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We introduce second Hankel determinant of biunivalent analytic functions associated with A-pseudo-starlike function in the open
unit disc A subordinate to a starlike univalent function whose range is symmetric with respect to the real axis.

1. Introduction

Let o be the class of all analytic functions f of the form
(o)
f@=z+)az", 6))
n=2

in the open unit disc A = {z : |z| < 1}. Let S be the subclass
of o/ consisting of univalent functions. Let P be the family of
analytic functions p(z) in A such that p(0) = 1 and Rp(z) >
0 (z € A) of the form

p@)=1+)cz2" 2)
n=1

For any two functions f and g analytic in A, we say that the
function f is subordinate to g in A and we write it as f(z) <
g(z), if there exists an analytic function w, in A with w(0) = 0,
lw(z)| < 1 (z € A)such that f(z) = g(w(z)). In view of
Koebe 1/4 theorem, every function f € S hasan inverse ',
defined by

' (f@)=2 (zen),

(3)
FU @) =w (1wl <r (s () 27).

In fact, the inverse function is given by

T (w) = w-aw + (Zaf - a3) w’
(4)

3 4
—(5a2—5a2a3+a4)w +eee

A function f € ¢/ is said to be biunivalent in A if both f and
£~ are univalent in A. Let T denote the class of all biunivalent
functions defined in the unit disc A. We notice that X is
nonempty. The behavior of the coefficients is unpredictable
when the biunivalency condition is imposed on the function
f € &.1In1967, Lewin [1] introduced the class X of biunivalent
functions and investigated second coefficient in Taylor-
Maclaurin series expansion for every f € X. Subsequently, in
1967, Brannan and Clunie [2] introduced bistarlike functions
and biconvex functions similar to the familiar subclasses of
univalent functions consisting of strongly starlike, strongly
convex, starlike, and convex functions and so on and obtained
estimates on the initial coefficients conjectured that |a,| <
/2 for bistarlike functions and |a,] < 1 for biconvex
functions. Only the last estimate is sharp; equality occurs
only for f(z) = z/(1 — z) or its rotation. Since then, various
subclasses of biunivalent functions class ¥ were introduced
and nonsharp estimates on the first two coefficients |a,|
and |a;| in Taylor-Maclaurin series expansion were found in
several investigations. The coeflicient estimate problem for
each of |a,| is still an open problem. In 1976, Noonan and
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Thomas [3] defined gth Hankel determinants of f for g > 1
and n > 1 which is stated as follows:

a, Api1 Oy e Apig-1
A1 Gnyy Opy3 e Apiq
a a a te a
n+2 n+3 n+4 n+q+1
Hy(n) = . (5
an+q—1 an+q an+q+1 an+2q—2

Easily one can observe that H,(1) = |a; — a% | is a special case
of the well known Fekete-Szeg6 functional |a; — ua;| where u
is real, for y = 1. Now for g = 2, n = 2, we get second Hankel
determinant

a, as

H,(2) = = |a2a4 - a§| . (6)

as dy

In particular, sharp upper bounds on H,(2) were obtained by
the authors of articles [4-6] for various subclasses of analytic
and univalent functions. In 2013, Babalola [7] determined
the second Hankel determinant with Fekete-Szego parameter
la,a, — Aa;| for some subclasses of analytic functions. Let ¢
be an analytic function with positive real part in A such that
$(0) = 1, ¢'(0) > 0 which is symmetric with respect to the
real axis. Such a function has a Maclaurin series expansion of
the form ¢(z) = 1 + B,z + B,2* + B32° +--- (B, > 0).
Researchers like Duren [8], Singh [9], and so on have
studied various subclasses of usual known Bazilevi¢ function
of order « denoted by B(«) which satisfy the geometric
condition Re( f (z)*! f "(2)/2*Y) > 0, where acis nonnegative
real number, different ways of perspectives of convexity, radii
of convexity and starlikeness, inclusion properties, and so on.
The class B(«) reduces to the starlike function and bounded
turning function whenever &« = 0 and a = 1, respectively. This
class is extended to B(«, 3) which satisfy the geometric condi-
tion Re(f(z)“_lf'(z)/z"‘_l) > [3, where « is nonnegative real
number and 0 < f3 < 1. Recently, Babalola [7] defined new
subclass A-pseudo-starlike functions of order (0 < 8 < 1)

