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Abstract. Darwin’s and Wallace’s 1859 explanation that novel speciation resulted from natural variants that had been subjected
to selection was refined over the next 150 years as genetic inheritance and the importance of mutation-induced change were
discovered, the quantitative theory of evolutionary population genetics was produced, the speed of genetic change in small
populations became apparent and the ramifications of the DNA revolution became clear. This paper first discusses the modern
view of speciation in its historical context. It then uses systems-biology approaches to consider the many complex processes
that underpin the production of a new species; these extend in scale from genes to populations with the processes of variation,
selection and speciation being affected by factors that range from mutation to climate change. Here, events at a particular
scale level (e.g. protein network activity) are activated by the output of the level immediately below (i.e. gene expression)
and generate a new output that activates the layer above (e.g. embryological development), with this change often being
modulated by feedback from higher and lower levels. The analysis shows that activity at each level in the evolution of a
new species is marked by stochastic activity, with mutation of course being the key step for variation. The paper examines
events at each scale level and particularly considers how the pathway by which mutation leads to phenotypic variants and the
wide range of factors that drive selection can be investigated computationally. It concludes that, such is the complexity of
speciation, most steps in the process are currently difficult to model and that predictions about future speciation will, apart
from a few special cases, be hard to make. The corollary is that opportunities for novel variants to form are maximised.
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1. Introduction23

Research into evolution naturally falls into two cat-24

egories. The first is to discover the history of life that25

dates back to the Last Universal Common Ancestor26

(LUCA), a primitive prokaryote. This evolved from27

the First Universal Common Ancestor, a very prim-28

itive bacterium that formed about 3.8 billion years29

ago (Ba) about which our knowledge can only be30

informed speculation. The second is the study of31

the mechanisms by which new species evolve from32

parent species. The history of life is now generally33
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understood on the basis of phylogenetic analysis and, 34

for larger organisms, fossil analysis (see [1] for gen- 35

eral review). Unpicking the details of the mechanisms 36

of evolutionary change is however much harder as 37

they not only include strong stochastic components 38

but are frequently hard to define with any degree of 39

precision. This is partly because so much is going on 40

and partly because we cannot assume that conditions 41

stay the same over the long periods that are needed 42

for a new species to form from a parent species. 43

It is not even straightforward to define a species. 44

Although we normally think of species as being dis- 45

tinct if they look different in some way, this definition 46

is not always applicable: the many breeds of dogs, 47

from dachshunds to Great Danes, are all the same 48

species. There are many other definitions [2], and 49
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2 J.B.L. Bard / Modelling speciation: Problems and implications

the best reflects reproduction. Here, species are dif-50

ferent if any hybrids that might form are incapable51

of leaving fertile offspring. The importance of this52

definition is that it drives irreversible diversification.53

This breakdown does, however, usually depend on the54

hybrid’s chromosomes being unable to pair during55

meiosis and, in the case of animals that mate directly,56

is rarely achieved until long after the two populations57

have lost interest in crossbreeding (see below).58

Unfortunately, the reproductive test is usually59

impractical to apply to most pairs of living species and60

of course impossible for those that are extinct. The61

usual definitions are therefore that species are differ-62

ent either if they have sufficiently different features63

(this normally means that they have qualitative rather64

than quantitative differences) or if they are incapable65

of living in the same habitat. Such definitions do66

not usually work for organisms such as prokaryotes,67

many of which look the same; here one may be forced68

to consider definitions based on genomic differences.69

The main purpose of this paper is to consider the70

extent to which novel speciation can be quantitatively71

modelled. Although it starts with a brief summary of72

the successes that have been achieved in modelling73

the history of species diversification, the bulk of the74

paper focuses on the mechanisms that underly change75

and is in in two parts. The first sets out in a historical76

context our current understanding of how evolution-77

ary change is initiated and how it culminates in the78

formation of a new species as recognised on the basis79

of anatomical differences. The second looks at the80

various aspects of these processes and the difficulties81

in modelling them quantitatively.82

2. The history of life83

Our understanding of the history of life dates back84

to Jean-Baptist Lamarck who, in 1809, analysed the85

very different anatomies of annelid worms and para-86

sitic flatworms. His conclusion was that their separate87

evolution could not have occurred by climbing the88

ladder of complexity from protist to humans, as had89

been suggested by Bonnet in the late 18th century,90

but had to have been the result of branching descent91

[3]. Early studies confirmed this and unpicked much92

of vertebrate history through analysis of the fossil93

record. By the 1960 s, it became possible to formalise94

this within the framework of cladistic hierarchies:95

these are directed graphs, whose nodes are species96

and whose edges are defined by the relationship97

descends with modification from [1].98

Theoretical modelling of the history of life took a 99

major leap forward in the early 1970 s with the avail- 100

ability of first protein and then DNA sequences. These 101

stimulated computer scientists to produce algorithms 102

that analysed homologous sequences on the basis of 103

mutational differences. The resulting analysis of the 104

vast amounts of sequence data now available has, over 105

the last few decades, produced detailed phylogenies 106

for all the major and most of the minor clades: these 107

group contemporary organisms and identify lines 108

of descent leading back to common ancestors and 109

eventually to the Last Eukaryotic Common Ancestor 110

(LECA – the accepted name for the first organism 111

with a nucleus). These molecular phylogenies are 112

not only more precise than anatomical phylogenies 113

(cladograms) based on the fossil record but can be 114

derived for any group of species for which there is 115

adequate DNA sequence data. 116

Comparative sequence algorithms have also been 117

used on prokaryotic sequence data to show how the 118

LECA formed as the result of the endosymbiosis 119

of several ancient members of modern families of 120

Eubacteria and Archaebacteria [1]. This has now 121

given us a reasonable picture of the Last Universal 122

Common Ancestor (LUCA), a very simple bacterium 123

that was the unique parent of every living cellular 124

organism. As a result of all this work, we now know 125

the general history of every living organism that has 126

been studied (for a summary, see [1]; for details, see 127

the Wikipedia entry for any organism). 128

The details of this history are of course limited 129

because molecular phylogenetics can only group con- 130

temporary organisms and identify branch points that 131

represent early common ancestors. The identifica- 132

tion of extinct taxa, which can be located within 133

cladograms, are restricted to animals and plants for 134

which there is a substantial fossil record. We do how- 135

ever have an independent test of the accuracy of this 136

phylogeny: this comes from the many observations 137

showing that homologous proteins have homologous 138

functions even in distantly related organisms, usu- 139

ally during development (the area of research called 140

evo-devo). For instance, every animal with an eye 141

expresses a homologue of the Pax6 protein at an early 142

stage in its development [4]. 143

It should also be emphasised that the cladograms 144

and molecular phylograms that summarise the history 145

of life reflect graphs with very low time resolution. 146

This is partly because the fossil record is inevitably 147

limited [5] and partly because they inevitably lack 148

short-term detail. If one examines any phylogram, 149

there is a sense of inevitability when one follows a line 150
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of evolutionary descent from one node to another. The151

