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The goal of this paper is to advance the development of wave-guiding subwavelength 
crystals by developing designs whose properties are stable with respect to 
imperfections in their construction. In particular, we make use of a locally resonant 
subwavelength structure, composed of a chain of high-contrast resonators, to 
trap waves at deep subwavelength scales. We first study an infinite chain of 
subwavelength resonator dimers and define topological quantities that capture the 
structure’s wave transmission properties. Using this for guidance, we design a finite 
crystal that is shown to have wave localization properties, at subwavelength scales, 
that are robust with respect to random imperfections.
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r é s u m é

Dans cet article, nous nous intéressons au guidage des ondes d’une manière robuste 
à des échelles très petites devant la longueur d’onde. Nous proposons une structure 
acoustique analogue aux chaînes de Su-Schrieffer-Heeger en mécanique quantique 
pour laquelle nous démontrons l’ouverture d’une bande interdite d’hybridation et 
l’existence d’un mode de défaut, ayant la particularité d’être stable par rapport à 
une perturbation géométrique de la chaîne. Nous étudions également une chaîne 
finie de paires de résonateurs et nous illustrons numériquement la stabilité du mode 
de défaut dans ce cas. Les résultats obtenus dans cet article ouvrent la voie à 
un nouveau champ d’investigation dans le domaine des mathématiques pour les 
ondes : l’étude des propriétés topologiques des structures guidantes à des échelles 
sub-longueur d’onde.
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1. Introduction

The ability to manipulate and guide the propagation of waves on subwavelength scales is important for 
many different physical applications. In the contexts of nanophotonics and nanophononics, subwavelength 
crystalline structures have, in particular, been shown to have desirable properties. Here, subwavelength
means that the size of the repeating unit cell is several magnitudes smaller than the incident wavelengths. It 
was recently shown, for example, that one can design subwavelength crystals with low ranges of frequencies 
that cannot propagate (known as subwavelength band gaps) [6] and can localize (or trap) specific frequencies 
at subwavelength scales by introducing a defect [3]. However, one limitation of such designs is that their 
properties are often very sensitive to imperfections in the crystal’s structure. In order to be able to feasibly 
manufacture wave-guiding devices, it is important that we are able to design subwavelength crystals that 
exhibit stability with respect to geometric errors.

We take inspiration from quantum mechanics. So-called topological insulators have been extensively 
studied for their electronic properties, in the setting of the Schrödinger operator [15,17,20–23,32]. The 
principle that underpins the design of these structures is that one is able to define topological invariants which 
capture the crystal’s wave propagation properties. Then, if part of a crystalline structure is replaced with an 
arrangement that is associated with a different value of this invariant, not only will certain frequencies be 
localized to the interface (as predicted by the classical theory for crystals with defects) but this behaviour 
will be stable with respect to imperfections. These eigenmodes are known as edge modes and we say that 
they are topologically protected to refer to their robustness.

One of the most classical examples from quantum mechanics is the well-known Su-Schrieffer-Heeger (SSH) 
model [42]. Originally introduced to study the electrical properties of polyacetylene, the SSH model consists 
of a chain of atoms arranged as dimers (similar to that depicted in Fig. 1). In the case of one-dimensional 
crystals such as this, the natural choice of topological invariant is the Zak phase [47]. Qualitatively, a 
non-zero Zak phase means that the crystal has undergone band inversion, meaning that at some point 
in the Brillouin zone the monopole/dipole nature of the first/second Bloch eigenmodes has swapped. In 
this way, the Zak phase captures the crystal’s wave propagation properties. The Zak phased was measured 
experimentally by [13], and in the SSH model this can take two discrete values depending on whether 
the atoms in each dimer are closer to each other than they are to the next dimer in the chain. In higher 
dimensional crystals, topological indices are similarly dependent on the symmetry of the crystals [40]. If 
one takes two SSH chains with different Zak phases and joins half of one chain to half of the other to form 
a new crystal, this crystal will exhibit a topologically protected edge mode at the interface. This principle 
is known as the bulk-boundary correspondence in quantum settings [15,16,26–28,35,39]. Here, the term bulk
is used to refer to parts of a crystal that are away from an edge (and so resemble an infinite, defect-free 
crystalline structure).

Understanding why topologically protected edge modes are stable to local perturbations is subtle, 
and doing so precisely is very much an open question. It can be argued that, due to (chiral) symme-
try, these crystals not only have band gaps but the frequencies associated with edge modes occur in the 
centre of the band gap. We call them midgap frequencies. This is in sharp contrast to conventional, un-
protected defect frequencies, which typically emerge from the edge of the band gap [3]. As a result, a 
small imperfection in the subwavelength crystal will not be able to move a topologically protected fre-
quency out of the band gap, while an unprotected frequency is often lost amongst the bulk frequencies. 
Moreover, if the perturbation preserves the crystal’s symmetry, the frequency of the edge mode will be 
very stable, experiencing much smaller variations compared to the other subwavelength resonant fre-
quencies. These effects are typically explained as a consequence of the different topological properties 
on either side of the edge (see, for example, [36] for a review of topological phases in acoustic sys-
tems).
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Subwavelength topological photonic and phononic crystals, based on locally resonant crystalline struc-
tures with large material contrasts, have been studied both numerically and experimentally in [41,43–46]. 
Subwavelength crystals allow for the manipulation and localization of waves on very small spatial scales 
and are therefore very useful in physical applications, especially situations where the operating wavelengths 
are very large. Recently, topological properties of acoustic waves in SSH chains and honeycomb lattices of 
subwavelength resonators have been numerically and experimentally explored [11,48,50,51]. In this work, 
we study a subwavelength crystal exhibiting a topologically non-trivial band gap. The crystal consists of a 
chain of subwavelength resonators arranged as dimers, similar to the SSH model (see Figs. 1 and 6). Wave 
propagation in the resonant structure is modelled by a high-contrast Helmholtz problem. High material con-
trasts are an essential prerequisite for the existence of resonant behaviours on subwavelength scales [2,37]. 
Such problems arise naturally in the context of both nanophotonic and nanophononic structures [1,2,4]. 
Around this frequency, a single resonator in free-space scatters waves with a greatly enhanced amplitude. If 
a second resonator is introduced, coupling interactions will occur giving a system that has both monopole 
and dipole resonance modes [7]. This pattern continues for larger systems [1].

Initially, in Section 3, we set out to study the bulk properties of an infinitely periodic chain of sub-
wavelength resonator dimers. Using Floquet-Bloch theory, we are able to analytically derive the resonant 
frequencies and associated eigenmodes of this crystal, and further prove that there exists a non-trivial band 
gap. Motivated by the use of the Zak phase in quantum mechanics, as well as the work of [33,36,38,49] in 
photonics and phononics, we define a topological invariant which we will also refer to as the Zak phase. We 
prove that the Zak phase takes different values for different geometries and in the dilute regime (that is, 
when the distance between the resonators is an order of magnitude greater than their size) we give explicit 
expressions for its value. Guided by this knowledge of how the infinite (bulk) chains behave, in Section 4 we 
design a finite chain of resonator dimers that has a topologically protected edge mode. This configuration 
takes inspiration from the bulk-boundary correspondence in the SSH model by introducing an interface, 
on either side of which the resonator dimers can be associated with different Zak phases thus creating a 
topologically protected edge mode.

In the quantum mechanical SSH model, the standard approach is to consider the tight-binding approx-
imation. In this set-up, the Hamiltonian corresponding to the continuous differential problem is simplified 
by assuming that each particle only interacts with the surrounding crystal in a limited way that is easy to 
describe. This simplification gives a discrete approximation to the problem. Often, this is combined with 
a nearest-neighbour approximation, where long-range interactions are neglected, enabling explicit compu-
tations of the band structure. In this work, we prove that our system can be approximated by a discrete 
system, which captures all the interactions in full and has rigorous error estimates. In the dilute regime, 
we quantify the decay of the interactions and conclude that non-negligible interactions occur also for res-
onators separated by several unit cells. Since the edge modes are protected due to chiral symmetry, which 
is only present here under the nearest-neighbour approximation, we expect the midgap frequencies to be 
approximately stable with respect to errors which preserve this symmetry.

Finally, we conduct a fully-coupled numerical study of our finite chain of resonator dimers. This is based 
on an approach similar to that developed in [1]. We show that the crystal can exhibit topologically protected 
subwavelength edge modes in both the dilute and non-dilute regimes. Moreover, we study the stability of the 
midgap frequencies with respect to symmetry-preserving geometric errors. We show that, while the midgap 
frequency experiences variations (which is not the case under the nearest-neighbour approximation), these 
are much smaller than those seen by the band frequencies and the edge mode remains localized in the 
middle of the band gap even for very large geometric errors. We also make the comparison with a classical, 
unprotected, defect mode, similar to that studied in [3]. We show that the new subwavelength crystal 
exhibits a mode with a similar degree of localization but with greatly improved stability with respect to 
errors.
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2. Preliminaries

In this section, we briefly review the layer potential operators and Floquet-Bloch theory that will be used 
in the subsequent analysis. More details on this material can be found in, for example, [4]. We also briefly 
review topological properties of the band structure.

2.1. Layer potential techniques

Let D ∈ R3 be a bounded, multiply-connected domain with N simply-connected components Di. Further, 
suppose that there exists some 0 < s < 1 so that ∂Di is of class C1,s for each i = 1, . . . , N . Let G0 and Gk

be the Laplace and (outgoing) Helmholtz Green’s functions, respectively, defined by

Gk(x, y) := − eik|x−y|

4π|x− y| , x, y ∈ R3, k ≥ 0.

We introduce the single layer potential Sk
D : L2(∂D) → H1

loc(R3), defined by

Sk
D[φ](x) :=

∫
∂D

Gk(x, y)φ(y) dσ(y), x ∈ R3.

