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Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial
phase of their interaction. We present an analytic calculation of the initial space-time evolution
of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills
equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic
fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for
energy density and energy flow as well as for longitudinal and transverse pressure of this system. For
example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves
as pL/pT = −[1 − 3

2a
(Qτ)2]/[1 − 1

a
(Qτ)2] + O(Qτ)4 where τ is the longitudinal proper time, Q is

related to the saturation scales Qs of the two nuclei, and a = ln(Q2/m̂2) with m̂ a scale to be defined
later. Our results are generally applicable if τ . 1/Q. As already discussed in a previous paper,
the transverse energy flow Si of the gluon field exhibits hydrodynamic-like contributions that follow
transverse gradients of the energy density ∇iε. In addition, a rapidity-odd energy flow also emerges
from the non-abelian analog of Gauss’ Law and generates non-vanishing angular momentum of the
field. We will discuss the space-time picture that emerges from our analysis and its implications for
observables in heavy ion collisions.

I. INTRODUCTION

Collisions of nuclei at high energy at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC) have established the existence of a deconfined
phase of partons at high energy densities ε & 1 GeV/fm3

[1–3]. The future goal of these programs is to make pre-
cision measurements of properties of quark gluon plasma
(QGP) and to study further details of the phase dia-
gram of quantum chromodynamics (QCD). This ambi-
tious task requires a detailed understanding of the bulk
dynamics in nuclear collisions. The most promising can-
didate theory for understanding the initial phase of these
collisions is color glass condensate (CGC) [4–7] in which
the initial interaction of nuclei, modeled as a collection
of SU(3) color charges before the collision, leads to a
quasi-classical gluon field after the collision. This field
eventually decays into a thermalized QGP.

Once the system is close to local kinetic equilibrium,
dissipative relativistic fluid dynamics has become the tool
of choice to compute the expansion and cooling of the
QGP fireball. Comparisons of hydrodynamic simulations
with experimental data have been increasingly successful
in pinning down the shear viscosity and the equation of
state of high temperature nuclear matter [8–12]. The
equilibration time τth, when hydrodynamic concepts can

be applied, as well as the initial values for energy den-
sity, energy flow, and all other currents at τ = τth, are
often treated as parameters in the fluid dynamic simula-
tion. Model calculations of the initial state, such as the
Glauber model [13], often constrain only a small subset
of initial parameters. In particular, initial transverse flow
is still often poorly constrained in many calculations or
even neglected despite very good arguments to the con-
trary [14, 15]. If color glass condensate is found to be
the applicable description of the initial interaction of nu-
clei at collider energies we will, in principle, be able to
calculate the initial conditions at the time τth. Recent
progress seems to indicate that this is the correct path
[16, 17].

Here we have a modest goal. We would like to present
analytic results that bridge the gap between known re-
sults for the classical gluon field in single nuclei before the
collision [18] and the glasma fields at a time τ0 ∼ 1/Q
after the collision. The τ0 represents the limit of conver-
gence of the small-time expansion we employ. However,
in terms of physics it also represents the point at which
the longitudinal pressure pL, initially large and negative,
approaches zero or even becomes positive, a necessary
(but not sufficient) condition for pressure isotropization.
Our results then provide solid and urgently needed input
to constrain the energy-momentum tensor at a later time
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τth > τ0 which can feed into fluid dynamic simulations.
It might be used in an ad-hoc thermalization approxima-
tion, as in [17, 19], or it might serve as the starting point
of further studies of thermalization itself [20, 21]. The
phenomenology we find is surprisingly rich. For example,
the system has non-zero angular momentum and exhibits
directed flow. It resembles aspects of phenomenological
models based on QCD strings or string ropes suggested
previously [22, 23]; however, our derivation here is based
strictly on classical QCD.

We should note that while τ0 is rather early in the col-
lision, it is within this initial time period that important
global properties are set. These include how much en-
ergy, momentum, and angular momentum are transfered
from the initial system of colliding nuclei and deposited
in the relevant part of the fireball around midrapidity.
While we will focus on analytic results for event-averaged
quantities, it is in principle straight-forward to construct
a semi-analytic event generator based on our results.

Color glass condensate has been developed from the
idea that nuclear wave functions in the asymptotic limit
of very high energies should exhibit novel properties of
QCD [4–7, 18, 24–27]. This state is characterized by a
slowing growth of the gluon distribution with increasing
energy (or decreasing Bjorken-x). The gluon area density
in a hadron or nucleus saturates and thus defines a sat-
uration scale Qs. We will denote the proper saturation
scale in a nucleus by Qs and will assume it is related to
the scale Q used earlier by a numerical factor. We will
discuss the ultraviolet scale Q in more detail later. At
high energies Qs becomes large, Qs � ΛQCD, and the
strong coupling αs becomes small. The Qs is assumed
to be on the order of a few GeV in heavy ion collider
experiments. In addition, gluon occupation numbers are
large and a quasi-classical description of the gluon field
becomes applicable. If two nuclei collide at high en-
ergy, the interaction of the two color glass condensate
states create what is sometimes referred to as glasma
[19, 24, 25, 28, 29]. Here we are interested in the early
time evolution of glasma. We will use the classical ap-
proximation, known as the McLerran-Venugopalan (MV)
model [4, 5, 24, 25]. We will, however, need to general-
ize the original form of the MV model in this work to
allow for a rigorous description of transverse dynamics.
Quantum corrections have been studied and seem to indi-
cate that the classical description is adequate to describe
the evolution of the system up to times of order 1/Qs
[20]. Initial small fluctuations can grow exponentially at
times beyond 1/Qs and lead to instabilities. They are
probably an important step on the path to thermaliza-
tion. Recently, important progress has been made on this
phase in the evolution of gluon fields [20, 21].

The time τ0 has multiple important implications in
our work. It signals the breakdown of the classical ap-
proximation as well as the limit (on purely mathemat-
ical grounds) of our specific solution to the Yang-Mills
equations. However, it also heralds decoherence of the
classical fields [30] at which the net transfer of energy

and angular momentum from the receding nuclei onto the
fireball presumably stops, and it is responsible for most
of the reduction of the pressure asymmetry (neglecting
transverse gradients)

pL − pT
(pL + 2pT )/3

= −6

[
1− 5

4a (Qτ)2

1− 1
2a (Qτ)2

]
+O(Qτ)4 , (1)

where a = ln(Q2/m̂2). This will be discussed in Sec. VI.
Our paper is organized as follows. In Sec. II we re-

view the MV model for single nuclei and colliding nu-
clei on the light cone. We discuss a recursive solution
of the equations of motion of the gluon field. We also
compare the emerging space-time picture to existing phe-
nomenological approaches. In Sec. III we calculate the
energy-momentum tensor of the early gluon field as a
function of the initial color electric and magnetic fields up
to fourth order in proper time τ . In Sec. IV we general-
ize the assumptions used to calculate expectation values
of observables in the MV model and redo the classical
calculation of the gluon distribution function of a nu-
cleus. We then proceed to calculate the expectation val-
ues, or event averages, of gluon field correlation functions
of higher twist which will be needed later on. In Sec. V
we compute the expectation value of the glasma energy-
momentum tensor up to fourth order in τ , although at
third and fourth order in τ only leading contributions in
Q are computed. In Sec. VI we explore the phenomeno-
logical consequences including pressure anisotropies and
flow. Section VII summarizes our results.

II. THE GLUON FIELD OF TWO COLOR
CHARGES ON THE LIGHT CONE

In this section we discuss analytic solutions for the
Yang-Mills equations of two nuclei colliding on the light
cone with non-abelian SU(Nc) charges kept fixed. The
setup is reminiscent of an expanding color capacitor: in-
finitely Lorentz-contracted sheets of SU(Nc) color charge
move towards each other (along the z axis), pass through
each other, and recede. Color capacitor-like systems have
been discussed in the literature in other contexts and we
will come back to a comparison later on. The CGC setup
is briefly reviewed in the following.

In the CGC limit nuclei move on the light cone. Their
partons can be divided into source partons with large
momentum fraction x and classical gluon fields that ef-
fectively describe small-x gluons in the nuclear wave
functions, as first discussed by McLerran and Venu-
gopalan [4, 5]. The source is given by a SU(Nc) current
Jµ = Jµa t

a. Note that we use underlined upper or lower

indices for SU(Nc). The ta are the Gell-Mann matrices.
We have specified our definitions in appendix A. The
gluon field strength Fµν and its gauge field Aµ couple to
the current through the Yang-Mills equations

[Dµ, F
µν ] = Jν , (2)
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and the continuity equation

[Dµ, J
µ] = 0 . (3)

The internal dynamics of the source are frozen on time
scales that describe interactions with probes or other nu-
clei (the glass in CGC) and are therefore kept fixed on
the light cone. In addition, during a collision large angle
scatterings of source partons are rare (those would be re-
ferred to as hard processes). The slowing down of source
partons through the interaction, in other words the back
reaction of the field on the sources, can be significant but
at sufficiently large collision energy the source partons are
close to the light cone even after the collision. This has
been confirmed experimentally even at top RHIC ener-
gies where nuclei, represented by the net baryon number
carried by the valence quarks, lose about three quarters
of their kinetic energy during the collision. Therefore
they stay ultrarelativistic throughout [31]. This justifies
the assumption that a current along the + light cone is
invariant, or independent of the x+ coordinate. Because
of the practically infinite Lorentz boost the source is also
infinitely thin in the x− direction, and can therefore be
solely described by an SU(3)-valued area density ρ(~x⊥),
where ~x⊥ is the vector of transverse coordinates. For our
definitions of light cone coordinates we refer the reader
to appendix A.

We represent two colliding nuclei on the light cone
through two currents Jµ1,2 along the + and − light cone,

respectively, given by two SU(3) charge densities ρ1(~x⊥)
and ρ2(~x⊥). The components of the currents in light cone
coordinates are

J+
1 (x) = δ(x−)ρ1(~x⊥) , J−1 (x) = 0 , (4)

J−2 (x) = δ(x+)ρ2(~x⊥) , J+
2 (x) = 0 , (5)

J i1,2(x) = 0 , (6)

with i = 1, 2. The total current Jµ1 + Jµ2 satisfies the
equation of continuity (3) if we choose an axial gauge
with

x+A− + x−A+ = 0. (7)

We will keep this choice of gauge throughout this section.
We note that nuclei fixed on the light cone will lead to a

boost-invariant system after the collision. In particular,
the energy-momentum tensor of the gluon field will be
boost-invariant. This will be an important caveat when
we discuss the global space-time structure of the fireball.
In our calculation global energy, momentum, and angular
momentum are not conserved as the nuclei are reservoirs
for those conserved quantities. In reality, those quantities
are finite and conserved. However, we still expect to
gain realistic insights of the rapidity densities of those
quantities as long as we stay far enough away from the
final rapidities of the nuclei. Corrections to the boost
invariant approximation can in principle be taken into
account [32].

A. General Shape of the Field

Kovner, McLerran and Weigert were the first to discuss
the general space-time structure of the gluon field in the
CGC formalism in the collision of two nuclei [24]. One
can write down the following ansatz for the x+-x−-plane:

A+(x) =Θ(x+)Θ(x−)x+A(τ, ~x⊥) ,

A−(x) =−Θ(x+)Θ(x−)x−A(τ, ~x⊥) ,

Ai(x) =Θ(x−)Θ(−x+)Ai1(~x⊥) (8)

+ Θ(x+)Θ(−x−)Ai2(~x⊥)

+ Θ(x+)Θ(x−)Ai⊥(τ, ~x⊥) ,

where again i = 1, 2. The Ai1(~x⊥) and Ai2(~x⊥) are
the gluon fields of the single nuclei before the colli-
sion, which are purely transverse in this gauge. Here
τ =

√
t2 − z2 is the longitudinal proper time. The

A(τ, ~x⊥) and Ai⊥(τ, ~x⊥) are smooth functions in the for-
ward light cone and describe the field after the colli-
sion. They are the glasma fields we will be interested
in. There is no explicit dependence on the space-time
rapidity η = 1

2 ln (x+/x−) in A and Ai⊥, reflecting the
boost-invariance of the system. Figure 1 shows the dif-
ferent regions of the light cone including the region of
applicability of this work.

In each sector of the light cone the Yang-Mills equa-
tions have to be satisfied separately. In the forward light
cone they can be written in the convenient form [24]

1

τ

∂

∂τ

1

τ

∂

∂τ
τ2A−

[
Di,

[
Di, A

]]
= 0 , (9)

igτ

[
A,

∂

∂τ
A

]
− 1

τ

[
Di,

∂

∂τ
Ai⊥

]
= 0 , (10)

1

τ

∂

∂τ
τ
∂

∂τ
Ai⊥ − igτ2

[
A,
[
Di, A

]]
−
[
Dj , F ji

]
= 0 .