reality is very different: if one were to look closely152

at what happens at a specific node, one would see a153

broad range of descent lines as the variants of some154

species tried, as it were, their luck in one or more155

environments with different selection pressures (see156

below).157

What normally happens is that all but one line in158

this bush dies out and a single species is successful,159

although there is no reason in principle why a single160

population cannot give rise to several successful lines,161

provided that each finds itself in a novel environment.162

The difficulty is that the time needed for this success163

could well extend to thousands of generations (e.g.164

the Neanderthals survived for > 300K years or 15K165

generations). Even then, most trait variants that seem166

beneficial in the short term die out in the medium167

term, so that what appears in a low-time-resolution168

phylogram is a solitary success. The paradigm here169

is us: the Hominini clade originated some 7 Mya and170

slowly branched to give a bush of taxa of which the171

sole surviving member is Homo sapiens [6], albeit172

that its genome contains fragments from other bush173

taxa as a result of interbreeding.174

Although there is always more detail to be175

explored, our understanding of the general history176

of eukaryotic life is now robust. Our knowledge177

of prokaryotic evolution is thinner: we still lack178

full understanding about the FUCA evolved and the179

nature of the last common ancestor of the Eubac-180

terium and the Archaebacterium clades, while it is181

still hard to make predictions about the future for182

organisms more complex than infectious viruses [7].183

Before considering the mechanistic side of evolution,184

however, all biologists should thank the mathemati-185

cians who invented the algorithms and statistical186

methodologies for making molecular phylogenies;187

they have revolutionised our understanding of the188

history of life.189

3. The mechanisms of evolutionary change190

Our knowledge of the mechanisms by which new191

species evolve from parent species is inevitably192

thinner than that for elucidating the broad line of193

evolutionary history as the details of how each new194

species forms are specific to that species. Lamarck195

suggested that variants arose through organisms196

having the ability to become more complex and197

to improve their abilities through effort, with the198

acquired characteristics being heritable [3]. This view199

was widely held until the end of the nineteenth cen- 200

tury when Weismann showed that, as the germ cells 201

were separated from the body early in development, 202

there was no known way in which novel phenotypic 203

characteristics in the adult could feed back to germ 204

cells. 205

In the 1830 s, Darwin started to explore evidence 206

for the idea that novel speciation derived from nat- 207

ural variants (he accepted Lamarck’s views on the 208

origins of variation) that were subject to selection 209

either through pressures from the environment in 210

which they lived (natural selection) or through an 211

enhanced ability to procreate (sexual selection). Pub- 212

lication of this work was forced by Darwin’s receipt 213

of a manuscript in 1858 from Wallace, who had had 214

similar ideas when he had been ill in Indonesia. Later 215

that year, side-by-side papers were published [8] and, 216

the following year, Darwin published On the origin of 217

species [9]. This book summarised the evidence for 218

his views on how new species formed, but actually 219

said little on how a species can be defined or a new 220

one recognised. 221

3.1. How do new species originate? 222

Darwin’s answer to this question was that new 223

species form from a succession of natural variants 224

that breed better (or are fitter) than their parents in a 225

particular environment. Eventually, the changes are 226

sufficient that a new species forms that is unable to 227

breed with its parent species and may well super- 228

sede it through natural selection. Evidence to support 229

this answer comes from what are known as ring 230

species. These form when a migrating population 231

meets an inhospitable domain and therefore divides, 232

with some going left and others right, each group 233

undergoing variation over time. In a few cases, the 234

groups eventually meet up forming a ring of distinct 235

variants. An important observation on these is that, 236

while any left- or right-migrating population can suc- 237

cessfully mate with its immediate neighbours and so 238

are just subspecies, the terminal left and right popu- 239

lations may not interbreed and thus have to be seen as 240

distinct species. There are several examples of ring 241

species that include the greenish warbler family of 242

birds that surround the Himalayas (Fig. 1), the her- 243

ring gulls around the Arctic and the Euphorbia plants 244

around the Caribbean (for references, see [10]) and 245

the Wikipedia entry on Ring Species). 246

Although Darwin’s view of speciation is basically 247

correct, it is very thin and says nothing about either 248

how variants arise or how they are propagated within 249
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Fig. 1. Ring species. The greenish warblers (Phylloscopus trochiloides) were originally present in the region south of the Himalayas. They
slowly spread east and west forming a series of distinct species, eventually meeting up in Siberia to form a ring. All neighbouring species
will interbreed except for those on either side of the meeting point. This seems to be because theirs songs are too different for the two
species to recognise one another [6]. (Main image: Courtesy of G. Ambrus. Inserts: phylloscopus trochiloides: Courtesy of P. Jaganathan.
P. t. plumbeitarsus: courtesy of Ayuwat Jearwattanakanok. P. t. viridanus: Courtesy of Dibenu Ash. (Other images published under a CC
Attribution -Share Alike 3.0 unported License.)

a population under selection. At around the end of250

the 19th century, the rediscovery of Mendel’s 1866251

paper [11], with its basic laws of genetics and the idea252

that genes underpinned phenotypes, stimulated math-253

ematicians to work through the ways in these laws254

could be applied to populations that were evolving.255

Around 1907, Hardy and Weinberg independently256

showed that, in the absence of selection or migra-257

tion, gene frequencies would not change over the258

generations. A decade later, Fisher had produced259

a substantial mathematical model of evolutionary260

population genetics that showed how change could261

happen in diploid organisms that reproduced sex-262

ually. This theory covered selection, the spread of263

novel alleles and how the effects of several alleles in 264

a gene could explain continuous variation in a phe- 265

notypic trait such as height [12]. It was a remarkable 266

and brilliant piece of work. 267

Over the next few decades, this model was 268

expanded to explain much of how genes spread 269

through populations under selection and other fac- 270

tors such as genetic drift (effects of random gene 271

distributions in small populations – see below). The 272

integration of population genetics and Darwinian 273

selection gave what came to be called the modern 274

evolutionary synthesis [see [13] for a summary of 275

its various components). Its most robust achievement 276

has been to show quantitatively how mutations move 277
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through populations and how the details of this move-278

