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ABSTRACT

A new non-quadratic model is proposed for solving
unconstrained optimization problems, which modifies and
develops the classical conjugate gradient methods. The technique
has the same properties as the classical conjugate gradient
method that can be applied to a quadratic function. An algorithm
is derived and evaluated numerically for some standard test
functions .The results indicate that, in general, the new algorithm
IS an improvement on the previous methods so it remains to be
investigated.
Keywords: Non-quadratic model, Conjugate gradient methods,
Numerical experimentsn.
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1. Introduction
A more general model than the quadratic one is proposed in
this paper as a basis for a CG algorithm. If q(x) is a quadratic
function, then a function f is defined as a nonlinear scaling of
q(x) if the following condition holds :
f=F(q(x)),dF/dg=F" >o0and g(x) >0.......... (1)
where x* is the minimizer of q(x) with respect to X
spedicate[12].
The following properties are immediately derived from the
above condition:
1) Every contour line to g(x) is a contour line
of f .
i) If x* is a minimizer of q(x), then it is a minimizer of f.
lii) That x* is a global minimum of q(x) does not
necessarily mean that it is a global minimum of f.
Various authors have puplished related works in the area:
A conjugate method which minimizers the function
f(x) = (q(x))?,and x € R" in at most step has been described by
Fried[9].
Another special case, namely  F(q(x)) = &,q(x) +%52q2(x)

Wherees, and &, are scalars, has been investigated by
Boland et al[5].

Another model has been developed by Tassopoulos and
Storey [13]as follows: F(q(x)) =( ,0(X) + 1)/ ¢, q(X): £,>0
AL-Assady[3]developed a model as follows (F(g(x)) = In (g(x))
Al-Bayati [1] has developed a new rational model which is
defined as follows: F(q(x)) = &q(x)/1- ¢, q(X).

Al-Bayati[4] has also developed an extended CG algorithm
which is based on a general logarithmic model
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F(a(x)=log (eq(x)-1), >0
And Al-Assady [2] described there ECG
algorithm which is based on the natural log

function for the rational g(x) function

[elq(x)

F(q) = log Lae] o #<O

2. The New Non - Quadratic Model:

In this paper, a new sine model is investigated and tested
on a set of a standard test function, and, assumed? That
condition (1) holds. An extended conjugate gradient algorithm is
developed which is based on this new model which scales q(x)
by the natural sine function for the rational q(x) functions.

F((X)) =sin (¢q(X)) ceeerrienen ?2)

We first observe that q(x) and F(q(x)) given by (2) have
identical contours, though with different function values, and
they have the same unique minimum point denoted by x".

2.1 The Algorithm:

Given Xo € R" an initial estimate of the minimizer x”.

Step (1): set do = - go.
Step (2) : Fori= 1,2, ....
Compute Xi = Xi-1 + Aiqg dig

Where Ai; is the optimal step size obtained by the line

search procedure.

Step (3) : compute _[ifi_ﬁ\/l—iff_l}z »
if «[1-f’,
[ifi+\/1—7sz+1

if +1-f

Pi =
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Where the derivations of scaling p; will be presented
below.

Step (4): calculate the new direction

di:' g, t :Bi di :

Where g, is defined by different formulae according to
variation and it is expressed as follows:

B.= p. (|9 1?79, ||?)[modified Fletcher and Reeves[8],
F/R]

B =9 (1,9 —9i.)/d1(p;9; —9:,) [Modified Hestenes and
Stiefle [10], H/S]

B =9/ (p,9,-9,,)/d',g;, [modified Polak and Ribiera
[11],P/R]

B =pllg.al 1d7g, [modified Dixon [7]]

conjugate gradient methods are usually implemented by
restarts in order to aviod an accumulation of errors affecting the
search directions.

It is, therefore, generally agreed that restarting is very
helpful in practices, so we have used the following restarting
criterion in our practical investigations. If the new direction
satisfies:

T 2
di 9;2-08g
Then a restart is also initiated. This new
direction is sufficiently downhill.

2.2 The Derivation of p; for the New Model:

The implementation of the extended CG
method has been performed for general
function F(q(x)) of the form of
equations(2).

The unknown quantities p, were expressed in terms of
available quantities of the algorithm .
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The new sinh(g(x)) model can now be written as :

f(x) = F(q(x) =sin (£q(X)) «eeee.. Solving equation (2) for q
2if =e'€d_gléd w——>  @2€d_2jfel€d.1=0
Lete'¢d=x

X2 -2ifx-1=0 w——>

X_2ifi\/—4f2+4

2

x=if £ 1-f2 "= e =if £,1- f°

igq=|n{ifi\/F}m:> q= | —

and using the expression for p, = f/,/ f/

cos(& qi_l)g
P cos(e qi)g

eie{ln[i f +-f i:]/ie} N e—ie{ln[i f ap-f i:]/ie}
Pi=

eie[ln[ifi+ 1- f?]/ie}_i_e—ie{ln[ifﬁ 1—fi2]/ie}

From the above equation we have

TS L P
S et

i 1=
B e

This is our result {if i_1+\/1—7fi2_1}2 "

if + - f°
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3. The Numerical Experiments:

In order to test the effectiveness of the new algorithm that
has been used to extend the CG method, a number of functions
have been chosen and solved numerically by utilizing the new

and established method.