which satisfy the condition Re(z[f’(z)]A/f(z)) >B(A=1¢€
R, 0 < B <1, z € A) and is denoted by £, (f3). Babalola
[7] proved that all pseudo-starlike functions are Bazilevic of
type (1-1/A), order ﬁ(lm, and univalent in the open unit disc
A. For A = 2 we note that functions in £, (f3) are defined by
Re f "(2)(z f "(z)/ f(z)) > P which is a product combination
of geometric expressions for bounded turning and starlike
functions. Note that the singleton subclass £ () of S
contains the identity map. In 2016, Joshi et al. [10] defined
two new subclasses of biunivalent functions using pseudo-
starlike functions, one is & Bg(rx) class of strong A-bi-pseudo-
starlike functions of order « and other is &Bs(A, ) A-bi-
pseudo-starlike functions of order f3 in the open unit disc.
Many researchers [11-15] have estimated the second Hankel
determinants for some subclasses of biunivalent functions.
Motivated by the above-mentioned work, in this paper we
have introduced A-bi-pseudo-starlike functions subordinate
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to a starlike univalent function whose range is symmetric
with respect to the real axis and estimated second Hankel
determinants.

Definition 1. A function f € X is said to be in the class
3B§(¢), A > 1, if it satisfies the following conditions:

21 )]

W<¢(Z), z €A, ]
w[ '(w)])L v
%((b(uﬂ, U)EA,

where g is an extension of £~ to A.

1) If ¢(z) = (1 + z)/(1 — z), then the class .SfBé(qb)

reduces to the class 33; and satisfies the following
conditions:

) A
re 2L

@ 0, z€A,

(8)
w[g' (w)]A
Re———— >0, weA,
g (w)

where g is an extension of £~ to A.

2)If¢d(z) = 1+ (1-20)2)/(1-2),0 < & < 1, then
the class ZBg(qS) reduces to the class 33;(06) and
satisfies the following conditions:

Y
U N

@ o, z €A,

R %)
Re M >, weEA,
g (w)

where g is an extension of £~ to A.

B)Ifp(z) = (1 +2)/(1 - z))ﬁ, then the class ng(qb)
reduces to the class ng(ﬁ), 0 < B < 1 and satisfies
following conditions:

A
z|f' (2)
arg% < 771, z €A,
N (10)
wlgd ]| pr
arg W < 7, w € A,

where g is an extension of f~' to A.
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(4) If A = 1, then the class 3B§(¢) reduces to the class of
bistarlike functions ST (¢) and satisfies the following

conditions:
Z}( (S) <p(), zel N
wj(g) <PpW), weA,

where g is an extension of f to A.

Several choices of ¢ would reduce the class ST (¢) to
some well known subclasses of 2.

(1) For the function ¢ given by ¢(z) = (1+(1-2a)z)/(1-
z), 0 < a < 1, the class STx(¢p) reduces to the class
ST () and satisfies the following conditions:

e % >, zZ €A,
, (12)
Rewg (w) >a, weENA,
g (w)

where g is an extension of f™' to A and this class is
called class of bistarlike function of order .

(2) For the function ¢ given by ¢(z) = (1+2)/(1 - z), the
class ST (¢) reduces to the class STy and satisfies the
following conditions:

Re%>0, z €A,

wg' (w)
g(w)

(13)

e >0, weA,

where g is an extension of f~' to A and this class is
called class of bistarlike function.

2. Preliminary Lemmas

Let P denote the class of functions consisting of p, such that
(e8]
p(Z)z1+Clz+r2z2+c3z3+...=1+chzn (14)
n=1

which are analytic in the open unit disc A and satisfy
R{p(z)} > 0foranyz € A.

Lemma 2 (see [8]). If p € P, then |c,| < 2 for eachn > 1 and
the inequality is sharp for the function (1 + z)/(1 - z).

