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Exploring the genomes of East African Indicine
cattle breeds reveals signature of selection for
tropical environmental adaptation traits
Mengistie Taye1,2*, Wonseok Lee1, Kelsey Caetano-Anolles1, Tadelle Dessie3, Seoae Cho4,
Sung Jong Oh5, Hak-Kyo Lee6 and Heebal Kim1,4,7

Abstract: African indigenous cattle breeds have been reared within the continent
for millennia. Due to the harsh tropical environmental conditions (e.g. sever disease
and parasite prevalence, high temperature, feed and water scarcity) where they
evolved, they have developed various levels of tropical environment adaptation
attributes. In order to explore the genomic signatures of tropical environment
adaptation in African cattle, we compared the whole genomes of East African
Indicus cattle breeds with European and Asian Taurine cattle breeds using XP-EHH
and XP-CLR population statistical methods. Several genes involved in various bio-
logical processes and pathways related to domestication and behavior (dopami-
nergic and glutamatergic synapse), feeding and metabolism (gastric acid secretion,
metabolic pathways), thermotolerance (sphingolipid and Wnt signaling), immune
system response (T cell receptor signaling), and growth and reproduction
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(osteoblast differentiation, fibroblast migration) were identified from our genome
analysis. Genes associated with tick and parasite resistance traits such as keratin
genes, collagen genes, calcium signaling, and tumor necrosis factor proteins were
also identified. The genes and pathways identified in this study improve our
understanding of the biological mechanisms of tropical environment adaptation of
African Indicus cattle breeds, which may allow us to use them for genomic selection
programs. This result presents a basis for further study and may help to develop
vaccines for tick and gastrointestinal parasite challenge.

Subjects: Agriculture and Food; Biodiversity; Bioinformatics; Biotechnology

Keywords: Indicus cattle; positive selection signature; thermotolerance; tick resistance;
XP-CLR; XP-EHH

1. Introduction
Sub-Saharan Africa is endowed with diverse (>145 cattle breeds) and a huge number of cattle
populations (Rege, 1999). The genetic makeup of African cattle breeds is comprised primarily of
genetic information originating from two subspecies: the humpless B. taurus (taurine) and the
humped B. indicus (indicine). The contribution of the North African subspecies of wild cattle or
aurochs B. primigenius to the genome of some African cattle populations is a possibility as well
(Decker et al., 2014). Taurine cattle, known to have been domesticated in the near east and
introduced to Africa, are the earliest African cattle which are, nowadays, inhabiting mainly the
humid and sub-humid areas in West and Central Africa. Indicine cattle, domesticated in the Indus
valley, were introduced to Africa later most likely after 700 AD, during Arabic migrations into north
and east Africa (Ajmone Marsan, Garcia, & Lenstra, 2010; Hanotte et al., 2002; Rege, 1999). These
days African cattle breeds are the result of human and natural selection forces, and introgression
between the subspecies has shaped their genetic diversity resulting in breeds of diverse morpho-
logical and physiological characteristics, as well as adaptation to different agro-ecological and
sociocultural conditions (Bahbahani, Afana, & Wragg, 2018; Bahbahani et al., 2015, 2018; Hanotte,
Dessie, & Kemp, 2010; Mwai, Hanotte, Kwon, & Cho, 2015; Rege, 1999).

Environmental adaptation attributes including disease and parasite resistance as well as heat
tolerance are important traits for cattle survival and production in tropical and subtropical regions
(Neto, Jonsson, Michael, & Barendse, 2011; Shyma, Gupta, & Singh, 2015). High prevalence of
disease and parasites exert a significant effect on cattle production in Africa causing death and
production losses (Mwai et al., 2015). External parasites such as ticks, which feed on blood and
transmit various types of diseases impact livestock production and productivity. The estimated
economic cost of tick infestation control is high (Mapholi et al., 2014; Neto et al., 2011). Similarly,
high environmental temperature compromises animal production and productivity through its
effect on growth, reproduction, and feed intake (Hansen, 2004). Moreover, the stringency of
available environmental resources in tropical regions make the introduction of productive
European breeds difficult (Wang et al., 2007).

