
Hercules: Enabling Atomic Durability for Persistent Memory with

Transient Persistence Domain

CHONGNAN YE, MENG CHEN, QISHENG JIANG, and CHUNDONG WANG∗,
School of Information Science and Technology, ShanghaiTech University, China and Shanghai Engineering

Research Center of Energy Eicient and Custom AI IC, China

Persistent memory (pmem) products bring the persistence domain up to the memory level. Intel recently introduced the
eADR feature that guarantees to lush data bufered in CPU cache to pmem on a power outage, thereby making the CPU
cache a transient persistence domain. Researchers have explored how to enable the atomic durability for applications’ in-pmem
data. In this paper, we exploit the eADR-supported CPU cache to do so. A modiied cache line, until written back to pmem, is
a natural redo log copy of the in-pmem data. However, a write-back due to cache replacement or eADR on a crash overwrites
the original copy. We accordingly develop Hercules, a hardware logging design for the transaction-level atomic durability,
with supportive components installed in CPU cache, memory controller (MC), and pmem. When a transaction commits,
Hercules commits on-chip its data staying in cache lines. For cache lines evicted before the commit, Hercules asks the MC to
redirect and persist them into in-pmem log entries and commits them of-chip upon committing the transaction. Hercules
lazily conducts pmem writes only for cache replacements at runtime. On a crash, Hercules saves metadata and data for active
transactions into pmem for recovery. Experiments show that, by using CPU cache for both bufering and logging, Hercules
yields much higher throughput and incurs signiicantly fewer pmem writes than state-of-the-art designs.

CCS Concepts: · Hardware→ Emerging architectures; · Computer systems organization→ Embedded hardware.

Additional Key Words and Phrases: Atomic Durability, Persistent Memory, Transient Persistence Domain

1 INTRODUCTION

A few companies have shipped byte-addressable persistent memory (pmem) products that are put on the memory
bus for CPU to load and store data [1ś7]. In order to popularize the use of pmem, Intel and other manufacturers
have gradually upgraded architectural facilities. Intel introduced more eicient cache line lush instructions (e.g.,
clwb) to substitute the legacy clflush [8ś10]. Cache line lush enables programmers to lush modiied cache
lines to the persistence domain, in which data can be deemed to be persistent upon a power outage [9, 11ś13]. The
concept of persistence domain was initially linked to the feature of Asynchronous DRAM Refresh (ADR). ADR
keeps DRAM in self-refresh mode and, more important, places pmem and the write pending queue (WPQ) of
memory controller (MC) in the persistence domain [14ś16], as it guarantees to lush data staying in the WPQ to
pmem in case of a power outage. Later Intel extended ADR as eADR that further manages to lush all cache lines
to pmem on a crash [11, 12, 17ś19]. As a result, eADR frees programmers from manually lushing cache lines to
pmem. Platforms with the eADR feature are commercially available today. However, eADR factually builds a
transient persistence domain, because the eventual persistence of data bufered in WPQ entries and CPU cache

∗C. Wang is the corresponding author (cd_wang@outlook.com).

Authors’ address: Chongnan Ye, yechn@shanghaitech.edu.cn; Meng Chen, chenmeng@shanghaitech.edu.cn; Qisheng Jiang, jiangqsh@

shanghaitech.edu.cn; Chundong Wang, cd_wang@outlook.com,

School of Information Science and Technology, ShanghaiTech University, Shanghai, China and Shanghai Engineering Research Center of

Energy Eicient and Custom AI IC, Shanghai, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1539-9087/2023/7-ART

https://doi.org/10.1145/3607473

ACM Trans. Embedd. Comput. Syst.

HTTPS://ORCID.ORG/0000-0001-9069-2650
https://orcid.org/0000-0001-9069-2650
https://doi.org/10.1145/3607473
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607473&domain=pdf&date_stamp=2023-07-06

2 • Ye et al.

lines is made by an uninterruptible power supply lushing all such data to pmem. It is important to note that
this type of cache should not be confused with a fully persistent cache, such as the one made of emerging NVM
technologies like STT-RAM [20], which is supposed to maintain factual persistence in the long run, without the
need of eADR and pmem for persistence.
The advent of pmem has motivated programmers to directly operate with persistent data in pmem. It is

non-trivial to enable the atomic durability for in-pmem data regarding unexpected system failures, e.g., a power
outage. For example, inserting a key to a sorted array is likely to move existing keys that may span a few cache
lines. Programmers make such an insertion into a transaction that shall be atomically modiied as a unit. In other
words, the change of cache lines for the insertion must be done in an all-or-nothing fashion. If a crash occurs,
after reboot involved cache lines should either contain all keys including the new one, or retain only original keys
without any movement. Programmers can use the software logging strategy to back up data for a transaction.
Whereas, software logging is inefectual. Firstly, it incurs double writes, which impair both performance and
lifetime for pmem products [21ś27]. Secondly, it executes extra instructions for logging and consumes more
architectural resources, such as double WPQ entries and pmem spaces for data and log copies. Thirdly, software
logging must explicitly enforce the ordering of persisting log copies before updating data through memory fence
instructions (e.g., sfence) to render the backup copy reliable. The eADR helps to avoid cache line lushes but still
necessitates the use of memory fences, which are costly for achieving the in-pmem atomic durability [9, 28ś30].
Computer architects have explored how to enable the atomic durability in various hardware approaches for

applications to gain the data consistency with pmem [14, 15, 20, 29, 31ś38]. They mostly exploit either a redo
or undo log copy, or both, for data to be atomically modiied in a hardware-controlled transaction. Some of
them considered persistent CPU caches made of non-volatile memory (NVM) technologies to keep redo log
copies [20, 29]. Some others used in-pmem areas for logging and added on-chip redo or undo log bufers, or both,
within the cache hierarchy [32, 33, 35ś38]. Recently researchers explored the transient persistence domain of
limited WPQ entries protected by the ADR feature to temporarily hold log or data copies [14, 15].
In this paper, we consider leveraging the eADR-supported CPU cache to enable the atomic durability for

applications. The eADR guarantees all cache lines to be lushed back to pmem on a power outage, thereby
promising substantial space in numerous megabytes to secure crash recoverability for applications. Modiied
data staying in a cache line is a natural redo log of the in-pmem copy. However, a normal cache replacement
or the eADR on a power failure writes the cache line back to its home address. If the cache line belongs to an
uncommitted transaction, the transaction cannot be recovered, as the overwrite destroys the original copy. We
hence develop Hercules to overcome this challenge with supportive hardware components and comprehensive
transactional protocols. The main points of Hercules are summarized as follows.

• Hercules makes CPU cache be both the working memory and main transaction log. It enhances a part of CPU
cache lines with transactional tags (TransTags) and manages an in-pmem log zone holding transaction proiles
and log entries for spatial extension and emergency use. It also customizes the MC between CPU and pmem to
handle cache lines evicted due to cache replacement or eADR on a power-of.