(11)

The field strength tensor in the forward light cone can
be expressed in terms of the gauge potentials A and Ai⊥
in this gauge as

F+− = −1

τ

∂

∂τ
τ2A,

F i± = −x±
(

1

τ

∂

∂τ
Ai⊥ ∓ [Di, A]

)
, (12)

F ij = ∂iAj⊥ − ∂
jAi⊥ − ig[Ai⊥, A

j
⊥].

Boundary conditions connect different light cone sectors.
The ones for the forward light cone read [24]

Ai⊥(τ = 0, ~x⊥) = Ai1(~x⊥) +Ai2(~x⊥), (13)

A(τ = 0, ~x⊥) = − ig
2

[
Ai1(~x⊥), Ai2(~x⊥)

]
. (14)

We interpret them as initial conditions for the fields at
τ = 0 for the fields in the forward light cone τ > 0.
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FIG. 1. (color online) The z-t-plane with the two currents J1 and J2 given on the x+- and x−-axes, and the four regions given
by the solution (8). The theoretical limit of the classical approximation in the forward light cone at τ = τ0 and the approximate
thermalization time τth are shown schematically.

Equations (9) through (11) together with the condi-
tions (13) and (14) pose the boundary value problem to
be solved. An analytic solution in closed form is not
known for the most general case. The weak field or
abelian limit was first treated in [24] and will be repro-
duced below. Several groups have discussed numerical
solutions [16, 33–35], usually focusing on the plane η = 0.

A different approach to solve the problem was first ad-
vocated by some of us in [19, 29]. The basic idea is as
follows. Since the classical approach to CGC loses its
applicability very soon after the collision, it will be suffi-
cient to focus on the near-field, or small proper times τ .
In that case one can utilize a systematic expansion of the
Yang-Mills equation in a power series in τ [30, 36] . We
can expect to find the leading terms in such an expan-
sion analytically. The natural scale for the convergence of
such series should be given by the only time scale in the
problem, namely, 1/Qs. We will see that this is indeed
the case.

B. τ-Expansion and Recursive Solution

Let us define the power series

A(τ, ~x⊥) =

∞∑
n=0

τnA(n)(~x⊥), (15)

Ai⊥(τ, ~x⊥) =

∞∑
n=0

τnAi⊥(n)(~x⊥) , (16)

for the fields parameterizing the gauge potential in the
forward light cone. We devise equivalent power series for
the field strength tensor, covariant derivatives and the
energy-momentum tensor. We do not include any diver-
gent (1/τn) or logarithmic (ln τ) terms in τ . While the
field equations themselves can have divergent solutions
they have to be discarded because of the boundary con-
ditions (13) and (14).

We can discuss this point in more detail for the abelian-
ized version of the equations. In the case of weak fields
the non-linear terms in the Yang-Mills equations are usu-
ally neglected, leading to a greatly simplified abelian ver-
sion of the boundary value problem. The analytic so-
lution in closed form can be readily found [24]. After
applying a Fourier transformation of the transverse co-
ordinate, ∂i → −iki⊥, Eqs. (9) and (11) take the form of
Bessel equations

1

z

d2

dz2
zA+

1

z2
d

dz
zA+

1

z
zA− 1

z3
zA = 0 , (17)

z2
d2

dz2
Ai⊥ + z

d

dz
Ai⊥ + z2Ai⊥ = 0 , (18)

where z = k⊥τ . A physical polarization ∇iAi⊥ = 0 has
been chosen for the transverse field. There are two inde-
pendent sets of solutions, Bessel functions of the first kind
A ∼ J1(z)/z, Ai⊥ ∼ J0(z) which are regular at τ = 0, and
Neumann functions A ∼ N1(z)/z, Ai⊥ ∼ N0(z) which
lead to singular solutions A ∼ z−2, Ai⊥ ∼ ln τ for τ → 0.
The solution with Neumann functions is not compatible
with Eq. (10) which imposes ∂/∂τAi⊥ = 0. The singular
solution therefore has to be excluded.
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Let us now return to the solution of the general non-
abelian problem. The power series turns the set of 3
differential equations (9), (10), and (11) in x⊥ and τ
into an infinite system of differential equations in x⊥.
Amusingly, we can solve this system recursively. The
boundary conditions (13) and (14) provide the starting
point of the recursion

Ai⊥(0) = Ai1 +Ai2 , (19)

A(0) = − ig
2

[
Ai1, A

i
2

]
. (20)

It can be shown that all coefficients of odd powers vanish,
A(2k+1) = 0 and Ai⊥(2k+1) = 0. Finally, one finds the

recursion relations for even n, n > 1, to be

A(n) =
1

n(n+ 2)

∑
k+l+m=n−2

[
Di

(k),
[
Di

(l), A(m)

]]
,

Ai⊥(n) =
1

n2

( ∑
k+l=n−2

[
Dj

(k), F
ji
(l)

]
(21)

+ ig
∑

k+l+m=n−4

[
A(k), [D

i
(l), A(m)]

])
.

One can readily see that these expressions solve (9) and
(11). It is less straight-forward to show that the recursion
relation solves Eq. (10). One can go order by order in τ ,
and we have explicitly checked that our recursive solution
solves Eq. (10) up to 4th order in τ .

One can use the abelianized case for a cross check.
After dropping non-linear terms, and after applying a
Fourier transformation to the transverse coordinates, the
recursive solutions can be easily cast in the form

ALO
(n) =

2

n!!2(n+ 2)
(−k2⊥)n/2ALO

(0) , (n > 1) (22)

ALOi
⊥(n) =

1

n!!2
(−k2⊥)n/2ALOi

⊥(0) , (23)

where the double factorial is n!! = n(n − 2)(n − 4) · · ·
and the index LO signals the abelian case. These terms
are just the coefficients of the Bessel functions already
discussed above,

ALO(τ,~k⊥) =
2ALO

(0) (k⊥)

k⊥τ
J1 (k⊥τ) , (24)

ALOi
⊥ (τ,~k⊥) =ALOi

⊥(0)(k⊥)J0 (k⊥τ) . (25)

Thus the small-τ expansion immediately recovers the full
abelian solution.

The recursive solution (21) and its consequences are
the basis for the remainder of this manuscript. A brief
discussion on the convergence of the series expansion is
in order. From the abelian case above we infer that the
radius of convergence is ∞, independent of the charge
distributions ρ1,2, as long as we are in the weak field
limit. In the opposite limit of extremely strong fields one
can make the following estimate. Keeping only the max-
imally non-abelian terms, we expect from the recursion
relations that

|A(n)| ∼ |gA|n+1|A| and |Ai⊥(n)| ∼ |gA|
n|A| , (26)

where

|A| =
√
Ai1A

i
1 , (27)

is written in terms of the fields in the initial nuclei before
collision. Here we assume head-on collisions of equal nu-
clei (ρ1 = ρ2) for simplicity of argument. We anticipate
from our results later on that |gA|2 ∼ g4µ/4π, where µ
is the color charge density of the two incoming nuclei.
From the geometric interpretation of the saturation scale
Qs we further have Q2

s ∼ g4µ [39]. Hence we find that
parametrically

|A(n)| ∼ Q(n+1)
s |A| , (28)

|Ai⊥(n)| ∼ Q
n
s |A| . (29)

This suggests that the convergence radius of the series
in this extreme case is indeed parametrically set by the
saturation scale, τconv ∼ 1/Qs. We can find further phe-
nomenological validation in Sec. VI A when we compare
to numerical solutions of the Yang-Mills equations.

C. The Near Field

A resummation similar to the abelian case seems elu-
sive for the general solution. However, we can analyze
the few lowest order terms explicitly. This amounts to a
description of the near field close to the light cone. The
series expansions for the gauge potential are

A(τ, x⊥) = A(0) +
τ2

8
[Dj , [Dj , A(0)]] +

τ4

192
[Dk, [Dk, [Dj , [Dj , A(0)]]]] +

igτ4

48
εij [DiA(0), D

jB0] +O(τ6) , (30)

Ai⊥(τ, x⊥) = Ai⊥(0) +
τ2

4
εij [Dj , B0] +

τ4

64
εijDjDkDkB0 −

igτ4

64
[B0, D

iB0] +
igτ4

16
[A(0), [D

i, A(0)]] +O(τ6) ,

(31)
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FIG. 2. (color online) Left: After the collision Lorentz-contracted nuclei with color charges and transverse fields develop
longitudinal fields E0 and B0 between them. Right: Transverse fields between the nuclei are induced by the decrease of
longitudinal fields after a short time. Only fields from Faraday’s and Ampere’s Law are indicated.

where we have used the short hand notation Di ≡ Di
(0) =

∂i−igAi⊥(0). In the remainder of this work Di will denote

the covariant derivative with respect to the initial gauge
field and we will mention explicitly if we refer to covariant
derivatives at other times. The B0 is the longitudinal
chromo-magnetic field which is discussed below.

Let us carry out an order by order analysis for the field
strength tensor

E =E(0) + τE(1) + τ2E(2) + . . . , (32)

B =B(0) + τB(1) + τ2B(2) + . . . , (33)

of chromo-electric and chromo-magnetic fields. From
here on electric and magnetic always refer to chromo-
electric and chromo-magnetic. The components of the
field strength tensor can be readily computed from the
gauge potential using Eqs. (12). We observe that only
the longitudinal components of the electric and magnetic
fields have non-vanishing values at τ = 0 [19]

E0 ≡ E3
(0) = F+−

(0) = ig
[
Ai1, A

i
2

]
, (34)

B0 ≡ B3
(0) = F 21

(0) = igεij
[
Ai1, A

j
2

]
. (35)

They can be seen as the seed fields for the glasma de-
veloping in the forward light cone. The transverse fields
vanish at τ = 0: F i±(0) = 0.

The dominance of longitudinal fields, both electric and
magnetic, at early times has been discussed in [28, 29].
These fields can lead to the emergence of color flux tubes
which are similar but not directly comparable to QCD

strings. QCD strings are a reaction of the QCD vacuum
to color charges. Here we consider fields close to the cen-
ter of a collision of large nuclei which are far removed
from the QCD vacuum. Non-trivial QCD vacuum effects
are not included in the classical Yang-Mills picture con-
sidered here. QCD strings have been successfully used to
describe collisions of nucleons at large energies [37]. It
would be desirable to find a natural transition between
glasma fields in the center of collisions and QCD strings
describing the dynamics at the boundary of the collision
zone, but that is beyond the scope of this work. The
initial longitudinal magnetic and electric fields can be of
similar strength in the glasma. Figure 2 shows a sketch
with nuclei consisting of Lorentz contracted sources and
transverse gluon fields, and longitudinal fields stretching
between them after the collision.

It is useful to briefly mention a reinterpretation of the
initial longitudinal fields pointed out in [28]. This can
help to make connections with some existing phenomeno-
logical models in which an exchange of color charge be-
tween the nuclei is envisioned at the time of their over-
lap [22, 23]. Those effective color–anti-color charges on
opposite nuclei then lead, in a quasi-abelian picture, to
longitudinal electric fields between the nuclei after they
have separated and recede from each other. This ap-
pears similar to the early glasma picture. Note, however,
that here the charges ρ1 and ρ2 are strictly kept constant
throughout the collision and the longitudinal field arises
from non-abelian interactions between the fields of the
two nuclei. But to aid our intuition, we can rewrite the
covariant derivatives in Gauss’ Laws for chromo-electric
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (color online) Transverse fields in the x-y-plane for simple abelian analogue to Eqs. (37), (38) for randomly simulated
initial fields Ai

1 and Ai
2. Upper panels (a), (b), (c): Electric field Ei (arrows) on background of the longitudinal magnetic field

B0 (shading). Lower panels (d), (e), (f): Magnetic field Bi on background of E0. Left panels (a), (d): Rapidity-even terms
from Faraday’s and Ampere’s Law, respectively (corresponding to η = 0). Middle panels (b), (e): Rapidity-odd terms from
Gauss’ Law. Right panels (c), (f): Full transverse fields for η = 1. Length scales of arrows and of x and y axes are arbitrary.
Lighter regions correspond to higher densities. More details can be found in [38].

and chromo-magnetic fields as ordinary derivatives and
commutator terms which can be interpreted as effective
chromo-electric and chromo-magnetic charges ig[Ai1, E

i
2],

ig[Ai2, E
i
1] and ig[Ai1, B

i
2], ig[Ai2, B

i
1], where Eik and Bik

are the transverse fields in nucleus k [28]. The commuta-
tors are non-zero when the gauge potential from nucleus
1 can interact with the field of nucleus 2 and vice versa.
Then for t > 0 the induced charges on opposite nuclei
are indeed the negative of each other. Hence, we can
also interpret the longitudinal fields as the abelian fields
generated by additional color charges induced in the col-
lision at t = 0.