ment depend on population size, selection (natural,279

sexual and kin), immigration and other such factors.280

All this remarkable work was of course done in281

the absence of any knowledge of what a gene was or282

how it worked, although it was clear that mutations283

were the basic cause of variation. It also said very lit-284

tle about how speciation was achieved. Enough was285

however known to pose the two key problems in a286

far richer context than had previously been possible.287

The first was how mutations led to changes in the288

phenotype; the second was how successful variants289

led to new species. These problems are still not fully290

answered for the great majority of species, even in291

the light of contemporary knowledge of molecular292

and developmental biology. Nevertheless, the quan-293

titative theory still provides a framework for thinking294

about evolutionary change and is an important com-295

ponent of coalescent analysis, which uses sets of296

DNA sequences and a model of population breed-297

ing behaviour to produce numerical details of ancient298

populations [14].299

There are however weaknesses in the mathemati-300

cal model of evolutionary genetics. First, its emphasis301

is inevitably on the short-term movement of genes302

under a constant set of criteria from one equilibrium303

position to another – it cannot model longer-term304

events into the future unless conditions remain unal-305

tered over very long periods. Second, its view of the306

relationship between genotype and phenotype was,307

and remains, naı̈ve: it assumes that this is direct in308

that one or at most a few genes that may interact309

(i.e., show epistasis) are responsible for a particular310

phenotype and that alleles of those genes underpin311

alternative phenotypes. This is sometimes true, as312

Mendel showed for peas, but such Mendelian genes313

are relatively rare, other than in the case of mutants314

that lead to genetic disease, and these are unlikely315

candidates for driving evolutionary change. Modern316

molecular genetics has shown that most aspects of317

an organism’s phenotype are underpinned by sets318

of genes whose proteins cooperate within networks319

(see below). If the speed of horses was the result of320

Mendelian genes, racehorse-breeding would be far321

more reliable than it is! Third, the model requires322

numerical parameters for its equations, and these can323

be hard to measure.324

3.2. The modern view of speciation325

Originally, evolutionary population geneticists326

assumed that, if enough novel and favourable muta-327

tions accumulated within a population, a new species 328

would form from the original one. It soon became 329

clear, however, that selection would have to be very 330

strong if a novel mutation was not to be lost in a grow- 331

ing population. During the 1950 s and ‘60 s, a group of 332

geneticists, key members of which were Ernst Mayr 333

and Motoo Kimura, showed that this effect could be 334

overcome in small populations. One reason for this is 335

because genetic drift, which reflects random assort- 336

ment of gene distributions during breeding, becomes 337

disproportionately important as population numbers 338

decrease ([15] and see below). 339

When a small population becomes isolated from its 340

parent population, it has a pangenome (the complete 341

set of genes and allelic variants in a population) that 342

is a random, asymmetric subset of the parent profile. 343

Such a small, isolated population that finds itself in a 344

novel environment will frequently die out because it is 345

unfit for the new selection pressures that it encounters. 346

If, however, a subgroup within the small population 347

has an allele distribution that allows it to survive, it 348

will become a new founder population (Fig. 2). In 349

this case, differences between this and the original 350

population will increase more rapidly than might be 351

expected for a series of reasons that are detailed in 352

Box 1. It is also worth noting that, as normal muta- 353

tion rates are very slow, most new variants derive 354

from novel mixes of existing mutations rather than 355

the formation of new ones (see below). 356

In an environment with selection pressures dif- 357

ferent from those of the parent environment, new 358

phenotypic characteristics will slowly appear over 359

time in the descendants of the founder population, 360

mainly as a result of the original asymmetric allele 361

distribution, genetic drift and new mutations; the 362

phenotype distribution of the population will conse- 363

quently change. As these effects are occurring, larger 364

chromosomal changes will also slowly take place 365

so that the new and the parent organisms would, 366

were they to meet, become increasingly less likely 367

over time to produce fertile offspring. Eventually, all 368

such hybrids would fail, and the two populations will 369

have become different species. The example of mules 370

shows how slow this process is: the very occasional 371

mule is still fertile even though the horse and don- 372

key lines separated some 2 million years ago (Mya), 373

a figure that represents about a million generations 374

[16–18]. 375

While this view of speciation has had major experi- 376

mental and theoretical successes, it is worth pointing 377

out that some in the field have felt for some time 378

that its broad-brush approach lacks several impor- 379
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Fig. 2. The process by which a new species eventually when a small founder population breaks away from a parent population (From [1],
with permission).

Box 1: The unique genetic properties of small groups

1. As numbers are small, the random effects of genetic drift in breeding are more important
than the deterministic predictions of Mendelian laws.

2. Breeding within this asymmetric and diminished gene population leads to a loss of
heterozygosity and an increased number of recessive phenotypes (the Wahlund effect).

3. Because such groups probably included families, the likelihood of incestuous mating will
be increased. This would result in a further loss of heterozygosity and an increased
likelihood of recessive homozygotes forming.

4. In small as compared to large populations, genetic change is likelier to happen and be taken
up much faster. In these cases, gene alleles that lead to a favoured phenotype (and enhanced
fitness) would rapidly come to predominate, while deleterious ones would soon be lost.

5. Small populations are genetically robust against the acquisition of deleterious mutations
[11].

tant features that facilitate novel speciation. They380

have therefore put forward the Extended evolutionary381

synthesis that contains mechanisms beyond rou-382

tine mutation and selection that are not explicitly383

included in the standard synthesis [19]. These include384

transgenerational epigenetic inheritance and develop-385

mental plasticity to extend the repertoire of novel trait386

formation and multilevel selection, niche construc-387

tion and punctuated equilibrium all of which have the388

general ability to speed up the speciation process. The389

importance of these factors is obvious and many feel390

that they are implicitly included in the Modern Syn-391

thesis; they are not however considered here partly392

because their individual contributions to novel speci- 393

ation are unclear and partly because they cannot yet 394

be quantified. 395

4. The modelling problems 396

While there is no reason to doubt this general pic- 397

ture of speciation of how a subpopulation of a parent 398

population becomes increasingly distinct and even- 399

tually a new species, its broadness hides a range of 400

complexities in both the variation and selection com- 401

ponents of change. For variation, the most obvious of 402
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these are new beneficial mutations, although these are403

very slow to appear. Far more important in the short404

term is the stochastic assortment of existing muta-405

tions that occurs first in meiosis and then in random406

breeding within a population. Experimental studies407

of phenotypic changes in populations have clearly408

shown that novel mixes of existing gene alleles are409

predominantly responsible for producing at least the410

initial stages of new phenotypes [20, 21].411

The direct effect of any mutations on phenotypes,412

except for those in Mendelian genes, are however413

hard to predict or even understand. In the case of414

proteins, mutations in their sequences generally alter415

the binding and activation constants of proteins with416

other proteins and with substrates. As a result, their417

effects are disseminated across any networks in which418

they are involved (see below). In the case of mutations419

that affect protein-regulatory regions, the effect can420

be to change gene expression and hence protein con-421

centrations, again in ways that cannot be anticipated422

only analysed. Equally unpredictable and important423

in the much longer term are the accumulation of spe-424

ciation genes and chromosomal rearrangements in the425

two populations that will eventually render infertile 426

any hybrids that might form. 427

There are also problems associated with the effects 428

of selection on populations, a process that reflects 429

interactions with other organisms, with their mix 430

of traits, together with the effects on them of their 431

environment. Selection in the wild is particularly 432

complicated as it includes interactions with other 433

organisms, predators, food supplies and the effects 434

of climate. Such complexity makes modelling diffi- 435

cult, particularly because any aspect of the process 436

can change during the long periods over which spe- 437

ciation takes place. A further difficulty is that, ab 438

initio, we generally have little idea of the trajectory 439

of change or its endpoint except under experimental 440

conditions where selection can be controlled and the 441

specific case of mimicry (Anthony Flemming, per- 442

sonal communication). Hindsight is far easier than 443

foresight! 444

Table 1 summarises the many events that together 445

lead to novel speciation and it is worth noting that 446

each includes aspects that are not predictable. Most 447

reflect random events at a particular level of scale, 448

Table 1
The steps from a founder population to a new species

EP: Emergent properties. R: Random, stochastic events. UE: unpredictable events.

Immediate effects (up to a few generations)
Segregation of small, founder populations from parent ones. R
(These populations have limited pangenomes. R)

Random crossover during meiosis. R
Random allele distribution as a result of normal and incestuous breeding. R

Short term (up to a hundred generations)
Genotype

Because numbers are small, breeding results in a loss of heterozygosity and an
increased number of recessive homozygotes. UE

Phenotype
Possibility of unexpected phenotypes through novel

allele combinations and random drift. EP
Acquisition of behavioural traits that discourage interbreeding with parent group. R

Medium term (hundreds-thousands of generations)
Genotype

Novel mutations that are different in parent and founder populations. R
Phenotype

New phenotype variants. EP
Success of variants under selection (natural, sexual, kin). UP
Increasing divergence of daughter and parent populations.
Decrease in hybrid fertility.

Long term (Millions of generations)
Genotype

Formation of chromosome abnormalities. R
Phenotype

Hybrids between the descendants of the founder and parent populations are infertile.
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Fig. 3. The scale hierarchy shows the key levels in which the effects
of a mutation work their way up from the genome to the individual
way. Note that there are feedback interactions, both up and down,
between the levels. (From [1], with permission.)