• Hercules places data that programmers put in a transaction into cache lines with TransTags. On a transaction’s
commit, Hercules commits on-chip the transaction’s data bufered in CPU cache by modifying TransTags. For
cache lines evicted before the commit, Hercules makes the MC map and persist them to in-pmem log entries. It
keeps their mappings for proper reloading until the commit, at which it commits them of-chip by changing
their states in the MC. Then Hercules silently migrates them to their home addresses.

• A crash initiates the emergency use of in-pmem log zone. With eADR, Hercules dumps cache lines with
TransTags and mappings in the MC into a dedicated area of log zone. To recover, it discards uncommitted
transactions and carries on uninished data write-backs for committed transactions.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 3

Hercules exploits CPU cache to log and coalesce data updates. Only on cache replacement or power outage
will Hercules passively lush cache lines, which is in contrast to prior works that proactively write undo or redo
log copies to pmem for backup. As a result, Hercules both achieves high performance and minimizes pmem
writes. We have prototyped Hercules within the gem5 simulator [39] and evaluated it thoroughly with micro-
and macro-benchmarks. Experimental results conirm that Hercules well supports ordinary workloads of typical
applications and inlicts the least writes to impact the write endurance of NVM. For example, running with
prevalent workloads, Hercules yields about 89.2%, 29.2%, and 51.3% higher throughput on average than software
logging, Kiln [20], and HOOP [37], while the data Hercules writes to pmem is 29.8%, 37.4%, and 1.4% that of them,
respectively.

The rest of this paper is organized as follows. In Section 2, we brief the background of persistence domain and
atomic durability. We show a motivational study in Section 3. We detail the design of Hercules in Section 4 and
thoroughly evaluate it in Section 5. We conclude the paper in Section 6.

2 PERSISTENCE DOMAIN AND ATOMIC DURABILITY

2.1 Persistence Domain

Pmem. Pmem embraces both byte-addressability and persistency. Researchers have considered building pmem
with various memory technologies, such as phase-change memory [21, 23, 24, 40ś43], spin-transfer torque RAM
(STT-RAM) [7, 44ś48], resistive RAM [25, 49ś52], 3D XPoint [2, 6], and DRAM backed by lash [3ś5, 53, 54].
Applications can directly load and store data with pmem [2, 9, 19, 31, 54ś62].

Persistence Domain. Persistence domain is a region of computer system in which data would not be lost but
retrievable when the system crashes or power failures occur [9, 17]. It conventionally includes disk drives at the
secondary storage level. As shown in Figure 1a, the advent of pmem brings it up to the memory level.

ADR. The ADR further extends the persistence domain to the WPQ of MC [12, 14ś16]. As shown in Figure 1b,
ADR guarantees that data received at the WPQ can be lushed to pmem upon a power outage. Though, the
persistence enabled by ADR is transient, as it is the pmem that eventually makes data persistent. Also, CPU
cache is still volatile and cache lines would be lost on a crash. Thus, programmers must explicitly lush data
staying in cache lines (e.g., clwb) to pmem. Flushing data from CPU cache to pmem is not only synchronized and
time-consuming, but also error-prone and hurts programmability [18, 63].
eADR. Intel extended ADR as eADR which guarantees to lush all cache lines to pmem in case of a power

outage by employing extra power supply [9, 17, 64]. Figure 1c captures CPU cache hierarchy with the eADR
support. Alshboul et al. [18] proposed BBB that employs a battery-backed persist bufer alongside each core’s
L1D cache and achieves an identical efect as eADR with much less cost. Its purpose is to establish a persistent
bufer with battery backed, installed adjacent to the L1 data cache on each core. As data is written to cache, the
corresponding store value is allocated in the battery-backed bufer and incorporated into the persistence domain.
Through this process, BBB efectively bridges the gap between the point at which data becomes visible and the
point at which it achieves persistency. BBB and eADR help programmers avoid explicit cache line lushes. More
important, they make the multi-level CPU cache hierarchy provide a transient persistence domain in dozens of
megabytes on top of pmem.

Whole systempersistence. Motivated by the development of NVM technologies, Narayanan and Hodson [65]
proposed whole-system persistence (WSP) with lush-on-fail. WSP lushes all data in the heap, stack, and thread
context state from cache lines and processor registers to pmem in case of a power outage, efectively converting
it into a łsuspend/resumež event. WSP’s developers claimed that it is the best use of pmem. However, the
technique is limited in terms of system and application recovery from error states, and storing all intermediate
state information is a challenging task for computer systems, considering issues such as out-of-order (O3)
execution in multi-core CPU, continuous context switches between processes within the OS, hypervisors and

ACM Trans. Embedd. Comput. Syst.

4 • Ye et al.

�
�
��
�
��
	�

�

��

�

����

���	�
���

�
	�
���

��	�
���

����������	������

���
����
���
����

���

���	�
���

�����������

�
��	
��

(a) Transient CPU Cache and Memory Controller

�
�
��
�
��
	�

�

��

�

����

���	�
���

�
	�
���

��	�
���

����������	������

���
����
���
����

���

���	�
���

�����������

�
��	
��

�

(b) ADR-supported Transient Persistence Domain

����

���	�
���

�
	�
���

��	�
���

����������	������

���
����
���
����

���

���	�
���

�����������

�
��	
��

�
�
��
�
��
	�

�

��

�

(c) eADR-supported Transient Persistence Domain

�
�
��
�
��
	�

�

��

�

����

���	�
���

�
	�
���

��	�
���

����������	������

���
����
���
����

���

���	�
���

�����������

�
��	
��

(d) Persistent LLC (Kiln)

Fig. 1. An Illustration of Persistence Domains Explored in Previous Works and This Paper

hardware/software virtualization, interactions across kernel- and user-spaces, etc. This could be one reason why
Intel has chosen to enable the eADR for mainly lushing cache lines to pmem.
RTM. The idea of Intel’s RTM in TSX [66] aims to provide atomicity and facilitate speculative concurrency

in a shared memory system. With the support of eADR, RTM can provide atomic durability and Yi et al. [67]
utilize RTM with eADR to develop HTMFS that achieves both high performance and strong consistency as a
pmem ile system. However, Intel TSX uses L1 cache to bufer transactional reads and writes. As a result, RTM
has limitations in terms of the sizes of read and write sets for a transaction, which may cause transactions to
abort. Other circumstances such as conlict and interrupts would abort transactions also. In addition, an operation
(e.g., write) in the ile system has a complex code path. HTMFS splits one such operation into smaller pieces
and proposes a new mechanism called HOP to address the capacity limitation issue of RTM. Comparatively, the
entire cache hierarchy in scores of megabytes is more capacious than L1 cache alone and, if well explored with
the emerging eADR, should help to enable more generic support of atomic durability for various systems and
applications beyond ile system. This is factually one of the main objectives of Hercules.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 5

2.2 Atomic Durability

The atomic durability, or failure-atomic durability, refers to the crash consistency of modifying in-pmem data
in case of a crash. The insertion with an in-pmem sorted array mentioned in Section 1 is a typical transaction
programmers would deine with their desired semantics. A transaction must be done in an atomic (all-or-nothing)
fashion. Otherwise, a half-done change may leave data in ambiguity or uncertainty after a crash.

