МЕТОД СЛАБОЙ АППРОКСИМАЦИИ ДЛЯ ЗАДАЧИ КОШИ ДЛЯ ОДНОМЕРНОЙ СИСТЕМЫ УРАВНЕНИЙ ТИПА ХОПФА

Б. Х. Имомназаров, У. К. Турдиев, Д. А. Эркинова

Аннотация. Получена система уравнений типа Хопфа. Рассмотрена задача Коши для одномерной системы уравнений типа Хопфа, возникающая в двухскоростной гидродинамике. Методом слабой аппроксимации доказаны существование и единственность решения задачи Коши для одномерной системы типа Хопфа.

DOI: 10.25587/SVFU.2023.74.36.002

Ключевые слова: двухскоростная гидродинамика, система типа Хопфа, метод слабой аппроксимации, коэффициент трения.

1. Введение

В последние десятилетия повышается интерес к проблемам, связанным с поведением решений систем уравнений в частных производных с малым параметром при старших производных и с учетом кинетических параметров. Эти проблемы возникли из физических приложений, в основном из современной гидродинамики (сжимаемых многофазных жидкостей с малыми вязкостями). Аналоги уравнения Хопфа возникают, например, при исследовании слабо нелинейной одномерной акустической волны, движущейся с линейной скоростью звука. В этом случае нелинейные по скоростям члены в системе уравнений типа Бюргерса появляются из зависимости скоростей звука от амплитуды звуковой волны, а члены со второй производной и разности скоростей представляют затухание звуковых волн, связанное с диссипацией энергии. Другими словами, эти члены обеспечивают непрерывность решений и представляют диссипативные процессы, связанные с производством энтропии. Эти члены, в свою очередь, обеспечивают неопрокидывание волн [1]. Рассматриваемая система является частным случаем системы уравнений двухскоростной гидродинамики в одномерном случае [2–5].

Одномерным аналогом уравнений Навье — Стокса для сжимаемых жидкостей можно считать систему уравнений типа Хопфа, которая представляет собой систему нелинейных уравнений конвекции-диффузии [6–9]

$$u_t + uu_x = -\widetilde{b}(u - \widetilde{u}),\tag{1}$$

Работа выполнена при финансовой поддержке РФФИ (грант 21–51–15002).

$$\widetilde{u}_t + \widetilde{u}\widetilde{u}_x = b(u - \widetilde{u}),$$
 (2)

где величины u и \widetilde{u} можно рассматривать как скорости подсистем с размерностью [x]/[t], составляющих двухскоростной континуум с соответствующими парциальными плотностями ρ и $\widetilde{\rho}$, $\overline{\rho}=\widetilde{\rho}+\rho$ — общая плотность континуума, $\widetilde{b}=\frac{\widetilde{\rho}}{\rho}b,\ b$ — коэффициент трения с размерностью 1/[t], который является аналогом коэффициента Дарси для пористых сред.

У системы уравнений двухскоростной гидродинамики и системы уравнений типа Хопфа много общего. ?Следующее предложение не осмысливается, надо обдумать и пояснить!!! Например, квадратичная нелинейность по u и \tilde{u} члены с адвективным слагаемым, отвечающим зависимости звука от амплитуды звуковых волн и линейной коэффициента трения b [1] в правых частях, отвечающие за затухание звуковых волн. Что касается свойств решений, то они совершенно разные. У системы уравнения Хопфа при исчезающем коэффициенте b, формируются как сильные (ударные волны), так и слабые разрывы, в то время как решения системы двухскоростной гидродинамики такими особенностями не обладают. Однако область применимости этой системы отнюдь не ограничивается приведенными примерами, такие системы возникают во многих задачах, чем и определяется их значение.

