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We provide an alternate representation to the result that the Lie algebra of generators of the system
of n differential equations, (ya)

′′
= 0, is isomorphic to the Lie algebra of the special linear group of

order (n+2), over the real numbers, sl(n+2,R). In this paper, we provide an alternate representation
of the symmetry algebra by simple relabelling of indices. This provides onemore proof of the result
that the symmetry algebra of (ya)

′′
= 0 is sl(n + 2,R).
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1. Introduction

The classification of all scalar second-order ordinary differential equations, according to the
Lie algebra of generators they admit, is complete [1]; for example, the free particle equation
y′′ = 0 admits eight Lie symmetries [2], which is the maximum number of symmetries
admitted by any second-order differential equation defined on a domain in the plane [1].
This Lie algebra is isomorphic to sl(3,R) [3]. The maximality of the Lie algebra of y′′ = 0
was proved by Lie, using a geometric argument [4]. The fact that the Lie algebra of the
n-dimensional vector equation (ya)′′ = 0 is sl(n + 2,R) will be demonstrated here by an
algebraic method of relabelling indices. This result had apparently been published earlier
by Aminova in a relatively inaccessible journal [5, 6]. Before her, Leach [7] showed that an n-
dimensional, uncoupled, undamped, and unforced linear system has the complete symmetry
group sl(n+2,R), and Prince and Eliezer [8] studied that the full symmetry group of the time-
dependent oscillator in n-dimensions is sl(n + 2,R) of n2 + 4n + 3 operators. The number of
symmetries of the equation has also been discussed in [9].
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2. The Algebra of (ya)′′ = 0

Ibragimov [10] lists symmetry generators of the 3-dimensional vector (ya)′′ = 0:

X0 =
∂

∂x
, Xa =

∂

∂ya
, S = x

∂

∂x
, Pa = ya ∂

∂x
, Qa = x

∂

∂ya
,

Ya
b
= ya ∂

∂yb
, Z0 = x2 ∂

∂x
+ xyb ∂

∂yb
, Za = xya ∂

∂x
+ yayb ∂

∂yb
,

(2.1)

where we have used the Einstein summation convention that repeated indices are summed
over and rewritten so that they balance. These are twenty four generators in all.

As the Lie algebra is eight dimensional for the scalar equation and twenty four
dimensional for the 3-dimensional equation, one may have supposed that the number of
symmetry generators for the 2-dimensional equation would be sixteen. However, it turns out
that the number of infinitesimal generators is fifteen. This equals the number for sl(4,R).
Infact, for n = 3, the number of generators in (2.1) equals that for sl(5,R). We may, therefore,
guess the following.

Theorem 2.1. The Lie algebra, for the second-order n-dimensional vector equation, is sl(n + 2,R).

Proof. The generators of the Lie algebra gl(n,R) are [11, 12]

Y
μ
ν = ηγμ ∂

∂ηγν
, μ, ν = 1, 2, 3, . . . , n, (2.2)

which satisfy the commutation relation

[
Y

μ
ν , Y

ρ
τ

]
= δ

ρ
νY

μ
τ − δ

μ
τ Y

ρ
ν , (2.3)

where δμ
ν is the usual Kronecker delta. Further, setting Yα

α = 0 gives the Lie algebra of sl(n,R).

It can be easily verified that the algebra for n dependent variables is (2.1) with a =
1, 2, 3, . . . , n. Now define yα = x for α = 0 and ya for α = a. Then the generators can be
rewritten as

Xα =
∂

∂yα
, Yα

β = yα ∂

∂yβ
, Zα = yαyβ ∂

∂yβ
, α, β = 0, 1, 2, . . . , n, (2.4)

where Y 0
0 = S and Ya

0 = Pa. Now, further putting

Yn+1
α = Xα, Yα

n+1 = −Zα, (2.5)

we only need to define Yn+1
n+1 . This may be defined by setting Y

μ
μ = 0, where μ, ν = 0, 1, 2, . . . ,

n + 1. Then the generators given by (2.4) and (2.5) satisfy (2.3). The negative sign in (2.5) is
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introduced, so that the generators satisfy the required algebra. It is allowable to introduce the
negative sign as −V α will be a generator if V α is. Hence the maximal symmetry algebra of the
second-order n-dimensional vector differential equation is sl(n + 2,R).

3. Remarks

This representation of the symmetry algebra (ya)′′ = 0, a = 1, 2, . . . , n, has been obtained by
merely relabelling the symmetry generators, as such we feel that it is especially simple and
elegant.
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