Going forward in time, we note that the first order
in τ brings no further contribution to the longitudinal
fields, F+−

(1) = 0 = F 21
(1), but it is the leading order for the

transverse fields

F i±(1) = − e
±η

2
√

2

(
[Dj

(0), F
ji
(0)]± [Di

(0), F
+−
(0) ]

)
. (36)

Therefore, the transverse electric and magnetic fields
grow linearly from their zero value at τ = 0. We can
express them in terms of the initial longitudinal fields as

[38]

Ei(1) = −1

2

(
sinh η[Di, E0] + cosh η εij [Dj , B0]

)
,

(37)

Bi(1) =
1

2

(
cosh η εij [Dj , E0]− sinh η[Di, B0]

)
.

(38)

Recall that we have agreed to the notation Di = ∂i −
igAi⊥(0). In [38] we have discussed extensively how these

transverse fields can be understood from the QCD ana-
logues of Faraday’s and Ampère’s Law for the rapidity
even parts and from Gauss’ Law for the rapidity-odd
components. In particular, it is very natural to expect
rapidity-odd transverse fields even in a boost invariant
situation. In Fig. 3 we show a typical example for the
rapidity-even and rapidity-odd initial transverse fields in
an abelian example (covariant derivatives are replaced
by ordinary derivatives in (37) and (38)). Notice how at
mid-rapidity field lines are closing around existing lon-
gitudinal field lines (dark or light colored regions) due
to Ampère’s and Faraday’s Law, while away from mid-
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rapidity Gauss’ Law allows for transverse flux between
longitudinal field lines.

The first correction to the initial value of the longitu-
dinal fields appears at order τ2 and in our short notation
is

E3
(2) =

1

4
[Di, [Di, E0]] , (39)

B3
(2) =

1

4
[Di, [Di, B0]] . (40)

There is no correction to the transverse fields at this or-
der, F i±(2) = 0.

From order τ3 on the results become somewhat un-
wieldy. For this reason we present the expressions for
orders τ3 and τ4 in Appendix B. However, there is no
particular reason why one could not in principle go to
higher orders in powers of τ . Generally, the longitudi-
nal fields have only contributions for even powers of τ
and the transverse fields have contributions only for odd
powers of τ .

To summarize this section, we have provided explicit
formulas for the initial gluon field to an accuracy

E3 =E3
trunc +O(τ6) , (41)

Ei =Eitrunc +O(τ5) , (42)

for the electric field, and similarly for the magnetic field.

III. THE ENERGY-MOMENTUM TENSOR OF
THE FIELD

From the field strength tensor we can easily calculate
the energy-momentum tensor of the field

Tµν = FµλF νλ +
1

4
gµνFκλFκλ . (43)

For brevity we will often employ a notation where
SU(Nc) indices are summed over implicitly unless said
otherwise: AB = AaBa = 2 Tr(AB), a = 1, . . . , N2

c − 1.
We will now provide the first few orders in τ for all com-
ponents of the energy-momentum tensor

Tµν = Tµν(0) + τTµν(1) + τ2Tµν(2) + . . . (44)

as functions of the initial longitudinal fields E0 and B0.

A. Initial Energy Density and Pressure

Only the diagonal elements of Tµν have finite values at
τ = 0. We define ε0 to be the initial value for the energy
density

ε0 = T 00
(0) =

1

2

(
E2

0 +B2
0

)
= −g

2

2

(
δijδkl + εijεkl

) (
[Ai1, A

j
2][Ak1 , A

l
2]
)
. (45)

The other diagonal elements of the energy-momentum
tensor are

T 11
(0) = T 22

(0) = ε0 = −T 33
(0) . (46)

Hence the structure of the energy-momentum tensor for
τ → 0 is the same as that for a longitudinal field in
classical electrodynamics. There is a maximum pressure
anisotropy between the transverse and longitudinal di-
rections. Despite being far from equilibrium we take
the liberty to use the notations of longitudinal pressure
pL = T 33 and transverse pressures (px, py) = (T 11, T 22).
We will denote the average transverse pressure as pT =
(px + py)/2.

The initial transverse pressure pT = ε0 is large com-
pared to an equilibrated system. A free, relativistic gas
with the same energy density would have a transverse
pressure ε0/3. We expect a comparably large flow of en-
ergy due to gradients in the transverse pressure. The lon-
gitudinal pressure pL = −pT = −ε0 is equally large and
negative. The negative sign is not surprising. Keeping
in mind the abelian reinterpretation of the longitudinal
field, we expect the opposite sign induced color charges
on the nuclei to be attractive. Hence, the initial lon-
gitudinal fields would like to decelerate the sources. In
fact, this is the mechanism that removes kinetic energy
from the nuclei and deposits it as field strength in the
space-time region between them. Here we do not take
into account this back reaction of the field on the sources
since the nuclei, even at top RHIC energies, seem to stay
ultra-relativistic all the time, as discussed before.

The qualitative global behavior of the system then is
seemingly easy to predict from the simple form of Tµν at
τ → 0,

Tµν(0) =

ε0 0 0 0
0 ε0 0 0
0 0 ε0 0
0 0 0 −ε0

 . (47)

While the negative longitudinal pressure leads to the de-
celeration of the colliding nuclei, the transverse pressure
forces the system to expand in the transverse direction.
This transverse expansion, driven by the pressure of the
classical field, is expected to be larger than in an equi-
librated relativistic gas [15, 19]. We will see that this
intuitive picture, while mostly correct, has to have addi-
tional features added to it since the energy-momentum
tensor above does not have the full information about the
classical fields which drive the dynamics.

B. Onset of Transverse Flow

At the next order, linear in τ , the components T 0i and
T 3i, with i = 1, 2, are the only ones to pick up contri-
butions. They describe the flow of energy and longitudi-
nal momentum into the transverse direction. Note that
T 0i is the transverse component of the Poynting vector
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(a) (b) (c)

FIG. 4. (color online) Energy flow in the x-y-plane in an abelian analogue for the same random distribution of seed fields
Ai

1, Ai
2 chosen in Fig. 3. The transverse Poynting vector T 0i (arrows) is drawn with the energy density ε0 (shading) in the

background. Lighter regions correspond to higher densities. The panels show rapidity-even (a), rapidity-odd (b) and full flow
at η = 1 (c). Length scales of arrows and of x and y axes are arbitrary.

S = E×B. Therefore, the transverse expansion expected
from the qualitative arguments given above sets in lin-
early in τ . We have

T 0i
(1) =εij

(
B0E

j
(1) − E0B

j
(1)

)
(48)

=
1

2
αi cosh η +

1

2
βi sinh η ,

T 3i
(1) =− E0E

i
(1) −B0B

i
(1) (49)

=
1

2
αi sinh η +

1

2
βi cosh η .

We note that we have two contributions to transverse
flow. The first term is the flow driven by the gradient
of the transverse pressure as we would expect from a
hydrodynamic picture [38]

αi = −∇iε0 . (50)

The second term involves the 2-vector

βi = εij
(
[Dj , B0]E0 − [Dj , E0]B0

)
. (51)

The derivation of these and the following expressions is
made easier by using a set of SU(3) identities assem-
bled in Appendix A. These flow terms have first been
discussed by some of us in Ref. [38].

The βi defies the naive expectations from our earlier
analysis of the initial diagonal energy-momentum tensor.
It is profoundly related to the electric and magnetic fields
underlying the energy-momentum tensor. More precisely,
it emerges from the rapidity-odd transverse fields man-
dated by Gauss’ Law. The βi enhances flow from larger
to smaller energy densities in some regions and quenches
it in other regions. This can be seen in the example of
random abelian fields in Fig. 4. This abelian analogue is
particularly interesting here since the non-abelian terms
in (48) vanish in the event-average as discussed in [38].

However, they will be important when the field is sam-
pled event-by-event.

The contribution of βi to the energy flow is odd in
space-time rapidity η. We want to stress that its ex-
istence does not violate boost-invariance. Obviously βi

will have a role to play when angular momentum and
directed flow in the system are studied.

C. Order τ2: Corrections to Energy Density and
Pressure; Longitudinal Flow

At order τ2 the diagonal elements of Tµν receive their
first corrections and all the previously vanishing compo-
nents acquire their leading contributions. On the other
hand, the transverse flow of energy and longitudinal mo-
mentum are not affected,

T 0i
(2) = 0 = T 3i

(2) . (52)

The expressions for the energy density, the longitudinal
flow of energy, and the flow of longitudinal momentum
are

T 00
(2) = E0E

3
(2) +B0B

3
(2) +

1

2
Ei(1)E

i
(1) +

1

2
Bi(1)B

i
(1)

= −1

4
(∇iαi + δ)− 1

8
∇iβi sinh 2η

+
1

8
δ cosh 2η , (53)

T 03
(2) = εijEi(1)B

j
(1)

= −1

8
∇iβi cosh 2η +

1

8
δ sinh 2η , (54)
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T 33
(2) = −E0E

3
(2) −B0B

3
(2) +

1

2
Ei(1)E

i
(1) +

1

2
Bi(1)B

i
(1)

=
1

4
(∇iαi + δ)− 1

8
∇iβi sinh 2η

+
1

8
δ cosh 2η . (55)

We have used Eqs. (A19) and (A20) to simplify these ex-
pressions. Besides the divergence of the transverse fields,
αi and βi, we find a new field that appears in the expres-
sions above, namely

δ =[Di, E0][Di, E0] + [Di, B0][Di, B0] . (56)

The divergence of the transverse flow is the expected re-
action of the energy density to the initial flow, leading to
depletion at the source and accumulation at the sink of
the flow field.

The remaining new contributions to this order give cor-
rections to the transverse pressures

T ii(2) =
(−1)i

2

(
E1

(1)E
1
(1) +B1

(1)B
1
(1) (57)

−E2
(1)E

2
(1) −B

2
(1)B

2
(1)

)
+ E0E

3
(2) +B0B

3
(2)

=− 1

4
(−4ε0 + δ + (−1)iω) ,

T 12
(2) =− E1

(1)E
2
(1) −B

1
(1)B

2
(1) =

1

4
γ . (58)

Here 4 is the 2-dimensional Laplace operator. There is
no implicit summation over the double index i = 1, 2 in
the first equation. The new quantities are

ω =
1

2

(
[D1, E0]2 − [D2, E0]2 (59)

+ [D1, B0]2 − [D2, B0]2
)
,

γ =[D1, E0][D2, E0] + [D1, B0][D2, B0] . (60)

The ω describes the anisotropy of the pressure in the x-
and y-directions and is therefore responsible for a phe-
nomenon akin to elliptic flow in the transverse plane.

D. Higher Orders

At order τ3 the only contributions are the first correc-
tions to the transverse flow T 0i and T 3i. They are

T 0i
(3) =εij

(
B0E

j
(3) +B3

(2)E
j
(1) − E0B

j
(3) − E

3
(2)B

j
(1)

)
=

1

16

(
ξi cosh η + ζi sinh η

)
, (61)

T 3i
(3) =− E0E

i
(3) − E

3
(2)E

i
(1) −B0B

i
(3) −B

3
(2)B

i
(1)

=
1

16

(
ξi sinh η + ζi cosh η

)
. (62)

We give the explicit expressions for the flow vectors ξi

and ζi in Appendix B.

At order τ4 we have

T 00
(4) =E0E

3
(4) +B0B

3
(4) + Ei(1)E

i
(3) +Bi(1)B

i
(3)

+
1

2
E3

(2)E
3
(2) +

1

2
B3

(2)B
3
(2)

=ρ+
1

32
κ cosh 2η +

1

32
σ sinh 2η , (63)

T 03
(4) =εij

(
Ei(1)B

j
(3) + Ei(3)B

j
(1)

)
=

1

32
σ cosh 2η +

1

32
κ sinh 2η , (64)

T 33
(4) =− E0E

3
(4) −B0B

3
(4) + Ei(1)E

i
(3) +Bi(1)B

i
(3)

− 1

2
E3

(2)E
3
(2) −

1

2
B3

(2)B
3
(2)

=− ρ+
1

32
κ cosh 2η +

1

32
σ sinh 2η , (65)

T ii(4) =(−1)i
(
E1

(1)E
1
(3) +B1

(1)B
1
(3)

−E2
(1)E

2
(3) −B

2
(1)B

2
(3)

)
+ E0E

3
(4) +B0B

3
(4)

+
1

2
E3

(2)E
3
(2) +

1

2
B3

(2)B
3
(2)

=ρ+ (−1)iλ , (66)

T 12
(4) =− E1

(1)E
2
(3) −B

1
(1)B

2
(3) − E

1
(3)E

2
(1) −B

1
(3)B

2
(1)

=ν , (67)

where the new coefficients ρ, κ, σ, λ and ν are explicitly
given in appendix B. The expressions for the energy-
momentum tensor discussed here are accurate up to cor-
rections of order τ5 for the T 0i and T 3i components, and
up to order τ6 for all other components.