Lemma 3 (see [16]). The power series for p(z) = 1+ ZZZI c,z"
given in (14) converges in the open unit disc A to a function in
P if and only if the Toeplitz determinants

Dn
2 G L G
€1 2 G Qg == €
S s T w1 15)
Cn Cmi1l Cpra Cpy3 — - - -7 777 2
VneN
and ¢, = ¢ are all nonnegative. They are strictly positive

except for p(z) = YL, pePo(explity)z), pe > 0, ty real, and
t # t]-,fork # j, where p,(z) = (1 + z)/(1 — z); in this case
D, >0forn< (m—1)and D, =0 forn > m.

We may assume without any restriction that ¢, > 0, on
using Lemma 3 for n = 2 and n = 3, respectively, we have

2 ¢ g
_ 2 2
D,=|¢ 2 ¢f|= [8+2§R{c1202}—2|02| —4|q| ]
_ (16)
G ¢ 2
>0
which is equivalent to
26 = ¢ + x(4 - clz), forsome x, |x|<1.  (17)
If we consider the determinant
2.¢ 6 G
g 2 c
D=~ " 250 (18)
o a 2¢q
G5 q 2
we get the following inequality:
3 2 2)2
|(4c3 —4cc, +cl)(4—c1) +¢ (202 _C1> |
(19)
2)2 2|2
<2(4-¢) -2|(26,- )| -
From (17) and (19), it is obtained that
4¢ = c13 +2¢ (4—612)X—C1 (4—612))62
(20)

+2¢, (4—c12)(1 - |x|2)z

for some z, |z| < 1.



Another required result is the optimal value of quadratic
expression. Standard computations show that

max (Pt2 +Qt + R)

0<t?<4

R, QsO,PSi;),
4Q 0 (21)
= {16P+4Q+R, Q=20, P> —=0rQ<0, P> =,
2
4PR_Q, Q>0,Ps£.
4P 8
3. Main Results

Theorem 4. If f € .SEBQ (¢) and is of the form (1) then we have
the following.

@) lay| < By/(2A - 1).
(2) las| < B?/(2A - 1)* + B, /(3A - 1).

(3) lag) < BJI(=4A* + 131 - 3)|/32) - 1)°(4A - 1) +
5B2/2(2A — 1)(3A — 1) + 4B, /(41 — 1) + | B;| /(41 — 1).

Proof. Since f € .SfBé(qb), there exist two Schwartz functions
u(z), v(w) in Awithu(0) = 0,v(0) = 0and |u(z)| < 1, |v(w)| <
1 such that

A
z[f' (2]
@ {plu@1},
o @] (22)
w|g' W)
g ={p v}
Define two functions p(z), g(w) such that
p(z) = 1+u§z; =140z +02 462+,
1 (23)
qw) = 1tZEw; =1 +d1w+d2w2+d3w3 Foeen
Then
p(x)-1\ _ Bz (B[ i
o(5eren)=10 *(7(02 2>
2 3
) (3 (3 )
+i (261%—61)+%61>z +-
(24)

q(w)—l)_ Bdw (B (.  d

¢<q(w)+1 —1+—2 +( (d 5
2

+Bz—dl)w2+(&(d——dd +d)
4 2

B B
+ ) (2didy - dy) + fdi) w’ +

Then (22) becomes
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Z[f'(z)]k_¢<1+u(z)>
fe  T\1-u@)’
w[gl(w)]A=¢<l+v(w)>
g w) 1-v(w)/’

Now equating the coefficients in (25)

2A-1)a, =

GA-Da;—(-2A*+41 - 1)a)

B,c?
§ 21
4

B,c

2 >

(4L -1 a, — (61> + 111 - 2) ayay

+[4/X(A—l)()t—2)

B, C13
27 Z—Clt}z+63 +

3

-Q2A-1)a, =

(2/\2+2/\—1)a§—(3)t—1)a3—B?(d e}

B,d?
+ 2%
4

Bldl
2 b

% (2clcz—c13) +

+ (2% + 40 - 1)] a

d2
2

—(4A 1) a, + (61> + 91 - 3) aya,

_[4/\()L—1)(A—2)

d3
= ( dd+d)
2

&df.
8

3

Now from (26) and (29)

+(104% + 21 - 2)] a,

B, (2d,d, - d7})

¢ =—dj,
B
a, = L
2021 -1)

Now from (27) and (30)

as =

22
Big

B, (Cz - dz)