while some, such as the complex effects of selection449

in the wild, reflect downwards control from a higher450

to a lower level (Fig. 3). A few, however, reflect emer-451

gent properties that are generated when events at one452

level, which is particularly complex, produce results453

at a higher level that could not have been predicted.454

Important examples here are the ways that mutations455

within protein networks generate unexpected pheno-456

types during development, and the unexpected allele457

combinations that arise in small populations with lim-458

ited genomes [22, 23]. These trans-level interactions459

(Fig. 3) add further degrees of complexity at each460

level.461

Together, these complexities highlight a deeper462

problem in modelling: there are no natural endpoints:463

the processes of variation and selection never cease464

and there are no criteria for when novelty becomes465

stable. The only buffer against change is a large breed-466

ing population: evolutionary population genetics has467

shown that the time required for a new mutation to468

become part of the wildtype population depends on469

the number of individuals in that breeding popula-470

tion. Curiously, the species for which this particularly471

applies is humans [1]: because of migration and472

interbreeding between groups across the world, the473

populations size is effectively infinite – we are all part474

of a single breeding population. In consequence, it is475

now not only hard to see how a novel mutation that476

was advantageous could spread, but hard to envisage a477

mutation that would be reproductively advantageous,478

given the tendency for women to produce fewer chil-479

dren now than in the past. Ther eis thus an argument480

for saying that humans are now in a post-evolutionary 481

phase. 482

The natural framework for considering such com- 483

plexity is systems biology which, in this context, sets 484

out to understand the complex events associated with 485

each level of the scale hierarchy (Fig. 3) together with 486

the feedback interactions across levels (the role of 487

systems biology in understanding protein networks 488

is discussed below in §5.2). The added effect of 489

cross-level, feedback interactions on the events at a 490

particular level always add complexity to the system, 491

even in stable ecosystems. Evolution considers what 492

happens when the base level, the genome, is perturbed 493

by mutation and how the effects of this mutation are 494

projected up the scale hierarchy. It is however hard 495

to get the full picture of these events for the great 496

majority of eukaryotic organisms. 497

A great deal of material is available for study- 498

ing the broad range of evolutionary phenomena. 499

Theoretical approaches include the quantitative the- 500

ory of evolutionary population genetics, that can 501

be explored using both analytic and simulation 502

approaches, computational phylogenetics, statistical 503

analysis and models based on differential equations 504

and Boolean operators (Section 5.2). The data avail- 505

able for analysis include DNA sequences, details of 506

protein networks, the phenotypic changes generated 507

by mutation, data from population studies, such as 508

the effects of selection, genetic profiles of and breed- 509

ing behaviour within small groups, the formation and 510

accumulation of major chromosomal changes and the 511

results of experimental studies. It should however be 512

emphasised that, although sequence data for some 513

organisms is complete, its understanding is not, apart 514

from the genomes of viruses and a few bacteria. it 515

is, for example, still impossible to unravel the full 516

genetic basis of any organism’s development and only 517

rarely do we have the full details of how specific muta- 518

tions lead to variation in the developing anatomical 519

phenotype (for review, see [24]). 520

Apart from the problems of stochasticity (Table 1), 521

there are other difficulties that any analysis has to con- 522

front. An obvious example is that variation requires 523

beneficial changes and these are very much harder 524

to identify than deleterious ones, except with hind- 525

sight. In addition, it can be hard to get the numerical 526

constants that modelling requires when the limited 527

data from which these are extracted must also be 528

used to test theoretical predictions. These limitations 529

are particularly important when apparently separate 530

factors interact, as occurs in natural selection (e.g., 531

any advantages of larger size have to be balanced by 532
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greater demands for food). Finally, modelling gener-533

ally looks at short-term change but evolution, which534

particularly reflects the sequential accumulation of535

beneficial mutations and the accumulation of rare536

chromosomal alterations, is intrinsically a long-term537

process. Few phenomena across the natural world are538

as complicated as evolutionary change.539

5. Variation540

Changes to expected phenotypes can occasion-541

ally result from developmental plasticity when, for542

example, a tissue’s adult form depends on the local543

environment [25]. In the very great majority of cases,544

however, change reflects mutation. This is rarely due545

to new mutations as the likelihood of their occur-546

rence is very low indeed [26]. Changes to genotypes547

in an organism generally result from mixing extant548

mutations during parental meiosis and mating, both549

of which are essentially random.550

Occasionally, the effects of mutational change are551

simple and relatively obvious, with the various pea552

phenotypes chosen by Mendel for investigation being553

a good example. There are several alleles of pea phe-554

notypes (e.g. colour and wrinkling) that breed true,555

although their underlying bases are not all as sim-556

ple as once seemed [27]. Such mutations are much557

liked by commercial breeders as the identification and558

breeding of variants is straightforward.559

Variants in more complex traits rarely breed true560

because they are underpinned by multi-protein sig-561

nalling and process networks, many of which drive562

development, with each of their components being563

subject to the effects of mutation. The exceptions are564

proteins involved in the control of networks, such as565

signals, receptors and transcription factors. In most566

of these examples, however, the effects of mutation567

are major changes that are immediately deleterious to568

network function and so unlikely to be advantageous569

to the developing organism as a whole [24]. The Pax6570

transcription factor is a classic example: a mutation571

in both copies of this gene blocks eye development572

[4]. To use a motoring analogy, one faulty compo-573

nent can render a motor useless, but improvements in574

performance usually require small changes to several575

components.576

The difficulty is that it is usually impossible to577

identify mutations that have a beneficial effect in any578

organisms other than prokaryotes exposed to novel579

chemicals (e.g. [28]). This is partly because of gener-580

ation times and but mainly because it is hard to devise581

assays. The most fruitful way of discovering new 582

phenotypes has been to breed wildtype populations 583

(with natural genetic diversity) of organisms such as 584

Drosophila that have short reproductive cycles and 585

expose them to strong selection pressures. Random 586

breeding that combines extant alleles from within a 587

wild population can lead to novel phenotypes, but it 588

is only rarely that the genetic basis of these changes 589

can be identified [29]. This is because such breeding 590

results in networks whose ill-understood components 591

have a slightly different set of alleles and hence 592

slightly different kinetics. 593

5.1. Normal development 594

Particular difficulties arise when one considers 595

how the effects of mutation within an organism’s 596

genome work their way upwards to modify its 597

phenotype. This is most obviously seen during 598

embryogenesis as almost all anatomical and phys- 599

iological changes seen as an adult organism slowly 600

changes have their origins during development (albeit 601

that the effects of developmental plasticity can lead 602

to changes organisms as a result of post-embryonic 603

change [30]). The core problems in understanding the 604

molecular basis of such evolutionary change are that 605

we still have very few details about how normal tis- 606

sues form and that it is generally impossible on the 607

basis of embryonic anatomy to identify a beneficial 608

change that will eventually improve the fitness of an 609

adult. 610

The basic principles of the development of com- 611

plex organisms, whether animals or plants, are 612

relatively straightforward [24, 30]. The fertilized 613

egg divides and is then patterned by intrinsic lin- 614

eage constraints and a range of mainly short-range 615

signalling interactions. Both may lead to a tissue 616

changing its state with the latter set of interactions 617

also being able to generate a graded response. Cells 618

generally respond to such instructions by activating 619

protein networks (Fig. 4a) each of whose output is 620

a process that leads to a change in phenotype [31]: 621

they may undergo proliferation (mitosis), they can 622

change their state (differentiation) and they can reor- 623

ganise themselves through movement, shape change 624

and tissue reorganisation (morphogenesis, Fig. 4b); 625

they can also occasionally undergo programmed cell 626

death (apoptosis). We know a fair amount about 627

some of the signalling interactions and pathways 628

used in the development of the main model organ- 629

isms (e.g., mouse, Drosophila, C. elegans, zebrafish 630

and Arabidopsis – see the ProteinLounge and KEGG 631
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websites) but much less about the process networks.632