В данной работе для доказательства существования и единственности решения задачи Коши для одномерной системы типа Хопфа используется метод слабой аппроксимации. В наиболее полном виде метод слабой аппроксимации для линейных уравнений исследован Г. В. Демидовым и В. А. Новиковым [10]. 3. Г. Гегечкори изучал расщепление многомерных эллиптических операторов со смешанными производными на одномерные (по различным направлениям) и сходимость таких методов для параболических задач [11]. Первые результаты о сходимости метода слабой аппроксимации для нелинейных уравнений принадлежат Г. И. Марчуку и Г. В. Демидову, доказавшим сходимость метода расщепления для одной из задач краткосрочного прогноза погоды [12]. Ю. Я. Беловым и Г. В. Демидовым исследована сходимость МСА для различных вариантов расщепления квазилинейной системы уравнений типа Бюргерса в [13]. Г. В. Демидовым, В. Ф. Рапутой метод слабой аппроксимации изучался для абстрактных нелинейных операторных уравнений, частными случаями которых являются системы типа Коши — Ковалевской [14, 15]. Ю. Я. Белов на основе МСА исследовал вопросы разрешимости и устойчивости стационарных решений распадающихся квазилинейных параболических систем уравнений первого порядка. Ю. Е. Бояринцевым доказаны достаточно общие теоремы сходимости МСА для обыкновенных дифференциальных уравнений, исследована возможность применения метода к задачам оптимального управления [16].

2. Задача Коши для системы уравнений типа Хопфа

Рассмотрим для системы (1), (2) в полосе $\Gamma_{[0,T]}=\{(t,x):0\leq t\leq T,\ x\in R\}$ задачу Коши со следующими начальными данными:

$$u|_{t=0} = u_0(x), \quad \widetilde{u}|_{t=0} = \widetilde{u}_0(x), \quad x \in R.$$
 (3)

?!

?Следующее предложение не осмысливается, надо обдумать и пояснить!!! Нас будут интересовать решения задачи Коши для системы уравнений типа Хопфа (1), (2) в отличие?, а именно $u(t,x), \widetilde{u}(t,x) \in C^{1,2}(\Gamma_{[0,T]})$ — класс функций один раз непрерывно дифференцируемых по t и два раза непрерывно дифференцируемых по x.

3. Метод слабой аппроксимации. Теорема сходимости метода слабой аппроксимации

Для полноты изложения приведем краткое описание метода слабой аппроксимации и одну теорему сходимости метода. Более подробно эта информация изложена в [17,18]

В банаховом пространстве H рассмотрим задачу Коши

$$\frac{du}{dt} + L(t)u = f(t), \ t \in [0, T], \quad u|_{t=0} = u_0, \tag{4}$$

где L(t) — нелинейный, вообще говоря, неограниченный оператор с переменной областью определения D(L(t)), причем при каждом фиксированном $t \in 2[0,T]$ оператор L(t) отображает D(L(t)) в H.

Пусть

$$L = \sum_{i=1}^m L_i, \quad f = \sum_{i=1}^m f_i$$

и $\bigcap_{i=1}^m D(L_i(t)) \subseteq D(L(t))$. Считаем, что операторы $L_i(t)$ отображают $D(L_i(t))$ в H и $f_i(t) \in H, i=1,\ldots,m$.

Наряду с задачей (4) рассмотрим семейство задач, зависящих от параметра

 τ :

$$\frac{du^{\tau}}{dt} + L_{\tau}(t)u^{\tau} = f_{\tau}(t), \ t \in [0, T], \quad u^{\tau}|_{t=0} = u_0, \tag{5}$$

где

$$L_{ au}(t) = \sum_{i=1}^m lpha_i(au, t) L_i(t), \quad f_{ au}(t) = \sum_{i=1}^m eta_i(au, t) f_i(t),$$

а функции $\alpha_i(\tau,t),\ \beta_i(\tau,t)$ слабо аппроксимируют единицу, т. е. для любых $t_1,t_2\in[0,T]$ при $\tau\to0$

$$\int_{t_1}^{t_2} (\alpha_i(\tau, t) - 1) dt \to 0, \quad \int_{t_1}^{t_2} (\beta_i(\tau, t) - 1) dt \to 0.$$

Метод решения задачи (4), при котором в качестве приближенных решений u^{τ} , $\tau > 0$, берутся решения задачи (5) и решение u задачи (4) находится как предел при $\tau \to 0$ решений u^{τ} ($u = \lim_{\tau \to 0} u^{\tau}$), называется методом слабой аппроксимации [17–19].

