERFORMANCE Computing, Networking, Storage and Analysis. 1ś12.
[45] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm:

Guaranteeing SLAs for Jobs in Microservices Execution Frameworks. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article 34, 16 pages.

[46] Harshad Kasture and Daniel Sanchez. 2014. Ubik: eicient cache sharing with strict qos for latency-critical workloads. In ACM SIGPLAN

Notices, Vol. 49. ACM, 729ś742.
[47] Darja Krushevskaja and Mark Sandler. 2013. Understanding latency variations of black box services. In Proceedings of the 22nd

international conference on World Wide Web. ACM, 703ś714.

ACM Trans. Comput. Syst.

34 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

[48] Kubernetes. 2019. https://kubernetes.io/.
[49] Wenyu Qu Kunlin Zhan Laiping Zhao, Fangshu Li and Qingman Zhang. 2021. AITurbo: Uniied Compute Allocation for Partial

Predictable Training in Commodity Clusters. In Proceedings of the 30th International Symposium on High-Performance Parallel and

Distributed Computing (HPDC ’21). ACM, USA.
[50] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-Containerized Co-locating Cloud Workload: A View from Alibaba

Trace. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). ACM, New York, NY, USA, 347ś360.
[51] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource

eiciency at scale. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450ś462.
[52] LTTng. 2019. https://lttng.org/.
[53] Piotr Luszczek, Jack J Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas, Jeremy Kepner, John McCalpin, David Bailey, and Daisuke

Takahashi. [n.d.]. Introduction to the HPC Challenge Benchmark Suite. ([n. d.]).
[54] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin

Zhang, and Yungang Bao. 2015. Supporting Diferentiated Services in Computers via Programmable Architecture for Resourcing-on-
Demand (PARD). SIGARCH Comput. Archit. News 43, 1 (March 2015), 131ś143.

[55] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015. Retro: Targeted Resource Management in Multi-tenant
Distributed Systems. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 589ś603.

[56] A. K. Maji, S. Mitra, and S. Bagchi. 2015. ICE: An Integrated Coniguration Engine for Interference Mitigation in Cloud Services. In
2015 IEEE International Conference on Autonomic Computing. 91ś100.

[57] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. 2013. Automatic detection of performance deviations in the load testing of large
scale systems. In Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 1012ś1021.

[58] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan. 2012. Probabilistic shared cache management (PriSM). In Computer

Architecture (ISCA), 2012 39th Annual International Symposium on. IEEE, 428ś439.
[59] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Sofa. 2011. Bubble-up: Increasing utilization in modern

warehouse scale computers via sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International Symposium on Microar-

chitecture. ACM, 248ś259.
[60] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Sofa. 2011. Bubble-Up: Increasing Utilization in Modern

Warehouse Scale Computers via Sensible Co-locations. In Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture (Porto Alegre, Brazil) (MICRO-44). ACM, New York, NY, USA, 248ś259.
[61] Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman, Paulius Micikevicius, David A. Patterson, Hanlin Tang, Gu-Yeon

Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim M. Hazelwood, Andy Hock, Xinyuan Huang,
Daniel Kang, David Kanter, Naveen Kumar, Jefery Liao, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost,
Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Clif Young, and Matei Zaharia. 2020. MLPerf Training
Benchmark. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org.

[62] D. A. Menasce. 2002. TPC-W: A Benchmark for E-Commerce. IEEE Internet Computing 6 (05 2002), 83ś87.
[63] Ripal Nathuji, Aman Kansal, and Alireza Ghafarkhah. 2010. Q-clouds: managing performance interference efects for qos-aware clouds.

In Proceedings of the 5th European conference on Computer systems. ACM, 237ś250.
[64] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalander. 2020. Twig : Multi-Agent Task Management for Colocated

Latency-Critical Cloud Services. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE,
167ś179.

[65] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic, and Ricardo Bianchini. 2013. DeepDive: Transparently Identifying
and Managing Performance Interference in Virtualized Environments. In Proceedings of the 2013 USENIX Conference on Annual Technical

Conference (San Jose, CA) (USENIX ATC’13). USENIX Association, Berkeley, CA, USA, 219ś230.
[66] Numactl. 2019. https://github.com/numactl/numactl.
[67] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan Hui. 2012. Exploiting Hardware Heterogeneity Within the

Same Instance Type of Amazon EC2. In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing (Boston, MA)
(HotCloud’12). USENIX Association, Berkeley, CA, USA, 4ś4.