2.2.1 Sotware Solution.

Modern 64-bit CPUs allow an atomic write of up to 8 bytes. Programmers bundle multiple data operations
for a task in one transaction and seek software or hardware solutions. Software logging is a common technique.
Programmers explicitly record original (resp. modiied) data in an undo (resp. redo) log. However, software
logging is not efectual with several factors. Firstly, logging incurs double writes due to writing both log and
data copies [20, 35, 68, 69]. Double writes jeopardize performance and impair lifetime for NVM technologies
that have limited write endurance [21ś27]. Secondly, logging demands extra instruction to be executed. Log and
data copies also consume more architectural resources. For example, they need double locations in pmem. If
programmers use CPU cache to bufer them, they take double cache lines. Thirdly, the ordering of writing log
copies prior to data must be retained by using memory fences, the cost of which, albeit the presence of eADR, is
essential and substantial [28ś30].

2.2.2 Hardware Designs.

The essence of gaining atomic durability is to make a backup copy before modifying data in place. In order to
back up data, state-of-the-art hardware designs explore diferent persistence domains, which categorize them
into three classes.
Persistent CPU cache. As shown in Figure 1d, Kiln works with a persistent last-level cache (LLC) [20].

The persistence domain covers LLC and pmem. Kiln manages redo log copies in LLC to back up in-pmem data.
Later, Lai et al. [29] employed a side-path persistent transaction cache (TC) along L1 cache in each CPU core.
TC is similar to the persistent bufers used in other works [18, 70]. Modiied cache lines of a transaction are
irst-in-irst-out (FIFO) put in the TC and serially written to pmem on committing a transaction.
Pmem. A few hardware designs were built on a pmem-only persistence domain. Doshi et al. [32] proposed

to use a victim cache to hold evicted cache lines that would be subsequently written to an in-pmem redo log.
These cache lines are eventually written to their home addresses by copying log entries via non-temporal stores.
Similarly, Jeong et al. [35] proposed ReDU that utilizes a DRAM cache to hold evicted cache lines from the LLC.
ReDU directly writes modiied data from DRAM cache to home addresses, as it installs a log bufer alongside L1
cache to collect and write the in-pmem redo log.
Cai et al. [37] designed HOOP with a physical-to-physical address indirection layer in the MC, which helps

it write modiied data to a diferent pmem address for backup and later move data to home addresses. Joshi et
al. [33] noted that the MC loads a cache line for a write request and proposed ATOM to write the loaded copy

Table 1. A Summary of State-of-the-art Hardware Designs that Provide Atomic Durability for Pmem

Persistence Domain Representative Project Logging Type Pmem Writes Read Latency Granularity Limitation

ReDU [35] Redo High Low Word Consuming DRAM capacity
ATOM [33] Undo High Low Cache line Long critical path

Pmem only HOOP [37] Redo High Low Word Limited OOP bufer
PiCL [34] Undo High High Cache line Does not support transaction
FWB [36] Redo+Undo High High Word Demanding force write back

Proteus [14] Undo High Low 32B Long critical path
ADR + pmem MorLog [38] Redo+Undo Medium High Word Long commit latecy

LAD [15] Redo High Medium Cache line Complex commit phrase

Persistent Kiln [20] Redo Medium High Cache line High STT-RAM latency
cache + pmem TC [29] Redo Medium Medium Cache line Demanding lush TC when commit
eADR + pmem Hercules (this paper) Redo Low Low Cache line Requiring modify cache, MC, and pmem

ACM Trans. Embedd. Comput. Syst.

6 • Ye et al.

SWL_eADR (w/ eADR)

log.write(x,10

log.write(y,20

mfence(

x <-

y <-

mfence()

SWL_flush (w/o eADR)

log.write(x,10

log.write(y,20

log.flush(x

log.flush(y

mfence(

x <-

y <-

mfence()

Vanilla (Volatile)

x <-

y <- 2

Hardware Solution

tx_star

x <-

y <-

tx_commit

Initial value: x = 10, y = 20

(a) Sample Code on Logging [14, 29, 33, 35,

36, 71]

���

���

���

���

���

���

	

�

�

��
��
�
�

�

��
��
�
��

�
��� �
�

�
	
	

��
��
�
�

�

�

�
�
��
�
�
�

�
�

(b) Throughput

�������	

!���

"���

#���

$���

%���

&!���

&"���

	

�

�

��
��
�
�

�

��
��
�
��
�
��� �
�

�
	
	

��
��
�
�

�

�

'
�
'

��
��
�

(c) Pmem Writes

&!^!(

&!^!%

&!^!)

&!^&!

	

�

�

��
��
�
�

�

��
���
��

�
	
	

	
*
�
�+
��
��
+
,�
�
��
,,
�
��

�&� �" �-

(d) Cache Accesses

�

�×��^�

�×��^�

��×��^9

��×��^9

��×��^9

	

�

�

��
��
�
�

�

��
���
��

�
	
	

�
�������� � �!"��!#$ �

(e) Executed Instructions and CPU

Clock Cycles

Fig. 2. A Study on Sotware Logging Logging with/without eADR and State-of-the-art Hardware Designs for Atomic Durability

to an in-pmem undo log in a parallelized manner. Nguyen and Wentzlaf [34] proposed PiCL that also uses the
idea of undo logging with an on-chip log bufer. PiCL makes a trade-of between performance and durability
by snapshotting and saving data in an epoch-based periodical checkpointing manner [45]. Ogleari et al. [36]
and Wei et al. [38] both chose the undo+redo logging approach. Ogleari et al. captured data’s redo and undo log
copies from the in-light write operation and the write-allocated cache line, respectively. They also used a force
write-back (FWB) mechanism to control pmem writes. Wei et al. studied data encoding with hardware logging so
as to only record necessary changes for a transaction’s data, thereby reducing pmem writes. Both designs add
on-chip undo and redo log bufers.

ADR-supported transient persistence domain. The ADR places theWPQ ofMC in the transient persistence
domain. Shin et al. [14] designed Proteus that considers the WPQ to keep log copies. When a transaction commits,
Proteus discards relevant log copies in the WPQ and hence reduces pmem writes. Gupta et al. [15] proposed LAD
that also leverages the ADR-supported MC as a staging bufer to accumulate data updates before committing a
transaction. Whereas, for Proteus and LAD, the limited capability of WPQ entails a high likelihood of falling
back to the use of an in-pmem log.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 7

Table 1 summarizes the characteristics of current hardware designs and Hercules that ensure atomic durability
for pmem. As to be shown, Hercules stands out from prior works by utilizing eADR-supported cache hierarchy
to coalesce transaction updates, resulting in high performance, reduced pmem writes, and promising eiciency.