Если функции $\alpha_i(\tau,t)$, $\beta_i(\tau,t)$ выбрать в виде

$$lpha_i(au,t) = eta_i(au,t) = \left\{ egin{array}{ll} m, & \left(n+rac{i-1}{m}
ight) au < t \leq \left(n+rac{i}{m}
ight) au, \ 0 & ext{в противном случае,} \end{array}
ight.$$

 $n=0,1,\ldots,N-1$, то в этом случае нахождение решения u^{τ} задачи (5) сводится к решению последовательности задач Коши

$$\frac{du^\tau}{dt}+mL_1(t)u^\tau=mf_1(t),\quad t\in\left(0,\frac{\tau}{m}\right],\quad -\text{первый дробный шаг},$$

$$u^\tau|_{t=0}=u_0,$$

$$\frac{du^\tau}{dt}+mL_2(t)u^\tau=mf_2(t),\quad t\in\left(\frac{\tau}{m},\frac{2\tau}{m}\right],\quad -\text{второй дробный шаг}.$$

В качестве начальных данных на этом шаге берется значение решения, полученного на первом дробном шаге в момент $t=\frac{\tau}{m}$. Продолжая аналогичным образом, определяют решение на множествах $\left(\frac{2\tau}{m},\frac{3\tau}{m}\right],\ldots,\left(\frac{(m-1)\tau}{m},\tau\right]$. Тем самым находят решение на отрезке $[0,\tau]$, нулевом целом шаге. После этого аналогично находят решение на отрезке $[\tau,2\tau]$ — первом целом шаге, затем на отрезке $[2\tau,3\tau]$, и так далее. Через конечное число шагов (число это равно N) решение u^{τ} находят на отрезке [0,T]. Задачу (5) называют расщеплением задачи (4).

Рассмотрим в полосе $\Gamma_{[0,T]} = \{(t,\mathbf{x}) \mid 0 < t < T, \ \mathbf{x} \in \mathbb{R}^n \}$ систему нелинейных дифференциальных уравнений в частных производных

$$\frac{\partial \mathbf{u}}{\partial t} = \varphi(t, \mathbf{x}, \overline{\mathbf{u}}),\tag{6}$$

где ${\bf u}={\bf u}(t,{\bf x})=(u_1(t,{\bf x}),\ldots,u_l(t,{\bf x})),\ \varphi=(\varphi_1,\ldots,\varphi_l)$ — вектор-функции размерности $l\ (l\ge 0),$

$$\overline{\mathbf{u}} = \left(u_1, \dots, u_l, \frac{\partial u_1}{\partial x_1}, \frac{\partial u_1}{\partial x_2}, \dots, \frac{\partial u_l}{\partial x_n}, \dots, \frac{\partial^r u_1}{\partial x_1^r}, \dots, \frac{\partial^r u_n}{\partial x_n^r}\right).$$

Пусть

$$arphi = \sum_{i=1}^m arphi^i, \quad arphi_j = \sum_{i=1}^m arphi^i_j, \quad j=1,\ldots,l,$$

где φ^i — вектор-функции размерности $l; \varphi^i, \varphi^i_j$ — j-е компоненты векторов φ и φ^i соответственно. Система

$$\frac{\partial \mathbf{u}^{\tau}}{\partial t} = \sum_{i=1}^{m} a_{i,\tau}(t) \varphi_i(t, \mathbf{x}, \overline{\mathbf{u}}^{\tau}), \tag{7}$$

где

$$a_{i, au}(t) = \left\{ egin{array}{ll} m, & \left(n+rac{i-1}{m}
ight) au < t \leq \left(n+rac{i}{m}
ight) au, \ 0 & ext{в противном случае}, \end{array}
ight.$$

 $n=0,1,\ldots,N-1,\, au N=T,$ слабо аппроксимирует систему (4), $\varphi_{i, au}(t,\mathbf{x},\overline{\mathbf{u}}^{ au})$ — некоторые аппроксимации вектор-функций $\varphi_i(t,\mathbf{x},\overline{\mathbf{u}}^{ au})$, зависящие от au.

Наконец, рассмотрим систему

$$\frac{\partial \mathbf{u}^{\tau}}{\partial t} = \sum_{i=1}^{m} a_{i,\tau}(t) \varphi_{i,\tau}(t, \mathbf{x}, \overline{\mathbf{u}}^{\tau}), \tag{8}$$

где вектор-функции $\varphi_{i,\tau}(t,\mathbf{x},\overline{\mathbf{u}}^{\tau})$ суть некоторые аппроксимации вектор-функций $\varphi_i(t,\mathbf{x},\overline{\mathbf{u}}^{\tau})$, зависящие от τ .