4021 -1)°

4(31-1)

B,
8

)

3
¢

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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Now from (28) and (31)

Bjc; (—4\° +13) - 3)
24021 -1°(4r-1)
B

SB%CI (C’z - dz)
16(2A-1)(3A-1)

a, =

3

+4(T2_1)(C1(02+d2)_cl)

s 5 (34)
_ 5 a _
+4(4/\_1) > ¢ (6 +dy) +(c; — ds)

B 3
P
8(4A—1)

and with the help of the above Lemma 2, we get the required
results. O

Theorem 5. If 3’3%((;5) is of the form (1) then

B, |h(/")|; h ()] > 1,
|a3 —‘uaf' <q 3A-1 (35)
-
0T 0<|h(p) <1

Proof. Now adding (27) and (30), we get that

B (B, - B,))
(4 -20)a; = L (g +dy) + (4 +dy) === (30)

2

(B,/8) [8B,&,/ (3A — 1) = 4B,/ (2A - 1) (41 — 1) — B}/ (2A - 1)* (41 — 1) — 4&7]

5
Now from (26) and (29), we get that
B (S+dd) .
az = —2 . ( )
8(2A-1)
Now from (36) and (37)
2
|‘13 - P‘az'
(38)

= 1T [ (4 h ) +ds (14 n()],

where h(y) = BX(1-4)(3A-1)/[A(2A-1) B> +(B,~B,)(2A-1)°]
which completes the proof of the theorem. O

Theorem 6. If EBg(qb) is of the form (1) then we have the
following.

() If 48, < &, & < B,/2(3) - 2)° then |aya, — ai| <
B}/(3A- 1)
(2) If4&) = &3, &, -&,/2-B,(1/(2A - 1)(4A - 1) - 1/(3A -

1)%) > 0 0or 4, < &, & > B,/2(3A — 2)* then |aya, —
a;| < 2B,&,.

(3) 48, > &, &, /2-B,(1/(2A-1)(4A-1)-1/(3A-1)%) <
0; then

—al| < 39
s - ] < &-& - (B,/2)[1/@A-1)(4A - 1) -1/ BA - 1)?] )
where (B, - By) (¢, +d,) B, (¢ —d;)
CA-1)(@A-1) | @A-1)(r-1)
R N Bie-d)
4BA-1)(2A-1)" (A-1)(4A-1) 221-1? |
3 41
3 A@ V+ DB |B| (40) (41)

T 6QA-1Y (@4A-1) 2QA-D(@EA-1)

4 2
5323‘((3){-1)2 - (2A—1)(4A—1))'

Proof. Using the values of a,, a5, a, from the above theorem,
one can obtain

2 _ By
‘72“4_‘13’—?

— AB} (41* - 1)
2A-1)@A-1) | 3021-1)°

Bl (6 -d,)

—B,-B,+2B, |+
b [4(3/\—1)(2A—1)2

According to Lemma 3 we get that
2¢, =c12+x(4—c12),
2d, =di +y(4-d7)

U

(6, —dy) = w;

ey =g o G

q (4—c12) (x+y)

G
_d)=21
(5 —ds) 5 + >



G (4 - clz) (x2 + yz)
4

W) 1)z (- ]

(42)

+

For some z, w with |z| < 1, |w| < 1. using (42), we have

|aa—a2|<& ct AaA+ 1) By
BT [T e -1 @A -1)

oB, (4-¢)
Q2A—1)(4A - 1)

. |B3| s
200 -1)(4r - 1)

N ¢iB (4 - clz) ¢ (4 - clz) |B,| )
8BA-1)(2A-1* 22A-1)4r-1)

4(4 -1 (21 - 1)

(Il +[y]) + (Bl (6 -20)(1-c) ) (Ixf?