Here, the space H1
loc(R3) consists of functions that are square integrable on every compact subset of R3 and 

have a weak first derivative that is also square integrable. It is well-known that S0
D : L2(∂D) → H1(∂D)

is invertible, where H1(∂D) is the set of functions that are square integrable on ∂D and have a weak first 
derivative that is also square integrable.

We also define the Neumann-Poincaré operator Kk,∗
D : L2(∂D) → L2(∂D) by

Kk,∗
D [φ](x) :=

∫
∂D

∂

∂νx
Gk(x, y)φ(y) dσ(y), x ∈ ∂D,

where ∂/∂νx denotes the outward normal derivative at x ∈ ∂D.
The following relations, often known as jump relations, describe the behaviour of Sk

D on the boundary 
∂D (see, for example, [4]):

Sk
D[φ]

∣∣
+ = Sk

D[φ]
∣∣
−, (2.1)

and

∂

∂ν
Sk
D[φ]

∣∣∣
±

=
(
±1

2I + Kk,∗
D

)
[φ], (2.2)

where |± denote the limits from outside and inside D.

2.2. Floquet-Bloch theory and quasiperiodic layer potentials

A function f(x) ∈ L2(R) is said to be α-quasiperiodic, with quasiperiodicity α ∈ R, if e−iαxf(x) is 
periodic. If the period is L > 0, the natural space for α is Y ∗ := R/2π

L Z � (−π/L, π/L]. Y ∗ is known as 
the first Brillouin zone. Given a function f ∈ L2(R), the Floquet transform is defined as

F [f ](x, α) :=
∑

f(x− Lm)eiLαm. (2.3)

m∈Z



H. Ammari et al. / J. Math. Pures Appl. 144 (2020) 17–49 21
F [f ] is always α-quasiperiodic in x and periodic in α. Let Y0 = [−L/2, L/2) be the unit cell. The Floquet 
transform is an invertible map F : L2(R) → L2(Y0 × Y ∗), with inverse (see, for instance, [4,30])

F−1[g](x) = 1
2π

∫
Y ∗

g(x, α) dα, x ∈ R,

where g(x, α) is the quasiperiodic extension of g for x outside of the unit cell Y0.
We will consider a three-dimensional problem which is periodic in one dimension. Define the unit cell 

Y as Y := Y0 × R2. We define the quasiperiodic Green’s function Gα,k(x, y) as the Floquet transform of 
Gk(x, y) in the first dimension of x, i.e.,

Gα,k(x, y) := −
∑
m∈Z

eik|x−y−(Lm,0,0)|

4π|x− y − (Lm, 0, 0)|e
iαLm.

Let D be as in the previous layer potential definitions, but assume additionally D � Y . We define the 
quasiperiodic single layer potential Sα,k

D by

Sα,k
D [φ](x) :=

∫
∂D

Gα,k(x, y)φ(y) dσ(y), x ∈ R3.

It is known that Sα,0
D : L2(∂D) → H1(∂D) is invertible if α �= 0 [4]. It satisfies the jump relations

Sα,k
D [φ]

∣∣
+ = Sα,k

D [φ]
∣∣
−, (2.4)

and

∂

∂ν
Sα,k
D [φ]

∣∣∣
±

=
(
±1

2I + (K−α,k
D )∗

)
[φ] on ∂D, (2.5)

where (K−α,k
D )∗ is the quasiperiodic Neumann-Poincaré operator, given by

(K−α,k
D )∗[φ](x) :=

∫
∂D

∂

∂νx
Gα,k(x, y)φ(y) dσ(y).

2.3. Band structure and topological properties

In this section we briefly review the topological nature of the Bloch eigenbundle. For further details, and 
discussions of the topological quantities involved, we refer to [12,14,29]. Let L be a linear elliptic differential 
operator which is self-adjoint in L2(R3) and whose coefficients are periodic in one dimension. Denote by 
L(α) the operator with the same differential expression but acting on α-quasiperiodic functions. It is well-
known [31] that the spectrum σ(L) of the original operator can be expressed in terms of the spectra σ(L(α))
as

σ(L) =
⋃

α∈Y ∗

σ(L(α)).

This describes a band structure of the spectrum of L: for each α the spectrum σ(L(α)) is known to be 
discrete and will thus trace out bands σn(L(α)), n = 1, 2, . . . , as α varies. The spectrum of L is said to have 
a band gap if, for some n, maxα σn(L(α)) < minα σn+1(L(α)). A band is said to be non-degenerate if it does 
not intersect any other band.
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On a non-degenerate band, indexed by n = 1, 2, . . . , there exists a family of associated Bloch eigenmodes 
{uα

n}α∈Y ∗ which we define so that they are both normalized and depend continuously on α. Observe that 
the base space Y ∗ has the topology of a circle. A natural question to ask, when considering the topological 
properties of a crystal, is whether properties are preserved after parallel transport around Y ∗. In particular, 
a powerful quantity to study is the Berry-Simon connection An, defined as

An := i〈uα
n,

∂

∂α
uα
n〉.

For any α1, α2 ∈ Y ∗, the parallel transport from α1 to α2 is uα1
n 	→ eiθuα2

n , where θ is given by

θ =
α2∫

α1

An dα.

Thus, it is enlightening to introduce the so-called Zak phase, ϕz
n, defined as

ϕz
n := i

∫
Y ∗

〈
uα
n,

∂

∂α
uα
n

〉
dα,

which corresponds to parallel transport around the whole of Y ∗. When ϕz
n takes a value that is not a 

multiple of 2π, we see that the eigenmode has gained a non-zero phase after parallel transport around the 
circular domain Y ∗. In this way, the Zak phase captures topological properties of the crystal. For crystals 
with inversion symmetry, the Zak phase is known to only attain the values 0 or π [19,47].

Remark 2.1. In quantum mechanical contexts, 〈·, ·〉 is typically chosen as the L2(Y )-inner product. When 
working with Helmholtz scattering problems, however, this choice is not appropriate since the solutions are 
not elements of L2(Y ). Instead, we will work with the L2(D)-inner product. We will see that the behaviour on 
D is enough to characterize non-trivial topological behaviour and capture the structure’s wave propagation 
properties.

3. Infinite, periodic chains of subwavelength resonator dimers

In this section, we study a periodic arrangement of subwavelength resonator dimers. This is an analogue 
of the SSH model. The goal is to derive a topological invariant which characterises the crystal’s wave 
propagation properties and indicates when it supports topologically protected edge modes. The analysis 
here holds for a very general class of high-contrast resonator chains, requiring only two assumptions of 
geometric symmetry.

3.1. Problem description

Assume we have a one-dimensional crystal in R3 with repeating unit cell Y := [−L
2 , 

L
2 ] ×R2. Each unit 

cell contains two resonators (often referred to as a dimer) surrounded by some background medium. Suppose 
the resonators together occupy the domain D := D1 ∪ D2. As well as sufficient smoothness for the above 
layer potential operators to be well defined, we need two assumptions of symmetry for the analysis that 
follows. The first is that each individual resonator is symmetric in the sense that there exists some x1 ∈ R

such that

R1D1 = D1, R2D2 = D2, (3.1)
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Fig. 1. Example of a two-dimensional cross-section of a chain of subwavelength resonators satisfying the symmetry assumptions 
(3.1) and (3.2). The repeating unit cell Y contains the dimer D1 ∪ D2.

where R1 and R2 are the reflections in the planes p1 = {−x1} × R2 and p2 = {x1} × R2, respectively. We 
also assume that the dimer is symmetric in the sense that

D = −D. (3.2)

Denote the full crystal by C, that is,

C :=
⋃

m∈Z
(D + (mL, 0, 0)) . (3.3)

We denote the separation of the resonators within each unit cell, along the first coordinate axis, by d := 2x1
and the separation across the boundary of the unit cell by d′ := L − d.

Wave propagation inside the infinite periodic structure is modelled by the Helmholtz problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu + ω2u = 0 in R3 \ ∂C,

u|+ − u|− = 0 on ∂C,

δ
∂u

∂ν

∣∣∣∣
+
− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂C,

u(x1, x2, x3) satisfies the outgoing radiation condition as
√
x2

2 + x2
3 → ∞.

(3.4)

Here, ω is the frequency of the incident waves which is assumed to be small, such that we are in a subwave-
length regime. We refer to [4] for the definition of the outgoing radiation condition. The material parameter 
δ represents the contrast between the resonators and the background. In order for subwavelength resonant 
modes to exist, we assume that δ satisfies the high-contrast condition

δ � 1. (3.5)

As an example, in the case of acoustic wave propagation, δ = ρr/ρ0 is the density contrast between the 
resonator material and the background material.

Let σ be the spectrum of the operator

L := − 1
δ + (1 − δ)χC

∇ ·
((

δ + (1 − δ)χC
)
∇
)
,

acting on functions which satisfy the outgoing radiation condition in x2, x3. Here, χC denotes the indicator 
function of the periodic crystal C. Only frequencies ω such that ω2 ∈ σ can be solutions to (3.4). Any other 
frequencies are not able to propagate in the material. It is worth emphasizing that, due to radiation in x2-
and x3-directions, the resonant frequencies are complex with negative imaginary parts. Nevertheless, as we 
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will see in Theorem 3.4, the resonant frequencies are real at leading order so we consider only their real 
parts in this work.

By applying the Floquet transform, the Bloch eigenmode uα(x) := F [u](x, α) is the solution to the 
Helmholtz problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δuα + ω2uα = 0 in R3 \ ∂C,

uα|+ − uα|− = 0 on ∂C,

δ
∂uα

∂ν

∣∣∣∣
+
− ∂uα

∂ν

∣∣∣∣
−

= 0 on ∂C,

e−iα1x1uα(x1, x2, x3) is periodic in x1,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition
as
√
x2

2 + x2
3 → ∞.