Ниже будем рассматривать классические решения уравнений (6)–(8). Под классическими решениями уравнений (7) (соответственно (8)) понимаем функцию u^{τ} , непрерывную вместе со всеми своими производными по пространственным переменным, которые входят в уравнение (7), в полосе $\widetilde{\Gamma}_{[0,T]}$, обладающую кусочно-непрерывной производной u_t^{τ} в $\widetilde{\Gamma}_{[0,T]}$ (u_t^{τ} может иметь разрывы лишь на гиперплоскостях $t=\left(n+\frac{i}{m}\right)\tau,\, n=0,1,\ldots,N-1,\, \tau N=T,\, i=0,1,\ldots,m-1)$ и удовлетворяющую уравнению (7) (соответственно (8)).

Предположим, что выполняются следующие условия.

Условие 1. Вектор-функции φ_i определены и непрерывны при любых значениях своих аргументов. Вектор-функции $\varphi_{i,\tau}(t,\mathbf{x},\overline{\mathbf{u}}^{\tau})$ на классических решениях \overline{u}^{τ} системы уравнений (8) непрерывны по переменным $(t,\mathbf{x}) \in \widetilde{\Gamma}_{[0,T]}$.

Пусть $\{\tau_k\}_{k=1}^{\infty}$ $(0 < \tau \leq \tau_0)$ — некоторая последовательность, сходящаяся к нулю. Заметим, что последовательности $\{\tau_k\}_{k=1}^{\infty}$ соответствует последовательность $\{N_k\}_{k=1}^{\infty}$ целых чисел таких, что $\tau_k N_k = T$. Через $u^{\tau_k}(t,\mathbf{x})$ обозначим решение системы (8) при фиксированном $\tau_k > 0$.

Условие 2. Пусть при всех $\tau_k > 0$ классическое решение \mathbf{u}_k^{τ} системы (8) существует и при $\tau_k \to 0$ равномерно в $\widetilde{\Gamma}_{[0,T]}^N = \{(t,\mathbf{x}) \mid 0 < t < T, \, |\mathbf{x}| \leq N\}$ последовательность \mathbf{u}_k^{τ} сходится к некоторой вектор-функции \mathbf{u} вместе со всеми производными по \mathbf{x} , входящим в (6), причем

$$\max_{\widetilde{\Gamma}_{[0,T]}^{N}} = |\varphi_i(t,\mathbf{x},\overline{\mathbf{u}}^{\tau_k}) - \varphi_{i,\tau_k}(t,\mathbf{x},\overline{\mathbf{u}}^{\tau_k})| \to 0, \quad \tau_k \to 0, \quad i = 1,\ldots,m.$$

Теорема. Пусть выполняются условия 1, 2. Тогда вектор-функция $\mathbf{u}(t, \mathbf{x})$ есть решение системы (6) в $\widetilde{\Gamma}^N_{[0,T]}$.

Доказательство теоремы приведено в [13].

4. Метод слабой аппроксимации для задачи Коши для системы уравнений типа Хопфа

Относительно данных Коши u_0 , \widetilde{u}_0 задачи (1)–(3) предположим, что u_0 , $\widetilde{u}_0 \in C^2(R)$ и

$$\left| \frac{d^n u_0(x)}{dx^n} \right| \le c_n, \quad \left| \frac{d^n \widetilde{u}_0(x)}{dx^n} \right| \le \widetilde{c}_n, \quad x \in R, \ n = 0, 1, 2, \tag{9}$$

где c_n , \tilde{c}_n — некоторые заданные неотрицательные постоянные.