E. Checking Energy and Momentum Conservation

The solutions of the Yang-Mills equations auto-
matically satisfy energy and momentum conservation
∂µT

µν = 0. This can be checked explicitly order by or-
der. The ∂µT

µ0 and ∂µT
µ3 receive contributions only

for odd powers of τ , whereas ∂µT
µi consists only of even
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powers. At order τ we find, for ν = 0,

∂µT
µ0
∣∣∣
τ

=

(
cosh η

∂

∂τ
− 1

τ
sinh η

∂

∂η

)
T 00
(2)

+

(
− sinh η

∂

∂τ
+

1

τ
cosh η

∂

∂η

)
T 30
(2) +∇iT i0(1)

=− 1

2
(∇iαi + δ) cosh η

+
1

2
cosh η

[
−∇iβi sinh 2η + δ cosh 2η

]
− 1

2
sinh η

[
−∇iβi cosh 2η + δ sinh 2η

]
+

1

2
∇iαi cosh η +

1

2
∇iβi sinh η

=0 , (68)

and similarly for ν = 3.
Transverse momentum conservation, ν = 1, 2, is obvi-

ous at zeroth order in τ . From the corresponding equa-
tion

∂µT
µi
∣∣∣
τ0

=

(
cosh η − sinh η

∂

∂η

)
T 0i
(1) (69)

−
(

sinh η − cosh η
∂

∂η

)
T 3i
(1) +∇iT ii(0)

=αi +∇iε0 ,

all terms containing the anomalous flow βi drop out and
the remaining expression obviously vanishes using the
known result for the hydrodynamic flow αi. Note that
the index i is not summed in the term containing T ii.

At order τ2 we have a very similar picture

∂µT
µi
∣∣∣
τ2

=

(
3 cosh η − sinh η

∂

∂η

)
T 0i
(3)

−
(

3 sinh η − cosh η
∂

∂η

)
T 3i
(3)

+∇iT ii(2) +∇jT ji(2)
= 1

4

[
ξi −∇i

(
−4ε0 + δ + (−1)iω

)
+∇jγ

]
,(70)

with the third order flow contribution ζi dropping out.
Again, the index i = 1, 2 is not summed upon multiple
appearance and in addition we define j to be the trans-
verse index with j 6= i. Momentum conservation holds if
the equation

ξi = ∇i
(
−4ε0 + δ + (−1)iω

)
−∇jγ , (71)

is true. It is proven explicitly in Appendix C. Similarly,
the momentum conservation equations at order τ3 are

64ρ+ 3κ+∇iξi = 0 ,

3σ +∇iζi = 0 . (72)

We are now confident that we have the correct analytic
expressions for the initial gluon field.

IV. AVERAGING OVER COLOR SOURCES
WITH TRANSVERSE DYNAMICS

So far we have held the charge distributions ρk in the
two nuclei fixed. We have expressed the gluon fields and
energy-momentum tensor after the collision in terms of
the initial longitudinal gluon fields E0 and B0 and the
initial transverse gauge potential Ai⊥(0). Those, in turn,

are determined by the gauge fields Ai1[ρ1] and Ai2[ρ2] in
the two nuclei before the collision. In a given nuclear
collision the color charge densities ρk are not known to
us. But if we know the statistical distribution of the
densities we could use the results of the last two sec-
tions for an event-by-event analysis in which color charges
ρk are statistically sampled according to their distribu-
tions. Averages over event samples can then be com-
pared to event averages of experimental data taken. A
CGC event generator of this kind, albeit in 2+1D, has re-
cently been presented in the IP-Glasma framework [16].
In that work the time evolution of the gluon fields in
the forward light cone was solved numerically. An event
generator based on our results would be able to sample
fields or the energy-momentum tensor at early times di-
rectly without solving differential equations. However,
in this work we will rather focus on obtaining analytic
results for the event averaged energy-momentum tensor.
We use the assumptions of the MV model which pos-
tulates a simple Gaussian distribution of color charges
[4, 5]. We have to generalize the MV model by allowing
slowly varying average charge densities in the transverse
plane. This will allow us to treat transverse gradients in
pressure and their consequences.

We start by observing that the expectation value of the
color charge of any nucleus at any given point has to van-
ish, 〈ρ(~x⊥)〉 = 0. However, we expect local fluctuations
to occur on typical non-perturbative time scales which
are much larger than the nuclear collision time. Hence,
the fluctuations are frozen at the moment of the collision.
The size of the fluctuations are given by the expectation
value µ ∼ 〈ρ2(~x⊥)〉 of the squared charge density. In
the MV model it is assumed that fluctuations are Gaus-
sian, uncorrelated in space, and isotropic in SU(3). We
will see later that it is necessary to introduce a finite
resolution in space to regularize the UV divergence that
would emerge from an infinite spatial resolution. When-
ever taking averages 〈. . .〉 we will thus keep in mind that
they have to be taken at a finite resolution. For an ob-
servable O measured after the collision of two nuclei the
expectation value is given by

〈O〉ρ1,ρ2 =

∫
d[ρ1]d[ρ2]O(ρ1, ρ2)w(ρ1)w(ρ2) , (73)

where the weight functions w are Gaussians with widths
given by the average local charge densities squared, µ1

and µ2.
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A. The MV Model with Transverse Gradients

We start with a brief review of the MV model. We
implement the averaging over color sources in a given
nucleus by fixing the expectation values

〈ρa(x∓, ~x⊥)ρb(y
∓, ~y⊥)〉 =

g2

N2
c − 1

δab

× λ(x∓, ~x⊥)δ(x∓ − y∓)δ2(~x⊥ − ~y⊥) , (74)

as a precise definition of a (light cone) volume density
λ(x∓, ~x⊥) of sources for a nucleus moving along the +
or − light cone. In addition, expectation values of any
odd number of ρ-fields in this nucleus vanish. We have
dropped the index k labeling a particular nucleus here for
ease of notation, and a, b are explicit SU(3) indices. We
have also made explicit the coupling constant g that was
contained in ρ as defined in Eqs. (2) and (4). The λ (and
µ) are then volume (and area) number densities of color
charge, summed over color degrees of freedom. Note that
the normalization of λ and µ differ by a factor N2

c−1 from
many other occurrences in the literature, such as [39].
We allow for a dependence of the expectation value λ on
both the longitudinal coordinate x∓ and the transverse
coordinate ~x⊥.

The longitudinal smearing in x∓ is necessary to com-
pute expectation values correctly, as first realized in [18].
A nucleus must be given a small, but finite, thickness
across the light cone which we will do by introducing

λ(x∓, ~x⊥) = µ(~x⊥)h(x∓) . (75)

Here h is a non-negative function with finite width
around x± = 0 and normalized such that∫

dx∓λ(x∓, ~x⊥) = µ(~x⊥) . (76)

It is not necessary to specify the shape of h further.
We have introduced the dependence of the charge den-

sities λ and µ on ~x⊥ as a generalization of the original
MV model, where the nuclei are assumed to be infinitely
large in the transverse direction and on average invariant
under rotations and translations. Real nuclei break these
symmetries; in order to generate a non-trivial transverse
dynamics we need to investigate how the results in the
MV model generalize when small deviations from these
symmetries are allowed. Our guiding principle is that,
on transverse length scales that are equal to or smaller
than the scale of color glass, 1/Qs, the gluon field is de-
scribed by the well-defined color glass formalism. On
larger length scales other dynamical effects, for exam-
ple from the nucleonic structure of the nucleus, appear
and can be parameterized by the dependence of µ on x⊥.
Here we introduce an infrared length scale 1/m. We must
require that µ varies by a negligible amount on length
scales smaller than 1/m. Explicitly we require that

|µ(~x⊥)| � m−1
∣∣∇iµ(~x⊥)

∣∣
� m−2

∣∣∇i∇jµ(~x⊥)
∣∣� . . . . (77)

Then m is an infrared energy scale which separates color
glass physics from long wavelength dynamics. It is nec-
essary to have the hierarchy

1/Qs � 1/m� RA , (78)

where RA is the nuclear radius.
We have two main goals in this extended MV model:

(i) Observables must be well behaved under small devia-
tions from translational and rotational invariance, other-
wise the original MV model would not be infrared safe.
In practice this means that observables should be only
weakly dependent on the infrared scale. We will explic-
itly check this condition below. (ii) The results will allow
simple long-wavelength dynamics, expressed in an expan-
sion in gradients of µ, which is compatible with color glass
physics at small distances. In practice this will allow us
to safely apply the MV model locally to realistic nuclei
as long as the location is sufficiently far away from the
surface of the nucleus where the density µ starts to fall
off quickly.

B. The Gluon Distribution

The most important expectation value of fields in a
single nucleus is the two-point function 〈A(~x⊥)A(~y⊥)〉
which, in light cone gauge, is related to the gluon distri-
bution. The Yang-Mills equations (2) for a single nucleus
on the + light cone are most easily solved in a covariant
gauge first where Aµcov = δµ+α. The equations reduce to

∆α(x−, ~x⊥) = −ρcov(x−, ~x⊥) , (79)

where the Laplace operator ∆ acts on the transverse co-
ordinates. The explicit solution is

α(x−, ~x⊥) =

∫
dz2⊥G(~x⊥ − z⊥)ρcov(x−, ~z⊥) , (80)

with a Green’s function G(x⊥) = − ln(x2⊥/Λ
2)/4π where

Λ is an arbitrary length scale. However, we will be bet-
ter served by introducing a physically motivated regular-
ization through a gluon mass m which can be inserted
into the Fourier transformation of the Green’s function
G̃(k) = 1/k2 → 1/(k2 +m2) [36]. This gluon mass could
be an unrelated infrared scale, but for simplicity we will
choose it to be the same as the IR cutoff in the gradi-
ent expansion of µ introduced in the previous subsection.
Including the gluon mass leads to the Green’s function

G(x⊥) =
1

2π
K0(mx⊥) , (81)

where K0 is a modified Bessel functions. This Green’s
function reproduces the previous expression in the limit
m→ 0 with Λ = 2e−γE/m, where γE is Euler’s constant.

The two-gluon correlation function in covariant gauge
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can then be easily derived from (74) as

〈αa(x−, ~x⊥)αb(y
−, ~y⊥)〉 =

g2

N2
c − 1

δab

× δ(x− − y−)γ(x−, ~x⊥, ~y⊥) . (82)

Here we have introduced another Green’s function

γ(x−, ~x⊥, ~y⊥)

=

∫
d2~z⊥G(~x⊥ − ~z⊥)G(~y⊥ − ~z⊥)λ(x−, ~z⊥) .

(83)

We will see that γ depends strongly on the IR regular-
ization scale m. In the limit r = |~y − ~x| → 0 it diverges
like 1/m2; cancellation of this divergence for observables
is a critical test of the theory.

The gluon field Ai in light cone gauge can be derived
from the gluon field in covariant gauge with the help of
the Wilson line

U(x−, x⊥) = P exp

[
−ig

∫ x−

−∞
α(z−, ~x⊥)dz−

]
. (84)

Here P denotes path ordering of the fields α from right to
left. One can show that the correct gauge transformation
to arrive at the light cone gauge potential is [18]

Aj(x−, ~x⊥) =
i

g
U(x−, ~x⊥)∂jU†(x−, ~x⊥) . (85)

We apply this gauge transformation to the field strength
tensors in covariant gauge to obtain the corresponding
tensors in light cone gauge, F = UFcovU

†. Their corre-
lation function is

〈F+i
a (x−, ~x⊥)F+j

b (y−, ~y⊥)〉

=
〈(
U†ac∂iαc

)
(x−, ~x⊥)

(
U†bd∂

jαd

)
(y−, ~y⊥)

〉
.