Even where we know their protein constituents, it is633

hard to see how such networks operate because they634

are so complex, as Fig. 4 demonstrates.635

In the context of evolutionary change, these636

networks fall into two categories. Changes that even-637

tually lead to novel speciation are particularly driven638

by changes in tissue patterning, but also in differen-639

tiation, morphogenesis and apoptosis – these tend to640

operate relatively early in development [24]. Changes641

that lead to variants are primarily due to mutations642

that modify size and pigmentation – these generally643

occur in the later stages of development. The human644

species is a model system here: all human faces are645

patterned to have the same set of features and the dif-646

ferences across populations and individuals involve647

modifications in the local growth and in pigmentation648

networks.649

Least understood and most important of these650

developmental networks are the signalling mecha-651

nism that pattern first the early embryo (e.g. the652

anterior-posterior body axis) and then its constituent653

tissues such as the vertebrate limbs [24]. More is654

known about several of the signal-response and pro-655

cess networks. Fig. 4a shows the EGF signalling656

network that activates mitosis. The input is the pres-657

ence of a small protein, epidermal growth factor that658

binds to its receptor; the output is the activation of659

transcription factors that in turn initiate activity in660

the mitotic pathway. We have little idea why the661

EGF network needs to be so complicated although662

progress is being made on how this network operates663

[e.g. 32]. The situation is similar in the rho-GTPase664

network (Fig. 4b) which directs activity within the665

cytoskeleton and so mediates many of the morpho-666

genetic events that underpin developmental anatomy667

[e.g. 33].668

5.2. The effects of mutation on protein networks669

Understanding how mutations affect the phenotype670

of an organism first requires that we appreciate the671

details of the protein networks whose outputs drive its672

anatomical development, metabolism and physiolog-673

ical activity. Full analysis of these networks requires674

understanding the individual protein-protein interac-675

tions and the flow of smaller molecules within them.676

Only when we have a detailed grasp of these can677

we start to consider the possible effects of mutations678

that typically modify protein structure and hence their679

interactions with other proteins and with substrates,680

so modifying network outputs. This is a difficult but681

important area of work that is now attracting consid- 682

erable attention from systems biologists [see [34–36] 683

for reviews). What follows here is a summary of some 684

of the key contemporary approaches and it is worth 685

pointing out that much of the work in this impor- 686

tant area is concerned with understanding mutations 687

which lead to diseased states such as cancer rather 688

than those that improve fitness [37]. 689

In the context of novel speciation, we are primar- 690

ily concerned with mutations that affect anatomical 691

and here it is worth pointing out that the options for 692

a successful mutation in the protein networks that 693

drive such change are limited [31]. Many, such as 694

those for differentiation and apoptosis, have outputs 695

that are essentially switches between states. Muta- 696

tions in these networks are only likely to be successful 697

if the resultant switching is selectable (e.g. [31, 38]). 698

In such cases, the mutation as likely to affect net- 699

work activation or inhibition as much as its internal 700

dynamics. The developmental mutations most likely 701

to be involved in future speciation are however those 702

in networks involved in tissue patterning [24, 31]. 703

Examples include the production of antero-posterior 704

organisation (i.e. the Hox coding system), the pro- 705

duction of novel bone, changes in tooth morphology 706

and the generation of a new pigment pattern in surface 707

ectoderm. 708

Here, it is worth noting that developmental net- 709

works as a whole (e.g. Fig. 4a,b) seem surprisingly 710

complicated for producing what can be seen as rel- 711

atively straightforward outputs. One reason for this 712

could be that have evolved to include a fair amount 713

of buffering against the effects of mutation [39], and 714

it may be for this reason that they are conserved to a 715

considerable effect across the animal phyla [see the 716

KEGG database [40]). 717

It is always possible, in principle at least, to 718

describe networks as a graph of nodes and edges 719

whose dynamics are given by a set of coupled dif- 720

ferential equations. A first step in their analysis is 721

to identify the key nodes and an obvious simplifica- 722

tion is that all fast reactions will run at equilibrium, 723

with the many slower reactions governing the overall 724

dynamics of the system; however, such is this num- 725

ber that there is unlikely to be a key rate-limiting step. 726

That said, such fast and slow reactions may be hard to 727

identify, while mutations may well change the situa- 728

tion. Moreover, such can be the complexity of these 729

networks that they may contain local domains that 730

represent internal alternative routes through the net- 731

work. It is currently extremely difficult to work out the 732

full details of how these pathways work and harder 733
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Fig. 4. Protein networks that play important roles in animal development. a: The Epidermal growth factor (EGF) signalling pathway that
often activates cell proliferation but has other roles. b: the Rho-GTPase network that directs morphogenesis through modulating cytoskeletal
activity. The reasons why they should be so complicated are not known. (Courtesy of ProteinLounge, with permission).

still to estimate their dynamic properties. Although734

it is not yet possible to model in detail the full set735

of differential equations needed to model the com-736

plex protein network shown in Fig. 4a,b, considerable737

progress is being made, particularly in the study of738

signalling pathways [e.g. [41]).739

The easiest protein networks to investigate and740

analyse are those that drive metabolism because many741

can be studied in vitro, as any textbook of biochem-742

istry demonstrates. This is particularly so for the743

metabolic networks of bacteria such as E. coli since744

the ability to follow metabolite concentrations in745

mass cultures allows dynamic variables to be mea-746

sured. It is much harder to study these networks in747

eukaryotic organisms, even in simple fungi such as748

Saccharomyces cerevisiae. This is partly because the749

quantitative data are much harder to obtain, and partly750

because be hard to identify local interactions within751

networks. Considerable effort is now being invested752

in analysing these networks [42–44]. Overton et al.753

[34] have provided a computational methodology for754

identifying transcription-factor targets through anal-755

ysis of protein-interaction databases. Berkhout et al.756

[45] have developed techniques for analysing such 757

data and shown how networks optimise fitness, while 758

Paulson et al. [46] have considered how inferences 759

may be made about parameter values. Of particu- 760

lar interest here are maximum entropy methods [47] 761

which use statistical models to determine the most 762

likely value of internal network parameters. 763

In the context of considering evolutionary change 764

during development, a uniquely helpful system has 765

been that of the 2D patterns generated by reaction- 766

diffusion (Turing) kinetics, which essentially produce 767

patterns of high concentration spots on a low concen- 768

tration background ([48], for review, see [49]). For 769

linear models, small changes in parameters, boundary 770

conditions and timing (i.e. the sorts of changes that 771

can be generated by mutation) can modulate spacing 772

and pattern details (Fig. 5 [50, 51]), while nonlinear 773

models can generate most of the patterns seen in ver- 774

tebrates from fish to zebras [52, 53]. It has also been 775

suggested that 3D Turing patterns can generate the 776

architecture of complex bone systems such as those 777

in limbs [54]. Although experimental evidence to sup- 778

port pattern formation based on reaction-diffusion 779
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Fig. 5. The effect of timing on the initiation of zebra striping patterns. 1: Three zebra species. a: Equus quagga burchelli has ∼26 stripes. b;
E. zebra as ∼50 stripes. c: E. grevyi has ∼75 stripes. (a: Courtesy of Gusjr; published under a CC Attribution generic 2.0 license. b: Courtesy
of Yathin S. Krishnappa; published under a CC Attribution share-alike 4.0 international license. c: Courtesy of Thivier; published under
a CC Attribution share-alike 3.0 unported license.) 2a,b c: 3, 3.5 and 5 week horse embryos on which have been drawn stripes of 200um
separation such as can be generated by reaction-diffusion kinetics. ai and aii: the effect of normal embryonic growth on stripes laid down at
3 weeks at 3,5 and 5 weeks. (From [51] with permission from John Wiley and sons).

kinetics has been hard to obtain, no other mechanism780

has yet been found capable of generating this range781

of modulatable patterns.782

An alternative approach that has been successful in783

a few cases has been to simplify the situation and to784

use computational logic rather than differential equa-785

tions to model networks. The network is formalised as786

a graph whose nodes are on/off or fast/slow switches787

and whose edges are Boolean operators [55, 56].788

Once the network has been modelled in this way, it789

is computationally straightforward to test all possible790

Boolean states and see which produce the expected791

normal output and how mutation (changes in nodes792

and edges) affects the output.793

There are at least two examples of this794

approach. The first is the analysis of the Fanconi-795

anaemia/breast-cancer pathway by Rodrı́guez et al.796

[57]. They modelled this as a Boolean network that797

included checkpoint proteins and DNA repair path-798

ways. Using this model, they were first able to 799

simulate normal behaviour and then to explore the 800

role of repair pathways though simulating mutations. 801

The second, and more important in an evolutionary 802

and developmental context, is the sex determination 803

network for gonad development (GSDN). This deter- 804

mines whether the early human gonad will become 805

a testis (the SRY gene is expressed) or an ovary 806

(the WNT4/�-catenin pathway is activated). Rı́os et 807

al. [57] modelled 19 of the key components in the 808

GSDN network as Boolean nodes, each of which 809

could be in an on or an off state, that interacted 810

through the logical operators AND, OR and NOT. 811

The model had 19 nodes and 78 regulatory operations, 812

most of which derived from experimentation, and > 5 813

million possible initial states. Running all of these 814

alternative showed that there were two major fixed- 815

point attractors (stable states) that reflected male and 816

female gonad development and a minor attractor 817
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that reflected a failure to differentiate. Added con-818