(3.6)

We refer to [4] for the definition of the α-quasiperiodic outgoing radiation condition. We denote by σα the 
spectrum of the operator

L(α) := − 1
δ + (1 − δ)χC

∇ ·
((

δ + (1 − δ)χC
)
∇
)
,

acting on α-quasiperiodic functions which satisfy the outgoing radiation condition in x2, x3. As discussed 
in Section 2.3, we have

σ =
⋃

α∈Y ∗

σα,

which describes the band structure of the crystal.

3.2. Analysis of quasiperiodic problem

In this section we conduct a thorough analysis of the band structure and topological properties of (3.6). 
We use the methods from [5,6] to formulate the quasiperiodic resonance problem as an integral equation. 
The solution uα of (3.6) can be represented as

uα = Sα,ω
D [Ψα],

for some density Ψα ∈ L2(∂D). Then, using the jump relations (2.4) and (2.5), it can be shown that (3.6)
is equivalent to the boundary integral equation

Aα(ω, δ)[Ψα] = 0, (3.7)

where

Aα(ω, δ) := −λI +
(
K−α,ω

D

)∗
, λ := 1 + δ

. (3.8)
2(1 − δ)
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3.2.1. Quasiperiodic capacitance matrix
Let V α

j be the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔV α
j = 0 in Y \D,

V α
j = δij on ∂Di,

V α
j (x + (mL, 0, 0)) = eiαmV α

j (x) ∀m ∈ Z,

V α
j (x1, x2, x3) = O

(
1√

x2
2+x2

3

)
as
√
x2

2 + x2
2 → ∞, uniformly in x1,

(3.9)

where δij is the Kronecker delta. We then define the quasiperiodic capacitance matrix Cα = (Cα
ij) by

Cα
ij :=

∫
Y \D

∇V α
i · ∇V α

j dx, i, j = 1, 2. (3.10)

We will see, shortly, that finding the eigenpairs of this matrix represents a leading order approximation to 
the differential problem (3.6). First, however, we show some useful properties of Cα.

Lemma 3.1. The matrix Cα is Hermitian with constant diagonal, i.e.,

Cα
11 = Cα

22 ∈ R, Cα
12 = Cα

21 ∈ C.

Proof. From the definition (3.10), it clearly follows that Cα is Hermitian. To show that Cα
11 = Cα

22, we 
define the mapping T by

(Tf)(x) := f(−x). (3.11)

Then, thanks to the assumed symmetry of the dimer (3.2), it holds that TV α
1 = V α

2 and TV α
2 = V α

1 . It 
follows that

Cα
11 =

∫
Y \D

∇V α
1 · ∇V α

1 dx

=
∫

Y \D

∇TV α
1 · ∇TV α

1 dx

=
∫

Y \D

∇V α
2 · ∇V α

2 dx

= Cα
22. �

Using the jump conditions, in the case α �= 0, it can be shown that the capacitance coefficients Cα
ij are 

also given by

Cα
ij = −

∫
∂Di

ψα
j dσ, i, j = 1, 2,

where ψα
j are defined by

ψα
j = (Sα,0

D )−1[χ∂Dj
].

Since Cα is Hermitian, the following lemma follows directly.
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Lemma 3.2. The eigenvalues and corresponding eigenvectors of the quasiperiodic capacitance matrix are 
given by

λα
1 = Cα

11 − |Cα
12| ,

(
a1
b1

)
= 1√

2

(
−eiθα

1

)
,

λα
2 = Cα

11 + |Cα
12| ,

(
a2
b2

)
= 1√

2

(
eiθα

1

)
,

where, for α such that Cα
12 �= 0, θα ∈ [0, 2π) is defined to be such that

eiθα = Cα
12

|Cα
12|

. (3.12)

In the dilute regime, we are able to compute asymptotic expansions for the band structure and topological 
properties. In this regime, we assume that the resonators can be obtained by rescaling fixed domains B1, B2
as follows:

D1 = εB1 −
(
d

2 , 0, 0
)
, D2 = εB2 +

(
d

2 , 0, 0
)
, (3.13)

for some small parameter ε > 0.
We introduce the capacitance CapB of the fixed domains as follows. Let B = Bi for i = 1 or i = 2 and 

define

CapB := −
∫
∂B

φB dσ,

where φB := (S0
B)−1[χ∂B ]. Due to symmetry, the capacitance is the same for the two choices i = 1, 2. It is 

easy to see that, by a scaling argument,

CapεB = εCapB . (3.14)

Lemma 3.3. We assume that the resonators are in the dilute regime specified by (3.13). We also assume that 
α �= 0 is fixed. Then we have the following asymptotics of the capacitance matrix Cα

ij as ε → 0:

Cα
11 = εCapB − (εCapB)2

4π
∑
m�=0

eimαL

|mL| + O(ε3), (3.15)

Cα
12 = − (εCapB)2

4π

∞∑
m=−∞

eimαL

|mL + d| + O(ε3). (3.16)

Taking the imaginary part of (3.16), the corresponding asymptotic formula holds uniformly in α ∈ Y ∗.

Proof. Recall that the capacitance matrix Cα
ij can be written as

Cα
ij = −

∫
∂Di

(Sα,0
D )−1[χ∂Dj

] dσ,

for α �= 0. We shall compute the asymptotics of (Sα,0
D )−1 for small ε.
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Let us decompose the Green’s function Gα,k as

Gα,k(x, y) = Gk(x, y) + G̃α,k(x, y),

where

G̃α,k(x, y) :=
∑
m�=0

eimαLGk(x, y + (mL, 0, 0)).

Then let us define

S̃α,0
D [ϕ] =

∫
∂D

G̃α,k(x, y)ϕ(y) dσ(y).

Note that Sα,0
D = S0

D + S̃α,0
D .

Let us write the quasiperiodic single layer potential Sα,0
D in a matrix form as

Sα,0
D =

[
Sα,0
D1

Sα,0
D2

|∂D1

Sα,0
D1

|∂D2 Sα,0
D2

]
,

and then decompose it as

Sα,0
D =

[
S0
D1

0
0 S0

D2

]
+
[

S̃α,0
D1

S0
D2

|∂D1 + S̃α,0
D2

|∂D1

S0
D1

|∂D2 + S̃α,0
D1

|∂D2 S̃α,0
D2

]
:= SI + SII .

In order to keep the order of the norms in L2(∂D) and H1(∂D) constant as ε → 0, we let L and H, 
respectively, denote the spaces L2(∂D) and H1(∂D) along with the inner products

〈·, ·〉L = 1
|∂D| 〈·, ·〉L2(∂D), 〈·, ·〉H = 1

|∂D| 〈·, ·〉H1(∂D).

Then, for a fixed ϕ̃ ∈ L2(∂B), if we define ϕ ∈ L2(ε∂B) as ϕ(x) = ϕ̃(ε−1x) we have ‖ϕ‖L = O(1) as ε → 0.
Next, we estimate the operator norms of SI and SII . We first handle the operator SI . By the scaling 

property S0
εB[ϕ] = εS0

B [ϕ̃], it can be shown that∥∥S0
Dj

∥∥
B(L,H) � ε,

∥∥(S0
Dj

)−1∥∥
B(H,L) � ε−1, j = 1, 2,

which implies that ∥∥SI

∥∥
B(L2,H2) � ε,

∥∥S−1
I

∥∥
B(H2,L2) � ε−1. (3.17)

Here, the notation A � B means that there exists a constant K independent of ε such that A ≤ KB

for all small enough ε. Further, B(X, Y ) is used to denote the space of bounded linear operators between 
the normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), and the ‖ · ‖B(X,Y ) norm is defined in the usual way as 
‖T‖B(X,Y ) := inf{M : ‖T (x)‖Y ≤ M‖x‖X , ∀x ∈ X}.

Let us now consider SII . We introduce the notation

z1 =
(
−d

2 , 0, 0
)
, z1,m =

(
−d

2 + mL, 0, 0
)
, z2 =

(
d

2 , 0, 0
)
, z2,m =

(
d

2 + mL, 0, 0
)
.
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We have, for small ε, that

S̃α,0
Dj

∣∣
∂Di

[ϕ](x) =
∫

∂Dj

∑
m�=0

eimαL
(
G0(x, zj,m) + (y − zj) · ∇yG

0(x, y∗m)
)
ϕ(y) dσ(y)

= −
∑
m�=0

eimαLχ∂Di
(x)

4π|zi − zj,m|

∫
∂Dj

ϕ(y) dσ(y) + O
(∑

m�=0

ε
∫
∂Dj

|ϕ(y)| dσ(y)
|zi − zj,m|2

)
.

Here, y∗m means a point on the line segment joining y and zj . Note that the series in the remainder term 
converges. Moreover, the gradient of the remainder term is of the same order. Since 

∫
∂Dj

ϕ dσ = O(ε2‖ϕ‖L), 
we get

S̃α,0
Dj

∣∣
∂Di

[ϕ](x) = −
∑
m�=0

eimαLχ∂Di
(x)

4π|zi − zj,m|

∫
∂Dj

ϕ(y) dσ(y) + O(ε3‖ϕ‖L), (3.18)

∇∂DS̃α,0
Dj

∣∣
∂Di

[ϕ](x) = O(ε3‖ϕ‖L).

Here, ∇∂D is used to denote the surface gradient on ∂D. From this we have

∥∥S̃α,0
Dj

∣∣
∂Di

∥∥
B(L,H) � ε2.