(86)

In the above expression we have expressed the Wilson
lines U by their counterparts in the adjoint representa-
tion, U , by virtue of the relation

UtaU
† = Uabtb . (87)

Let us take a small detour to discuss expectation values
of adjoint, parallel Wilson lines in the MV model [18].
A systematic study was carried out by Fukushima and
Hidaka [40]. For a single line we obtain

〈Uab(x−, ~x⊥)〉 = δab exp

[
− g4Nc

2(N2
c − 1)

×
∫ x−

−∞
γ(z−, ~x⊥, ~x⊥)dz−

]
. (88)

This expectation value is suppressed since γ(z−, ~x⊥, ~y⊥)
tends to diverge in the limit m → 0. For a double line
we have〈
Uab(x−, ~x⊥)Ucd(x−, ~y⊥)

〉
= δadδbcd(x−, ~x⊥, ~y⊥) , (89)

where

d(x−, ~x⊥, ~y⊥) = exp

[
g4Nc

2(N2
c − 1)

×
∫ x−

−∞
dz−Γ(z−, ~x⊥, ~y⊥)

]
, (90)

is the exponentiation of the integral of

Γ(z−, ~x⊥, ~y⊥) = 2γ(z−, ~x⊥, ~y⊥)

− γ(z−, ~x⊥, ~x⊥)− γ(z−, ~y⊥, ~y⊥) (91)

along the light cone. This Γ is a subtracted version of γ.
In the original MV model the subtraction in Γ removes
the 1/m2 singularity in γ for small m and renders the
exponential d finite. In particular, Γ(x−, ~x⊥, ~y⊥) van-
ishes in the ultraviolet limit ~y⊥ → ~x⊥. We will show
below that this crucial cancellation is still valid for our
generalization. Here we have dropped contributions from
non-color singlet pairs as in [40].

Now we return to the discussion of the correlation
function of fields. One can prove that the only possi-
ble contraction of fields on the right hand side of Eq.
(86) comes from the factorization of expectation values
〈U†U†〉〈∂iα∂jα〉 [41]. The second factor can be deter-
mined from Eq. (82) as

〈∂iαa(x−, ~x⊥)∂jαb(y
−, ~y⊥)〉 =

g2

N2
c − 1

δab

× δ(x− − y−)∇ix∇jyγ(x−, ~x⊥, ~y⊥) . (92)

Together with Eq. (89) this leads to the result

〈F+i
a (x−, ~x⊥)F+j

b (y−, ~y⊥)〉 =
g2

N2
c − 1

δabδ(x
−−y−)

×
[
∇ix∇jyγ(x−, ~x⊥, ~y⊥)

]
d(x−, ~x⊥, ~y⊥) , (93)

for the expectation value of fields in light cone gauge. The
correlation function of two gauge potentials in light cone
gauge follows from an integration with retarded bound-
ary conditions

Ai(x−, ~x⊥) = −
∫ x−

−∞
dz−F+i(z−, ~x⊥) . (94)

One integral is easily evaluated to give

〈Aia(x−, ~x⊥)Ajb(y
−, ~y⊥)〉 = g2δab

2∇ix∇jyγ(~x⊥, ~y⊥)

g4NcΓ(~x⊥, ~y⊥)

×
∫ min{x−,y−}

−∞
dx′−

∂

∂x′−
exp

[
g4Nc

2(N2
c − 1)

× Γ(~x⊥, ~y⊥)

∫ x′−

−∞
dz−h(z−)

]
. (95)
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Note that we have used Eq. (75) which allows us to factor
h(x−) from γ(~x⊥, ~y⊥) and Γ(~x⊥, ~y⊥). We have formally
defined γ(~x⊥, ~y⊥) as the integral of γ(x−, ~x⊥, ~y⊥) over
x− from −∞ to +∞, and similarly for Γ. Here we have
rewritten one factor of h(x−) as a derivative ∂/∂x′− of
the exponential.

We can now evaluate the second integral. We will
only be interested in min{x−, y−} > 0. Upon taking
the limit of vanishing width of h we find that the fields
are independent of the coordinates x− and y− as long as
min{x−, y−} > 0. We simply write

〈Aia(~x⊥)Ajb(~y⊥)〉 = 2g2δab
∇ix∇jyγ(~x⊥, ~y⊥)

g4NcΓ(~x⊥, ~y⊥)

×
(

exp

[
g4Nc

2(N2
c − 1)

Γ(~x⊥, ~y⊥)

]
− 1

)
. (96)

This result holds for both the MV model [18] and our
generalization of it.

Before proceeding, let us write down the correlation
function of two gluon fields when we formally take the
ultraviolet limit ~y⊥ → ~x⊥. In that limit Γ → 0, and we
can expand the exponential function around 0, using only
the two leading terms, to arrive at the simpler expression

〈Aia(~x⊥)Ajb(~x⊥)〉

= δab
g2

N2
c − 1

∇ix∇jyγ(~x⊥, ~y⊥)
∣∣∣
~y⊥→~x⊥

. (97)

For further evaluation of the gluon distribution we have
to understand the correlation functions γ and Γ.

C. Gluon Fields in the MV Model with Transverse
Gradients

The cancellation of the singularity in γ through the
subtraction in Eq. (91) is a classic result of the original
MV model for constant (in transverse coordinates) aver-
age charge densities. We will now show that this result
holds for the inhomogeneous charge densities λ that we
have permitted. More precisely, we will show how expec-
tation values of fields, like the gluon distribution above,
can be systematically expanded in gradients of µ. Let us
introduce center and relative coordinates for two points

~x⊥ and ~y⊥ in the transverse plane via ~R = (~x⊥ + ~y⊥)/2
and ~r = ~y⊥ − ~x⊥. The discussion in this subsection will
use the area charge density µ, but all results apply in
a straightforward way to the generalized density λ and
correlation functions not integrated over x−.

In the original MV model with constant µ(~x⊥) = µ0,
we can easily calculate the correlation function γ defined

in Eq. (83) to be

γ0(r) ≡ γ0(~x⊥, ~y⊥)

= µ0

∫
d2z⊥G(~x⊥ − ~z⊥)G(~y⊥ − ~z⊥)

= µ0

∫
d2k⊥
(2π)2

ei
~k⊥~r

1

(k2⊥ +m2)2

= µ0
r

4πm
K1(mr) , (98)

where m is the same gluon mass introduced as a IR reg-
ulator before. The γ0 only depends on the relative dis-
tance r = |~r| due to isotropy and translational invari-
ance. As mentioned before, γ0 exhibits a quadratic de-
pendence on the infrared cutoff m for small r, specifically
it is γ0(0) = µ0/4πm

2.
On the other hand, this singularity cancels in the sub-

tracted 2-point function (91). In the UV limit r → 0 the
leading term is

Γ0(r) = 2γ0(r)− 2γ0(0)

= µ0
r2

8π

(
ln
r2m2

4
+ 2γE − 1

)
+O(m2r4) . (99)

This is the equivalent of the result in [18] using a finite
gluon mass regularization. The Γ0 only exhibits a weak
logarithmic dependence on m for small r.

Let us now check that the same cancellation takes place
if λ is weakly varying on length scales 1/m as permitted
here. We are only interested in typical values of r =
|~y⊥ − ~x⊥| . Q−1s � m−1 since we will later take the UV
limit. We recall from Eq. (81) that the Green functions
G(z⊥) ∼ K0(mz⊥) fall off on a scale 1/m� r. With this
clear separation of length scales we can restrict ourselves
to the first few terms of a Taylor expansion of µ around
~R in the calculation of γ

µ(~z⊥) = µ(~R) + (~z⊥ − ~R)i∇iµ(~R) + . . . . (100)

This leads to

γ(~R,~r) ≡ γ(~x⊥, ~y⊥)

= γ0(~R, r) +
1

2
∇i∇jµ(~R)γij(~r) + . . . . (101)

Here we have γ0(~R, r) = µ(~R)rK1(mr)/4πm analogous
to Eq. (98), representing the constant term. The linear
term vanishes because∫

d2~z⊥G(~z⊥ + ~r/2)G(~z⊥ − ~r/2)zi⊥ = 0 . (102)

The second order term is

γij =

∫
d2~z⊥G(~z⊥)G(~r − ~z⊥)zi⊥z

j
⊥

= δij
r2

24πm2
K2(mr) +

rirj

r2
r3

48πm
K1(mr) . (103)
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These correlations functions can be conveniently com-
puted in Fourier space, similar to the technique in Eq.
(98).

The subtraction of γ(0) removes the leading quadrat-
ically divergent term in m as in the original MV model.
We can expand γ0 and γij for small mr. For Γ this leads
to

Γ(~R,~r) = µ(~R)
r2

8π

(
ln m̂2r2 − 2

)
+O(µm2r4)

+∇i∇j µ(~R)

[
−δij +

rirj

r2

]
r2

48πm2

+O([∇2µ]m0r4) +O(∇4µ) , (104)

where m̂ = m exp(γE + 1/2)/2 ≈ 1.47m. Indeed, the
dependence on the cutoff m is at most logarithmic for
the small variations of µ that are permitted. Even though
we could take the expansion (101) farther we will never
keep gradients of µ larger than second order. Higher
derivatives will be hard to control phenomenologically,
and it is now obvious that condition (77) guarantees that
the derivative correction in our result for Γ is small.

Besides the subtracted correlation function Γ we need
the double derivative ∇ix∇jyγ(~x, ~y) for the gluon distri-
bution (97). As discussed above, we neglect gradients of
µ beyond second order. We have two mass scales in the
problem, m � Q, which could cancel the dimensions of
energy−1 introduced by the gradient expansion. The UV
cutoff Q was introduced earlier as the resolution scale in
the transverse plane. We anticipate that in the next step
of the calculation we take the limit r → 0, meaning that
explicit factors of r will turn into powers of 1/Q. We only
keep terms like m−1∇ � Q−1∇ ∼ r∇. In other words,
we drop terms that are suppressed by additional powers
of the large scale Q. Thus we arrive at

∇ix∇jyγ(~x, ~y)

= µ(~R)
1

4π

[
δijK0(mr)− rirj

r2
mrK1(mr)

]
+
[
2∇i∇jµ(~R) +4µ(~R)δij

] mr

48πm2
K1(mr)

+O(∇3µ, r2∇2µ, . . .) , (105)

where any gradients ∇i on the right hand side act only

on µ(~R). Note that terms with single derivatives ∇iµ are
power suppressed. Now we take the formal limit r → 0.
No dependence on the direction of ~r should remain in this
limit and we keep only terms isotropic in ~r by setting
rirj/r2 → δij/2, The leading terms of the correlation
function with two derivatives in the ultraviolet limit are

∇ix∇jyγ(~R,~r)
∣∣∣
r→0

= −µ(~R)
1

8π
δij ln(m̂2r2)

+
1

48πm2

[
2∇i∇jµ(~R) +4µ(~R)δij

]
. (106)

Equations (104) and (106), together with Eq. (96) with-
out the gradient corrections, reproduce the standard re-
sult for the 2-point function in the MV model [18, 39]

〈Aia(~x⊥)Aia(~y⊥)〉 =
4(N2

c − 1)

g2Ncr2

(
1− (m̂2r2)

g4Nc
16π(N2

c−1)
µr2
)
.

(107)

Remember that our definition of µ has an additional fac-
tor N2

c − 1 compared to Refs. [18, 39].

Here we are strictly interested in the UV limit r → 0
regularized by a resolution length scale 1/Q. Plugging
(106) directly into (97) we obtain

〈Aia(~x⊥)Ajb(~x⊥)〉 = δab
g2µ(~x)

8π(N2
c − 1)

[
δij ln

Q2

m̂2

+
∇k∇lµ(~x)

6m2µ(~x)

(
δklδij + 2δikδjl

)]
, (108)

keeping all leading terms in powers of 1/Q up to sec-
ond order in gradients. We have made the replacement
r → 1/Q in the logarithm, which is equivalent to impos-
ing Q as the momentum cutoff in a Fourier representa-
tion. The typical transverse momentum of gluons in the
nuclear wave function is given by the saturation scale
Qs. Here we can take Q2

s ∼ g4µ/(N2
c − 1) in accordance

with [39] (accounting for the factor N2
c − 1 difference in

the definition of µ). Qs is the largest scale in the prob-
lem and thus the ultraviolet scale Q for a single nucleus
should be proportional to Qs with some numerical factor,
Q = KQs.

D. Higher Twist Gluon Correlation Functions

For the components of the energy-momentum tensor
beyond the leading term in the τ -expansion, we will need
expectation values of gluon fields beyond the 2-point
function. We will compute those correlation functions
in this subsection. With more fields or more derivatives
these are akin to higher twist distributions of the gluon
field. The power counting technique in 1/Q we intro-
duced in the previous subsection will be useful for book
keeping.

One additional transverse covariant derivative in the
2-gluon correlation function can be computed as follows.
First, we again express gauge potentials in terms of field
strengths
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〈DkAia(x−, ~x⊥)Ajb(y
−, ~y⊥)〉 =

∫ x−

−∞
dx′
−
∫ y−

−∞
dy′
−
〈

(DkF+i)a(x′−, ~x⊥)F+j
b (y′−, ~y⊥)

〉
. (109)

Using the same change to covariant gauge as in Sec.
IV B, and recalling that Dk

covF
+i
cov = ∂k∂iα, the expecta-

tion value on the right hand side can be transformed into
the expression

〈
U†aa′(x

′−, ~x⊥)U†bb′(y
′−, ~y⊥)∂k∂iαa′(x

′−, ~x⊥)∂jαb′(y
′−, ~y⊥)

〉
= δab

g2

N2
c − 1

δ(x′− − y′−)
[
−∇ix∇kx∇jyγ(x′−, ~x⊥, ~y⊥)

]
d(x′−, ~x⊥, ~y⊥) , (110)

in analogy to Eq. (93). Note that correlators with three
gluon fields vanish since an even number of adjoint Wil-
son lines and fields α have to be contracted with each
other. Combinations 〈Uα〉 ∼ 0 are suppressed [40].