The same line search was employed for all the methods.
This was the cubic interpolation procedure described in

Bunday[6].

It is found that the NEW method, which modifies CG-
algorithm, is better than the previous algorithm shown in Tables

(1) and (2).

Table (1) which uses the H/S formula,
presents a comparison between the results of
the NEW methods and the classical CG-
method. So we can show that the NEW
method has less (NOI) and (NOF) than the
classical CG. Method and that NEW method
improves the two measures of performance,
vis (NOI) and (NOF) (66)% and the (64) %

for the H/S formula.

Table (1): The comparison between the different
ECG — methods by using H/S formula .

Test N New Classical CG
Function NOI (NOF) NOI (NOF)
2 18 (51) 19 (53)
100 13 (37) 14 (40)
CUBIC 200 13 (36) 14 (40)
400 14 (40) 14 (40)
4 59 (148) 65 (170)
POWELL 100 126 (271) 105 (275)
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200 126 (261) 202 (462)
400 57 (129) 401 (860)
10 28 (76) 35 (77)
WOOD 40 48 (107) 59 (126)
200 103 (216) 107 (221)
4 22 (137) 25 (148)
40 21 (112) 20 (132)
CANTRAL 100 21 (112) 20 (132)
200 21 (113) 20 (132)
2 28 (74) 34 (87)
ROSEN 20 18 (48) 17 (52)
100 18 (51) 17 (52)
Non 10 22 (59) 25 (67)
Diagonal 40 24 (71) 22 (73)
Total NOI (NOF) | 800 (2140) | 1235 (3239)

Table (2), which uses the P/R formula, presents a
comparison between the results of the NEW methods and the
classical CG-method. So we can show that the NEW method has
less (NOI) and (NOF) than the classical CG. Method and the
NEW method improves the two measures of performance, vis
(NOI) and (NOF) by (53)% and the (69) % for the P/R formula.

Table (2): The comparison between the

different
ECG — methods by using P/R
formula.
Test N New Classical CG
Function NOI (NOF) NOI (NOF)
2 18 (52) 19 (53)
CUBIC 4 14 (42) 16 (42)
40 13 (33) 15 (40)
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2 28 (72) 33 (85)
100 18 (52) 22 (61)
ROSEN
200 19 (56) 22 (61)
400 18 (52) 22 (61)
60 65 (157) 84 (186)
POWELL 200 105 (253) 205 (427)
400 90 (218) 405 (826)
40 50 (110) 68 (144)
100 101 (212) 103 (213)
WOOD
200 97 (204) 107 (221)
400 52 (114) 108 (223)
10 20 (53) 23 (63)
Non 20 22 (65) 18 (53)
Diagonal 200 20 (57) 25 (68)
400 19 (56) 24 (68)
200 21 (115) 19 (115)
CANTRAL
400 20 (132) 22 (157)
Total NOI (NOF) 812 (2005) 1382 (2879)
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Appendix

1. Cubic Function :

0=10th-3f +f xf x0=C12-1)"

2. Non - Diagonal Variant of Rosenbrock Function :

F(x)=§‘,2 [1oo(><i—xi2)2+(1 _Xi)z} n>1,

|
3. Wood Function

y 2 z 22
0= 33100 (.., X6 of +1L - xS 90l G )

+ (1 B X4i—1)2 + l0']'()(4i—2 _1)2 + (X4i _1)2 + 19'8(X4i—2 _1XX4i B 1)}
X, = (-3.0;1.0;-3.0-10;........) "

4. Generalized Powell Quartics Functions :

n
F(x) = ,é [(><4i-3+10><4i-2)2 +5(><4i-1-X4i)2 +(><4i-2-2X4i-1)Zl +10(><4i—3‘X4i)4}

xo=(30;-1.0;0.0;1.0) T

Rosenbrock Function :

F(x) :é [1oo(x2i_xgi_1)2 +Q_X2i_ﬂ

=1

xo=(-1210;.....) T

Miele Function :
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F(x) = éexp 4i- ) X4i— 2]2+100(><4| 2—X4i—1)6+
I[ta”(xm -1- X4.)]4+x4, 3 (><4. 1)2

x0=(1.0;2.0;2..0;2.0,.. )7
Cantral Functlon

. n
F(X)=i§41 exp 4i—3)'X4i—2]4+100(><4i—2_x4i—1)6+
I[at‘”‘”(mi—1—><4i)]4 +X%i_g:

X0 =(10;2.0;2.0;20,.....) T
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