Similarly, we can show that

S0
Dj

∣∣
∂Di

[ϕ](x) = − χ∂Di
(x)

4π|zi − zj |

∫
∂Dj

ϕ(y) dσ(y) + O(ε3‖ϕ‖L), (3.19)

∇∂DS0
Dj

∣∣
∂Di

[ϕ](x) = O(ε3‖ϕ‖L),

and ‖S0
Dj

∣∣
∂Di

‖B(L,H) � ε2. These imply that

‖SII‖B(L2,H2) � ε2. (3.20)

We now compute the asymptotic behaviour of (Sα,0
D )−1. We use the definition φj := S−1

I [χ∂Dj
] and 

introduce the capacitance of each individual resonator Dj as CapDj
:= − 

∫
∂Dj

φj dσ. Note that CapDj
=

εCapB by (3.14). Since we know from (3.17) and (3.20) that S−1
I SII = O(ε) in the operator norm, applying 

the Neumann series gives

(Sα,0
D )−1[χ∂Dj

] = (SI + SII)−1[χ∂Dj
]

= (I + S−1
I SII)−1S−1

I [χ∂Dj
]

= (I − S−1
I SII)[φj ] + O(ε). (3.21)

We also have

|z1 − z1,m| = |mL|, |z1 − z2,m| = |mL + d|.

Then, from (3.18) and (3.19), together with the fact that ‖φj‖L = ‖S−1
I [χ∂Dj

]‖L � ε−1, j = 1, 2, we obtain 
the series representations
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SII [φ1]|∂D1 =
∑
m�=0

eimαL εCapB

4π|mL|χ∂D1 + O(ε2),

SII [φ2]|∂D1 =
∑
m∈Z

eimαL εCapB

4π|mL + d|χ∂D2 + O(ε2).

We are ready to compute the capacitance matrix. From (3.21), we have

Cα
11 = −

∫
∂D1

(Sα,0
D )−1[χ∂D1 ] dσ = −

∫
∂D1

(I − S−1
I SII)[φ1] dσ −

∫
∂D1

O(ε) dσ

= −
∫

∂D1

φ1 dσ +
∫

∂D1

S−1
I

∑
m�=0

eimαL εCapB

4π|mL|χ∂D1 dσ + O(ε3)

= CapD1
−
∑
m�=0

eimαL εCapB

4π|mL|
(
−
∫

∂D1

φ1 dσ
)

+ O(ε3)

= εCapB −
∑
m�=0

eimαL (εCapB)2

4π|mL| + O(ε3).

The expression for Cα
12 can be derived in the same way. �

3.2.2. Band structure and Bloch eigenmodes
Define normalized extensions of V α

j as

Sα
j (x) :=

⎧⎨⎩
1√
|D1|

δij x ∈ Di, i = 1, 2,
1√
|D1|

V α
j (x) x ∈ Y \D,

where |D1| is the volume of one of the resonators (|D1| = |D2| thanks to the dimer’s symmetry (3.2)). Using 
similar arguments to those given in [5,8,10], the following two approximation results can be proved.

Theorem 3.4. The characteristic values ωα
j = ωα

j (δ), j = 1, 2, of the operator Aα(ω, δ), defined in (3.8), can 
be approximated as

ωα
j =

√
δλα

j

|D1|
+ O(δ),

where λα
j , j = 1, 2, are eigenvalues of the quasiperiodic capacitance matrix Cα.

Theorem 3.5. The Bloch eigenmodes uα
j , j = 1, 2, corresponding to the resonances ωα

j , can be approximated 
as

uα
j (x) = ajS

α
1 (x) + bjS

α
2 (x) + O(δ),

where 
(

aj

bj

)
, j = 1, 2, are the eigenvectors of the quasiperiodic capacitance matrix Cα, as given by 

Lemma 3.2.

Remark 3.6. From Theorems 3.4 and 3.5, we can see that the capacitance matrix can be considered to 
be a discrete approximation of the differential problem (3.6), since its eigenpairs directly determine the 
resonant frequencies and the Bloch eigenmodes (at leading order). This is analogous to the tight-binding 
model commonly used in the quantum-mechanical SSH system.
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Fig. 2. Reflections taking D to D′.

Remark 3.7. In the quantum-mechanical SSH model, the tight-binding model is typically handled with a 
nearest-neighbour approximation, where only the interactions between neighbouring particles are considered. 
In this regime, the model is described by the simple Hamiltonian matrix

[
0 v + weiLα

v + we−iLα 0

]
, (3.22)

where v and w are the two inter-particle coupling constants. Compare this to our discrete approximation, 
given by the capacitance matrix Cα. If we applied a nearest-neighbour approximation, the capacitance 
matrix Cα would have the same form as the Hamiltonian (3.22) (up to an additive diagonal matrix). This 
would be achieved by neglecting the series in (3.15) and truncating the series in (3.16) to |m| ≤ 1 only. 
However, in classical wave propagation problems such as these, the slow decay of the capacitance matrix 
means this approximation may be inaccurate. This is because non-negligible interactions exist even between 
resonators separated by several unit cells. We shall see that this is also the case for finite crystals, in 
Section 4.2.1.

Remark 3.8. Theorem 3.5 shows that the Bloch eigenmodes are asymptotically constant on each resonator. 
The value attained on each successive resonator differs by a phase factor determined by θα. This theorem 
was proved in [10] using layer potential techniques under the assumption α �= 0. By analytic continuation 
we may extend to any α ∈ Y ∗ [14].

We now introduce notation which, thanks to the assumed symmetry of the resonators, will allow us to 
prove topological properties of the chain. Divide Y into two subsets Y = Y1 ∪ Y2, where Y1 := [−L

2 , 0] ×R2

and let Y2 := [0, L2 ] × R2, as depicted in Fig. 2. Define q1 and q2 to be the central planes of Y1 and Y2, 
that is, the planes q1 := {−L

4 } × R2 and q2 := {L
4 } × R2. Let R1 and R2 be reflections in the respective 

planes. Observe that, thanks to the assumed symmetry of each resonator (3.1), the “complementary” dimer 
D′ = D′

1 ∪D′
2, given by swapping d and d′, satisfies D′

i = RiDi for i = 1, 2. Define the operator Tα on the 
set of α-quasiperiodic functions f on Y as

Tαf(x) :=
{
e−iαLf(R1x), x ∈ Y1,

f(R2x), x ∈ Y2,

where the factor e−iαL is chosen so that the image of a continuous (α-quasiperiodic) function is continu-
ous.

We will now proceed to use Tα to analyse the different topological properties of the two dimer configura-
tions. Define the quantity Cα

12
′ analogously to Cα

12 but on the dimer D′, that is, to be the top-right element 
of the corresponding quasiperiodic capacitance matrix, defined in (3.10).



H. Ammari et al. / J. Math. Pures Appl. 144 (2020) 17–49 31
Lemma 3.9. We have

Cα
12

′ = e−iαLCα
12.

Consequently, if d = d′ = L
2 then Cπ/L

12 = 0.

Proof. Define V α
1

′, V α
2

′ by (3.9) but on D′ instead of D. Observe that TαV
α
1

′ = e−iαLV α
1 and TαV

α
2

′ = V α
1 . 

Then, we find that

Cα
12

′ =
∫

Y \D′

∇V α
1

′ · ∇V α
2

′ dx

=
∫

Y \D

∇TαV α
1

′ · ∇TαV
α
2

′ dx

= e−iαL
∫

Y \D

∇V α
1 · ∇V α

2 dx

= e−iαLCα
12.

At α = π/L, we have Cπ/L
12

′
= −C

π/L
12 . Moreover, if d = d′, the symmetry of the structure means that 

C
π/L
12

′
= C

π/L
12 so it must be the case that Cπ/L

12 = 0. �
Lemma 3.10. We assume that D is in the dilute regime specified by (3.13). Then, for ε small enough,

(i) Im Cα
12 > 0 for 0 < α < π/L and Im Cα

12 < 0 for −π/L < α < 0. In particular, Im Cα
12 is zero if and 

only if α ∈ {0, π/L}.
(ii) Cα

12 is zero if and only if both d = d′ and α = π/L.
(iii) C

π/L
12 < 0 when d < d′ and Cπ/L

12 > 0 when d > d′. In both cases we have C0
12 < 0.

The proof of Lemma 3.10 is given in Appendix B. This lemma describes the crucial properties of the 
behaviour of the curve {Cα

12 : α ∈ Y ∗} in the complex plane. The periodic nature of Y ∗ means that this is 
a closed curve. Part (i) tells us that this curve crosses the real axis in precisely two points. Taken together 
with (iii), we know that this curve winds around the origin in the case d > d′, but not in the case d < d′.

Theorem 3.11. If d �= d′ there exists a band gap, for α away from zero. That is, for any small α0 > 0, we 
have that

max
|α|>α0

ωα
1 < min

|α|>α0
ωα

2 ,

for small enough ε and δ.

The proof of Theorem 3.11 is given in Appendix C. The argument is based on representing the first and 
second resonant frequencies as

ωα
1 =

√
δ (Cα

11 − |Cα
12|)

|D1|
+ O(δ), ωα

2 =

√
δ (Cα

11 + |Cα
12|)

|D1|
+ O(δ),

and making use of the fact that, in the dilute regime and for fixed α �= 0, the capacitance coefficients can 
be expanded using Lemma 3.3.
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Remark 3.12. Part (ii) of Lemma 3.10 is a particularly deep result which shows that the dilute crystal has a 
degeneracy precisely when d = d′. The methods developed in [5] can be applied to show that the dispersion 
relation has a Dirac cone at α = π/L in this case. As d increases across the point where d = d′, the band 
gap closes (to form a Dirac cone) before reopening. In Theorem 3.14 we will show that the reopened band 
gap has a non-trivial topology, similar to what has been observed in other systems (for example, in [45]).

Combining the results of Lemma 3.10, Lemma 3.2 and Theorem 3.5, we obtain the following result 
concerning the band inversion that takes place between the two geometric regimes d < d′ and d > d′.