[68] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios Goumas, and Nectarios Koziris. 2017. Improving QoS and
Utilisation in modern multi-core servers with Dynamic Cache Partitioning. In Proceedings of the Joined Workshops COSH 2017 and

VisorHPC 2017, Carsten Clauss, Stefan Lankes, Carsten Trinitis, and Josef Weidendorfer (Eds.). Stockholm, Sweden, 21ś26.
[69] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coordinated Partitioning of Last-Level Cache and Memory Bandwidth

for Fairness-Aware Workload Consolidation on Commodity Servers. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). ACM, New York, NY, USA, Article 10, 16 pages.

ACM Trans. Comput. Syst.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing • 35

[70] Tirthak Patel and Devesh Tiwari. 2020. CLITE : Eicient and QoS-Aware Co-location of Multiple Latency-Critical Jobs for Warehouse
Scale Computers. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 193ś206.

[71] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018. Optimus: An Eicient Dynamic Resource Scheduler
for Deep Learning Clusters (EuroSys ’18). Association for Computing Machinery, New York, NY, USA, Article 3, 14 pages.

[72] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton Pu. 2010. Understanding Performance Interference of
I/O Workload in Virtualized Cloud Environments. In Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing

(CLOUD ’10). IEEE Computer Society, Washington, DC, USA, 51ś58.
[73] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir Vlassov. 2014. Stay-Away, Protecting Sensitive Applications from

Performance Interference. In Proceedings of the 15th International Middleware Conference (Bordeaux, France) (Middleware ’14). ACM,
New York, NY, USA, 301ś312.

[74] Redis. 2019. Redis: an open source, in-memory data structure store. https://redis.io.
[75] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia. 2012. Precise, Scalable, and Online Request Tracing for Multitier

Services of Black Boxes. IEEE Transactions on Parallel and Distributed Systems 23, 6 (June 2012), 1159ś1167.
[76] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Runtime Measurements in the Cloud: Observing, Analyzing, and

Reducing Variance. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 460ś471.
[77] Prateek Sharma, AhmedAli-Eldin, and Prashant Shenoy. 2019. Resource Delation: ANewApproach For Transient Resource Reclamation.

In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 33, 17 pages.

[78] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder. 2003. Discovering and Exploiting Program Phases.
IEEE Micro 23, 6 (Nov. 2003), 84ś93.

[79] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google, Inc.

[80] S. Sivathanu, X. Pu, L. Liu, X. Dong, and Y. Mei. 2013. Performance Analysis of Network I/O Workloads in Virtualized Data Centers.
IEEE Transactions on Services Computing 6 (01 2013), 48ś63.

[81] Solr. 2021. Solr is the popular, blazing-fast, open source enterprise search platform built on Apache Lucene. https://solr.apache.org/.
[82] Spark-Bench. 2020. Spark-Bench: A Benchmark Suite for Apache Spark. https://github.com/codait/spark-bench.
[83] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. 2009. SHARP control: controlled shared cache management in chip

multiprocessors. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 517ś528.
[84] Christopher Stewart and Kai Shen. 2005. Performance modeling and system management for multi-component online services. In

Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 71ś84.
[85] Fei Tang, Wanling Gao, Jianfeng Zhan, Chuanxin Lan, Xu Wen, Lei Wang, Chunjie Luo, Zheng Cao, Xingwang Xiong, Zihan Jiang,

Tianshu Hao, Fanda Fan, Fan Zhang, Yunyou Huang, Jianan Chen, Mengjia Du, Rui Ren, Chen Zheng, Daoyi Zheng, Haoning Tang,
Kunlin Zhan, Biao Wang, Defei Kong, Minghe Yu, Chongkang Tan, Huan Li, Xinhui Tian, Yatao Li, Junchao Shao, Zhenyu Wang,
Xiaoyu Wang, Jiahui Dai, and Hainan Ye. 2021. AIBench Training: Balanced Industry-Standard AI Training Benchmarking. In IEEE

International Symposium on Performance Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY, USA, March 28-30, 2021. 24ś35.
[86] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. 2006.

Stardust: Tracking Activity in a Distributed Storage System. SIGMETRICS Perform. Eval. Rev. 34, 1 (June 2006), 3ś14.
[87] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.

2020. Borg: The next Generation. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys
’20). Association for Computing Machinery, New York, NY, USA, Article 30, 14 pages.

[88] A Tirumala, F Qin, J Dugan, J Ferguson, and K Gibbs. 2005. Iperf: The TCP/UDP bandwidth measurement tool. http.dast.nlanr.net/Projects
38 (2005).