Humped zebu cattle are Indicus cattle which are abundantly distributed throughout East Africa
and the drier parts of West Africa. These cattle breeds are easily identified by their characteristic
hump and pendulous dewlap and are thought to have descended from the secondary cattle
introduction that occurred in the arid regions of Africa. Zebu cattle are known for their superior
adaptation to harsh environments, including resistance to various types of diseases and parasites
as well as thermotolerance (Bahbahani et al., 2015, 2018; Chan, Nagaraj, & Reverter, 2010;
Kongsuwan et al., 2010; Rege, 1999).
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Characterizing the genome of indigenous cattle populations and identifying genomic regions con-
tributing to tropical environment adaptation is an important step in developing a breeding strategy for
increased meat and milk production (Bahbahani et al., 2015, 2018; Chan et al., 2010). Exploring
signatures of positive selection has been used to identify genomic regions affected by natural and
artificial selection that are associated with the phenotypes of specific populations. Previously, several
authors have reported the positive selection of genes associated with tick resistance and other
environmental adaptation traits in tropical cattle breeds. For example, Chan et al. reported genes
directly and/or indirectly associated with tropical adaptation attributes such as keratins, heat shock
proteins, and heat tolerance genes (Chan et al., 2010). By comparing the differential expression of
genes in resistant and susceptible cattle, several candidate genes responsible for tick resistance were
identified (Kongsuwan et al., 2010; Piper et al., 2008; Wang et al., 2007). The major histocompatibility
complex genes have been the center of focus for genetic variation of disease resistance studies in
cattle (Martinez et al., 2006; Neto et al., 2011). Gautier et al. reported genes involved in the immune
system, nervous system, and skin and hair properties in West African cattle breeds (Gautier et al.,
2009). Several genes involved in various biological pathways such as immunity, reproduction, devel-
opment and heat tolerance have also been reported for East African Shorthorn Zebu cattle (Bahbahani
et al., 2015, 2017) and Ethiopian Sheko cattle (Bahbahani et al., 2018). However, studies on East
African cattle breeds based on whole genome next-generation sequencing (NGS) data are very scarce.

Several studies reported the positive selection signature of genes in various cattle breeds using
different methods (Bahbahani et al., 2018, 2015, 2017; Gautier et al., 2009; Lee et al., 2014; Noyes
et al., 2011). Here, we used a cross-population extended haplotype homozygosity (XP-EHH) and
cross-population composite likelihood ratio (XP-CLR) statistical methods. The XP-EHH statistic
assesses haplotype differences between two populations. It is designed to detect alleles that
have increased in frequency to the point of fixation or near fixation in one of the populations
being compared (Pickrell et al., 2009; Sabeti et al., 2007). XP-CLR is a likelihood method for
detecting selective sweeps that involve jointly modeling the multilocus allele frequency differen-
tiation between two populations (Chen, Patterson, & Reich, 2010). Using these two statistics, we
compared the whole genomes of three East African Indicine cattle breeds with four (Three
European and one Asian) Taurine cattle breeds in order to identify positively selected genomic
regions in African cattle breeds that are associated with tropical environmental adaptation traits.

2. Materials and methods

2.1. Data description and preparation
This study is based on previously published data; detailed information about sampling and re-
sequencing of DNA samples can be found within the manuscript (Kim et al., 2017). DNA samples
extracted from whole blood samples of three East African Indicus cattle breeds (9 Boran, 9 Ogaden,
and 10 Kenana) were individually sequenced using the Illumina HiSeq 2000 platform. Additionally,
previously published genomic data of three European (10 Holstein, 10 Angus, and 10 Jersey) and
a single Asian (11 Hanwoo) Taurine cattle breeds was used. Together, a per-base sequence quality
checkwas performed using the FastQC software (Andrews, 2010). Bowtie2 (Langmead& Salzberg, 2012)
was used to map pair-end sequence reads to the reference bovine genome (UMD 3.1). There was an
overall alignment rate of 98.5% and average read depth of 10.8x. Picard tools (http://picard.sourceforge.
net) to filter potential PCR duplicates, and SAMtools was used to create index files for reference and bam
files (Li et al., 2009). Genome analysis toolkit 1.4 (GATK) performed local realignment of reads (McKenna
et al., 2010). The “UnifiedGenotyper” and “SelectVariants” arguments of GATK were used to call
candidate SNPs. In order to filter variants and avoid possible false positives, the “VariantFiltration”
argument of the same software was adopted using the following options: 1) SNPs with a phred-scaled
quality score of less than 30 were filtered; 2) SNPs with MQ0 (mapping quality zero; total count across all
samples ofmapping quality zero reads) >4 andquality depth (unfiltered depthof non-reference samples;
low scores are indicative of false positives and artifacts) <5 were filtered; and 3) SNPs with FS (Phred-
scaled p-value using Fisher’s exact test) > 200 were filtered since FS represents variation on either the
forward or the reverse strand, which is indicative of false positive calls. BEAGLE (Browning & Browning,
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2007) was used to infer the haplotype phase and impute missing alleles for the entire set of cattle
populations simultaneously. After performing all the filtering processes, a total of ~37million SNPs were
retained and used for further analysis in this study. The sequences used in this study are available from
GenBank with the Bioproject accession number of African cattle breeds (PRJNA312138—SRX1858079,
SRX1858078, SRX1858077, SRX1858076, SRX1858075, SRX1858074, SRX1858073, SRX1858072,
SRX1858071, SRX1802254, SRX1802253, SRX1802251, SRX1775710, SRX1775700, SRX1766099,
SRX1766098, SRX1766097, SRX1766096, SRX1765344, SRX1765338, SRX1762810, SRX1762809,
SRX1752210, SRX1751992, SRX1640149, SRX1631639, SRX1625858, SRX1765311), Holstein
(PRJNA210521—SRX322362, SRX322361, SRX322360, SRX322359, SRX322358, SRX322357, SRX322356,
SRX322355, SRX322354, SRX322353), Jersey (PRJNA318089—SRX1756427, SRX1756425, SRX1756315,
SRX1756311, SRX1756308, SRX1756302, SRX1756292, SRX1756266, SRX1756143, SRX1756073), Angus
(PRJNA318087—SRX1762572, SRX1762571, SRX1762569, SRX1762564, SRX1762377, SRX1762017,
SRX1762016, SRX1758657, SRX1757535, SRX1756016), and Hanwoo (PRJNA210523—SRX322347,
SRX322352, SRX322351, SRX322350, SRX322349, SRX322348, SRX322346, SRX322345, SRX322344,
SRX318521, SRX318497).