Вначале рассмотрим случай бесконечно дифференцируемых данных Коши. Предположим, что $u_0,\ \widetilde{u}_0\in C^\infty(R)$ и

$$\left| \frac{d^n u_0(x)}{dx^n} \right| \le c_n, \quad \left| \frac{d^n \widetilde{u}_0(x)}{dx^n} \right| \le \widetilde{c}_n, \quad x \in R, \ n = 0, 1, \dots$$
 (10)

Следуя [9, 16], слабо аппроксимируем задачу Коши (1)–(3) задачей

$$u_t^{\tau} + 2u^{\tau}u_x^{\tau} = 0, \quad \widetilde{u}_t^{\tau} + 2\widetilde{u}^{\tau}\widetilde{u}_x^{\tau} = 0, \quad n\tau < t \le \left(n + \frac{1}{2}\right)\tau, \tag{11}$$

$$u_t^{ au} = -2\widetilde{b}(u^{ au} - \widetilde{u}^{ au}), \quad \widetilde{u}_t^{ au} = 2b(u^{ au} - \widetilde{u}^{ au}), \quad \left(n + \frac{1}{2}\right)\tau < t \leq (n+1)\tau,$$
 (12)

$$u^{\tau}(0,x) = u_0(x), \quad \widetilde{u}^{\tau}(0,x) = \widetilde{u}_0(x), \tag{13}$$

где $N\tau=t^*,\ N>1$ целое, $n=0,1,\ldots,N-1,$ и постоянная t^* удовлетворяет неравенству (18) (см. ниже).

Замечание. При построении решения задачи (11)–(13) на первых дробных шагах решается задача Коши для уравнения переноса

$$v_t + 2vv_x = 0, (14)$$

а на вторых дробных шагах — задача Коши для системы обыкновенных дифференциальных уравнений, решение которой имеет вид

$$egin{aligned} u_t^{ au} &= u_0(x) + rac{2\widetilde{b}}{\overline{b}}(\widetilde{u}_0(x) - u_0(x))(1 - e^{-\overline{b}t}), \ & \widetilde{u}^{ au} &= \widetilde{u}_0(x)e^{-\overline{b}t} + rac{2\widetilde{b}}{\overline{b}}\widetilde{u}_0(x)(1 - e^{-\overline{b}t}) + rac{2b}{\overline{b}}u_0(x)(1 - e^{-\overline{b}t}), \end{aligned}$$

где $\overline{b} = 2(b + \widetilde{b})$.

Известно, что в случае задачи Коши для уравнения (14) с начальными данными

$$v(0,x) = v_0(x), (15)$$

ограниченными вместе со своими производными, может иметь место градиентная катастрофа, т. е. может существовать $t_1>0$ такое, что классическое решение v этой задачи существует в полосе $\Gamma_{[0,t_1)}$, само остается в этой полосе ограниченным, но производная v_x в окрестности некоторой точки (t_1,x^0) становится неограниченной: $v_x(t,x)\to\infty$ при $t\to t_1,\,x\to x^0$ [1,11,13].

Нетрудно показать, что если

$$\left| \frac{dv_0(x)}{dx} \right| \le c_1, \tag{16}$$

то классическое решение задачи (14), (15) существует в полосе $\Gamma_{[0,t^*]}$, ограничено и

$$|v_x(t,x)| \le \frac{c_1}{1 - 3c_1 t}, \quad (t,x) \in \Gamma_{[0,t^*]},$$
 (17)

где t удовлетворяет неравенству

$$1 - 3c_1t^* > 0.$$

Пусть выполнены соотношения (10) и постоянные c_1 , \widetilde{c}_1 и t^* удовлетворяют условиям

$$1 - c_1 t^* > 0, \quad 1 - \tilde{c}_1 t^* > 0. \tag{18}$$

Тогда решение u^{τ} и \widetilde{u}^{τ} в полосе $\Gamma_{[0,t^*]}$ существует и ограничено вместе со всеми своими производными по переменным t, x.

Очевидно, что при любом фиксированном τ решения u^{τ} и \widetilde{u}^{τ} задачи (11)–(13) ограничены независимо от величины τ :

$$|u^{\tau}(t,x)| \le c_0, \quad |\widetilde{u}^{\tau}(t,x)| \le \widetilde{c}_0. \tag{19}$$

Повторяя рассуждение из [13], можно показать ограниченность частных производных решений u^{τ} и \widetilde{u}^{τ} по x любого порядка равномерно по τ :

$$\left| \frac{\partial^k u^{\tau}(t,x)}{\partial x^k} \right| \le C_k, \quad \left| \frac{\partial^k \widetilde{u}^{\tau}(t,x)}{\partial x^k} \right| \le \widetilde{C}_k, \quad (t,x) \in \Gamma_{[0,t^*]}, \quad k = 0, 1, \dots,$$
 (20)