3 MOTIVATION

We consider leverage the transient persistence domain in CPU caches made by eADR and BBB to enable atomic
durability. We have conducted a motivational study to analyze the potential gain introduced by using CPU cache
to process transactions. Figure 2a captures four sample code snippets, i.e., a vanilla ‘volatile’ program without
guarantee of atomic durability, two software undo logging versions without and with the eADR (both using
CPU cache to bufer log copies), and one version using a typical hardware transactional design. Accordingly we
have tailored B+-Tree with the volatile version for the optimal performance (OPT), two versions of software
logging (SWL_eADR and SWL_lush), and ive prior hardware designs (see Figure 2b). We note that the mfence
instructions are necessary for software logging with the eADR (SWL_eADR). In modern processors, the CPU
cache is the point of visibility (PoV) for memory consistency and cache coherence [18, 28, 30]. Generally a
CPU core employs a local load/store bufer above the core’s L1 cache, which hence demands the use of mfence
instructions to keep memory writes orderly and globally visible to all cores. Currently, this load/store bufer is
not part of eADR domain. By using mfence for SWL_eADR, logged data becomes persistent prior to data in-place
updated at home addresses. SWL_eADR thus gains the recoverability to a consistent state after a crash (e.g.,
power outage). We run all eight designs with gem5 [39] to insert one million key-value (KV) pairs (8B/8B for
K/V). We set each insertion as one transaction. Section 5 would detail our evaluation setup and methodology.
Figure 2b, Figure 2c, Figure 2d, and Figure 2e show a quantitative comparison on the throughputs normalized
against that of OPT, the quantity of pmem writes, and other CPU execution results, respectively. We can obtain
three observations from these diagrams.

❖✶: The eADR improves the performance of software logging and using CPU cache signiicantly

reduces pmem writes. Comparing SWL_eADR to SWL_lush in Figure 2b tells that the avoidance of cache line
lushes makes SWL_eADR gain 22.0% higher throughput. This performance improvement justiies the usefulness
of transient persistence domain for atomic durability in the software logging approach. Moreover, as shown
in Figure 2c, except Kiln that employs a large persistent LLC for bufering, the quantity of data written by
SWL_eADR is 64.3%, 16.8%, 16.4%, and 12.9% that of TC, FWB, Proteus, and HOOP, respectively. The reason is
twofold. Firstly, the eADR-supported CPU cache in suicient megabytes holds both log and data copies over time,
so SWL_eADR substantially brings down data to be written to pmem. Secondly, hardware designs mostly need to
write backup copies to pmem for crash recoverability, because they have been developed without a transiently
persistent CPU cache hierarchy. Therefore, hardware designs generally incur much more pmem writes than
SWL_eADR.

❖✷: Compared to software logging with eADR, hardware designs gain higher performance without

the use of eADR, which indicates the potential of a new hardware design utilizing extensive CPU cache

for atomic durability. Double writes make a crucial innate defect for software logging. As shown in Figure 2b,
despite no explicit lush of data with eADR, SWL_eADR is still inferior to hardware designs. Without loss of
generality, we take HOOP as a representative for illustration. Figure 2d and Figure 2e capture the accesses to
L1D/L2/L3 caches and the number of instructions and clock cycles, for OPT, SWL_lush, SWL_eADR, and HOOP,
respectively. SWL_eADR underuses the eADR-supported CPU cache, incurring 257.5%, 86.3%, and 115.4% more
loads and stores to L1D, L2, and L3 caches than HOOP, respectively. HOOP conducts address indirection in the
MC for hardware-controlled out-of-place backups. Consequently, it performs backup operations without using
CPU cache and achieves comparable cache accesses and instructions against OPT. Due to the unawareness of
CPU cache used as an ample transient persistence domain, hardware designs like HOOP, Proteus, and FWB must

ACM Trans. Embedd. Comput. Syst.

8 • Ye et al.

directly write data into pmem for backup or rely on limited WPQ entries. To sum up, SWL_eADR wastes valuable
cache space despite the boost of eADR while prior hardware designs did not foresee transiently persistent CPU
caches.
❖✸: The eADR provides abundant transient persistence domain to facilitate achieving atomic dura-

bility with the potential of high performance and reduced pmem writes. As shown in Figure 2b, an
evident gap still exists between OPT and hardware or software designs. The eADR-supported CPU cache is
certainly a promising feature with a transiently persistent space in dozens of megabytes. As justiied by our
test results, SWL_eADR does not make the most out of it, while no hardware design has ever exploited it. Kiln,
one using STT-RAM as the persistent LLC, implicitly manifests the potential of eADR-supported CPU cache.
The throughput of Kiln is not high, partly because of the slower access latency of STT-RAM compared than
that of SRAM (see Figure 2b). Yet due to the higher density of STT-RAM, Kiln’s LLC can absorb more pmem
writes (see Figure 2c). Additionally, platforms with the eADR feature are commercially available today, while
STT-RAM-based cache is being under development.

These observations motivate us to consider how to utilize the eADR-supported CPU cache when developing a
hardware design to eiciently guarantee the atomic durability for applications. A modiied cache line and its
in-pmem copy naturally form a pair of redo log and backup copies, which implies an opportunity for hardware
logging. However, the very nature of transient persistence alludes a challenge. Let us assume that we directly
use the transiently persistent CPU cache to make a redo log. In case of a cache replacement or power outage,
the eADR writes a cache line back to its home address. For data belonging to an uncommitted transaction, the
write-back destroys the intact backup copy in pmem and renders the transaction unrecoverable. As a result, to
achieve atomic durability, we need to ensure that cache lines of an uncommitted transaction should be written
elsewhere on write-backs. Also, we shall make the most out of CPU cache to simultaneously hold data and log
copies for minimizing pmem writes. These summarize Hercules’ main tactics and aims.

4 THE DESIGN OF HERCULES

Overview. Hercules is a hardware design to provide transactional support with a typical multi-level cache
hierarchy. It makes a transiently persistent CPU cache hierarchy function both as working memory and hardware-
controlled redo log. Hercules does not eagerly evict cache lines [72] but follows the conventional way of evictions
upon a full cache. This is to avoid unnecessary pmem writes with regard to the limited write endurance of NVM
technologies [21ś27, 73]. Hercules installs transactional tags (TransTags) to a part of cache lines to hold data
for transactions. When a transaction commits, Hercules commits data tracked by TransTags on-chip to reduce
pmem writes. On evicting cache lines of an uncommitted transaction to pmem, it places them in an in-pmem
log zone rather than their home addresses to avoid overwriting original data. It manages and commits them
of-chip upon a committing request through managing an extended WPQ (eWPQ) in the MC. With a suite of
self-contained transactional protocols, Hercules eiciently achieves atomic durability with minimized pmem
writes and collaboratively works with other architectural mechanisms, such as cache replacement (LRU) and
inclusion (both inclusive and non-inclusive).