2.2. Phylogenetic tree and population structure
In order to infer the evolutionary relationship between the breeds considered, we constructed
a phylogenetic tree using genome-wide autosomal SNPs from 69 individual sequences. We used
the SNPhylo pipeline (Lee, Guo, Wang, Kim, & Paterson, 2014) to construct the phylogenetic tree
with a sub sample of 17,243 SNPs and options of Minor allele frequency (MAF) >0.05 and number of
bootstrap samples of 1000. FigTree (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize
the tree. Additionally, we used STRUCTURE software which implements Bayesian algorithms in
order to detect the true number of clusters, K (the number of ancestral populations), to identify
groups of individuals corresponding to the uppermost hierarchical levels (Evanno, Regnaut, &
Goudet, 2005). A total number of 16,181 loci were used for the structure analysis, using the
following options of Length of Burnin Period of 2000, Number of MCMC Reps after Burnin of
100,000 and MAF of 0.05. We used VCFtools (Price et al., 2006) and PLINK (Purcell et al., 2007)
with thin option (0.000675) to prepare input data used by STRUCTURE.

2.3. Detection of signature of positive selection
In order to detect the positive selective sweep regions in East African Indicus cattle, the whole
genomes of three East African Indicus cattle breeds—Boran (Kenya), Ogaden (Ethiopia), and
Kenana (Sudan)—grouped together as a test population were compared with four (three
European and one Asian) Taurine cattle breeds—Holstein, Angus, Jersey and Hanwoo—grouped
together as a reference population. East African Indicus cattle breeds are the result of the second
introduction of Zebu cattle to Africa and have been bred for millennia under the harsh African
conditions. Therefore, comparing the genomes of these breeds with European and Asian breeds
and detecting recent positive selection signatures might give an insight into the selective forces
shaping the genomes that help the African cattle adapting to the harsh environmental conditions.

We used the XP-EHH statistical method to assess haplotype differences between the test and
reference populations (Sabeti et al., 2007). XP-EHH compares haplotype lengths between
populations to control for local variation in recombination rates. It detects alleles that have
increased in frequency to the point of fixation or near fixation in one of the populations
(Pickrell et al., 2009). XP-EHH is directional, meaning that the direction of selection is deter-
mined by the sign of the values; positive values indicate selective sweep in the test popula-
tions, whereas a negative value indicates selection in the reference populations. We followed
previously published procedures (Kim, Cho, Caetano-Anolles, Kim, & Ryu, 2015; Pickrell et al.,
2009). XP-EHH values were calculated using the XP-EHH software, which can be accessed
through the following link: (http://hgdp.uchicago.edu/Software/). In order to compare the
genomic regions across populations, the genome was split into non-overlapping segments of
50 kb and the maximum XP-EHH value was computed for each segment. In order to define the
empirical P-value, segments were grouped into three clusters according to the number of SNPs.
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In each cluster, the regions with P-values less than 0.01 (1%) were considered as strong signals
of selection in the African cattle populations.