где $C_k,\,\widetilde{C}_k$ — положительные постоянные такие, что $C_0=c_0,\,\widetilde{C}_0=\widetilde{c}_0.$

Из неравенств (19), (20) и уравнений (11), (12) следуют равномерные по τ оценки

$$\left| \frac{\partial^{k+1} u^{\tau}(t,x)}{\partial t \partial x^{k}} \right| \leq s_{k}, \quad \left| \frac{\partial^{k+1} \widetilde{u}^{\tau}(t,x)}{\partial t \partial x^{k}} \right| \leq \widetilde{s}_{k}, \quad (t,x) \in \Gamma_{[0,t^{*}]}, \ k = 0, 1, \dots, \quad (21)$$

Из этих оценок следует, что u^{τ} , \widetilde{u}^{τ} и их производные по x любого порядка равномерно ограничены и равностепенно непрерывны в $\Gamma_{[0,t^*]}$. На основании теоремы Арцела диагональным способом можно выбрать подпоследовательности $\{u^{\tau_k}\}$, $\{\widetilde{u}^{\tau_k}\}$ последовательностей $\{u^{\tau}\}$, $\{\widetilde{u}^{\tau}\}$, сходящиеся в $\Gamma_{[0,t^*]}$ к функциям u и \widetilde{u} соответственно вместе со всеми производными по x равномерно в каждой ограниченной области полосы $\Gamma_{[0,t^*]}$, вследствие чего функции u и \widetilde{u} имеют производные любого порядка по x и выполняются соотношения

$$u(0,x) = u_0(x), \quad \widetilde{u}(0,x) = \widetilde{u}_0(x),$$
 (22)

$$\left| \frac{\partial^k u(t,x)}{\partial x^k} \right| \le C_k, \quad \left| \frac{\partial^k \widetilde{u}(t,x)}{\partial x^k} \right| \le \widetilde{C}_k, \quad (t,x) \in \Gamma_{[0,t]}, \ k = 0, 1, \dots$$
 (23)

Единственность решения доказывается стандартным способом. Следовательно, и сами последовательности функций $\{u^{\tau}\}$, $\{\widetilde{u}^{\tau}\}$ при $\tau \to 0$ сходятся равномерно в $\Gamma_{[0,t]}$ к u и \widetilde{u} соответственно вместе со всеми производными. Случай, когда $u_0,\ \widetilde{u}_0 \in C^2(R)$, доказывается с помощью средних функций [20].

ЛИТЕРАТУРА

- 1. *Куликовский А. Г., Свешников Е. И.*, *Чугайнова А. П.* Математические методы изучения разрывных решений нелинейных гиперболических систем уравнений. М., 2010.
- Доровский В. Н. Континуальная теория фильтрации // Геология и геофизика. 1989. № 7. С. 39–45.
- 3 Доровский В. Н., Перепечко Ю. В. Феноменологическое описание двухскоростных сред с релаксирующими касательными напряжениями // Прикл. математика и тех. физика. 1992. № 3. С. 94–105.
- Доровский В. Н., Перепечко Ю. В. Теория частичного плавления // Геология и геофизика. 1989. № 9. С. 56–64.
- Перепечко Ю. В., Сорокин К. Э., Имомназаров Х. Х. Влияние акустических колебаний на конвекцию в сжимаемой двухжидкостной среде // Тр. XVII Междунар. конф. «Современные проблемы механики сплошной среды». Ростов-на-Дону, 2014. С. 166–169.
- Imomnazarov Kh., Mamasoliyev B., Vasiliev G. On one system of the Burgers equations arising in the two-velocity hydrodynamics // J. Phys.: Conf. Ser. 2016. V. 697, N 1. 012024.