Proposition 3.13. For ε small enough, the band structure at α = π/L is inverted between the d < d′ and 
d > d′ regimes. In other words, the eigenfunctions associated with the first and second bands at α = π/L

are given, respectively, by

u
π/L
1 (x) = S

π/L
1 (x) + S

π/L
2 (x) + O(δ), u

π/L
2 (x) = S

π/L
1 (x) − S

π/L
2 (x) + O(δ),

when d < d′ and by

u
π/L
1 (x) = S

π/L
1 (x) − S

π/L
2 (x) + O(δ), u

π/L
2 (x) = S

π/L
1 (x) + S

π/L
2 (x) + O(δ),

when d > d′.

The eigenmode Sπ/L
1 (x) + S

π/L
2 (x) is constant and attains the same value on both resonators, while the 

eigenmode Sπ/L
1 (x) −S

π/L
2 (x) has values of opposite sign on the two resonators. They therefore correspond, 

respectively, to monopole and dipole modes, and Proposition 3.13 shows that the monopole/dipole nature 
of the first two Bloch eigenmodes is swapped between the two regimes. We will now proceed to define a 
topological invariant which we will use to characterise the topology of a chain and prove how its value 
depends on the relative sizes of d and d′. This invariant is intimately connected with the band inversion 
phenomenon, and we will prove that it is non-trivial only if d > d′.

Theorem 3.14. We assume that D is in the dilute regime specified by (3.13). Then the Zak phase ϕz
j , j = 1, 2, 

defined by

ϕz
j := i

∫
Y ∗

〈
uα
j ,

∂

∂α
uα
j

〉
dα,

where 〈·, ·〉 denotes the L2(D)-inner product, satisfies

ϕz
j =

{
0, if d < d′,

π, if d > d′,

for ε and δ small enough.

Proof. We compute the Zak phase φz
j , j = 1, 2, of the first and second band, respectively. Observe that

〈Sα
1 , S

α
1 〉 = 1, 〈Sα

2 , S
α
2 〉 = 1, 〈Sα

1 , S
α
2 〉 = 0,

and in D we have

∂
Sα

1 ≡ 0, ∂
Sα

2 ≡ 0,

∂α ∂α
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for all α ∈ Y ∗. By Theorem 3.5 and Lemma 3.2, it follows that

〈uα
j ,

∂

∂α
uα
j 〉 = i

2
∂θα
∂α

+ O(δ),

so the Zak phase is given by

ϕz
j = −1

2 [θα]Y ∗ + O(δ).

Since we know that ϕz
j is an integer multiple of π, we have for small enough δ that

ϕz
j = −1

2 [θα]Y ∗ . (3.23)

This representation of ϕz
j , which is analogous to well-known results for Hamiltonian systems such as the 

SSH model [12], shows that the Zak phase is given by the change in the argument of Cα
12 as α varies over the 

Brillouin zone Y ∗. We can see from parts (i) and (iii) of Lemma 3.10 that the winding number of the origin 
depends on whether d < d′ or d > d′. In the two cases we have, respectively, [θα]Y ∗ = 0 and [θα]Y ∗ = −2π. 
Therefore, if δ is small enough, we have that

ϕz
j =

{
0, d < d′,

π, d′ < d.
�

Remark 3.15. The dilute assumption is not necessary to conclude that the Zak phase is non-trivial for 
certain configurations. Combining Lemma 3.9 and (3.23), both of which are valid without assumptions of 
diluteness, we find that ϕz

j
′ − ϕz

j = π, where ϕz
j
′ is the Zak phase of the crystal with resonator separation 

d′ instead of d (as in Fig. 2). The assumption of diluteness is invoked to prove part (ii) of Lemma 3.10, 
which shows that there are only two different topological regimes and that degeneracy occurs only at d = d′. 
We conjecture that this is true even without the dilute assumption, in which case it is not hard to prove 
Proposition 3.13 and Theorem 3.14.

Theorem 3.14 shows that the Zak phase of the crystal is non-zero precisely when d > d′. The bulk-
boundary correspondence suggests that we can create topologically protected subwavelength edge modes 
by joining half-space subwavelength crystals, one with ϕz

j = 0 and the other with ϕz
j = π. According to 

Remark 3.15, this is also valid in the non-dilute case. In Section 4, we will study a finite chain that is 
designed with this principle in mind and demonstrate that it exhibits an edge mode that is stable with 
respect to symmetry-preserving imperfections.

3.3. Numerical computations

The band structure and the Bloch eigenmodes were computed using the multipole expansion method 
derived in Appendix A. This relies on the assumption that the resonators are spherical, which is a special 
case of the more general geometry considered above. As shown in Theorem 3.5, the Bloch eigenmodes are 
asymptotically constant on each domain Di and hence accurate and efficient computations can be achieved 
by approximating functions by only the first term in the multipole expansion.

All the numerical computations in this paper were performed for the example of acoustic waves being 
scattered by air bubbles in water. This is a classic example of subwavelength resonance, where the resonant 
frequency of a single bubble is known as the Minnaert resonance [2,37]. Throughout this paper, we use 
δ = 10−3, which is roughly the density contrast between air and water. We also use the material parameters 
d = 12, d′ = 42, L = 54 to exemplify a dilute crystal, and parameters d = 3, d′ = 6, L = 9 to exemplify a 
non-dilute crystal.
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Fig. 3. (Dilute case) The full first two bands (left) and magnification of the band gap region (right). The resonator radius was R = 1
with separations d = 12 and d′ = 42, corresponding to a dilute crystal.

Fig. 4. (Non-dilute case) The full first two bands (left) and magnification of the band gap region (right). The resonator radius was 
R = 1 with separations d = 3 and d′ = 6, corresponding to a non-dilute crystal.

3.3.1. Band structure
Figs. 3 and 4 show the band structure in a dilute and a non-dilute crystal, respectively. In the dilute case, 

the sound cone occupies a majority of the Brillouin zone, which is expected due to the lower interactions 
between the resonators. Both crystals show the opening of a band gap.

3.3.2. Bloch eigenmodes
Fig. 5 shows the first two Bloch eigenmodes for the crystal at α = π/L in the cases d < d′ and d > d′. 

The band inversion is clearly seen: when d > d′ the monopole/dipole modes correspond to the second/first 
mode, respectively. The band inversion property demonstrates the fact that the crystal has a non-zero Zak 
phase when d > d′. As α varies, the phase shift θα between the values of the eigenmodes winds around 0, 
resulting in band inversion at some point α ∈ Y ∗.

4. Finite chains of subwavelength resonators

In this section, we will study a finite chain of resonators which has been carefully designed to support 
topologically protected edge modes. Specifically, we assume that D has the form

D =
(

M⋃
D0 + n(d + d′, 0, 0)

)⋃( M⋃
D0 + n(d + d′, 0, 0) − (d′, 0, 0)

)
, (4.1)
n=−M n=−M+1
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Fig. 5. The first and second Bloch eigenmodes at α = π/L for the two cases d < d′ and d > d′ in the dilute regime. The case d > d′

exhibits band inversion: the first eigenmode behaves as a dipole while the second mode behaves as a monopole. (For interpretation 
of the colours in the figures, the reader is referred to the web version of this article.)

Fig. 6. Two-dimensional cross-section of a finite dimer chain with 13 resonators, heuristically showing how to identify unit cells with 
different Zak phases on either side of the edge.

where D0 is a single repeating resonator. In other words, D consists of an odd number N of identical 
resonators (N = 4M + 1) with alternating distances d and d′ that are swapped at the middle resonator. 
An example of such a configuration is depicted in Fig. 6. This structure is based on the intuition that if 
one joins together two chains with different topological properties, a protected edge mode will occur at the 
interface (this is the principle of bulk-boundary correspondence). In Fig. 6 it is shown how on either side 
of the central resonator (which constitutes the “edge”) one can associate each successive pair of resonators 
with dimers belonging to infinite chains that have different Zak phases.

We model wave propagation in the crystal D by the Helmholtz problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu + ω2u = 0 in R3 \ ∂D,

u|+ − u|− = 0 on ∂D,

δ
∂u

∂ν

∣∣∣∣
+
− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

|x|
(

∂
∂|x| − iω

)
u → 0 as |x| → ∞.

(4.2)

4.1. Integral equation formulation of the problem

The solution u of (4.2) can be represented as

u = Sω
D[Ψ],
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for some density Ψ ∈ L2(∂D). Then, analogous to the approach used in the quasiperiodic case in Section 3.2, 
the jump relations can be used to show that (4.2) is equivalent to the boundary integral equation

A(ω, δ)[Ψ] = 0, (4.3)

where

A(ω, δ) := −λI + Kω,∗
D , λ := 1 + δ

2(1 − δ) .

4.2. Capacitance matrix

Similar to the quasiperiodic case in Section 3.2.1, the resonant frequencies and eigenmodes of the finite 
chain can be expressed in terms of the capacitance matrix. Let Vj , j = 1, ..., N be the solution to⎧⎪⎪⎨⎪⎪⎩

ΔVj = 0 in R3 \D,

Vj = δij on ∂Di,

Vj(x) = O
(

1
|x|

)
as |x| → ∞.

(4.4)

We define the capacitance coefficients matrix C = (Cij) by

Cij :=
∫

R3\D

∇Vi · ∇Vj dx, i, j = 1, ..., N. (4.5)

Once again, we can use the jump conditions to show that the capacitance coefficients Cij are also given by

Cij = −
∫

∂Di

ψj dσ, i, j = 1, ..., N,

where the functions ψj are defined by

ψj = (S0
D)−1[χ∂Dj

].

Observe that as δ → 0, we have λ → 1
2
+. Then, using Gohberg-Sigal theory for operator-valued functions 

[9,25] we have the following lemma.