Additionally, we performed an XP-CLR statistical test in order to identify potential regions
differentially selected between the two populations compared (Chen et al., 2010). XP-CLR is
a likelihood method for detecting selective sweep regions based on allele frequency differentiation.
The script available at (http://genepath.med.harvard.edu/reich) was used to calculate XP-CLR
scores. Non-overlapping sliding windows of 50 kb and a maximum number of 600 SNPs within
each window were used. The correlation level from which the SNPs contribution to XP-CLR result
was down-weighted to 0.95. The top 1% (0.01) of the empirical distributions were designated as
candidate sweeps and genes that span the window regions were defined as candidate genes (Kim
et al., 2015). Significant genomic regions identified from the XP-EHH and XP-CLR tests were
annotated based on UMD 3.1.

2.4. Characterization of candidate genes under selection
The genes identified from XP-EHH and XP-CLR statistics were submitted to the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) gene ontology and annotation tool
for gene enrichment analysis (Huang, Sherman, & Lempicki, 2009). Gene Ontology (GO) Biological
Process (BP) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DAVID
tool were used to cluster the genes of similar biological functions and pathways. All genes
identified from XP-EHH and XP-CLR were submitted together.

We used SNPEff, a genetic variants (amino acid changes) annotation and effect prediction tool,
for the candidate genes (Cingolani et al., 2012). Missense variants of candidate genes were
extracted and carried on for the logistic and association analysis. By employing the Chi-squared
test (plink—file mydata—assoc option) and logistic model (plink—file mydata—logistic option)
employed in PLINK V1.07 software, significant SNPs that are specific for African Indicus cattle were
identified and highly significant variants are reported.

The gene names and descriptions used in this manuscript are based on genecards (http://www.
genecards.org/). The Manhattan plots of the—log10 transformed XP-EHH values and XP-CLR scores
were drawn using R software.

3. Result and discussion

3.1. Phylogenetic tree and population structure
In order to assess the historical relationship among the cattle breeds considered, we constructed
a non-rooted phylogenetic tree of 69 individual cattle using autosomal SNPs. As expected, the
phylogenetic tree revealed that African Indicus cattle breeds are clustered together separately from
European and Asian Taurine cattle breeds (Figure 1a). Additionally, we performed population structure
(Evanno et al., 2005) at different population assumptions, K (Figure 1b; Additional file 2: Figure S1).
When K is 2, consistent with the phylogenetic tree, African Indicine and European and Asian Taurine
cattle breeds showed clear differences, but at K 3, African Indicus breeds showedan admixture of each
other. At K ≥ 4 population assumptions, except Jersey cattle, European and Asian Taurine cattle breeds
showed some admixture level. In general, our result is consistent with previous reports which indi-
cated that Indicine cattle are divergent from Taurine cattle breeds (Decker et al., 2014).

3.2. Signature of positive selection in African Indicus cattle populations
In order to detect positive selection sweep regions in East African Indicus cattle populations, we
used XP-EHH (Pickrell et al., 2009; Sabeti et al., 2007) and XP-CLR (Chen et al., 2010) population
statistical methods. We compared the genomes of three East African Indicus cattle breeds (grouped
together as a test population) with the genomes of four (three European and one Asian) Taurine
cattle breeds (grouped together as a reference population). The Manhattan plot of the -log10
transformed XP-CLR and XP-EHH P-values is presented in Figure 2. From the signature of selection
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analysis, 257 (XP-EHH statistics) and 345 (XP-CLR statistics) outlier (1%) selective sweep genomic

Figure 1. Population structure
and relationship of cattle
breeds considered. (a)
Phylogenetic tree (Green
Branch, Green Node—Kenana;
Green Branch, Orange Node—
Boran; Green Branch, Red Node
—Ogaden; Red Branch, Blue
Node—Hanwoo; Red Branch,
Green Node—Angus; Red
Branch, Cyan Node—Holstein;
Red Branch, Rose Node, (b)
Population structure at 2, 3, 4
and 7 population assumptions,
(c) Number of genes identified
from XP-CLR and XP-EHH
statistics.

Figure 2. Manhattan plot of
the—log10 transformed XP-EHH
(a), and XP-CLR (b) p-values.
The y-axis shows the—log10
(P-value) of XP-EHH and XP-CLR
p-value, and x-axis shows chro-
mosomal positions. The hori-
zontal dotted lines represent
the 1% outlier regions in both
of the statistical methods.
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regions were identified under selection. Annotation of these outlier regions resulted in a total of 765
(XP-EHH = 338; and XP-CLR = 499) genes (Figure 1c; Additional file 1: Table S1-S2).