4.1 Hercules’ Hardware Components

Hercules uses components distributed in CPU cache,MC, and pmem to jointly control the procedure of transactions
and manage the versions of data for each transaction. Figure 3a captures the main components of Hercules.
TransTag. A transaction of Hercules is a contiguous series of data operations covering one or multiple

cache lines. In order to manage a transaction’s data, Hercules adds TransTags per cache beside normal tags. A
TransTag has WayNo, TxID, and TxState. TransTags in a cache set are shared among the set and a TransTag can
be dynamically associated with any cache line. Once a transaction commits, the association between involved

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 9

L1D Cache
L2 Cache

L3 Cache
Memory Bus

User Available AreaLog Zone

Persistent
Boundary

Registers GlobalTxID PerCoreTxID PerCoreTxLen

L1I Cache

WPQ extra WPQ (eWPQ)

Pmem

Core

Cache
Hierarchy

Memory Controller

Trans
Tags

(a) An Overview of Hercules’ Components

eWPQ Entries

User Available

Area

Log

Zone

Transaction Profiles Log Entries

Metadata Data

TxState TxID Home Address

TxState
TxID

WayNo

……
Migration

Emergency
Use Area

Log Entry

LogTail

eWPQ
Extension

Entry

LogHead
TxState TxID Log Entry AddressHome Address

eWPQ Validity Bitmap

3 4Crash FlushDump Entries

Cache Set 0

1
Cache Way 0Orig. Tag (Home Addr.)TransTag

2
3

Cache Set � 1
Cache Way 0Orig. Tag (Home Addr.)TransTag

2
3

2

TxID 0 TxID 1 TxID 2
TxLen 0 TxLen 1 TxLen 2

1

65

CPU

Cache

eWPQ

Pmem

Memory

Controller

… …

(b) Detailed Data-paths and Operations of Hercules

Fig. 3. An Illustration of Hercules’ Components and Operations

TransTags and cache lines is terminated by resetting the TxStates in the TransTag to be ‘0’s. The WayNo in
each TransTag is used to associate which cache line in the cache set Hercules is using for a transaction, which
is identiied with a unique 21-bit TxID. The reason why 21 bits are used for TxID is twofold. Firstly, Hercules
demands extra costs such as energy, transistors, and wires to enable the atomic durability. More than 21 bits per
TxID may further increase such costs and entail more challenges to achieve systematic eiciency and reliability
(see Sections 5.4). Secondly, 21 bits support up to 221 (≥2 million) transactions, which can satisfy the needs of
typical applications at runtime.

The TxState in one bit shows if the transaction is committed or not. We call a cache line being occupied by an
uncommitted transaction transactional cache line, of which the TxState is ‘1’. Otherwise, it is non-transactional
without a TransTag or with TxState being ‘0’. In short, we conigure a logical part of a cache set by illing WayNos
for the use of Hercules, without ixing some cache lines for transactions. This brings in spatial eiciency and
lexibility. Given a small amount of transactional data, non-transactional data can freely take cache lines with
TxStates unset. Also, non-transactional and transactional data can be placed without swaps. For the illustrative
example in Figure 3b, half cache lines of a four-way set (WayNo in two bits) are usable with two TransTags that
cost 2 × (21 + 2 + 1) = 48 bits per set.
Hercules manages and uses TransTags in a similar fashion of the directory used to track cache lines for

coherence [74ś78]. It places TransTags alongside L1D and L2 caches in each core and has a bunch of them for
the shared LLC. This organization accelerates illing and changing ields in them. The ratio of TransTags per

ACM Trans. Embedd. Comput. Syst.

10 • Ye et al.

cache set is deined as the maximum percentage of installed TransTags over all cache lines (ways) in the set

(
Number of TransTags installed in a set

Number of ways existing in a set
× 100%). Note that a transactional cache line can be used with TxState

being ‘1’, so the ratio of TransTags addresses an upper bound of cache lines that can be simultaneously employed
by Hercules for transactional data in a cache set. If the number of cache lines associated with TransTags in a set
reaches such an upper bound, i.e., with all TransTags occupied with TxState being ‘1’, while Hercules needs to
allocate for new transactional data, cache replacement would happen to a transactional cache line in the set with
regard to a replacement policy among transactional ones [79ś83]. As suggested by Figure 2d, we shall consider a
higher TransTags ratio for more usable space to caches that are closer to CPU, as they serve more transactional
requests. The ratio of TransTags is thus practically decided by a cache’s proximity to CPU. In practice, we allot
TransTags to all cache lines of L1D cache. The ratio can be half or a quarter for L2 and L3 caches. We consider
this ratio setting in implementation for two reasons. Firstly, the L1 cache is a crucial component that plays a
signiicant role in securing spatial and temporal locality, as it takes the most access requests raised by CPU. A
higher TransTag ratio for caches that are closer to CPU cores thus backs Hercules’s eiciency of transaction
processing. Secondly, cache lines evicted to L2 and LLC evidently have a lower likelihood of reuse (otherwise
they would stay in L1 cache) [84, 85]. The need of maintaining a high ratio of TransTags for them lacks necessity
and cost-eiciency. In other words, reducing the TransTags ratios in lower-level caches helps to save on-chip
space, simplify circuit design, and decrease spatial cost for TransTags. We have a quantitative discussion on the
TransTag ratio in Section 5.2.

Registers. Hercules adds a register GlobalTxID that is monotonically increasing, shared by all cores to
compose the next transaction ID. Hercules installs PerCoreTxID and PerCoreTxLen to each CPU core, holding
the current running transaction’s ID and length (number of transactional cache lines), respectively. These two are
critical for the context switch between threads and stay dormant for threads doing non-transactional operations.
A register has 64 bits and Hercules uses the lower bits only for extension. They are kept volatile, not saved in
pmem on a crash (see Section 4.3).