The two integrals over x′− and y− can be dealt with
exactly as in the case of the simple 2-point function. The
result for arbitrary longitudinal positions x− > 0 (after
taking the thickness of light cone sources to zero) is

〈DkAia(~x⊥)Ajb(~x⊥)〉

= − g2

N2
c − 1

δab∇ix∇kx∇jyγ(~x⊥, ~y⊥)
∣∣∣
~y⊥→~x⊥

, (111)

in the interesting UV limit r → 0. The same expectation
value with the covariant derivative acting on the second
gauge field would result in the same expression with the
obvious replacement ∇kx → ∇ky .

We apply the same basic strategy to calculate expres-
sions with more derivatives. We obtain

〈DkAia(~x⊥)DlAjb(~x⊥)〉

=
g2δab

(N2
c − 1)

∇ix∇kx∇jy∇lyγ(~x⊥, ~y⊥) . (112)

In the same spirit we have

〈DkDlAia(~x⊥)Ajb(~x⊥)〉

=
g2δab

(N2
c − 1)

∇ix∇kx∇lx∇jyγ(~x⊥, ~y⊥) . (113)

The higher derivatives of the correlation function γ are

straightforward to calculate. We have

∇ix∇kx∇jyγ(~x⊥, ~y⊥) =
µ(~R)

4π

×
[(
δij

rk

r
+ δik

rj

r
+ δjk

ri

r

)
mK1(mr)

− rirjrk

r3
m2rK2(mr)

]
+
∇lµ(~R)

8π

(
δjl
rirk

r2
− δil r

jrk

r2
− δkl r

irj

r2

)
mrK1(mr)

− ∇
lµ(~R)

8π

(
δjlδik − δilδjk − δklδij

)
K0(mr) ,

(114)

where we kept the two leading orders, 1/r and m, in our
power counting in mr. One can check that the contri-
bution of the leading term to observables, such as βi,
vanishes due to the odd number of powers in ri. Hence
the relevant term in the UV limit is

∇ix∇kx,y∇jyγ(~x⊥, ~y⊥)
∣∣
~y⊥→~x⊥

=
∇lµ(~R)

16π

× ln

(
Q2

m̂2

)(
∓δjlδik ± δilδjk + δklδij

)
. (115)

The lower signs are valid if the derivative ∇k acts
on y⊥ instead of x⊥. The lower signs in the previ-
ous expression will be useful for the expectation value
〈AiaDkAjb(~x⊥)〉. As a consistency check, we note that

Eq. (115) switches between upper and lower signs under
the exchange {i, a} ↔ {j, b} as dictated by symmetry.
As discussed above, we have dropped a term O(g2µQ)
that does not contribute to observables.

Caution is needed when calculating four deriva-
tives acting on γ. The leading behavior of
∇ix∇jy∇kx∇lx,yγ(~x⊥, ~y⊥)

∣∣
~y⊥→~x⊥

is similar to 4 ln r which

vanishes everywhere except for r → 0. A proper integra-
tion will give us the leading term (again regularizing 1/r
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by Q) as

∇ix∇jy∇kx∇lx,yγ(~x⊥, ~y⊥)
∣∣
~y⊥→~x⊥

= ∓µ(~R)

32π
Q2
(
δijδkl + δikδjl + δjkδil

)
. (116)

In the UV limit the next to leading term in the transverse
scale hierarchy is

∇ix∇jy∇kx∇lx,yγ(~x⊥, ~y⊥)
∣∣
~y⊥→~x⊥

=
∇m∇nµ(~R)

32π

× ln

(
Q2

m̂2

)
(δijδkmδln − δikδjmδln ∓ δilδjmδkn

+ δjkδimδln ± δjlδimδkn ∓ δklδimδjn)

± ∇
m∇nµ(~R)

96π
ln

(
Q2

m̂2

)
× (δijδkmδln + δikδjmδln + δilδjmδkn

+ δjkδimδln + δjlδimδkn + δklδimδjn)

∓ 4µ
96π

ln
Q2

m̂2
(δijδkl + δikδjl + δilδjk) . (117)

The expectation values of gluon fields with up to two
covariant derivatives will enable us to calculate the ex-
pectation values of components of the energy-momentum
tensor up to order τ2 in the next section, including the
effects of transverse flow. In addition, we will calculate
energy density and pressure up to order τ4. To that end
we also compute the leading Q4 terms of the fourth order
coefficients. However, we will neglect all effects of trans-
verse gradients at fourth order, which would lead to very
lengthy expressions.

V. THE ENERGY-MOMENTUM TENSOR OF
COLLIDING NUCLEI

After the discussion of gluon correlation functions in
single nuclei we now return to the case of two colliding
nuclei. We will further break down the expressions for
the components of the energy-momentum tensor in the
small τ expansion in terms of the fields Ai1 and Ai2 in the
individual nuclei. It is then straightforward to apply the
results of the last section.

A. Energy Density and Flow

The expectation value of the initial energy density ε0
from Eq. (45) can be written as [39]

ε0 ≡ 〈ε0〉 =
g2

2
fabefcde

×
(
δijδkl + εijεkl

)
〈Ai1,aAk1,c〉ρ1〈A

j
2,bA

l
2,d〉ρ2 .

(118)

Note that in this chapter we calculate only averages of
components of the energy-momentum tensor and will
henceforth suppress the symbol 〈. . .〉 in the notation for
simplicity. Applying (108) for each nucleus, the initial
energy density is

ε0(~x⊥) =
2πNcα

3
s

N2
c − 1

µ1(~x⊥)µ2(~x⊥) ln

(
Q2

1

m̂2

)
ln

(
Q2

2

m̂2

)
,

(119)

where µ1 and µ2 are the expectation values of the densi-
ties of charges in nuclei 1 and 2, respectively, and Q1 and
Q2 are UV scales chosen for the wave function of nucleus
1 and 2, respectively. We have dropped terms propor-
tional to ∇∇µ/m2 which are subleading for the energy
density.

Expression (119) is very interesting. The appearance of
αs to the power 3 can be understood in the following way.
This classical calculation corresponds to the emission of
a gluon from source 1, the emission of another gluon from
source 2, followed by their fusion via a triple gluon vertex.
This involves 3 powers of the coupling g in the amplitude,
hence to a power of 3 in αs when the amplitude is squared
to get the energy density. The initial energy density is
very sensitive to the numerical value of αs, since changing
it by a factor of 2 results in a change in the initial energy
density of a factor of 8. Quantum corrections to the
classical CGC results are difficult to compute [42, 43] but
may change this sensitivity dramatically. For example,
it is reasonable to expect that one coupling is evaluated
at the scale Q1, the second coupling at the scale Q2, and
the third at a common scale Q. Using the lowest order
renormalization group result for the running coupling

αs(M
2) =

1

β2 ln(M2/Λ2
QCD)

(120)

with β2 = (11Nc − 2Nf )/12π we would get

ε0(~x⊥) ≈ 2πNcαs(Q
2)

β2
2(N2

c − 1)
µ1(~x⊥)µ2(~x⊥) . (121)

This triumvirate of running couplings is reminiscent of
what happens when computing quantum corrections to
the small-x evolution of the gluon distribution [44]. It
appears that scale dependences are weaker once quan-
tum corrections are established. Of course, the functions
µi(~x⊥) also depend to some degree on the scales.

For phenomenological purposes we will introduce a
common UV scale Q and, in what follows, we will al-
ways make the simplification log(Q2

i /m̂
2)→ log(Q2/m̂2),

i = 1, 2. For example, we can choose Q2 to be sim-
ply the arithmetic mean of the scales of both nuclei,
Q2 = (Q2

1 + Q2
2)/2. This is a very good approxima-

tion in the traditional MV setup where nuclei are con-
sidered homogeneous slabs of color charges. For most re-
alistic applications this will still be a reasonable choice.
Recall that Qi is proportional to the saturation scale,
Qi = KQsi for a given nucleus i, with a numerical factor
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K. In collisions of two nuclei the relevant scale for the
energy density is typically the larger of the two satura-
tion scales [45, 46]. However, experimentally accessible
saturation scales do not cover a large range. Even for
the largest nuclei at LHC energies they are at most a few
GeV, barely one order of magnitude larger than ΛQCD.
Hence, assuming one common scale from some averaging
procedure between both nuclei seems sufficient for many
purposes. Because of the limited range in Qs we will also
neglect a dependence of Q on the transverse coordinate
which is, in principle, present. Thus we will not evaluate
any transverse derivatives acting on Q.

The expectation value of the rapidity-even flow vector
in the transverse direction at order τ is simply given by

αi = −2πα3
s

Nc
N2
c − 1

ln2 Q
2

m̂2
∇i (µ1µ2)

= −ε0
∇i (µ1µ2)

µ1µ2
. (122)

Separation of contributions from both nuclei for the
rapidity-even flow vector leads to

βi = g2fabefcdeε
ij
(
εmnδkl − εklδmn

)
×
[
〈(DiAm1,a)Ak1,c〉〈An2,bAl2,d〉

+ 〈(Am1,a)Ak1,c〉〈(DiAn2,b)A
l
2,d〉
]
. (123)

The expectation value then takes a form complementary
to αi [38]

βi = −ε0
µ2∇iµ1 − µ1∇iµ2

µ1µ2
. (124)

Note that the expectation value of βi disappears for µ1 =
µ2. Thus it vanishes for collisions of identical nuclei with
impact parameter b = 0. We have discussed in detail in
[38] how βi describes a rotation of the fireball for b 6=
0 while still preserving boost-invariance. We will come
back to this in the next section.

B. Higher Orders in τ

The expectation values of terms at order τ2 can be
calculated in a straight forward but increasingly lengthy
manner. For the coefficient δ we have the intermediate

result

δ = 〈[Dm, E0][Dm, E0] + [Dm, B0][Dm, B0]〉
= g2fabefcde

(
δijδkl + εijεkl

)
×(〈(DmAi)1,a(DmAk)1,c〉ρ1〈A

j
2,bA

l
2,d〉ρ2

+〈Ai1,aAk1,c〉ρ1〈(DmAj)2,b(D
mAl)2,d〉ρ2

+〈(DmAi)1,aA
k
1,c〉ρ1〈A

j
2,b(D

mA)l2,d〉ρ2
+〈Ai1,a(DmAk)1,c〉ρ1〈(DmA)j2,bA

l
2,d〉ρ2)

+g4fabcfcdeffghfhie
(
δijδkl + εijεkl

)
×
(
〈Am1,aAm1,fAi1,dAk1,i〉ρ1〈A

j
2,bA

l
2,g〉ρ2

+〈Ai1,bAk1,g〉ρ1〈A
j
2,dA

l
2,iA

m
2,aA

m
2,f 〉ρ2

)
. (125)

Using the higher twist gluon correlation function we de-
rived in Sec. IV D this evaluates to

δ = 4ε0Q
2 ln−1

(
Q2

m̂2

)
+ε0

[
1 +

2Q2

3m2
ln−2

(
Q2

m̂2

)][
4µ1

µ1
+
4µ2

µ2

]
+14πα2

s

Nc
(N2

c − 1)
ε0 ln

(
Q2

m̂2

)
(µ1 + µ2)

+
14πα2

s

3m2

Nc
(N2

c − 1)
ε0

[
2(4µ1 +4µ2)

+
µ2
14µ2 + µ2

24µ1

µ1µ2

]
. (126)

The other coefficients at order τ2 are

ω =
ε0

4µ1µ2

[
∇1∇1(µ1µ2)−∇2∇2(µ1µ2)

+2(∇1µ1∇1µ2 −∇2µ1∇2µ2)
]

− Nc
N2
c − 1

5πα2
sε0

3m2

×
[
−∇1∇1(µ1 + µ2) +∇2∇2(µ1 + µ2)

]
, (127)

γ =
ε0

2µ1µ2

[
∇1∇2(µ1µ2) + (∇1µ1∇2µ2 +∇2µ1∇1µ2)

]
+

Nc
N2
c − 1

10πα2
sε0

3m2
∇1∇2(µ1 + µ2) . (128)

It is interesting to note the hierarchy for terms at order
of τ2. Terms with derivatives are subleading to terms
without, for example (τQ)2 � (τQ)2(∇∇µ)/(m2µ) �
τ2(∇∇µ)/µ, while true non-abelian terms of order
(ταs)

2µ could be large as well.
The energy flow ξi at order τ3 can be expressed with

the help of Eq. (71) as derivatives of second order quan-
tities. The leading Q2 correction to rapidity-odd flow at
order τ3 is

ζi =− 9

2
ε0Q

2 ln−1
(
Q2

m̂2

)
µ1∇iµ2 − µ2∇iµ1

µ1µ2
,

(129)
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up to second order in transverse gradients.
At fourth order in τ we focus on the leading Q4 con-

tributions for simplicity. For the relevant coefficients we
obtain the expectation values

ρ =
3

32
ε0Q

4 ln−1
(
Q2

m̂2

)
+

3

8
ε0Q

4 ln−2
(
Q2

m̂2

)
,

(130)

κ = −64

3
ρ . (131)

VI. PHENOMENOLOGY OF CLASSICAL
FIELDS IN HEAVY ION COLLISIONS

With the results from the last section we are now ready
to discuss the early time evolution of key quantities in
high energy nuclear collisions analytically. We can com-
pare to some numerical results available in the literature.