) 2lizd)

8(31— 1)

(Il + Iyl)zl -

Since p € P, || < 2. Letting ¢, = ¢ we may assume without
any restriction that ¢ € [0,2]. Thus for y; = [x| < 1 and
y, = |yl < 1, we obtain

'02‘14 —a§| <Ti+T,(n+1y)+Ts (Yf +V§)

, (44)
+T,(n+7.) =F(yo1a)s
where
B C4( A(2A+1)B;
R 621 —1)° (41— 1)
|B3| cB, (4 - c2)
TTer-n@i-n ) @m-ner-n |’
B & czBf (4—c2)
> 8 \8BA-1)(2A-1)
(45)

¢ (4-2) By
2(4/1—1)(2)L—1))’
Bf (cz —2c) (4—c2)

ST REA DA -1

- Bf (4—c2)2

T 64(3A—1)%

4

Now we need to maximize F(y,,y,) in the closed square S =
[0,1] %[0, 1] for c € [0, 2]. We must investigate the maximum
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of F(y,,7,) according to ¢ € (0,2), ¢ = 2, and ¢ = 0 taking
into account the sign of E, Fy — (Fm,z)z.

First, let ¢ € (0,2). Since T; < 0 and T; + 2T, > 0, we
conclude that F, , F, ., - (sz)2 < 0. Thus the function F
cannot have a local maximum in the interior of the square S.
Now, we investigate the maximum of F on the boundary of
the square S.

Fory, =0and 0 <y, < I (similarlyy, = 0and 0 < y; <
1), we obtain

F(0,7,) =G(y,) =T, + Toy, + (T5 + T,) Yzz- (46)

(i) The Case Ty + T, > 0. In this case 0 < y, < 1 and for any
fixed ¢ with 0 < ¢ < 2, it is clear that G'(yz) =2(T; + Ty, +
T, > 0; that is, G(y,) is an increasing function. Hence for any
fixed ¢ € (0,2) the maximum of G(y,) occurs at y, = 1 and

maxG(y,) = G(1) =T, + T, + T; + Tj. (47)

(ii) The Case T5 + T, < 0. Since 2(T5 + T,) + T, > 0 for 0 <
y, < 1 and for any fixed ¢ with 0 < ¢ < 2, it is clear that
2(Ty +Ty) + T, < 2(T; + Ty)y, + T, < T, and so G'(y,) > 0.
Hence for any fixed ¢ € [0, 2) the maximum of G(y,) occurs
aty, = 1. Also for ¢ = 2 we obtain

F (Yl’)’z)

( A(Q2A+1)B; N |B;| ) (48)
"\3er-1°@r-1) @A-1)@A-1))°

Taking into account the value of (48) and case (i) and case (ii),
for 0 <y, < 1 and for any fixed c with 0 < ¢ < 2,

maxG(y,) =G() =T, + T, + T; + T. (49)

Fory, =1and 0 <y, < 1 (similarlyy, = 1and 0 <y, < 1),
we obtain

F(I’Yz) = H(Yz)
= (T;+T5) 5 + (Ty + 2T,) y, + T, + T, (50)
+T5 + T,

Similar to the above case of T, + T, we get that
max H (y,) = H(1) =T, + 2T, + 2T; + 4T,.  (5)

Since G(1) < H(1) for ¢ € [0,2], max F(y;,y,) = F(1,1) on
the boundary of the square S. Thus the maximum of F occurs
aty, = 1l and p, = 1 in the closed square S.

Letting K : [0,2] — R,

K (c) =maxF (y,y,) = F(1,1)
(52)
=T, +2T, + 2T, + 4T,.
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Substituting the values of T', T, T, T, in the above equation,

K(c):ﬂ[c“< A2A+1)B]
8 6(2A-17°(4r-1)
Y
220 -1)(4r-1)

(B
431-1)21-1° (A-1)(4A-1)

_5< 1 N >) 53
2\ @A -D@E -1 Gr-1p 53)

4[B,|
T A D@ -1

( B
+C
2r-1*3BA-1)

4 2
(- ))
GA-12 (QA-1)(4A-1)

7
2 )
2 (2A—1)(4A—1) S GA-12))
&( 4B,
8 \ (24 —1) (3A—1) (ZA—l)(M—l)
(o )

GA-17 (Q@A-1)(@4A-1)

—1
(GA-1)

(54)

Then K(c) = Pt* + Qt + R, where t = ¢%.