eWPQ. Cache lines are evicted over time. Hercules regularly writes back non-transactional ones but handles
transactional ones speciically in order not to harm in-pmem original copies. It adds two registers and an extended
WPQ (eWPQ) along WPQ in the MC. LogHead records the address of next available log entry in the in-pmem
log zone while LogTail points to the last valid log entry (see Section 4.5). On evicting a transactional cache
line, the MC allocates a log entry to put data of the cache line by atomically fetching and increasing LogHead

by one, which is not time-consuming. Hercules retains that cache line’s metadata in an eWPQ entry, including
TxID, TxState, and and the mapping from home address to log entry’s address. The eWPQ structure comprises
a validity map and 512 entries by default. The validity map is used to eiciently allocate and deallocate eWPQ
entries. Searching among eWPQ entries follows the mature addressing manner used for store bufer (SB), line ill
bufer (LFB), and WPQ that are widely employed in existing architectures [18, 86, 87].
Log zone. Figure 3b shows four areas of in-pmem log zone. The irst area (transaction proiles) is an array

of transaction lengths (TxLens) indexed by TxIDs. Hercules keeps the runtime length of a transaction in the
corresponding thread’s context while it only allows two legal values for the in-pmem TxLen, i.e., an initial zero
and a non-zero eventual length. It uses the atomic change of TxLen to be non-zero to mark the commit of a
transaction (see Sections 4.2 and 4.3). Using a transaction’s TxID to index and ind the transaction’s TxLen is fast
and brings about lock-free parallel loads/stores for concurrent transactions. We set a TxLen in 4B, so a transaction
can cover up to 232 (≥4 billion) cache lines.
In the second area, a log entry keeps a transactional cache line evicted from LLC with its data and metadata,

including the home address and TxState. The third area of eWPQ extension is used to store evicted eWPQ
entries in case that there are overwhelming evicted transactional cache lines, which, however, rarely happen in
accordance with our tests on practical workloads (see Section 5.2 for more detail). The next area of emergency

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 11

use is used upon an unexpected crash. We show a contiguous log zone in Figure 3b while it can be partitioned to
support concurrent accesses with distributed MCs [15].

4.2 Hercules’ Transaction

Primitives. Like prior works [14, 20, 29, 33, 36, 37], Hercules has three primitives for programmers to proceed a
transaction, i.e., tx_start, tx_commit, and tx_abort to respectively start, commit, and abort a transaction in
applications. Listing 1 shows main steps that Hercules composes for these primitives.
Let us irst illustrate how Hercules proceeds a transaction in an optimistic situation, i.e., 1) the transaction

manages to commit, 2) all cache lines of the transaction stay in CPU cache until the commit, i.e., with no cache
line evicted in the entire course of transaction, 3) Hercules can ind a cache line with TransTag available whenever
needed, and 4) no crash occurs.

1 switch (primitive) {

2 primitive: tx_start

3 Initialize TxLen to 0.

4 Initialize PerCoreTxLen to 0.

5 Initialize PerCoreTxID with the value of GlobalTxID.

6 Atomically increase GlobalTxID.

7 primitive: tx_commit

8 Store PerCoreTxLen to TxLen in pmem atomically.

9 Reset the TxState for transactional lines and eWPQ entries of the corresponding

transaction.

10 primitive: tx_abort

11 Invalidate all transactional lines of the transaction.

12 Invalidate transaction 's eWPQ entries and recycle the corresponding log entries.

13 Set all corresponding transactional lines ' TxState to 0.

14 }

Listing 1. Pseudocode of Handling Transactional Primitives

Optimistic procedure. On a tx_start, Hercules atomically fetches a TxID from the GlobalTxID and in-
crements the register by one for subsequent transactions. Hercules inds its entry with TxID in the array of
transaction proiles and initialize the TxLen to be zero (1 in Figure 3b). Until tx_commit is encountered, Hercules
manages and processes cache lines for data that programmers put in the transaction. It adopts the write-allocate
caching policy. Modifying data causes a cache miss if the data is not in CPU cache and Hercules allocates a cache
line with TransTag before loading the cache line from pmem. It then ills TxID, WayNo, and data and sets the
TxState as ‘1’. If data already stays in a clean cache line, Hercules obtains and conigures a TransTag. Given a
dirty cache line which might be originally non-transactional or belong to a committed transactions, Hercules
sends that line to the next level in the memory hierarchy, e.g., L1D to L2, before getting a TransTag, in order not
to taint the latest update (see ‘Write-allocate at L1’ event shown at Line 2 in Listing 2). When the transactional
cache line is evicted to the lower level, Hercules irst sends the older dirty non-transactional version to the
next lower-level cache or pmem in an asynchronous manner, without any considerable stall incurred to access
latency [64, 88]. In case of a crash, the eADR lushes cache lines in the reverse order of, say, L3, L2, and L1,
since the latest updated data stays in higher-level caches that are closer to CPU cores. As a result, the dirty
non-transactional cache lines in the lower level would be irstly persisted to their home addresses. The upper-level
transactional cache line, if committed, reills the home address; if not, Hercules writes it to the area of emergency

ACM Trans. Embedd. Comput. Syst.

12 • Ye et al.

1 switch (event) {

2 event: Write-allocate at L1

3 if (The line is non-transactional line) {

4 Atomically increase PerCoreTxLen.

5 if (Line 's dirty bit is 1) {

6 Send a copy of the cache line to the next level.

7 }

8 }

9 Set the transaction information in TransTag.

10 Write the data.

11 event: Write victim at L2 or L3

12 if (No space to place data) {

13 Process replacement event at L2 or L3.

14 }

15 if (Line 's TxState is 0 and dirty bit is 1) {

16 Send a copy of the cache line to the next level.

17 }

18 Set the transaction information in TransTag.

19 Write the data.

20 event: Write victim to pmem

21 if (Victim 's TxState is 1) {

22 if (eWPQ is full) {

23 Process replacement event at eWPQ.

24 }

25 Find an entry in eWPQ.

26 Increase register LogHead in MC and allocate an entry in log zone.

27 Write the victim to log zone.

28 Write transaction information in eWPQ.

29 } else {

30 Write the victim to its home address.

31 }

32 }

Listing 2. Pseudocode of Handling Write Request

use (to be presented). This rules out any inconsistency and uses lower-level caches for staging to further reduce
pmem writes.

Hercules follows generic rules in programming transactions. It disallows nested or overlapped transactions in
one thread, so at most one transaction is ongoing within a thread. Following previous works [14, 20, 32, 33, 37],
programmers may consider concurrency control mechanisms like locks or semaphores between transactions in
multi-threading programs.
When a thread enters a transaction for the irst time, the transaction’s TxID and length are used to ill

PerCoreTxID and PerCoreTxLen of the running CPU core, respectively. PerCoreTxLen is incremented by one
every time Hercules is going to launch a transactional update on an uncovered cache line. If a context switch
occurs, the values of PerCoreTxID and PerCoreTxLen are saved as part of the thread’s context for an afterward
execution. On committing a transaction, Hercules atomically sets the in-pmem TxLen with PerCoreTxLen and
resets the TxState to be ‘0’ for each transactional cache line to make it visible to other threads.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 13

The foregoing procedure shows that Hercules eiciently handles a transaction and commits on-chip. The eADR
guarantees committed cache lines would be lushed to their home addresses in case of a crash. Next we present
how Hercules handles conditions not covered in the optimistic circumstance.