fidence could be had in this approach because the819

system could be modified to change node properties,820

so modelling known mutations. In such cases, the821

simulations gave the expected abnormal phenotypes.822

On this basis, Boolean networks can clearly be823

used to model switches that direct options such824

as change state of differentiation or undergo mito-825

sis/apoptosis. It is less clear that they can model the826

graded responses seen in patterning and morphogen-827

esis or even mitotic rate, which can vary by a factor of828

five across a developing limb [59]. To approach such829

problems, more sophisticated approaches are needed.830

Groß et al. [60] have reviewed the ways in which831

this can be done and suggested that a particularly832

useful approach is to use probabilistic rules rather833

than differential equations to model the interactions834

between the proteins in a network and demonstrate835

its use for the Wnt signalling system. An alternative836

approach is to partition networks using Bond graphs837

which integrate network dynamics with energy flows838

[61].839

Further insights into network kinetics may come840

from the analysis of complex medical disorders.841

Garg et al. [37], for example, explored how drugs842

altered their properties of the gene-regulatory net-843

works where mutation leads to cancer. Of particular844

interest here is their analysis of the way in which845

mutation altered the balance between proliferation846

and apoptosis. More recently, Béal et al. [62] have847

devised ways in which models of melanomas and848

colorectal cancers can be expanded to include exper-849

imental data and be tuned to specific sets of mutants.850

What this diversity of approaches makes clear is851

that theoretical progress is being made in this most852

difficult area of molecular genetics. There is however853

a long way to go before we can begin to understand854

the full range of anatomical changes that underpin855

animal diversity.856

6. Selection and the pathway to speciation857

Phenotypic variation within a population is the raw858

material on which selection operates. For phenotypic859

changes to emerge within that population in a novel860

environment, appropriately adapted fertile variants861

have to become predominant. As discussed above862

(Box 1), this is only likely to occur in small, founder863

populations. The success of such variants is the key864

step to producing subspecies. The final step in novel865

speciation, however, is that such variants will fail to866

produce fertile hybrids with descendants of the orig- 867

inal parent population. This section considers these 868

two key steps. 869

6.1. Founder populations 870

The first step in the formation of new species is 871

the separation from its parent population of a small 872

group with a random sub-pangenome (the complete 873

set of genes and their alleles within a population) 874

of the parent pangenome. This is not a rare event: for 875

any population in a relatively well-defined area, small 876

groups at the periphery are always trying to expand 877

their territory [63, 64], as the example of ring species 878

(Fig. 1) makes clear. Indeed, the dispersal of humans 879

across the world reflects such events. 880

If this founder group finds itself in a novel environ- 881

ment, either some variants will survive and prosper 882

under the new selection pressures [65, 66], or the 883

whole founder group will die out. Genetic anal- 884

ysis shows that successful founder groups have a 885

disproportionately large number of phenotypic vari- 886

ants. First, recessive phenotypes will be unexpectedly 887

common at the expense of a loss of heterozygotes 888

(the Wahlund effect) and, second, genetic drift plays 889

an important role in producing populations that are 890

genetically unbalanced offspring as compared to the 891

parent population. A classic experiment demonstrates 892

this: Rich et al. [67] studied 12 replicates of large (50 893

M + 50 F) and small (5M+5 F) populations of red 894

flour beetles (Trastaneum castaneum), each of which 895

had equal numbers of dominant reds and recessives 896

blacks. Over time, all large populations increased the 897

proportion of red phenotypes, eventually achieving 898

the expected 3 : 1 ratio. In contrast, the genetics of 899

the small populations was unpredictable to the extent 900

that one ended up being completely black (Fig. 6), 901

with the dominant red gene having been lost. 902

Genetic drift is important for another reason: 903

because the small group has a diminished and asym- 904

metric pangenome as compared with that of the large 905

original population, unexpected gene combinations 906

can occur with a much higher frequency than might 907

be expected. The resultant phenotypic changes may 908

have a strong selective value and so become estab- 909

lished in the normal way. Alternatively, it may have 910

no strong selective effect one way or another and the 911

novel phenotype may become established by chance. 912

A possible example here is variable lung morphol- 913

ogy: humans have two lobes in the left and three in 914

the right lung; mice have a single left lobe and four 915

right lobes. There seems to be no obvious physiolog- 916
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Fig. 6. The effect of genetic drift in 12 large (N = 100) and 12 small
(N = 10) populations that originally had equal numbers of red flour
beetles (Trastaneum castaneum) with the dominant b+ allele and
black flour beetles with the recessive genes (b–/b–). There was
much more variation in the smaller populations and no obvious
convergence to the extent that, in one of the small populations,
the dominant gene was lost and the whole population ended up
black. (From [55], with permission from the Society for the study
of evolution (John Wiley Press) and thanks to John Herron for the
redrawn and coloured image.)

ical explanation for this, and the differences are as917

likely to have arisen as a result of drift during their918

long period of separation as for any other reason.919

Changes in the phenotypes within a founder group920

thus result from two very different forms of ran-921

dom process: its limited pangenome and the random922

effects of genetic drift. Together, these can lead to923

novel traits that will allow it group to survive and924

flourish. These events can in principle be modelled925

using stochastic methodologies provided that key926

aspects of the genetic or phenotypic data for a pop-927

ulation are known [68]. This is however generally928

difficult, because we have no good molecular model929

for the genetic basis of the great majority of traits.930

6.2. Selection and the formation of subspecies931

The formal theory of selection is part of evolution-
ary population genetics [12, 66]. Selection biases the
results of random breeding and so affects allele distri-
bution in future populations. It should be emphasised
that selection operates only on phenotypic traits, with
the key parameter for a particular trait in a particular
environment being fitness. This is a measure of the
reproductive success of an organism with a partic-

ular allele in producing fertile offspring. The fitness
coefficient is known as w and the associated selection
coefficient s is connected to w by the simple formula

w = 1 − s

where s represents the relative disadvantage of the 932

genotype for that trait. Hence, a value of s = 1 is lethal, 933

while a value of 0.2 means that 80% of the offspring 934

carry that allele. 935

Our practical understanding of fitness comes 936

from experiments done under controlled conditions, 937

mainly studying traits that breed true and that follow 938

Mendelian laws. A classic and well-studied exam- 939

ple is the relationship between malaria resistance 940

and sickle-cell anaemia [69]. Analysis of population 941

data shows that there are different traits associated 942

with mutations in the �-globin protein: wild-type pro- 943

teins afford an individual no protection from malaria, 944

double mutations cause sickle-cell anaemia but pro- 945

tect against malaria; a single mutation substantially 946

diminishes an individual’s chance of getting the dis- 947

ease but does not lead to anaemia. Such special cases 948

where the theoretical modelling is straightforward are 949

however rare and it can be difficult in practice to apply 950

the theory of evolutionary population genetics for a 951

range of reasons that include: 952

• The model only holds for random breeding in 953

large populations. In small populations, where 954

genetic drift is important. random breeding 955

behaviour will lead to fluctuations in allele fre- 956

quencies to the extent that recessives may come 957

to dominate a population in the absence of strong 958

negative selection (Fig. 5 [67]). 959

• Most traits do not breed true as they are under- 960

pinned by many rather just one or two genes (e.g. 961

Fig. 4). 962

• Experimentation on selection normally studies 963

how single traits emerge under controlled condi- 964

tions. In the wild, selection operates on the whole 965

organism with every trait contributing to its fit- 966

ness. It is rarely possible to know enough about 967

such environments to understand fitness fully 968

or to obtain sufficient breeding data to estimate 969

selection pressures or to partition fitness vari- 970

ance. These difficulties are now however being 971

re-examined and recent work has begun to show 972

how they can sometimes be overcome [70, 71]. 973

• It is a mistake to assume that traits are under 974

independent selection. Larger size, for example, 975

entails consumption of more food and perhaps a 976

loss of agility [65, 72]. Such interactions across 977
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traits add a further degree of complexity to fit-978