[89] Guohui Wang and T. S. Eugene Ng. 2010. The Impact of Virtualization on Network Performance of Amazon EC2 Data Center. In
Proceedings of the 29th Conference on Information Communications (San Diego, California, USA) (INFOCOM’10). IEEE Press, Piscataway,
NJ, USA, 1163ś1171.

[90] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang,
Chen Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: A big data benchmark suite from internet services.
In 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA). 488ś499.

[91] Fei Xu, Fangming Liu, and Hai Jin. 2016. Heterogeneity and Interference-Aware Virtual Machine Provisioning for Predictable
Performance in the Cloud. IEEE Trans. Comput. 65, 8 (2016), 2470ś2483.

[92] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. 2014. iAware: Making Live Migration of Virtual Machines
Interference-Aware in the Cloud. IEEE Trans. Comput. 63, 12 (Dec. 2014), 3012ś3025.

[93] H. Xu, X. Ning, H. Zhang, J. Rhee, and G. Jiang. 2016. PInfer: Learning to Infer Concurrent Request Paths from System Kernel Events.
In 2016 IEEE International Conference on Autonomic Computing (ICAC). 199ś208.

ACM Trans. Comput. Syst.

36 • Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

[94] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg Bronevetsky, and Saurabh Bagchi. 2018. Pythia: Improving
Datacenter Utilization via Precise Contention Prediction for Multiple Co-located Workloads. In Proceedings of the 19th International

Middleware Conference (Rennes, France) (Middleware ’18). ACM, New York, NY, USA, 146ś160.
[95] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. 2014. Wrangler: Predictable and faster jobs using fewer resources.

In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1ś14.
[96] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-lux: Precise Online QoS Management for Increased Utilization

in Warehouse Scale Computers. ACM SIGARCH Computer Architecture News 41, 3 (2013), 607ś618.
[97] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2016. Elfen Scheduling: Fine-Grain Principled Borrowing from Latency-

Critical Workloads Using Simultaneous Multithreading. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 309ś322.

[98] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory Cluster Computing. In Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implementation (San Jose, CA) (NSDI’12). USENIX Association, USA, 2.
[99] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013. CPI 2: CPU performance isolation for

shared compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems. 379ś391.
[100] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. 2014. SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve

Utilization in Warehouse Scale Computers. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. 406ś418.
[101] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. 2014. Smite: Precise qos prediction on real-system smt processors to

improve utilization in warehouse scale computers. In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium

on. IEEE, 406ś418.
[102] Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. 2016. Predicting Cross-Core Performance Interference on Multicore

Processors with Regression Analysis. IEEE Trans. Parallel Distrib. Syst. 27, 5 (May 2016), 1443ś1456.
[103] Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng, Youliang Yan, and Wensen Yang. 2013. An Empirical Model for Predicting

Cross-core Performance Interference onMulticore Processors. In Proceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques (Edinburgh, Scotland, UK) (PACT ’13). IEEE Press, Piscataway, NJ, USA, 201ś212.

[104] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng, Chao Li, Wenli Zheng, Li Li, and Minyi Guo. 2019. Themis: Predicting
and Reining in Application-Level Slowdown on Spatial Multitasking GPUs. In 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). 653ś663.
[105] Qin Zheng, Bharadwaj Veeravalli, and Chen-Khong Tham. 2009. On the Design of Fault-Tolerant Scheduling Strategies Using

Primary-Backup Approach for Computational Grids with Low Replication Costs. IEEE Trans. Comput. 58, 3 (2009), 380ś393.
[106] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for latency-critical tasks on shared multicore systems. ACM SIGARCH

Computer Architecture News 44, 2 (2016), 33ś47.
[107] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-Image Translation using Cycle-Consistent

Adversarial Networks. In Proceedings of the IEEE international conference on computer vision. 2223ś2232.
[108] Zipkin. 2019. https://zipkin.io/.

ACM Trans. Comput. Syst.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Inconsistent Interference Tolerance Ability
	2.2 Inconsistent Preemption Loss of BEs
	2.3 Implications

	3 Rhythm Design
	3.1 The Servpod Abstraction
	3.2 System Overview
	3.3 Request Tracer
	3.4 Contribution Analyzer
	3.5 Co-locating Controller
	3.6 BE Reclamation

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Component-distinguishable Co-location
	5.3 BE-distinguishable Reclamation
	5.4 Running with Microservice
	5.5 Example of Running Process
	5.6 Loadlimit and Slacklimit Analysis

	6 Related Work
	7 Discussion
	8 Conclusions
	Acknowledgments
	References