Next, we performed DAVID gene enrichment analysis to identify enriched GO BP terms and KEGG
pathways (Huang et al., 2009) using all the genes (765) identified from both statistics, and 15
significant (p < 0.05) BP terms and 19 KEGG pathways were found enriched. We clustered sig-
nificantly enriched BP terms based on genes involved in the terms (Figure 3). These BP terms are
involved in various biological functions including immune response (NFAT signaling cascade),
growth and development (cell proliferation, cell shape, myoblast differentiation, neural tube
closure, canonical Wnt signaling pathway), and behavior (walking behavior).

Enriched KEGG pathways are presented in Figure 4 (see Additional file 2: Table S3 for genes in the
pathways). Dopaminergic synapse was among the KEGG pathways enriched. Dopamine is an
organic chemical of the catecholamine and phenethylamine families that mediates a wide range
of brain functions. It is involved in the domestication process of animals (Nikulina, 1990).
Glutamatergic synapse pathway plays an important role in the behavioral adaptation of stress
and fear responses (Kamprath et al., 2009). These pathways might also be related to domestica-
tion, which effects tameness and fear response in domestic animals (Mirkena et al., 2010; Zeder,
2012). Dopamine and glutamate modulate foraging and feeding-related behaviors of animals
(Hills, 2006). The dopaminergic system aids free-ranging animals in identifying grass/forage spe-
cies that are nutritious and non-poisonous (Berthoud, 2007; Jensen, 2002). The pastoral mode of
livestock production in Africa might contribute for the positive selection of the gene regions
involved in these pathways. African pastoralists move from place to place with their cattle in
search of feed and water, which forces cattle to adapt to new vegetation and feed types (Hanotte
et al., 2002; Mwai et al., 2015).

The KEGG pathways of gastric acid secretion, and fructose and mannose metabolism enriched
are related to feeding digestion and metabolism. Gastric acid is vital for normal upper gastro-
intestinal functions, including protein digestion, and calcium and iron absorption, as well as

Figure 3. Functional clustering
of Gene Ontology Biological
Process terms. The BP terms are
associated with genes located
in outlier loci (regions) detected
by XP-CLR and XP-EHH statis-
tics in East African Indicus cat-
tle breeds. The gene list of each
GO term in the cluster was
compared to calculate the dis-
tance between the GO terms.
For a distance of >0.8–0.9, GO
terms were re-clustered. The
representative GO terms in
a group were manually
selected, and are shown in red
font. The numbers of genes in
the GO terms are in brackets,
along with their corresponding
p-value.
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providing some protection against bacterial infections. The physical and chemical nature of live-
stock feed affects gastric function to which coarse textured feeds result in higher gastric acid
secretion (Low, 1990). The poor nutritional quality and seasonal availability of livestock feed in
tropical Africa can act as a selective pressure which contributes to the adaptation and efficient
utilization of low-quality feed by indigenous African cattle breeds. Lower metabolic requirements
or reducing metabolism and higher digestive efficiency, and ability to utilize poor quality feed are
adaptations of tropical cattle to feed scarcity (Mirkena et al., 2010). The higher efficiency of Indicus
cattle to ferment nitrogen-deficient poor-quality feed and capture energy has been reviewed
(Hegarty, 2004; Warwick & Cobb, 1975).

The mammalian heat shock response involves the sphingolipid signaling pathway, which acti-
vates sphingomyelin hydrolysis and/or the de novo biosynthesis of sphingolipids (Jenkins, 2003).
The sphingolipid signaling pathway has two main metabolites: the ceramide and sphingosine-
1-phosphate, which are important for heat stress response. Ceramides signals cells to undergo
apoptosis during a severe heat stress (Jenkins, 2003). Sphingosine-1-phosphate has been found to
protect oocytes from physiologically relevant heat shock and affect oocyte maturation (Roth &
Hansen, 2004). Wnt signaling is also required for sweat gland development and sweating (Cui
et al., 2014). Evaporative cooling through the involvement of sweat glands and other skin compo-
nents is an important mechanism of heat tolerance (Jian, Duangjinda, Vajrabukka, & Katawatin,
2014). The genes in these pathways (PLCB1, MAPK12, and SGPL1) have been found to be involved in
different aspects of thermotolerance. PLCB1 is associated with heat tolerance in catfish (Jin et al.,
2017) and has been taken as an adaptation to hot arid environments in sheep and goats (Kim
et al., 2016). Mitogen-activated protein kinases (MAPKs) elicit cellular response favoring survival or
apoptosis (Sugimoto et al., 2012). Renin secretion, enriched in the KEGG pathways, is associated
with adaptation to heat stress (Ali et al., 2012). It regulates the body’s water balance through the
secretion of aldosterone and animals adapted to hot arid environments display lower overall water
intake and turnover (Mirkena et al., 2010; Warwick & Cobb, 1975). Additionally, heat shock protein
families (DNAJC11, DNAJC8), heat shock factor proteins (HSF5) and genes associated with heat
stress response (PPP2R5E) identified in this study might contribute to the superior heat tolerance
ability of African Indicus cattle breeds (Bahbahani et al., 2018, 2015, 2018, 2017; Wang, Dzama,
Rees, & Muchadeyi, 2015). The BP term temperature homeostasis, a strategy by the animal to cope
with climate variability, was also enriched.