Then with help of optimal value of quadratic expression,
we get the required result. This completes the proof of the
theorem. O

Corollary 7. If f € .SfBé and is of the form (1) then

8B, ]
+—7.
(31— 1)
Let 'a2a4—a§|
55
B A2 4 DB IB,| _4[ 41 (21 +1) . 1 (55)
" le@ - @i-n 2@A-D@EA-D) 3 -0 @ed-) A=D1
—( Bi + [B,| ) Corollary 8. If f € ZB(«) and is of the form (1) then
4BA-1)2A-1% (A-1)4A-1) Yo b
L[4 -a’ @A+ 1 ]
) H1-w [3(%-1)3(“-1) a-nm-n| *<o
|a’2a4—a3‘ < (1 —oc)2 [Pl (1 —(x)2 -18(1 —«)p, +p3] ¢ [.1) (56)
@A-1) (A= 1) [py (1= a)* = 3p, (1 - ) + s Y
where
pr=(@A-1)[16A (21 +1)(2A - 1) -3 (4L - 1)],
py=C2A-1)(BA-1)(4A-1),
py=302A-1*[42A-1) (4L - 1) -9 (31 - 1)?],
Py =4A2A+1) (3L - 1), (57)

ps=32A-11@r-1)-6

(A -1 (3A-1)*,

3A-1)(@A-1)+(2A-1) \/9 (4A=1)*+96 21 + 1) (3A — 1)

16A 2L +1) (3L - 1)



Corollary 9. If f € 33;([3) and is of the form (1) then
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'%5‘4 —a§|
2
i, BL <Co B <7y
(BA-1) p 0B X (58)
3 . 2 _ S2P 2
= 46 ng“ 3(2)&-1)(4)&]1)]’ Fazls & 2 Yeaion@ioy 2l rhasle Bl
BB (i-1)-Prs+1, Py 1
G po+e, 0 Pl e ymon <
where T: = ! - ! ,
T BA-17 3QA-1)(4A-1)
f = 4A(2A +1) . 2
o 16 (21 + 1) 32 -1’@A-1) 3@A-DMEA-1)]
YT 302A-1)’6BA-1)2 (A -1) : )
. 8 ’ CZ:(2A—1)2(3/\—1)+(2/\—1)(4A—1)’
32A0-1)(3A-1)* (4L -1) ) 5
o 1 N 4 C3:(3)L_1)2_3(2A—1)(4/\—1)’
PUBA-1DPeA-Dt @A -1)P (A1) 5 .
~ 4 C4:(3A—1)2_(2/\—1)(4A—1)’
CA-1P°GBA-1)(dr-1) (59)
L 2 Corollary 10. If f € STs(¢) and is of the form (1) then we
T A1)’ GA-1)@A-1) have the following.
4 (1) If4(B3/8 + |B,|/3) < B,/3, (B} + |B,|)/6 < B,/8 then
TP E - laya, - az| < By/4.
A (2) If4(B}/8+1B,|/3) = B,/3,(B; +|B;|)/6 - (1/2)(B}/8 +
7 |B,1/3) - B,/12 > 0 or 4(B}/8 + |B,|/3) < B, /3, (B +

T 32A-DGA-1)(dA—1)

1
T QA-12@4A -1

|B;1)/6 > B, /8 then |aya, — agl < B1(B? + |Bsl)/3.

(3) 4(B?/8 + |B,|/3) > B,/3, (B} + |B;])/6 — (1/2)(B3/8 +
|B,|/3) — B,/12 < 0; then

2
Ay B, | (B./3) (B} + |Bs|) - (4B, /3) (B}/8 +|B,| /3) - B /9 — 4 (B}/8 +|B,| /3) ()
s (B} + |By|) /6 — (B2/8 + |B,| /3) — B, /24
The above result is obtained by taking A = 1 in Theorem 6,  Corollary 12. If f € STy and is of the form (1) then
which is the second Hankel determinant of bistarlike function.
Corollary 11. If f € STs(«) and is of the form (1) then 5 20
|a2a4 - a3' <= (62)
2 3
|a2a4 - a3l
p— 2 p—
11-9) (40’ - 8a+5); ifae |0, 2oV 61)  Contflicts of Interest
3 32
(1-a) (13062 - lda - 7)' i€ 29 — /137 ) The authors declare that there are no conflicts of interest
(1602 — 26a + 5) thae 32 ) regarding the publication of this paper.
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