ness.979

The complexity of fitness away from laboratory980

conditions means that formal modelling using the981

classical theory of evolutionary population genetics982

can only be done when selection primarily operates983

on one or at the most a few traits, provided that they984

can be seen as independent [73]. A further limita-985

tion is that such studies can generally only examine986

a change in allele distributions from one stable state987

to another when all other conditions (e.g. selection988

pressures) remain constant.989

There is however an alternative approach to study-990

ing selection which is to simulate it using stochastic991

methods. This approach is known as evolutionary992

game theory and dates back to the 1973 work of May-993

nard Smith and Price [74]. In essence, a model is994

constructed that includes breeding behaviour associ-995

ated with individuals that have a range of genetically996

defined traits, each of which has an associated fitness997

for the local environment. The model runs for a gen-998

eration, and this results in a daughter population that999

will be slightly different from the parent one. This1000

process is then repeated until an equilibrium popula-1001

tion is reached, which will usually be one with a stable1002

phenotype distribution [75]. Game theory provides a1003

methodology for testing hypotheses and exploring the1004

implications of possible breeding/trait/environment1005

scenarios as well as demonstrating the process of1006

change.1007

An oversimple but immediately accessible exam-1008

ple of this approach is given by the Primer simulation1009

of natural selection available on Youtube [72]: this1010

models the competing implications of size, speed and1011

food availability in a self-replicating population. It1012

demonstrates that, even for this very simple case, not1013

only are the implications unpredictable because of1014

the trait interactions, but that the final stable state1015

depends on the initial conditions. Complex systems1016

turn out to have steady states that are neither expected1017

nor predictable.1018

Selection in the wild adds two further com-1019

plications. First, we cannot assume that selection1020

coefficients remain constant over the long periods1021

of time required for novel speciation to occur, as1022

both traits and the environment may change (one1023

would expect more stability in aqueous than land1024

environments). Second, these coefficients are gener-1025

ally impossible to determine with accuracy because1026

the limited amounts of experimental data available1027

have to be used both to calculate selection constants1028

and to test their implications. Perhaps the best that 1029

one can do here is a series of simulations using dif- 1030

ferent subsets of the data for constant calculation and 1031

for verification. This approach is of course similar to 1032

the jackknife resampling techniques once used to test 1033

the quality of molecular phylogenies [76]. 1034

In summary, one can use modelling to explore 1035

hypotheses about selection, but it is not generally pos- 1036

sible to make predictions about it for reasons that go 1037

beyond the difficulty of obtaining data. These include 1038

the random genetic profile of founder populations, the 1039

lack of understanding of how such profiles result in 1040

a spectrum of traits and the lack of a good theory of 1041

selection for multiple and complex traits. 1042

6.3. Chromosomal changes and the formation of 1043

new species 1044

Once separated and in different environments, par- 1045

ent and founder populations will become increasingly 1046

distinct to the extent that that they will eventually 1047

be recognised as anatomically different. A classic 1048

example here is the hundreds of anatomically dis- 1049

tinct populations of cichlid fish in Lake Victoria that 1050

descended from an initial population of perhaps a 1051

few species that was probably present ∼300 ka [77]. 1052

Today, many of these species can still interbreed, 1053

albeit that hybrid fertility may be limited [78]. In 1054

general, however, relatively minor anatomical differ- 1055

ences alone say little about whether two homologous 1056

populations are subspecies that can interbreed or 1057

are distinct species whose eggs, even if fertilised, 1058

are incapable of producing fertile adults. Successful 1059

breeding has both phenotypic and genetic aspects. 1060

There are several bars to successful interbreeding 1061

between two related groups. The earliest to occur 1062

reflects visual or behavioural traits that lead to a 1063

lack of interest in cross-mating in animals [20, 78]. 1064

There are also a few incompatibility genes whose 1065

expression make intergroup breeding essentially ster- 1066

ile, although the reasons are not always clear [79–81]. 1067

The most common cause of species separation how- 1068

ever is chromosome mismatching. Normal, large, 1069

diploid population include a range of chromosomal 1070

rearrangements such as translocations, inversions, 1071

duplications, joinings and splittings [82, 83], albeit 1072

that each is rare. 1073

Over time, different sets of minor chromosomal 1074

changes slowly accumulate in the parent and founder 1075

populations. Initially, their cumulative effect is to 1076

reduce hybrid fertility, but, as their chromosomes 1077

become more different, non-disjunction between the 1078
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germ cells of the two populations becomes more1079