A. Time Evolution of Energy Density and Pressure

Let us begin by first considering the very simple case
of homogeneous, equally thick nuclei, in other words, the
case of colliding slabs with µ1 = µ2 being constants. In
that case any dynamics comes solely from the longitudi-
nal expansion of the system. Because of its simplicity,
this is an approximation often employed in the literature
to study the general behavior of color glass systems.

Neglecting transverse gradients, and keeping only the
leading (τQ)k terms, the results from the last section
imply

ε = T 00(τ, η) = ε0

[
1− (Qτ)2

a

(
1− 1

2
cosh 2η

)
+

3(Qτ)4

32a2
(a+ 4)

(
1− 2

3
cosh 2η

)
+O(τ6)

]
, (132)

pT = T ii(τ, η) = ε0

[
1− (Qτ)2

a

+
3(Qτ)4

32a2
(a+ 4) +O(τ6)

]
, (133)

pL = T 33(τ, η) = −ε0
[
1− (Qτ)2

a

(
1 +

1

2
cosh 2η

)
+

3(Qτ)4

32a2
(a+ 4)

(
1 +

2

3
cosh 2η

)
+O(τ6)

]
, (134)

where we have defined a = ln(Q2/m̂2) for brevity. We
have neglected terms of order (αsa)2Q2µ for two reasons.
First, we have not computed the corresponding terms for
the 4th order in time so we cannot evaluate these terms
consistently. The calculation is somewhat tedious and

reserved for a future publication. Secondly, the exact re-
lation between µi and Q is not fixed from first principles.
We can estimate that with a reasonable value K = 2
the corrections to pT /ε and pL/ε are small up to about
Qτ ≈ 0.8, which leads us to believe that the following
analysis is valid.

We can write down very simple but powerful pocket
formulas for the time evolution of key quantities. For
example the transverse and longitudinal pressure relative
to the energy density at midrapidity behave as

pT
ε

(τ) =
1− 1

a (Qτ)2 + 3(a+4)
32a2 (Qτ)4

1− 1
2a (Qτ)2 + a+4

32a2 (Qτ)4
,

pL
ε

(τ) =−
1− 3

2a (Qτ)2 + 5(a+4)
32a2 (Qτ)4

1− 1
2a (Qτ)2 + a+4

32a2 (Qτ)4
. (135)

Suppose we drop the order τ4 terms in the numerator
and denominator. Then at a time given by (Qτ)2 = 4

5a

we have pT = pL = 1
3ε. This corresponds to the equation

of state of a massless gas of quarks and gluons.
We can compare the results in Eq. (135) with those

of Gelis and Epelbaum [20]. They performed a real-
time lattice simulation for colliding slabs using the gauge
group SU(2). In Fig. 5 we show results for the transverse
and longitudinal pressures over the energy density, pT /ε
and pL/ε, from our analytic approach up to fourth or-
der in τ and the numerical results from [20] (labeled LO
in their work). Here we have chosen the values of a =
0.8, 0.9, and 1.0, all of which give very good matching for
small time, and are not unreasonable for small saturation
scales. Note that this is a very schematic comparison for
several reasons. A more quantitative statement would
require a careful analysis of the IR and UV scales in the
numerical calculation and their relation to Qs, a further
investigation of µ3 and µ5 terms in the analytic result,
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FIG. 5. (color online) Evolution of the ratios of the transverse
(upper curves) and longitudinal (lower curves) pressure over
energy density for the classical gluon field at fourth order
accuracy in time, compared to the numerical result from [20]
at leading order for g = 0.5 (solid lines). Values of a = 0.8,
0.9, and 1.0 (dash-dotted, dotted and dashed lines resp.) are
indicated.
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FIG. 6. (color online) Different flow fields (black arrows) and initial energy density ε0 (shading) for Pb+Pb collisions at impact
parameter b = 6 fm in the x−y-plane. Lighter regions correspond to higher densities. The nucleus centered at x = 3 fm travels
in the positive η-direction. Panel (a): αi. Panel (b): βi. Panel (c): Full transverse Poynting vector T 0i at η = 1. Note that αi

is proportional to T 0i at η = 0.

and the use of SU(2) instead of SU(3) in our calcula-
tions. However, it is interesting to note that the results
agree quite well up to τ ∼ 1/Q.

The comparison with numerical work is important in
two ways. First, the study in [20] indicates that clas-
sical field dynamics is sufficient for times smaller than
τ0 ∼ 1/Qs, at least at small to moderate values of the
strong coupling g. After that time quantum corrections
and instabilities start to dominate. The successful com-
parison also validates our previous argument about the
convergence radius of the small-time expansion which we
expected to be given parametrically by 1/Qs. Indeed we
can reproduce the results for transverse and longitudinal
pressure very well up to that time. If we would want to
relax the conditions and allow transverse gradients, we
would also introduce dimensionless terms τ∇i which are
smaller than τQ in the region of applicability.

Serendipitously our near-field expansion works rather
well up to the same time scale to which the classical field
approach is valid. Thus we are led to believe that our
analytic results are a rather simple and almost complete
account of the collision dynamics up to τ0. The asymp-
totic values for pT /ε and pL/ε reached in the classical
theory after τ0 are ∼ 1/2 and ∼ 0, respectively. Quan-
tum corrections and instabilities will, however, lead to
further isotropization soon after τ0 [20].

B. Global Flow of Glasma

Two of us have discussed the effect of the two first-
order flow terms αi and βi in detail in [38]. The
hydrodynamic-like flow term αi obviously leads to both
radial and elliptic flow; see left panel of Fig. 6. Note that
this is flow of energy of the classical gluon field at this
point. However, due to energy and momentum conserva-
tion, this flow will translate into a flow of fluid cells after

thermalization. We will discuss this in a future publica-
tion.

The rapidity-odd flow term βi potentially has many
interesting implications; see center panel of Fig. 6. Its
event average vanishes for central collisions (impact pa-
rameter b = 0) for collisions of identical nuclei. However
for finite impact parameters it carries the angular mo-
mentum of the gluon field that is transferred from the
non-vanishing angular momentum of the two colliding
nuclei. The flow field exhibits a characteristic rotation
pattern around the impact vector; see the right panel
of Fig. 6 and top panel of Fig. 7. This would lead
to directed flow v1 of particles which has been observed
in experiments. The angular momentum would be trans-
ferred to the quark-gluon fluid at a later stage with poten-
tial interesting consequences [47, 48]. We again refer the
reader to [38] for more details. In collisions of two differ-
ent species of nuclei, βi leads to an increase of the radial
flow in the wake of the larger nucleus while suppressing
flow in the wake of the smaller nucleus; see bottom panel
of Fig. 7. For asymmetric collisions at finite impact pa-
rameter the flow field becomes more complicated. This
could lead to interesting flow patterns unique to classical
gluon field dynamics [38]. Those could be a novel signa-
ture for the importance of color glass condensate in this
regime. For the illustrations shown here, Woods-Saxon
profiles have been used for the volume density of nucle-
ons in the nuclei from which the transverse color charge
densities µ1,2 are computed.

The second order in time also introduces a pressure
anisotropy in the transverse plane for asymmetric colli-
sion systems. The eccentricity of the transverse pressure
εp = (T 11 − T 22)/(T 11 + T 22) is often used to measure
the buildup of elliptic flow in the system. For the event
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FIG. 7. (color online) Transverse Poynting vector T 0i (black
arrows) and initial energy density ε0 (shading) in the η − x
plane at y = 0. Lighter regions correspond to higher densities.
Panel (a): Pb+Pb at b = 6 fm. Angular momentum is carried
by the gluon field. Panel (b): Pb+Ca at b = 0 fm, the Pb
nucleus is moving to the right. The system expands more
strongly in the wake of the larger nucleus.

average we read off from Eq. (57) that

εp(x, y, η) =
ω(x, y)τ2

4ε0(x, y)
, (136)

up to second order in gradients and up to second order
in τ . This quantity is independent of η. We see that the
pressure anisotropy indeed starts to grow quadratically
in time. We leave further numerical analysis to a future
paper.

Third order corrections typically slow the linear growth
of the energy flow. For the rapidity-even part we again
have a compact formula if we neglect terms with three or
more derivatives. From Eq. (71) and the expression for
the expectation values of αi and δ we obtain

T 0i
even =

τ

2
αi
(

1− 1

2a
(Qτ)2

)
cosh η . (137)
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FIG. 8. (color online) Time evolution for |V | (solid black line)
and for the radial projection of T 0i (arbitrary units, dashed
red line) for central Pb+Pb collisions at midrapidity with
approximations as described in the text.
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FIG. 9. Dependence of |V | on the radial coordinate r for
central Pb+Pb collisions at midrapidity. The radius of a Pb
nucleus is about 7 fm.

Similarly, from the expectation values for βi and ζi, we
have

T 0i
odd =

τ

2
βi
(

1− 9

16a
(Qτ)2

)
sinh η , (138)

when higher order gradients and terms or order µ3
i are

neglected. Interestingly, when we look at V i = T 0i/T 00

at midrapidity as a proxy for velocity, the leading cor-
rections in the time evolution cancel in numerator and
denominator. They are of order −(Qτ)2/2a for both the
energy density and the even part of the energy flow. In
other words, while the growth of T 0i slows and invariably
peaks and diminishes due to the longitudinal expansion,
the velocity V i continues to grow roughly linearly as

V i = −τ
2

∇iε0
ε0

+O(τ5) , (139)

at midrapidity when transverse gradients of third order
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and higher are neglected. Figure 8 shows the time evolu-
tion of the radial velocity |V | up to corrections of order
τ5 for a point r = 5 fm away from the center of a central
Pb+Pb collision at midrapidity. We also computed the
time evolution of the radial projection of T 0i, including
the τ3 correction, to contrast its slowing down to the lin-
ear growth of V i. For the calculation of T 0i, we have
chosen Q2 = 2 GeV2 and a = 1. Figure 9 displays the
radial dependence of |V | for the same central Pb+Pb col-
lisions at τ = 0.2 fm. We see that the surface velocity
peaks around 0.2. However, one has to be cautioned that

typically the first fermi of the boundary (beyond r = 6
fm for a Pb nucleus) is usually outside of the applicability
of this calculation.

C. Towards Quark Gluon Plasma

Let us summarize our knowledge of nuclear collisions
at a typical time τ0 = 1/Qs. The energy-momentum
tensor can be written, up to third order in τ as

Tmn =


ε0 − τ2

8 (−24ε0 + δ) τ
2α

x + τ3

16 ξ
x τ

2α
y + τ3

16 ξ
y τ

8∇
iβi

τ
2α

x + τ3

16 ξ
x ε0 − τ2

4 (−4ε0 + δ − ω) γ 1
2β

x

τ
2α

y + τ3

16 ξ
y γ ε0 − τ2

4 (−4ε0 + δ + ω) 1
2β

y

τ
8∇

iβi 1
2β

x 1
2β

y − ε0
τ2 + 1

8 (−24ε0 + 3δ)

 . (140)

Here we have used the τ, x, y, η coordinate system for the
tensor. This gets rid of unwieldy cosh η and sinh η terms
from boosts. Note that there is no explicit dependence
on η in this coordinate system due to boost invariance.
This tensor exhibits the standard features expected of a
fireball: radial and elliptic flow, and a decrease of en-
ergy density and pressure with time, mostly due to the
longitudinal expansion. In addition, we find angular mo-
mentum and directed flow for finite impact parameter
collisions, and a complicated flow pattern for asymmet-
ric collision systems. These features can be predicted
more or less accurately and in analytic form averaged
over events.