Lemma 4.1. For any δ sufficiently small there are, up to multiplicity, N characteristic values ωj = ωj(δ), j =
1, ..., N , to the operator-valued analytic function A(ω, δ) such that ωj(0) = 0 for all j and ωj depends on δ
continuously.

The following theorem, proved in [7], shows that the eigenvalues of C determine the resonance frequencies 
of the finite structure.

Theorem 4.2. The characteristic values ωj = ωj(δ), j = 1, ..., N , of A(ω, δ) can be approximated as

ωj =

√
δλj

|D0|
+ O(δ),

where λj , j = 1, ..., N , are eigenvalues of the capacitance matrix C and |D0| is the volume of a single 
resonator.
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4.2.1. Nearest-neighbour approximation
Drawing on parallels to how SSH chains are studied in quantum mechanics, an appealing approach to 

approximating the problem of wave scattering by a finite system of subwavelength resonators is to consider a 
nearest-neighbour approximation. That is, to disregard long-range interactions between resonators, instead 
only considering the interactions between neighbouring elements. Mathematically, this means approximating 
the capacitance matrix (4.5) by setting Cij = 0 if |i − j| > 1, giving a tridiagonal matrix. Intuitively, one 
would expect that such an approach will only give a good estimate to the problem in the dilute regime.

We wish to prove estimates on the extent to which a tight-binding approach can approximate the problem 
in the dilute regime. We consider a dilute system by rescaling the canonical domain D0 in (4.1) as D0 = εB, 
where B is some connected domain that has size of order one. In this dilute regime, we are able to obtain 
an explicit representation of the capacitance matrix C for the finite system (4.1). As in Section 3.2.1, we 
denote the capacitance of the fixed domain B by CapB .

Lemma 4.3. Consider a dilute system of N identical subwavelength resonators with size of order ε, given by

D =
N⋃
j=1

(εB + zj) ,

where 0 < ε � 1 and zj represents the fixed position of each resonator. In the limit as ε → 0 the asymptotic 
behaviour of the corresponding capacitance matrix is given by

Cij =

⎧⎪⎨⎪⎩
εCapB + O(ε3), i = j,

−ε2(CapB)2

4π|zi − zj |
+ O(ε3), i �= j.

Proof. The argument is very similar to that in Lemma 3.3. We first write the single layer potential S0
D in 

a decomposed matrix form, as

S0
D =

⎛⎜⎜⎜⎝
S0
D1

0 · · · 0
0 S0

D2
· · · 0

...
. . .

...
0 · · · 0 S0

DN

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0 S0

D2
|∂D1 · · · S0

DN
|∂D1

S0
D1

|∂D2 0 · · ·
...

...
. . . S0

DN
|∂DN−1

S0
D1

|∂DN
· · · S0

DN−1
|∂DN

0

⎞⎟⎟⎟⎟⎠
:= SI + SII .

We can then proceed to use scaling arguments, as in Lemma 3.3, to find estimates for ‖SI‖, ‖S−1
I ‖ and 

‖SII‖, and then use these bounds to compute the asymptotic behaviour of C. �
Remark 4.4. The explicit representations for Cij derived in Lemma 4.3, when used in the formula from 
Theorem 4.2, give approximations for the resonant frequencies in the dilute regime. Moreover, the associated 
eigenmodes can be approximated using the fact that the characteristic functions Ψj, defined for each ωj in 
(4.3), satisfy

Ψj =
N∑

k=1

ajkψk + O(
√
δ),

where (aj1, . . . , ajN ) is the eigenvector of C associated with the eigenvalue λj . This approach is particularly 
useful for performing efficient numerical computations.
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One can see from Lemma 4.3 that, for i �= j, Cij satisfies the slow decay property

Cij ∼
1

|i− j| . (4.6)

This indicates that, for a system of subwavelength resonators, the nearest-neighbour approximation may 
not give an accurate representation. This is a significant difference between the classical wave propagation 
problems studied here and the analogous applications of topological insulator theory in quantum mechanics, 
where nearest-neighbour approximations are commonplace.

4.2.2. Chiral symmetry and edge mode frequencies
A prominent topic in the discussion of the SSH model is the notion of chiral symmetry. This is a geometric 

property which a system is said to possess if there is a unitary matrix Σ with Σ2 = I such that the capacitance 
matrix C̃ satisfies ΣC̃Σ = −C̃. The significance of this property is that a chirally symmetric matrix will 
have a symmetric spectrum. This is easily seen from the fact that if (λ, v) is an eigenpair for C̃ then so is 
(−λ, Σv). Finite chains that have an odd number of resonators (such as the example studied here, Fig. 6) 
will have an odd number of resonant frequencies hence there must be a middle frequency. Thus, if one can 
design a chain which has a band gap (which we have a suggestion of how to do from Section 3) and is 
chirally symmetric, there must be a midgap frequency.

The reason we use the notation C̃ for the capacitance matrix in this discussion is that in quantum 
mechanical settings it is customary to define the zero-energy state to be such that the diagonal entries of 
the Hamiltonian (which plays the analogous role of the capacitance matrix) vanish. Thus, one constructs a 
translated capacitance matrix C̃ by subtracting the constant diagonal elements. For the crystal in Fig. 6, we 
can use (4.6) to approximate C̃ by a nearest-neighbour approximation: a bisymmetric, tridiagonal matrix 
with odd size and zero diagonal. Such a matrix is chirally symmetric, and therefore has a zero eigenvalue. 
This shows that the finite system has a midgap frequency, at leading order.

The key property of a topologically protected state is that it retains its properties when imperfections 
exist in the structure. In particular, a chirally symmetric structure will retain its chiral symmetry when 
errors are made in the position of the resonators. This is because such errors will not affect the diagonal 
entries of C̃ and, away from the diagonals, C̃ij and C̃ji will experience the same effects. Since the nearest-
neighbour approximation of the capacitance matrix is chirally symmetric, we expect the midgap frequencies 
to be approximately stable with respect to errors in resonator position.

In Fig. 9f we show how the resonant frequencies given by a nearest-neighbour approximation to a dilute 
resonator chain vary when subjected to errors in the position of the resonators. We use the multipole 
expansion method outlined in Appendix A to calculate the capacitance matrix (4.5) then Theorem 4.2 to 
compute the resonant frequencies from its eigenvalues. The pertinent conclusion from this is that, under 
the nearest-neighbour approximation, the midgap frequency is perfectly stable (as predicted by the above 
discussion). This approximation should be compared to Fig. 9a, where the same simulations are performed 
on a fully-coupled chain. In light of the slow decay of the off-diagonal terms in the capacitance matrix (4.6), 
the differences between the behaviour of the approximated and fully-coupled models are unsurprising, even 
when simulations are performed in a very dilute regime.

4.3. Numerical illustrations

We now perform a series of numerical computations to illustrate the difference between the topologically 
protected subwavelength localized modes in the finite dimer chain (4.1) and conventional, unprotected, 
subwavelength localized modes. The unprotected mode we study is produced by taking an equally spaced 
chain of resonators and changing the radius of the central resonator, thus introducing a defect (often known 
as a point defect). This system, depicted in Fig. 7, is the finite, one-dimensional equivalent of the system 
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Fig. 7. Two-dimensional cross-section of a finite subwavelength resonator chain with a point defect, which is expected to support 
an unprotected localized mode.

Fig. 8. Comparison of the localised eigenstates exhibited by the finite chain of dimers (shown in Fig. 6) and the point-defect chain 
(shown in Fig. 7). In both cases, a chain consisting of 41 resonators is used.

studied in [3], where the existence of a subwavelength localized mode was proved in the case of an infinite 
crystal.

As was the case for the infinite chain in Section 3.3, the following numerical results for the finite chains 
were calculated for the case of acoustic waves being scattered by (subwavelength) air bubbles in water. The 
details of discretizing the operator A(ω, δ) using the multipole expansion method are given in Appendix A.

4.3.1. Existence of localized modes
Figs. 8a and 8b show the localized modes for the dimer and point-defect chains respectively (whose 

geometries are depicted in Figs. 6 and 7). The configurations have been chosen to give roughly the same 
strength of the localization.

4.3.2. Stability with respect to errors
Finally, we study the stability of the edge mode frequency with respect to random, symmetry-preserving 

imperfections. In light of the discussion in Section 4.2.2, we add random errors to the positions of the 
resonators and repeatedly compute the resonant frequencies. In Figs. 9a and 9b we can see that, in both the 
dilute and non-dilute regimes, the structure supports a localized mode (depicted in Fig. 8a for the dilute 
case) whose resonant frequency is in the middle of the band gap. In the table in Fig. 9c it is demonstrated 
that in the two regimes the stability of each frequency with respect to the random errors is very similar in 
magnitude. The fact that the midgap frequency is consistently further from the edges of the band gap in 
the non-dilute case is merely a consequence of the gap being wider in this regime. In Fig. 9a we present 
the same simulations for a very short dimer chain, with only nine resonators. We can see, once again, that 
there is a midgap frequency which is much more stable than the bulk frequencies.

Finally, we make a comparison with the conventional defect mode exhibited by the subwavelength point-
defect chain (shown in Fig. 7). It is clear from Fig. 9d that, even for relatively small errors, the frequency 
associated with the point-defect mode exhibits poor stability and is easily lost amongst the bulk frequencies. 
The comparison between the robustness of the two designs is particularly eye-opening in light of the obser-
vation that the degree of wave localization is very similar. The new, dimerized design is equally capable of 
localizing waves at subwavelength scales but does so with spectacularly enhanced robustness.
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Fig. 9. Simulation of band gap frequency (red) and bulk frequencies (black) of different subwavelength resonator chains with 
Gaussian N (0, σ2) errors added to the resonator positions. The standard deviation σ is expressed as a percentage of the average 
resonator separation.