Premature lush. The eADR enables Hercules to write back data on cache replacements rather than explicit
cache line lushes, so updates to a cache line are coalesced and pmem bandwidths are saved. Hercules handles
the write-back of a non-transactional cache line with the MC’s WPQ in the ordinary way. For an evicted cache
line recorded in a TransTag, if TxState is ‘0’, i.e., being non-transactional, the MC writes back the cache line to
the home address. If TxState is ‘1’, Hercules initiates a premature lush with the MC’s eWPQ (2 in Figure 3b). As
shown in Figure 3b, the eWPQ is made of eWPQ entries and an eWPQ validity bitmap to track the validity status
of each eWPQ entry. The MC inds a free eWPQ entry for the evicted transactional cache line and allocates a log
entry by atomically fetching and increasing the LogHead. The MC copies TxID, TxState, home address, and log
entry’s address to the eWPQ entry and asynchronously writes back the transactional cache line in the log entry
(3 in Figure 3b).

Hercules employs the eWPQ both for logging uncommitted data and loading proper data. When a thread
resumes execution, it may use a cache line that has been prematurely lushed. The cache line may be from any
transaction that is already committed or this resumed transaction. Hercules references cache lines regarding
their home addresses. On a load request, the MC checks if the target address matches any eWPQ entry and
simultaneously tests the TxState. Given a match and ‘1’ TxState, if the TxID in this TransTag is the same as
ongoing TxID upon comparison, Hercules gets a potential hit. A match with ‘0’ TxState is also likely a hit,
and no match results in a miss. If an eWPQ entry’s TxState is ‘0’, Hercules should have committed the entry’s
corresponding cache line of-chip while the cache line may still stay in the log zone and wait for a migration.
Hercules employs a background thread to migrate such committed-of-chip cache lines to their home addresses.
We would present the details of commit of-chip and migration later.

Regardless of a hit or miss, once receiving a request, the MC starts loading the cache line from the home
address. A hit at the eWPQ fetches the corresponding log entry and halts the load from home address. MC checks
the full address stored in the log entry and forwards it to the CPU cache in case of a true match. When CPU cache
receives the log entry, MC nulliies the matching eWPQ entry and validity bit in the bitmap. A miss continues the
load of cache line from home address. Hercules rules out the possibility of CPU starts using obsolete data loaded
from home address when the MC gets a hit at the eWPQ. The reason is that eWPQ stays in the integrated MC
which is much closer to CPU cores with much shorter access latency than pmem sitting on the memory bus. In a
very rare event that the eWPQ becomes full, Hercules needs to perform a search among the eWPQ extension. It
waits for the completion of search such that CPU would not use any obsolete data loaded from pmem. Note that
loading data simultaneously from microarchitectural bufers (e.g., store bufer or line ill bufer) and memory
hierarchy (cache or main memory) is a classic optimization tactic. In fact, there have been mature architectural
and microarchitectural techniques for speculation and prefetch upon loading data [89ś92], which Hercules can
make use of. Listing 3 shows Hercules’s procedure of data loading from pmem. In addition, an access from an
ongoing transaction may happen to an eWPQ entry with mismatched TxID and ‘1’ TxState. Hercules aborts that
transaction with an exception.
The other reason for employing the eWPQ is to commit and migrate cache lines that have been prematurely

lushed. A transaction may commit without reusing all or part of transactional cache lines that have been evicted
to pmem. Hercules exploits the eWPQ to deal with them. There are two ways to deal with such cache lines. One
is to load them into CPU cache for committing on-chip and store them to home addresses by cache replacements.
The other one is to commit them of-chip by resetting the TxStates in corresponding eWPQ entries and migrating
them from log entries to home addresses via non-temporal stores. We choose the second way to reduce cache
pollution. For eiciency, we periodically scan eWPQ entries for data migrations. The period is conigurable, set to
be every three million instructions in our tests. A completion of migrating a log entry clears the validity bit for

ACM Trans. Embedd. Comput. Syst.

14 • Ye et al.

1 switch (event) {

2 event: Read hit at private L1

3 Load finishes.

4 event: Read hit at private L2 or L3

5 if (The line is transactional cache line) {

6 Load its TransTag exclusively to L1.

7 }

8 Load cache line to L1.

9 event: Read hit at the other core 's private cache

10 if (The line is transactional cache line) {

11 Process event tx_abort.

12 } else {

13 Load cache line.

14 }

15 event: All cache miss , load data from pmem

16 if (eWPQ is full) {

17 Search eWPQ and eWPQ extension area.

18 if (eWPQ hit) {

19 Load data from log zone.

20 } else {

21 Load data from home address.

22 }

23 } else {

24 Start eWPQ searching and home address loading parallelly.

25 if (eWPQ hit) {

26 Stop home address loading.

27 Load data from log zone.

28 } else {

29 Load data from home address.

30 }

31 }

32 event: No space to place data in L1

33 Process replacement event at L1.

34 }

Listing 3. Pseudocode of Handling Read Request

the eWPQ entry (4 in Figure 3b). A load request that happens before the reset of validity bit still fetches data
from the log entry.

Previous works have justiied the eicacy and eiciency of using a part of address for cache management [79ś
82]. We accordingly devise a compact eWPQ entry that holds one bit of TxState and three ields of 63 bits evenly
partitioned for TxID, home address, and log entry’s address. Our evaluation shows that transactions of typical
applications are empirically small and generally take few to dozens of cache lines (see Section 5.2), so a home
address and a TxID in overall 42 bits are suicient for indexing. If duplicate matches occur, an eWPQ entry leads
to a log entry that holds the full home address to rule out ambiguity. We manage the eWPQ like a fully associative
cache and set a default size of 4KB for 512 entries, which are ample to serve ordinary workloads found in typical
applications (see Section 5.2). We believe a larger eWPQ is practically viable [15, 16]. Yet we take into account the
very low likelihood of a full eWPQ, wherein Hercules evicts the least-recently-used (LRU) entries to an in-pmem

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 15

eWPQ extension area that is ten times larger than the eWPQ (5 in Figure 3b). If a request misses in the eWPQ,
Hercules checks the eWPQ extension area with a target home address to properly fetch the corresponding log
entry.

Flush on a power-of. When a power-of occurs, Hercules lushes WPQ, LogHead, LogTail, eWPQ, and then
all cache lines to pmem. Hercules writes non-transactional cache lines to home addresses. In case of a crash, it
dumps transactional ones to the area of emergency use in the log zone with home addresses and TransTags (6 in
Figure 3b). These metadata and data are useful for recovery (see Section 4.3).
Cache replacement. Transactional and non-transactional cache lines lexibly share a cache set. In general,

Hercules considers an efective algorithm [79ś83] to select a victim for eviction, but entitles a higher priority to
transactional ones for staying in the cache hierarchy, because this will reduce the likelihood of premature lushes
that lead to pmem writes and weaken the endurance of pmem. Yet Hercules has diferential tactics at diferent
levels of cache hierarchy.