The reader should keep in mind that the phenomeno-
logical analyses in the present section are rather crude
and could be refined in many ways, as pointed out nu-
merous times. However, they result in compact pocket
formulas which could be useful for quick estimates in
many situations. A more careful analysis can be done
starting with the full expressions from Sec. V.

After a proper time τ0, instabilities growing from small
fluctuations take over, leading to turbulent behavior of
the fields. Further isotropization and equilibration is
then expected to lead to quark-gluon plasma near ki-
netic equilibrium. From a phenomenological perspective,
one could simply translate the energy-momentum tensor
of the classical field around the time τ0 directly into hy-
drodynamic fields, as was done in [19] for ideal hydrody-
namics and in [17] for viscous hydrodynamics. However,
this obviously leads to large shear stress corrections, as
can be seen from the large difference between transverse
and longitudinal pressure around τ0 as presented previ-
ously. It would be very interesting to see how key features
of the transverse flow field translate into hydrodynam-
ics and how they fare during subsequent hydrodynamic
evolution. This would enable us to connect features of
classical gluon fields in the initial state to observables.

It would be relatively straight forward to build a semi-
analytic event generator from our results. For example,
one could follow reference [16] which used a model for
charge configurations of nuclei in collisions. In our ap-
proach, their numerical solution to the Yang-Mills equa-
tions would be replaced by our analytic time evolution
using the near-field approximation. Then, from the sam-
pled charge distributions, one has to calculate the co-
efficients ε0, αi, βi, δ, etc. to obtain an event-by-event
energy-momentum tensor.

VII. CONCLUSION

In this paper we worked out analytic solutions of the
Yang-Mills equations for two nuclei with random color
charges colliding on the light cone. Using a recursive so-
lution we computed the early time gluon field and energy-
momentum tensor in a near-field approximation. We find
that this approximation gives acceptable results roughly
up to a time τ0 given by the inverse of the saturation scale
Qs. This coincides with the time at which the entire clas-
sical field approximation starts to breaks down anyway.
Explicit expressions for the fields and energy-momentum
tensor up to order τ4 have been provided.

We have also calculated expectation values for the
energy-momentum tensor when many events are av-
eraged. Our calculation generalizes the McLerran-
Venugopalan model to allow small but non-vanishing gra-
dients in the average color charge in the transverse plane.
This permitted us to discuss flow phenomena in aver-
aged events. We provide a comprehensive set of expecta-
tion values of coefficients of the energy-momentum tensor
which allow predictions for event-averaged Tµν for times
around τ0. We give compact and analytic formulas for
key quantities like the time evolution of energy density,
transverse and longitudinal pressure, the time evolution
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of transverse flow of energy, and the time evolution of the
transverse pressure asymmetry.

We find that the transverse flow of energy grows lin-
early with time and that it can reach sizeable values at
the surface of the fireball at τ0. We have also discov-
ered that the asymmetry between transverse pressures
starts to grow quadratically in time. The time evolution
of transverse and longitudinal pressure matches well with
numerical results available in the literature up to τ0. Be-
sides the usual radial and elliptic flow a rapidity-odd flow
emerges. We suggest that this energy flow of the glasma
could contribute to directed flow measured at RHIC and
LHC. It carries angular momentum which rotates the fire-
ball. More complex flow patterns appear for collisions of
asymmetric nuclei. The characteristic glasma flow pat-
tern could potentially lead to another signature for color
glass dynamics in high energy collisions.

At τ0 ∼ 1/Qs our calculation becomes unreliable.
However, matching our results to a (3+1)-D viscous hy-
drodynamic code might be attempted. We will discuss
this in a forthcoming publication. We have also discussed
the possibility to construct an event generator based on
the results of this paper.
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Appendix A: General Definitions

Some conventions and useful formulae are gathered in
this appendix. 3-vectors are denoted by bold symbols,
vector arrows denote 2-vectors in the transverse plane.
As an example, xµ = (t,x) = (t, ~x⊥, z). Light cone coor-
dinates are defined by

x± =
1√
2

(
x0 ± x3

)
, (A1)

with d4x = dx+dx−d2x⊥ and xµyµ = x+y− + x−y+ −
xi⊥y

i
⊥. Note that ∂µ = (∂/∂t,−∇) and ∂± = ∂/∂x∓.

Unless indicated otherwise, small Latin indices i, j, k in-
dicate transverse components of a vector, Greek indices
label 4-vectors in (t, x, y, z) coordinates, and Latin in-
dices m,n label 4-vectors in (τ, x, y, η) coordinates. Un-
derlined Latin indices refer to the SU(3) algebra.

Proper time τ and space-time rapidity η for a space-
time point xµ are defined as

τ =
√
t2 − z2 =

√
2x+x− , (A2)

η =
1

2
ln

(
t+ z

t− z

)
=

1

2
ln

(
x+

x−

)
. (A3)

It is useful to express Cartesian and light cone derivatives
via hyperbolic ones by

∂± =
x±

τ

∂

∂τ
∓ 1

2x∓
∂

∂η
, (A4)

and

∂

∂t
= cosh η

∂

∂τ
− 1

τ
sinh η

∂

∂η
, (A5)

∂

∂z
=− sinh η

∂

∂τ
+

1

τ
cosh η

∂

∂η
. (A6)

Our conventions for covariant derivatives and field
strength tensors are

Dµ = ∂µ − igAµ , (A7)

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] .

(A8)

Here Aµ, Fµν and Jµ are SU(Nc) valued functions that
can be expressed as linear combinations of the SU(Nc)
generators ta, a = 1, . . . , N2

c − 1. The generators are
defined through [ta, tb] = ifabc tc and normalized by

Tr ta = 0 , Tr(tatb) =
1

2
δab . (A9)

This immediately implies that

Tr(X) = 0, Tr([X,Y ]) = 0 , (A10)

for any X, Y in the SU(Nc) algebra since [X,Y ] ∈
SU(Nc).

Using the ordinary product rule and the Jacobi iden-
tity, one can show that covariant derivatives obey the
generalized product rule

[Di, XY ] = [DiX]Y +X[Di, Y ] , (A11)

for any X, Y in the SU(Nc) algebra; in particular

[Di, [X,Y ]] = [[DiX], Y ] + [X, [Di, Y ]] . (A12)

It is sometimes helpful to interpret Tr(AB) as a bi-
linear scalar product on SU(3) and [A,B] as a skew-
symmetric product whose result is orthogonal to both X
and Y such that

Tr(X, [X,Y ]) = 0 . (A13)
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This leads to some important ways to simplify expres-
sions with a trace involved. They include:

Tr(X[Di, X]) = −1

2
∇i Tr(X2) , (A14)

εij [Di, [Dj , X]] = ig[B3, X] , (A15)

Tr
(
[DiX][DiX]

)
=

1

2
4Tr(X2)

− Tr
(
X[Di, [Di, X]]

)
,(A16)

Tr
(
εij [Di, X][Dj , Y ]

)
=

1

2
εij∇i

× Tr
(
[Dj , X]Y − [Dj , Y ]X

)
+

1

2
εij Tr([Di, [Dj , X]Y

− [Di, [Dj , Y ]X) , (A17)

Tr
(
X[Di, [Di, X]]

)
=

1

2
4Tr(X2)

− Tr([Di, X][Di, X]) , (A18)

where X and Y are any SU(Nc) fields. As an example,
the second equation implies that

εij Tr(E0[Di, [Dj , B0]] =0 , (A19)

εij Tr(B0[Di, [Dj , E0]] =0 . (A20)

Appendix B: Expressions at Order τ3 and τ4

At order τ3 the transverse fields are

F i±(3) = − e
±η

4
√

2

(
[Dj , F ji(2)]± [Di, F+−

(2) ]
)

+
ig

8

(
εij [B0, F

j±
(1) ]± [E0, F

i±
(1)]
)

∓ ig

8

e±η

2
√

2
εij [Dj , [E0, B0]] , (B1)

whereas E3
(3) = 0 = B3

(3). In terms of the initial fields

the third order fields are

Ei(3) =− 1

16

(
cosh η εij [Dj , [Dk, [Dk, B0]]]

+ sinh η [Di, [Dk, [Dk, E0]]]
)

− ig

16
εij sinh η

(
[B0, [D

j , E0]] + [E0, [D
j , B0]]

)
− ig

16
cosh η

(
[E0, D

i, E0]− [B0, [D
i, B0]]

)
− ig

16
sinh ηεij [Dj , [E0, B0]] , (B2)

and

Bi(3) =− 1

16

(
sinh η[Di, [Dk, [Dk, B0]]]

− cosh ηεij [Dj , [Dk, [Dk, E0]]]
)

− ig

16
cosh η

(
[B0, [D

i, E0]] + [E0, [D
i, B0]]

)
− ig

16
sinh ηεij

(
[B0, [D

j , B0]]− [E0, [D
j , E0]]

)
− ig

16
cosh η[Di, [E0, B0]] . (B3)

The longitudinal field at order τ4 is

E3
(4) =

1

64
[Di, [Di, [Dj , [Dj , E0]]]]

+
1

16
igεij [[Di, E0], [Dj , B0]] , (B4)

B3
(4) =

1

64
[Di, [Di, [Dj , [Dj , B0]]]]

− 1

64
igεij [[Di, E0], [Dj , E0]]

+
3

64
igεij [[Di, B0], [Dj , B0]]

+
g2

64
[E0, [B0, E0]] . (B5)

For the energy-momentum tensor the transverse flow
vectors ξi and ζi, as defined in Eq. (62), are given in
terms of E0 and B0 by

ξi =
[
Di, E0[Dl, [Dl, E0]] +B0[Dl, [Dl, B0]]

]
+ [Di, E0][Dl, [Dl, E0]] + [Di, B0][Dl, [Dl, B0]]

− igεijB0[E0, [D
j , E0]] , (B6)

ζi = εij
([
Dj , E0[Dl, [Dl, B0]]−B0[Dl, [Dl, E0]]

]
− 3[Dj , E0][Dl, [Dl, B0]] + 3[Dj , B0][Dl, [Dl, E0]]

)
− 3igE0[B0, [D

i, B0]] . (B7)

The components which we defined at order τ4 are

ρ =B0B(4) + E0E(4) +
1

2
(B(2)B(2) + E(2)E(2)) ,

(B8)

κ =[Di, B0][Di, [Dk, [Dk, B0]]] (B9)

+ [Di, E0][Di, [Dk, [Dk, E0]]

+ igεij [Di, B0]([B0, [D
j , B0]]− [E0, [D

j , E0]])

+ igεij [Di, E0]([B0, [D
j , E0]] + [E0, [D

j , B0]]

+ [Dj , [E0, B0]]]) ,

σ =εij [Di, E0][Dj , [Dk, [Dk, B0]]] (B10)

− εij [Di, B0][Dj , [Dk, [Dk, E0]]]

+ ig[Di, B0]([B0, [D
i, E0]]

+ [E0, [D
i, B0]] + [Di, [E0, B0]])

+ ig[Di, E0]([E0, [D
i, E0]]− [B0, [D

i, B0]]) ,
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λ =E1
(1)E

1
(3) +B1

(1)B
1
(3) − E

2
(1)E

2
(3) −B

2
(1)B

2
(3) ,

(B11)

ν = −E1
(1)E

2
(3) −B

1
(1)B

2
(3) − E

1
(3)E

2
(1) −B

1
(3)B

2
(1) .

(B12)

We omit the lengthy expression for λ and ν in terms of
E0 and B0.

Appendix C: Energy-Momentum Conservation at
Order τ3

We prove explicitly the conservation of transverse mo-
mentum at order τ3, i.e. the equation (71). We do this
for the first component ξ1 = ∇1 (−4ε0 + δ − ω) −∇2γ,

the proof for ξ2 would be similar.

∇1 (−4ε0 + δ − ω)−∇2γ

=−∇1
(
((E0[Dl, [Dl, E0]] +B0[Dl, [Dl, B0]])

+ ([Dl, E0][Dl, E0] + [Dl, B0][Dl, B0])

− ([Dl, E0][Dl, E0] + [Dl, B0][Dl, B0])
)

+
1

2

(
[D1, [D1, E0]2] + [D1, [D1, B0]2]

− [D2, [D2, E0]2]− [D2, [D2, B0]2]
)

+ [D2, [D1, E0][D2, E0] + [D1, B0][D2, B0]]

=
[
D1, E0[Dl, [Dl, E0]] +B0[Dl, [Dl, B0]]

]
+ [D1, E0][Dl, [Dl, E0]] + [D1, B0][Dl, [Dl, B0]]

=ξ1 . (C1)

Here we have used the product rule for covariant deriva-
tives extensively and Eq. (A16) for the first equal sign
and Eq. (A15) at the second equal sign.
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