5. Concluding remarks

In this work, we have, both analytically and numerically, studied a fully-coupled chain of subwavelength 
resonator dimers. We have shown that the infinite crystal exhibits a non-trivial Zak phase in certain resonator 
configurations. In the dilute regime, we have given explicit expressions for the Zak phase, proved the existence 
of a non-trivial band gap and shown that band inversion occurs between the two different phase regimes. 
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Guided by these findings, we have designed a finite resonator chain that exhibits topologically protected 
edge modes at its centre. This was based on being able to associate the dimers on either side of this edge with 
different values of the Zak phase. We have shown numerically that the edge mode frequency is well-localized 
in the band gap and that, when errors are added to the positions of the resonators, the variance of this 
frequency is significantly lower than that of the bulk frequencies. Although much of the explicit analysis 
was performed on infinite chains, numerical experiments showed that our approach can be used to create 
topologically protected edge modes in structures that contain only very small numbers of resonators.

Appendix A. Multipole expansion method in three dimensions

Here we derive the multipole expansion approximation of Sk
D and Sα,k

D in three dimensions. The method 
is a generalization of the method in two dimensions given in Appendix C of [6]. The overarching principle is 
that when working on spherical domains, the action of the single layer potential on spherical basis functions 
has an explicit, analytic representation.

The goal is to discretize the equations (3.7) and (4.3). Observe that the operators A and Aα can be 
written as

A(k, δ) = ∂

∂ν
Sk
D

∣∣∣
−
− δ

∂

∂ν
Sk
D

∣∣∣
+
,

and

Aα(k, δ) = ∂

∂ν
Sα,k
D

∣∣∣
−
− δ

∂

∂ν
Sα,k
D

∣∣∣
+
,

so it is enough to find a discretized representation of the single layer potentials Sk
D and Sα,k

D .
For a radially symmetric Helmholtz equation, it is well-known that the spherical waves jl(kr)Y m

l (θ, φ)
and h(1)

l (kr)Y m
l (θ, φ) give a basis of solutions in the polar coordinates (r, θ, φ). Here Y m

l (θ, φ), l ∈ N, m =
−l, ..., l, are the spherical harmonics and jn(kr), h(1)

n (kr) are the spherical Bessel and Hankel functions of 
the first kind, respectively, defined by

jl(x) =
√

π

2xJl+
1
2
(x), h

(1)
l (x) =

√
π

2xH
(1)
l+ 1

2
(x),

where Jn and H(1)
n are the ordinary Bessel and Hankel functions of the first kind.

We begin by deriving the multipole expansion of the single layer potential Sk
D. The spherical harmonics 

Y m
l form a basis of L2(∂D), and we seek the expansion of Sk

D in this basis. Define u := Sk
D[Y m

l ], which is 
the solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu + k2u = 0 in R3 \D,

Δu + k2u = 0 in D,

u|+ = u|− on ∂D,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−

= Y m
l on ∂D,

|x|
(

∂
∂|x| − ik

)
u → 0 as |x| → ∞.

(A.1)

The above equation can be easily solved by the separation of variables technique in polar coordinates. It 
gives
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Sk
D[Y m

l ](r, θ, φ) =

⎧⎨⎩cjl(kR)h(1)
l (kr)Y m

l (θ, φ), |r| > R,

ch
(1)
l (kR)jl(kr)Y m

l (θ, φ), |r| ≤ R,
(A.2)

where c = −ikR2.
In order to handle problems posed on disjoint domains, we will need an addition theorem relating spherical 

waves centred around a translated origin to spherical waves around the original origin. Suppose we have 
a point with coordinates x = (r, θ, φ) in the original system and x′ = (r′, θ′, φ′) in the translated system, 
with the coordinate vectors related by x = x′ + b for b = (rb, θb, φb). Moreover, we assume r′ < rb. Then 
the addition theorem reads [24]

h
(1)
l (kr)Y m

l (θ, φ) =
∑

l′∈N,|m′|≤l′

Alm
l′m′jl′(kr′)Y m′

l′ (θ′, φ′), (A.3)

where the coefficients Alm
l′m′ are given by

Alm
l′m′ =

∑
λ∈N,|μ|≤λ

C(l,m, l′,m′, λ, μ)h(1)
λ (krb)Y μ

λ (θb, φb).

Here, the coefficients C(l, m, l′, m′, λ, μ) are in turn given by

C(l,m, l′,m′, λ, μ) = il
′−l+λ(−1)m

√
4π(2l + 1)(2l′ + 1)(2λ + 1)

(
l l′ λ
0 0 0

)(
l l′ λ

−m m′ μ

)
,

where we denote by (
j1 j2 j3
m1 m2 m3

)
,

the Wigner 3j symbols. To simplify these expressions slightly, we assume that the original coordinate system 
is aligned such that b points along the positive z-axis, i.e., θb = 0. In this case

Y μ
λ (θb, φb) =

⎧⎨⎩0, μ �= 0,√
2λ+1
4π , μ = 0.

Substituting this into the expression for Alm
l′m′ gives

Alm
l′m′ =

∑
λ∈N

√
2λ + 1

4π C(l,m, l′,m′, λ, 0)jλ(krb).

Now, we compute the quasiperiodic single layer potential Sα,k
D [Y m

l ] in the case when D consists of a 
single resonator. Since

Gα,k(x, y) =
∑
n∈Z

Gk(|x− y − (nL, 0, 0)|)einαL,

we have

Sα,k
D [Y m

l ](x) = Sk
D[Y m

l ](x) +
∑

n∈Z,n �=0

Sk
D+n[Y m

l ]einαL

= Sk
D[Y m

l ](x) + cjn(kR)
∑

n∈Z,n �=0

h
(1)
l (kr′n)Y m

l (θ′n, φ′
n)einα.
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Here, D + n means a translation of the disk D by (nL, 0, 0) and (r′n, θ′n, φ′
n) are the spherical coordinates 

with respect to the centre of D + n.
Using the addition theorem (A.3) we have

Sα,k
D [Y m

l ](x) =Sk
D[Y m

l ](x) + cjl(kR)
∑

l′∈N,|m′|≤l′

⎡⎣ ∑
λ∈N,|μ|≤λ

C(l,m, l′,m′, λ, μ)Qμ
λ

⎤⎦ jl′(kr)Y m′

l′ (θ, φ)

:=Sk
D[Y m

l ](x) + cjl(kR)
∑

l′∈N,|m′|≤l′

Blm
l′m′jl′(kr)Y m′

l′ (θ, φ),

where Qμ
λ is the one-dimensional lattice sum in three dimensions, defined by

Qμ
λ =

∑
n∈Z,n �=0

h
(1)
λ (knL)Y μ

λ (θn, φn)einαL.

An efficient method for computing this lattice sum is given in [34].
We are now ready to compute Sα,k

D in the case when D � Y consists of two resonators, centred at 
(−x1, 0, 0) and (x1, 0, 0), respectively. This is what we require in order to perform computations on the 
infinite chain in Section 3.3. By identifying L2(∂D) = L2(∂D1) × L2(∂D2) we have

Sα,k
D =

(
Sα,k
D1

Sα,k
D2

∣∣
∂D1

Sα,k
D1

∣∣
∂D2

Sα,k
D2

)
.

Here the operator Sα,k
Di

∣∣
∂Dj

: L2(∂Di) → L2(∂Dj), i, j = 1, 2 is the evaluation of Sα,k
Di

on ∂Dj . To compute 

the multipole expansion of Sα,k
D1

∣∣
∂D2

, we again use the addition theorem. We have

Sα,k
D1

∣∣
∂D2

[Y m
l ](x′) = cjl(kR)h(1)

l (kr′)Y m
l (θ′, φ′) + cjl(kR)

∑
l′∈N,|m′|≤l′

Blm
l′m′jl′(kr′)Y m′

l′ (θ′, φ′)

= cjl(kR)
∑

l′′∈N,|m′′|≤l′′

⎡⎣ ∑
λ∈N,|μ|≤λ

C(l,m, l′′,m′′, λ, μ)h(1)
λ (kd)Y μ

λ (θd, φd)

⎤⎦ jl′′(kr)Y m′′

l′′ (θ, φ)

+ cjl(kR)
∑

l′′∈N,|m′′|≤l′′

⎡⎢⎢⎣ ∑
l′∈N,|m′|≤l′

λ∈N,|μ|≤λ

Blm
l′m′C(l′,m′, l′′,m′′, λ, μ)jλ(kd)Y μ

λ (θd, φd)

⎤⎥⎥⎦ jl′′(kr)Y m′′

l′′ (θ, φ).

In order to simulate the finite resonator chain in Section 4.3, we must now perform similar computations 
for the operator Sk

D in the case when D consists of N resonators. We assume the resonators to be arranged 
collinearly along the x1-axis. By identifying L2(∂D) = L2(∂D1) × . . .× L2(∂DN ) we have

Sk
D =

⎛⎜⎜⎜⎜⎝
Sk
D1

Sk
D2

∣∣
∂D1

. . . Sk
DN

∣∣
∂D1

Sk
D1

∣∣
∂D2

Sk
D2

. . . Sk
DN

∣∣
∂D2

...
...

. . .
...

Sk
D1

∣∣
∂DN

Sk
D2

∣∣
∂DN

. . . Sk
DN

⎞⎟⎟⎟⎟⎠ ,

where, as in the quasiperiodic case, Sk
Di

∣∣
∂Dj

: L2(∂Di) → L2(∂Dj) is the evaluation of Sk
Di

on ∂Dj . This 
relies on the addition theorem once again. The diagonal terms are easily evaluated using (A.2) directly. 
Away from the diagonals, the addition theorem (A.3) gives that
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Sk
Dj

∣∣
∂Di

[Y m
l ](x′) = ch

(1)
l (kR)

∑
l′∈N,|m′|≤l′

Alm
l′m′jl′(kr′)Y m′

l′ (θ′, φ′).