- 7. Vasiliev G., Imomnazarov Kh., Kalimoldayev M., Mamasoliyev B. Cauchy problem for system of the Burgers equations arising in the two-velocity hydrodynamics // Math. Model. Natural Phenomena. 2017. V. 12, N 3. P. 134–138.
- 8. Турдиев У. К., Имомназаров Х. Х. Система уравнений типа Римана, возникающая в двухжидкостной среде // Тез. Междунар. конф. «Обратные и некорректные задачи» (2–4 октября 2019 г., Самарканд, Узбекистан). С. 119–120.
- Turdiev U. and Imomnazarov Kh. A system of equations of the two-velocity hydrodynamics without pressure // AIP Conf. Proc. 2021. N 2365. 070002.
- 10. Демидов Г. В., Новиков В. А. О сходимости метода слабой аппроксимации в рефлексивном банаховом пространстве // Функцион. анализ и его прил. 1975. Т. 9, № 1. С. 25–30.
- **11.** Гегечкори З. Г., Демидов Г. В. О сходимости метода слабой аппроксимации // Докл. АН СССР. 1973. Т. 213, № 2. С. 264–266.
- 12. Демидов Γ . В., Марчук Γ . И. Теорема существования решения задачи краткосрочного прогноза погоды // Докл. АН СССР. 1966. Т. 170, № 5. С. 1006–1009.
- 13. Белов Ю. Я., Демидов Г. В. Решение задачи Коши для системы уравнений типа Хопфа методом слабой аппроксимации // Численные методы механики сплошной среды. Новосибирск: ВЦ СО АН СССР, 1970. Т. 1, № 2. С. 3–16.
- 14. Демидов Г. В. Некоторые приложения обобщенной теоремы Ковалевской // Численные методы механики сплошной среды. Новосибирск: ВЦ СО АН СССР, 1972. Т. 1, № 2. С. 10–32
- 15. Рапута В. Ф. Метод слабой аппроксимации для задачи Коши в шкале банаховых пространств // Численные методы механики сплошной среды. Новосибирск: ВЦ СО АН СССР, 1975. Т. 6, № 1. С. 93–96.
- Бояринцев Ю. Е. Регулярные и сингулярные системы линейных обыкновенных дифференциальных уравнений. Новосибирск: Наука, 1980.
- **17.** Белов Ю. Я., Кантор С. А. Метод слабой аппроксимации. Красноярск: Краснояр. гос. ун-т, 1999.
- 18. Belov Yu. Ya. On estimates of solutions of the split problems for some multi-dimensional partial differential equations // J. Sib. Federal Univ. Mathematics and Physics. 2009. V. 2. N 3. P. 258–270.
- **19.** Яненко Н. Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука. Сиб. отд-ние, 1967.
- **20.** Соболев С. Л. Некоторые применения функционального анализа в математической физике. Новосибирск: СО АН СССР, 1962.

Поступила в редакцию 10 октября 2022 г.

После доработки 25 октября 2022 г.

Принята к публикации 29 ноября 2022 г.

Имомназаров Бунёд Холматжонович

Научно-образовательный центр Газпромнефть-НГУ,

Новосибирский государственный университет,

ул. Пирогова, 2, Новосибирск 630090

buned11998.07@mail.ru

Турдиев Улугбек Каюмович

Каршинский филиал Ташкентского университета информационных технологий,

Бешкентское шоссе, Карши 180100, Узбекистан

 ${\tt turdievuk@tuit.uz}$

Эркинова Динора Абдулхамид кизи

Каршинский государственный университет,

ул. Кучабаг, 17, Карши 180119, Узбекистан

erkinovada@kardu.uz

WEAK APPROXIMATION METHOD FOR THE CAUCHY PROBLEM FOR A ONE-DIMENSIONAL SYSTEM OF HOPF-TYPE EQUATIONS

B. Kh. Imomnazarov, U. K. Turdiev, and D. A. Erkinova

Abstract: A system of Hopf-type equations is obtained. The Cauchy problem for a one-dimensional system of equations of the Hopf type which arises in two-velocity hydrodynamics is considered. The existence and uniqueness of a solution to the Cauchy problem for the one-dimensional system of the Hopf type is proved by the method of weak approximation.

DOI: 10.25587/SVFU.2023.74.36.002

Keywords: two-velocity hydrodynamics, Hopf-type system, weak approximation method, friction coefficient.