Figure 4. KEGG pathways
enriched from positively
selected identified genes. The
y-axis is the pathways and the
numbers in the x axis are num-
ber of genes that are included
in the KEGG pathway enriched
and the log10 transformed
adjusted p-values.
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Renin is found in high concentrations in reproductive tissues indicating its role in reproduction
function. It affects ovulation, angiogenesis, and steroidogenesis (Yoshimura, 1997). Hedgehog
signaling is an important pathway for proper development of the reproductive system (Franco &
Yao, 2012). It is implicated in male germ cell development and differentiation in chicken (Chen
et al., 2017). In addition to pathways, genes involved in reproduction function such as IGF-1, ESR2,
and FGFR2 were identified (Table 1). IGF-1 affects follicular development and oocyte maturation
and also enhances ovarian angiogestin II production (Yoshimura, 1997). ESR2 is a protein-coding
gene that controls many cellular processes including growth, differentiation, and function of the
reproductive system. A polymorphism in ESR2 gene has been shown to be associated with sperm
quality and boar fertility traits (Gunawan et al., 2012). FGFR2 is among the mitogenic signaling
molecules with an essential role in the regulation of embryonic development. It is involved in
postnatal development and function of the uterus (Filant, DeMayo, Pru, Lydon, & Spencer, 2013).
The significant effect of high temperature on reproductive function of livestock species has been
previously observed (Hansen, 2009). The pathways and genes identified here might contribute to
the better reproductive efficiency of African Indicus cattle breeds to produce and reproduce in the
tropical harsh environmental conditions of the continent (Hansen, 2009; Makina et al., 2015).

The T cell receptor signaling pathway, an important pathway for immune system develop-
ment, was identified in this study. T cell receptors play a key role in the functioning of T cells
and formation of an immunological synapse between T cells and the antigen-presenting cells.
They initiate activation of T cells which in turn causes clonal expansion, differentiation, cyto-
toxic killing, or induction of programmed cell death (Bromley et al., 2001). The positive selection
of genes involved in gene ontologies and pathways related to immune response have been
previously reported for African cattle (Makina et al., 2015; Wang et al., 2015). Under tropical
environments, indigenous African cattle breeds tend to better resist disease and parasite
challenge as compared to European cattle breeds (Wang et al., 2015). The high and diverse
disease and parasite prevalence in tropical Africa (Mirkena et al., 2010) where these breeds

Table 1. Candidate genes identified as positively selected in African cattle breeds affecting
different traits in relation to tropical environment adaptation

Gene Chr Gene position
(kbp)

XP-CLR
score

XP-EHH
value

XP-EHH
p-value

MLPH 3 117600.0–117650.0 221.32 1.30 0.0042

IGF-I 5 66525.6–66575.6 120.11 - -

SLC25A48 7 48850.0–48900.0 - 2.25 0.0001

TGM1 10 20750.0–20800.0 - 1.45 0.0052

ESR2 10 76676.2–76726.2 187.69 1.19 0.0070

PLCB1 13 850.0–900.0 - 1.20 0.0068

TGM3 13 53300.0–53350.0 - 1.15 0.0088

PRG3 15 81900.0–81950.0 - 1.66 0.0009

ATP2A2 17 56477.0–56527.0 157.57 - -

KRT33A 19 42150.0–42200.0 - 1.45 0.0022

SLC45A2 20 39850.0–39900.0 - 1.34 0.0037

BoLA 23 27850.0–27900.0 110.91 - -

MC5R 24 43,975.7–44025.7 121.10 - -

FGFR2 26 41925.6–41975.6 121.62 - -

DMBT1 26 42750.0–42800.0 - 1.54 0.0015

Chr.: Chromosome; XP-CLR: cross-population composite likelihood ratio; XP-EHH: cross-population extended haplotype
homozygosity
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have evolved might be the selective pressure for the genes involved in pathways and BP terms
related to immune responses.