likely. At this stage, hybrids first become sterile and1080

eventually fail to develop. Here, it is worth noting that1081

the bar to mitosis being possible is much higher than1082

that for meiosis as crossover during meiosis may lead1083

to the loss of genetic material [84].1084

Three examples demonstrate this and indicate1085

the time scale of the process. The lion and tiger1086

clades separated > 10 Ma [85] but can still interbreed1087

to produce female “liger” offspring that are fertile1088

(male offspring are sterile; see [86]). The borderline1089

between fertility and infertility in hybrids is shown1090

by mules, the hybrid offspring of horses and don-1091

keys, which separated ∼2 Ma: although the very great1092

majority are sterile, the occasional fertile example has1093

been recorded [17, 18]. The reason for the difference1094

is, of course, that lions and tigers both have 19 pairs1095

of chromosomes whereas horses and donkeys respec-1096

tively have 32 and 31 pairs. Third, most of the diverse1097

Canis genus that includes wolves, dogs, grey wolves,1098

dingoes, coyotes and golden jackals can interbreed1099

and produce fertile hybrids They all have 39 pairs of1100

chromosomes and any minor differences are repro-1101

ductively insignificant. Other members of the wider1102

Canidae family, such as foxes, which separated off1103

the main line > 10 Ma, have 34 main chromosomes1104

and some additional small ones, are now unable to1105

breed with members of the Canis genus [87].1106

The key to irreversible species separation in gen-1107

eral is thus the accumulation of differences in1108

chromosome organisation and number between the1109

two populations. The initial formation and subse-1110

quent spread of such changes through a population1111

is, as the examples given above demonstrate, rare,1112

slow and stochastic. It is impossible to predict where1113

changes to chromosome structure will occur because1114

there are no constraints on these complex changes,1115

neither are there any endpoints or equilibria – the1116

structural differences continue to accumulate and1117

there are no criteria for knowing when numbers are1118

sufficient to lead to non-disjunction. We just know1119

that, given enough time, the accumulation of chro-1120

mosomal differences will result in this happening.1121

7. Discussion1122

Table 1 summarises the series of events that lead1123

to the formation of a new species and Fig.1 shows1124

the levels of scale at which they occur. One point is1125

immediately striking: many of these events involve1126

random activities. The processes of speciation as a1127

whole can be seen as maximising opportunities for 1128

genetic variation, phenotypic variation and selection. 1129

Indeed, it is hard to envisage a richer approach to 1130

the creation of phenotypic novelty, selection and ulti- 1131

mately speciation. The extent of this variation has two 1132

obvious corollaries. Perhaps the most obvious is that, 1133

as speciation involves events from the genome to the 1134

climate, it is unlikely that it will ever be possible to 1135

produce an integrated model that describes the gen- 1136

eration of new species. The other is that models at 1137

the events at particular levels will generally have to 1138

include stochastic elements. 1139

Figure 3 makes a key point about the underlying 1140

morphology of modelling. Outputs from one level 1141

feed upwards as the raw material for change at the 1142

next higher level. Such is the complexity of the sys- 1143

tem, however, that events taking place at a single 1144

level often include feedback interactions from higher 1145

and lower levels. Examples are the complex effects 1146

of selection in the wild, which feed downwards to 1147

modulate events lower levels (e.g. environmental 1148

temperature determines gender in some reptiles [88]), 1149

and protein signals, which direct events at higher lev- 1150

els [24]. Modelling at a single level is always going 1151

to be difficult, particularly because we lack much of 1152

the numerical data that is required. 1153

It is because the relevant data are so robust that the 1154

greatest successes in evolutionary biology have been 1155

in unravelling evolutionary history using methodolo- 1156

gies that include molecular phylogenetics, cladistic 1157

analysis and coalescence analysis. This work, as 1158

mentioned earlier, has produced detailed phylogenies 1159

across the biosphere and so provided a theoretical 1160

context in which to embed the details of the fossil 1161

record. These methodologies, as applied to human 1162

mitochondrial DNA and other sequence data, have 1163

allowed us, for example, to discover details of the 1164

travels of H. sapiens over the past ∼65 Ky when early 1165

founder groups left Africa to populate the modern 1166

world (e.g. [89], for review, see [1]). 1167

Indeed, there is now so much DNA data on individ- 1168

ual species that the various technologies can identify 1169

likely sequences in earlier common ancestors within 1170

a clade. Such data ought, in principle, to tell us about 1171

the mutations that caused an ancestor species to give 1172

rise to two contemporary ones. In practice, how- 1173

ever, this is very difficult, partly because we do not 1174

know which were the key genes mutation in which 1175

drove separation and partly because the sequence of 1176

mutational changes is not something that the method- 1177

ologies predict. Given the long time needed for full 1178

speciation and the subsequent period for which that 1179
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species has survived, it is hard even to identify the1180

initial changes that drive diversification.1181

As mutation is essentially stochastic and occurs1182

across the whole genome, with selection depending1183

partly on fitness and partly on drift accompanied by1184

neutral selection, it is also difficult to see how change1185

can be modelled in any eukaryote organism. Even in1186

viruses, the simplest of organisms, it is still not easy1187

to identify the likely future harmful mutations pro-1188

tection against which require new annual influenza1189

vaccines [7].1190

The classic success in the modelling of evolu-1191

tionary change has been, of course, evolutionary1192

population genetics, which aims to quantify events1193

from mutation change to the emergence of novel phe-1194

notypes. The core elements of this theory were in1195

place by the 1960 s, before the DNA revolution had1196

clarified the molecular basis of evolutionary change.1197

Nevertheless, its models on how mutations move1198

through a population and the special properties of1199

founder groups still hold good. Its modelling of phe-1200

notypic change is however very thin for two reasons:1201

first, it is hard to model selection except under labora-1202

tory conditions (for an exception, see [64] and below),1203

second, its model of traits and features is oversimpli-1204

fied. The theory supposes, on the basis of Mendel’s1205

work, that traits and their variants were based on1206

very few genes and their allele alternatives. This is so1207

for individual proteins and a few macroscopic traits1208

that depend on so-called Mendelian genes, but not1209

for most eukaryotic traits, which are underpinned1210

by the activities of complex protein networks (e.g.1211

Fig. 4a,b).1212

While it is possible to unpick some of the features1213

of these networks through our understanding of pro-1214

tein function, it has proven very much harder to model1215

their normal activity or to investigate how this activ-1216

ity might be modified by mutation. Nevertheless, as1217

the work described in Section 5.2 makes clear, the1218

use of a wide variety of modelling approaches has1219

allowed some progress to be made in this most dif-1220

ficult of areas. It will be interesting to see which1221

approaches will be most helpful and the sorts of pre-1222

diction that might emerge from this work. Many will1223

be straightforward, but complex systems can have1224

a range of outputs with the most intriguing being1225

unpredictable emergent properties (Table 1): these1226

arise when the complex interactions at one level pro-1227

duce an unexpected output that affects events at a1228

higher level of scale (Fig. 3). In the context of evo-1229

lutionary change, there are two obvious examples.1230

The simpler one arises from the distribution of alleles1231

in founder populations: one expects more recessive 1232

heterozygotes to form, but one cannot predict which 1233

ones or what their cumulative effect will be in the 1234

phenotype. The second is more complex and arises 1235

from the effects of unexpected allele combinations 1236

on the protein networks whose outputs particularly 1237

affect developmental anatomy and physiology [22, 1238

23]. 1239

Perhaps, however, the key step in novel speci- 1240

ation is the formation of founder groups of small 1241

numbers of individuals that find themselves in new 1242

habitats with novel selection pressures. The partic- 1243

ular sets of genetic properties associated with such 1244

groups (Box 1) encourage the emergence of rare and 1245

even unexpected traits. While it possible to study 1246

some of the events experimentally using strong selec- 1247

tion pressures on groups of organisms from standard 1248

species such as Drosophila, modelling the process is 1249

far harder [20, 21]. 1250

Interesting insights into the emerging properties of 1251

small groups of individuals in long-isolated groups 1252

may well come from the most interesting species in 1253

the study of evolution – humans. Not only do we have 1254

vast amounts of mutation data on H. sapiens, which is 1255

available for gene-wide association studies (GWAS) 1256

into quantitative traits [90], but there are still a few 1257

long-isolated human tribes, such as those in the Ama- 1258

zonian rain forests [91]. It will be interesting to see 1259

if any novel traits have emerged in these tribes since 1260

they separated away from their original founder popu- 1261

lation, which migrated from North to South America 1262

some 10.5 Ka, or more than 200 generations ago, 1263

although they are now becoming less isolated [92]. 1264

Even here, it will be difficult to mesh any such traits 1265

with the selection pressure to which generations of 1266

these groups were subjected as they could well be the 1267

results of genetic drift. 1268

Another facet of the process of speciation that is 1269

extremely hard to model is selection in the wild. Evo- 1270

lutionary population genetics focuses on the effects 1271

of one or perhaps two selection pressures on a single 1272

trait. It does this partly because the theory is tractable 1273

and partly because making numerical predictions 1274

requires numerical constants. Fitness estimation is 1275

difficult, although new methods are now available 1276

[e.g. [70]). Even here, this model of selection is over- 1277

simplified because the process of selection involves 1278

every aspect of an organism’s surrounding. These 1279

include food availability, support from symbionts, 1280

predation, habitat availability and the effects of cli- 1281

mate; it is hard to imagine that each remains static 1282

for long periods needed for novel speciation except 1283
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perhaps under marine situations. Modelling all of this1284

is only practical using game theory and perhaps there1285

is more that can be done here.1286

There are however still two aspects of speciation1287

where detailed modelling is beyond our reach. The1288

first is the origins of genetic change from generation1289

to generation, which has three components. Natural1290

mutations rates are very low (∼64 of the 3 billion bp1291

in the human genome alter per generation in ways that1292

cannot be predicted [93]), the process of cross-over1293

that occurs during meiosis appears to be completely1294

random as is breeding within a group, apart from1295

incest. The other is the locations of the chromosomal1296

alterations that are the final step in species separation;1297

their occurrence is very rare, and it is worth noting1298

that, even after several million generations of separa-1299

tion [85], the chromosomal differences between lions1300

and tigers are not sufficient to block the formation of1301

fertile hybrids.1302

In conclusion, this paper has considered the various1303

aspects of modelling the events that lead to speciation1304

and has pointed to some successes. There is however1305

still a long way to go, with the major challenge being1306

to model its various random events. In principle, this1307

is very difficult but, in practice, it may prove less hard1308

than expected in cases where the number of possible1309

outcomes is found to be limited and for which we1310

have fitness criteria.1311
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