REFERENCES

- Kulikovsky A. G., Sveshnikov E. I., and Chugainova A. P., Mathematical methods for studying discontinuous solutions of nonlinear hyperbolic systems of equations [in Russian], Moscow (2010).
- 2. Dorovsky V. N., "Continual theory of filtration," Sov. Geol. Geophys., No. 7, 34–39 (1989).
- **3.** Dorovsky V. N. and Perepechko Yu. V., "Phenomenological description of two-velocity media with relaxing shear stresses [in Russian]," J. Appl. Mech. Tech. Phys., No. 3, 403–409 (1992).
- Dorovsky V. N. and Perepechko Yu. V., "Theory of the partial melting," Sov. Geol. Geophys., No. 9, 56–64 (1989).
- Perepechko Yu. V., Sorokin K. E., and Imomnazarov Kh. Kh., "The infuence of acoustic vibrations on convection in a compressible two-fluid medium [in Russian]," in: Proc. XVII Int. Conf. Contemporary Problems of Continuum Mechanics 2014, pp. 166–169, Rostov-on-Don (2014).
- **6.** Imomnazarov Kh., Mamasoliyev B., and Vasiliev G., "On one system of the Burgers equations arising in the two-velocity hydrodynamics," J. Phys.: Conf. Ser., **697**, Article ID 012024 (2016).
- 7. Vasiliev G., Imomnazarov Kh., Kalimoldayev M., and Mamasoliyev B., "Cauchy problem for system of the Burgers equations arising in the two-velocity hydrodynamics," Math. Model. Natural Phenomena, 12, No. 3, 134–138 (2017).
- 8. Turdiev U. K. and Imomnazarov Kh. Kh., "Riemann-type system of equations arising in a two-fluid medium [in Russian]," in: Abstr. Int. Conf. Inverse and Ill-Posed Problems (Oct. 2–4, 2019, Samarkand, Uzbekistan), pp. 119–120 (2019).
- 9. Turdiev U. and Imomnazarov Kh., "A system of equations of the two-velocity hydrodynamics without pressure," AIP Conf. Proc., No. 2365, 070002 (2021).
- Demidov G. V. and Novikov V. A., "On the convergence of the method of weak approximation in a reflexive Banach space [in Russian]," Funct. Anal. Appl, 9, No. 1, 25–30 (1975).

- Gegechkori Z. G. and Demidov G. V., "On the convergence of the weak approximation method [in Russian]," Dokl. AN USSR, 213, No. 2, 264–266 (1973).
- Demidov G. V. and Marchuk G. I., "A theorem on the existence of a solution to the problem of short-term weather forecast [in Russian]," Dokl. AN USSR, 170, No. 5, 1006–1009 (1966).
- 13. Belov Yu. Ya. and Demidov G. V., "Solution of the Cauchy problem for a system of equations of the Hopf type by the method of weak approximation [in Russian]," Numerical Methods of Continuum Mechanics, 1, No. 2, 3–16 (1970).
- 14. Demidov G. V., "Some applications of the generalized Kovalevskaya theorem [in Russian]," Numerical Methods of Continuum Mechanics, 3, No. 2, 10–32 (1972).
- 15. Raputa V. F., "Method of weak approximation for the Cauchy problem in the scale of Banach spaces [in Russian]," Numerical Methods of Continuum Mechanics, 6, No. 1, 93–96 (1975).
- Boyarintsev Yu. E., Regular and Singular systems of Linear Ordinary Differential Equations [in Russian], Nauka, Novosibirsk (1980).
- Belov Yu. Ya. and Kantor S. A., Weak Approximation Method [in Russian], Krasnoyarsk Gos. Univ., Krasnoyarsk (1999).
- 18. Belov Yu. Ya., "On estimates of solutions of the split problems for some multi-dimensional partial differential equations," J. Sib. Fed. Univ., Math. Phys., 2, No. 3, 258–270 (2009).
- 19. Yanenko N. N., Fractional Steps for Solving Multidimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1967).
- Sobolev S. L., Some Applications of Functional Analysis to Mathematical Physics, Amer. Math. Soc., Providence, RI (1991) (Math. Monogr.; vol. 90).

Submitted October 10, 2022 Revised October 25, 2022 Accepted November 29, 2022

turdievuk@tuit.uz

Buned Kh. Imomnazarov Scientific and Educational Center "Gazpromneft-NGU", 2 Pirogov Street, 630090 Novosibirsk, Russia buned11998.07@mail.ru

Ulugbek K. Turdiev Qarshi Branch of Tashkent University of Information Technologies Beshkent Highway, Qarshi 180100, Uzbekistan

Dinora A. Erkinova Qarshi State University, 17 Kuchabag Street, Qarshi 180119, Uzbekistan erkinovada@kardu.uz