Additionally, genes that contribute to the superior tick and parasite resistance mechanisms in
African Indicus cattle were identified (Table 1). Host tick resistance is defined as the ability of the
host to reduce damage caused by the parasite through diverse immune and non-immune struc-
tural components (Neto et al., 2011). Immune response genes identified in relation to tick resis-
tance include BoLA, TNFAIP8L3, and SLC25A48. BoLA, also known as the bovine major
histocompatibility complex, has a major role in antigen processing and presentation. It plays
a vital role in host resistance to an ecto- and endoparasite infestation (Martinez et al., 2006;
Shyma et al., 2015). BoLA is highly polymorphic; several scholars reported the association of
different alleles to tick resistance (Martinez et al., 2006; Neto et al., 2011). TNFAIP8L3 and
SLC25A48 genes are involved in antigen recognition and have been previously identified to be
under selection in African cattle breeds in relation to tick resistance (Makina et al., 2015).

The physical structure of the epidermal layers of cattle skin represents the first line of defense
against ectoparasite invasion (Gautier et al., 2009; Kongsuwan et al., 2010). In relation to this,
keratin and keratin associated genes (KRT33A, KRTAP27-1, and KRTAP9-1) were identified under
selection. Keratin genes are heteropolymeric structural proteins that form the structural frame-
work of the skin and hair cells contributing to tick resistance via their action as a barrier to the
external environment (Nakamura, Kanemarum, & Fukami, 2013). KRT33A gene was previously
found overrepresented in highly tick resistant cattle (Kongsuwan et al., 2010). Keratinocytes in
the epidermis also have an immune response function- they secrete cytokines that initiate local
inflammatory responses (Nakamura et al., 2013). Tick resistance in African cattle has been under-
stood to be due to superior skin immunity (Marufu, Qokweni, Chimonyo, & Dzama, 2011). The
positive selection of keratin-related genes has been previously reported in African cattle
(Bahbahani et al., 2015; Chan et al., 2010; Makina et al., 2015). Collagens (COL12A1, COL8A1)
provide structural integrity to the skin (Wang et al., 2007). Structural integrity was found over-
represented from genes differentially expressed in tick resistant Brahman cattle (Kongsuwan et al.,
2008). Extracellular matrix proteins (PRG3, VWA2, and ATRN) form a protective barrier producing an
unfriendly environment for tick attachment and feeding (Kongsuwan et al., 2008). PRG3 stimulates
neutrophil superoxide production and histamine release from basophils. It is involved in histamine
biosynthetic process and activates basophils that are important effectors of tick rejection and
a major component of acquired resistance of the host (Falcone, Pritchard, & Gibbs, 2001; Wikel,
1996).

The contribution of light coat color to cattle tick resistance has been previously reported (Ibelli
et al., 2012; Mapholi et al., 2014; Marufu et al., 2011). This might be due to the fact that on light
colored animals ticks can be easily seen by predator birds and picked up easily (Ibelli et al., 2012;
Mapholi et al., 2014; Marufu et al., 2011). Melanogenesis, defined as the production of melanin
pigments, plays a role in the pigmentation of skin and hair (Cieslak, Reissmann, Hofreiter, &
Ludwig, 2011). Several genes (SLC45A2, MLPH, RAB17, RAB37, RAB42, RAB7A, and ATRN), which
are involved at different stages of melanocyte biology (Guibert, Girardot, Leveziel, Julien, &
Oulmouden, 2004), were detected in this study. Mutations in these genes cause dilution of
phenotypes (Cieslak et al., 2011), which might result in light coat color of African Indicine cattle
breeds (Marufu et al., 2011). Mutations in MLPH gene have been found to cause dilution of coat
color (Philipp et al., 2005). In addition to color, cattle hairs are coated with an emulsion of sweat
and sebum, which prevents tick attachment (Kongsuwan et al., 2010). Searching for non-
synonymous mutations, we identified five (three known—rs136185632, rs209852661,
rs209010309 and two novel—3:117616155, 3:117632216), and two known (rs134604394,
rs378039235) significant missense variants on MLPH and SLC45A2 gene regions, respectively
(Table 2). MC5R controls the secretion of sebum (Zhang, Li, Anthonavage, & Eisinger, 2006),
a complex mixture of lipid that contributes to skin integrity and inflammatory processes, transport
antioxidants to the skin surface, and has innate antimicrobial activity (Zhang et al., 2011). In this

Taye et al., Cogent Food & Agriculture (2018), 4: 1552552
https://doi.org/10.1080/23311932.2018.1552552

Page 10 of 16



gene region, one novel (24:43984677) and one known (rs134437472) significant missense variants
were identified (Table 2). The smoother coat and shorter hair of indigenous African cattle breeds
have been reported to contribute to their superior tick resistance (Marufu et al., 2011).