Appendix B. Proof of Lemma 3.10

Part (i): Im Cα
12 > 0 for 0 < α < π/L and Im Cα

12 < 0 for −π/L < α < 0. In particular, Im Cα
12 is zero if 

and only if α ∈ {0, π/L}.
Recall, from Lemma 3.3, the following expansion of Cπ/L

12 for fixed α �= 0 in the dilute regime:

Cα
12 = − (εCapB)2

4π

∞∑
m=−∞

eimαL

|d + mL| + O(ε3)

:= − (εCapB)2

4πL f(α, d) + O(ε3), (B.1)

where, in order to simplify notation, we have defined the function f as

f(α, d) :=
∞∑

m=−∞

eimαL

|d/L + m| . (B.2)

The imaginary part

Im f(α, d) =
∞∑

m=−∞

sin(mαL)
|d/L + m|

converges for all α ∈ Y ∗, and (B.1) is valid for imaginary parts also at α = 0.
We will express f in terms of Lerch’s Transcendent function Φ(z, s, a), after having first reviewed some 

basic properties. For details we refer to [18]. Φ(z, s, a) is defined by the power series

Φ(z, s, a) =
∞∑

m=0

zm

(a + m)s , (B.3)

for z ∈ C where this series converges, and extended by analytic continuation. If Re(s) > 0, Re(a) > 0 and 
z ∈ C \ [1, ∞) we have the integral representation

Φ(z, s, a) = 1
Γ(s)

∞∫
0

ts−1e−at

1 − ze−t
dt, (B.4)

where Γ is the Gamma function.
Now, from the definition of f in (B.2), we have

f(α, d) = Φ(eiαL, 1, d/L) + e−iαLΦ(e−iαL, 1, 1 − d/L).

Using the integral representation (B.4) we get, after simplifications,

f(α, d) =
∞∫
0

e−iαL sinh
(
d
L t
)

+ sinh
( 1−d

L t
)

cosh(t) − cos(αL) dt. (B.5)

The imaginary part satisfies
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Im f(α, d) = sin(αL)
∞∫
0

sinh
(
d
L t
)

cos(αL) − cosh(t) dt. (B.6)

At the points α = 0 and α = π/L, the functions V α
1 and V α

2 are real-valued and hence Im Cα
12 = 0. We 

will show that, for ε small enough, this imaginary part is zero precisely when α ∈ {0, π/L}. The integrand 
in (B.6) is positive, and hence Im f(α, d) = 0 if and only if α ∈ {0, π/L} for α ∈ Y ∗ = (−π/L, π/L]. This 
shows that the leading order term of Im Cα

12 is zero precisely when α ∈ {0, π/L}. Moreover, we can easily 
verify from (B.6) that

∂

∂α
Im f(α, d)

∣∣
α=0 �= 0, ∂

∂α
Im f(α, d)

∣∣
α=π/L− �= 0, ∂

∂α
Im f(α, d)

∣∣
α=−π/L+ �= 0.

This shows that for small enough ε, the function Im Cα
12 will be monotonic around α = 0 and α = π/L. 

Since we know that α ∈ {0, π/L} are exact zeros of Im Cα
12, these zeros will be isolated for small enough ε. 

It follows that, for small enough ε, Im Cα
12 is zero precisely when α ∈ {0, π/L}. Then, from (B.6) it follows 

that Im Cα
12 > 0 for 0 < α < π/L and Im Cα

12 < 0 for −π/L < α < 0.
Part (ii): Cα

12 is zero if and only if both d = d′ and α = π/L.
By part (i), any zero must satisfy α = 0 or α = π/L. We begin by excluding the case α = 0. As α → 0, it 
is known that the quasiperiodic capacitance of a single particle vanishes [4,6]. In other words, we have, for 
the total capacitance of D,

0 =
∫

Y \D

∇(V 0
1 + V 0

2 ) · ∇(V 0
1 + V 0

2 ) dx

= 2(C0
11 + C0

12),

where the last equality follows since C0
12 is real. Since Cα

11 > 0 we have C0
12 < 0.

We now turn to the case α = π/L. We already know from Lemma 3.9 that Cπ/L
12 = 0 if d = d′. To show 

that this is the only zero of Cπ/L
12 , we will show that Cπ/L

12 is strictly monotonic as a function of d < L. 
From the definition of f we compute the derivative

∂

∂d
f(α, d)

∣∣∣∣
α=π/L

= − L

d2 +
∞∑

m=1

(−1)m

L

[
1

(m− d/L)2 − 1
(m + d/L)2

]
.

The sum is an alternating series, with decreasing terms and negative first term. Hence it converges to a 
negative value, and by (B.1) we have

∂

∂d
C

π/L
12 > 0, (B.7)

for ε small enough. This shows that Cπ/L
12 has a unique zero when d = d′, which completes the proof of part 

(ii).
Part (iii): Cπ/L

12 < 0 when d < d′ and Cπ/L
12 > 0 when d > d′. In both cases we have C0

12 < 0.
We already know, from the proof of part (ii), that C0

12 < 0. The other conclusions, namely that Cπ/L
12 < 0

if d < d′ and Cπ/L
12 > 0 if d > d′, follow directly from (B.7). �

Appendix C. Proof of Theorem 3.11

We begin by proving the following lemma.
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Lemma C.1. For every a, b such that −1 ≤ a < 1 and 0 < b < 1, the following holds:

∞∫
0

sinh(bt)
cosh(t) − a

dt > − 2b
1 + a

log
(

1
2(1 − a)

)
. (C.1)

Proof. We will split into the cases a > 0 and a ≤ 0, and begin with a > 0. The right-hand side can be 
written as follows:

− 2b
1 + a

log
(

1
2(1 − a)

)
=

∞∫
0

b sinh(t)
cosh(t)(1−a

2 cosh(t) + 1+a
2 )

dt. (C.2)

Indeed, the integrand has a primitive function

2b
1 + a

log
(

cosh(t)
cosh(t) + 1+a

1−a

)
,

which shows (C.2). Then we have, for a > 0

∞∫
0

sinh(bt)
cosh(t) − a

dt + 2b
1 + a

log
(

1
2(1 − a)

)
=

∞∫
0

(
sinh(bt)

cosh(t) − a
− b sinh(t)

cosh(t)(1−a
2 cosh(t) + 1+a

2 )

)
dt

>

∞∫
0

1
cosh(t)

(
sinh(bt) − b sinh(t)

1−a
2 cosh(t) + 1+a

2

)
dt

> 0,

where the last step follows because sinh(bt) − b sinh(t)
1−a
2 cosh(t)+ 1+a

2
> 0 for all t > 0 in the case a > 0. This proves 

the lemma in the case a > 0. We now turn to the case a ≤ 0. It is easy to see that for every b,

min
−1≤a≤0

∞∫
0

sinh(bt)
cosh(t) − a

dt =
∞∫
0

sinh(bt)
cosh(t) + 1 dt, max

−1≤a≤0
− 2b

1 + a
log
(

1
2(1 − a)

)
= 2b log (2) . (C.3)

Moreover, we have

∞∫
0

sinh(bt)
cosh(t) + 1 dt >

∞∫
0

bt

cosh(t) + 1 dt = 2b log(2),

where we have used a known value for the integral (for example found in [52]). Together with (C.3), this 
proves the lemma in the case a ≤ 0. �
Proof of Theorem 3.11. We will show that there is a frequency ω0 such that

max
|α|>α0

ωα
1 < ω0 < min

|α|>α0
ωα

2 .

For sufficiently small δ, by Theorem 3.4 and Lemma 3.2, it is enough to show that there is a constant C0
such that
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max
|α|>α0

Cα
11 − |Cα

12| < C0 < min
|α|>α0

Cα
11 + |Cα

12|. (C.4)

Define C0 as

C0 = εCapB − (εCapB)2

4πL
∑
m�=0

(−1)m

|m| ,

that is, C0 is defined as the leading order of the eigenvalues of Cα at the degenerate point d = d′, α = π/L. 
The sum appearing in the expansion of Cα

11 can be explicitly computed as

∑
m�=0

eimαL

|m| = − log
(
2 − 2 cos(αL)

)
.

Then we have

Cα
11 − |Cα

12| − C0 = (εCapB)2

4πL log
(

1
2
(
1 − cos(αL)

))
− |Cα

12| + O(ε3)

< 0,

for ε small enough. This shows that, for sufficiently small ε,

max
|α|>α0

Cα
11 − |Cα

12| < C0.

We now turn to the second inequality of (C.4). By (B.1) and (B.5) we have

Cα
11 + |Cα

12| − C0 = (εCapB)2

4πL

⎛⎝log
(

1
2
(
1 − cos(αL)

))
+

∣∣∣∣∣∣
∞∫
0

eiαL sinh
(
d
L t
)

+ sinh
( 1−d

L t
)

cosh(t) − cos(αL) dt

∣∣∣∣∣∣
⎞⎠+ O(ε3).

(C.5)

Recall that 0 < d < L, so we can apply (C.1) with b = d/L or with b = (1 − d)/L and with a = cos(αL). 
Expanding the absolute value and applying (C.1), we find after simplifications that

∣∣∣∣∣∣
∞∫
0

eiαL sinh
(
d
L t
)

+ sinh
( 1−d

L t
)

cosh(t) − cos(αL) dt

∣∣∣∣∣∣
2

> log
(

1
2
(
1 − cos(αL)

))2 4
(
d2 + 2d(1 − d) cos(αL) + (1 − d)2

)
L2
(
1 + cos(αL)

)2
> log

(
1
2
(
1 − cos(αL)

))2

.

Together with (C.5), this shows that

min
|α|>α0

Cα
11 + |Cα

12| > C0,

for ε small enough. We have thus proved (C.4), from which the theorem follows. �
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