Genes involved in calcium signaling (ATP2A2, TGM3, and TGM1) have also been found to play an
important role in host response to tick challenge (Bagnall, Gough, Cadogan, Burns, & Kongsuwan,
2009; Kongsuwan et al., 2010, 2008). The ATP2A2 gene, which encodes Ca2+dependent ATPase, is
reported to be highly expressed in highly tick resistant cattle (Bagnall et al., 2009).
Transglutaminases (TGM3, TGM1) are Ca2+dependent enzymes expressed in terminally differen-
tiating keratinocytes that are involved in the apoptosis and cornification of the epidermis. TGMs are
required for crosslinking the main component of the epidermal cornified envelope in the epidermis
(Candi, Schmidt, & Melino, 2005) and provide a defense function against ectoparasites (Kongsuwan
et al., 2010). In TGM1 and TGM3 gene regions, we identified two novel (10:20736590, 10:20739046)
and three known (rs41695720, rs136283113, rs211468449) significant missense variants, respec-
tively (Table 2).

Gastrointestinal (GI) parasites are economically significant livestock health problems causing
production losses (Benavides, Sonstegard, & Van Tassell, 2016; McManus, Do Prado Paim, de Melo,
Brasil, & Paiva, 2014). Gastric acid secretion, one of the identified enriched KEGG pathways, has
a role in protecting the host against several parasitic diseases in humans (Martinsen, Bergh, &
Waldum, 2005). Genes involved in GI parasite resistance identified in this study include TNFAIP3,
TNFAIP8L3, and DMBT1. TNF proteins encode a multifunctional pro-inflammatory cytokine related
to nematode resistance (Araujo et al., 2009). DMBT1 is a protein-coding gene that plays a crucial
role in mucosal defense, cellular immune defense, and epithelial differentiation. It has been found
highly expressed in the mesenteric lymph node of intestinal nematode resistant animals (Araujo
et al., 2009). Through observation of the genetic variation relating to gastrointestinal parasite
resistance between and within breeds, it is evident (McManus et al., 2014) that Indicus cattle have
evolved for superior parasite resistance as compared to Taurine cattle and their crosses (Frisch,
O’neill, & Kelly, 2000).

4. Limitation of this study
As false positive results are not uncommon in these kinds of studies, additional validation proce-
dures are important. Additionally, although the statistical methods used are robust enough to

Table 2. Significant missense variants identified in candidate gene regions

Gene Chr. SNP ID aa change Logistic
p-value

X2 P-value

MLPH 3 rs136185632 p.Ser131Arg 1.78E-05 7.93E-18

3:117616155 p.Ala301Thr 2.62E-05 8.77E-20

3:117632216 p.Pro518Ser 0.000105 7.83E-19

rs209852661 p.Leu519Ser 9.51E-06 6.49E-16

rs209010309 p.Thr571Ala 9.51E-06 6.49E-16

TGM1 10 10:20736590 p.Arg103Gln 0.003422 0.00017

10:20739046 p.Val349Ile 3.64E-05 6.62E-18

TGM3 13 rs41695720 p.Tyr420His 0.000498 2.69E-13

rs136283113 p.Ala412Ser 0.006084 0.00247

rs211468449 p.Ser239Asn 3.90E-06 5.50E-13

SLC45A2 20 rs134604394 p.Phe182Tyr 0.002168 3.23E-05

rs378039235 p.Ala240Thr 4.30E-05 1.65E-07

MC5R 24 rs134437472 p.Ala171Thr 8.98E-05 1.28E-23

24:43984677 p.His266Gln 8.98E-05 1.28E-23
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identify recent signatures due to natural and artificial selection, the genes identified here might be
due to the divergence between the two species which occurred millions of years ago.

5. Conclusion
Results of our analysis identified important putative genes and pathways that are positively
selected in East African Indicus cattle in response to different selection pressures of the African
tropical environment. The interaction of African cattle breeds with the high disease and parasite
prevalence, high temperature, and seasonal feed and water scarcity prevailing in the region might
be the main selective pressure underlying the selection signature of genes. Identification of these
genes allows us to better understand the biological process and mechanisms of tropical environ-
mental adaptation in African cattle and can be used in future genomic selection programs. The
genes identified in relation to tick and parasite resistance can be used for the development of tick
and parasite control methods such as designing selection programs and development of vaccines.
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