For L1 Cache, we follow standard cache replacement for Hercules to gain both spatial and temporal locality. In
particular, Hercules assigns identical priority to transactional and non-
transactional cache lines in a cache set. Non-transactional cache line can replace and evict a transactional one at L1
cache with a mature replacement algorithm based on, say, frequency, recency, and/or reuse distance [79ś83]. For
L2/L3 caches, as mentioned, Hercules gives higher priority to transactional cache lines for staying in each cache
set. In other words, non-transactional cache lines are more preferred to be replaced. The reason why Hercules does
so is twofold. Firstly, we ind that many cache lines (blocks) reach LLC with extremely low possibility of reuse,
i.e., dead blocks. This has been justiied by prior works as well [84, 85, 93]. The eviction of dead non-transactional
cache lines helps to prevent transactional cache lines from being prematurely lushed to in-pmem log. Secondly,
the replacement strategy in Hercules is similar to that of Intel Cache Allocation Technology (CAT) [94, 95], which
enables a certain amount of cache lines (ways) in a cache set to be reserved for the use of speciic applications. We
believe that users who utilize Hercules to conduct transactions are aiming for higher throughput, lower service
latency, and fewer pmem writes. Therefore, prioritizing and retaining transactional cache lines is rational and
useful. Listing 4 presents the policy of cache replacement for Hercules.

1 switch (event) {

2 event: Replacement at L1

3 Find victim through normal LRU.

4 event: Replacement at L2 or L3

5 if (Reach TransTag ratio limit) {

6 Replace a transactional victim through LRU.

7 } else {

8 Replace a non-transactinal victim through LRU.

9 }

10 event: Replacement at eWPQ

11 Find an eWPQ victim through LRU.

12 }

Listing 4. Pseudocode of Handling Replacement Request

Transaction abortion. A transaction may abort due to various events like exception, fault, or running out of
memory. For example, when an odd program continually insists on demanding overwhelming pmem space, it
is possible that Hercules consumes up all pmem space due to the limitations imposed by the OS and physical
pmem device. Hercules aborts the transaction and terminates the program. In implementation, Hercules could
set a threshold (e.g., 80% of overall pmem capacity) to earlier detect such anomalous or malicious behaviors.

ACM Trans. Embedd. Comput. Syst.

16 • Ye et al.

Hercules also aborts a transaction if a transactional cache line is to be fetched from another core, through a
comparison against TxID and TxState in the TransTag. Such a mechanism is similar to Intel’s RTM in TSX [66].
On an abortion, data recorded in the TransTags and eWPQ entries with TxIDs matched and TxStates being ‘1’s
are invalidated and discarded, incurring no harm to original data.

4.3 The Crash Recoverability of Hercules

Hercules puts a speciic lag in the log zone to mark a normal shutdown or not. The lag is not set if any
transactional cache line is saved to the area of emergency use on power-of. Regarding an unset lag, Hercules
recovers at the transaction level in order to support applications recovering with semantics. As modifying
TxStates of multiple cache lines cannot be atomic, Hercules atomically sets the TxLen to commit a transaction.
In recovery, it fetches eWPQ, LogHead, and LogTail into the MC and scans transaction proiles.

Hercules discards transactions with zero TxLens. As to a committed one, Hercules scans the area of emergency
use to ind out cache lines with TxIDs matched and TxStates being ‘1’s. Hercules moves them to their home
addresses. In addition, some cache lines of the transaction might have been prematurely lushed before the
commit, being tracked by the eWPQ, but not migrated yet prior to the power-of. That explains why Hercules has
saved the entire eWPQ. If an entry with a matching TxID is valid in the eWPQ validity bitmap, Hercules migrates
the mapped log entry and then clears the corresponding validity bit. LogTail may be moved after the migration.
Once moving all such cache lines is completed, Hercules resets the transaction’s TxLen to be zero. This atomic
write rules out ambiguity if a crash takes place in an ongoing recovery. After resetting GlobalTxID and clearing
the eWPQ, Hercules is ready to recommence new transactions.

4.4 In-pmem Log Space Management

Garbage collection (GC) on log entries. Concurrent transactions commit at diferent time and take up
discontinuous log entries. Committed log entries become invalid, scattered across the log zone. Figure 4 shows
how Hercules cleans them up. LogHead and LogTail frame a window of log entries Hercules is using while the
eWPQ tracks all valid ones. When LogTail has not moved for a while, numerous invalid entries might accumulate
in the window. If Hercules monitors that the distance between LogTail and LogHead is greater than a threshold,
e.g., 220, it will initiate a GC (1 2 3 in Figure 4). Hercules fetches a chunk (e.g., 32) of successive log entries
starting at LogTail (1). It appends valid uncommitted ones to the locations pointed by LogHead and updates
corresponding eWPQ entries (2). Only after updating each eWPQ entry will Hercules move LogHead by one.
Then it slides LogTail over the chunk to the next valid entry (3). Hercules orderly performs these steps to
preclude any crash inconsistency. Note that the system may crash in a GC, particularly when a power outage has
happened after a movement, which results in a moved log entry existing both at LogHead and LogTail. Such a
log entry can be ignored as it belongs to an uncommitted transaction with TxLen being zero, without any loss of
Hercules’ crash recoverability.

Log extension. In a very low likelihood with normal workloads, excessive transactional data might occasion-
ally overill the entire CPU cache in dozens of megabytes or even lood the log zone. Hercules continues cache
placements and replacements to swap in and out data, respectively, to proceed transactions. We can conigure
a log zone in gigabytes or even larger. In case that such a large space is still to be used up, we extend the log
zone by using the end part of default log zone to store indirect indexes to the space in a new log zone allocated
on-demand elsewhere. This is like the strategy of indirect blocks used by ile systems to manage big iles [67, 96].
We also enhance the eWPQ with more entries and extend an eWPQ entry with one more bit to tell the MC if it
needs to do indirect references or not to ind actual data for a prematurely lushed cache line.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 17

Head

E
n

try
 A

In
v
a

lid

……

Tail

New Tail New Head

Move valid entries

Update
head

2
Update tail

E
n

try
 B

In
v
a

lid

E
n

try
 C

……

E
n

try
 D

In
v
a

lid

E
n

try
 E

E
n

try
 F

……

E
n

try
 B

*

3

1

E
n

try
 A

*

Log
Zone

Fig. 4. Garbage Collection on Log Entries

4.5 Discussion

4.5.1 The Interactions between Hercules and Cache Inclusion and Coherence Policies.

Cache Inclusion. Hercules is capable of working with inclusive and non-inclusive cache architectures
except for exclusive cache, as it is imperative to forward a modiied cache line to the subsequent level when a
transactional cache line encounters a dirty, previously non-transactional copy (see Section 4.2). This mechanism
aligns with the deinition of inclusive and non-inclusive multi-level caches but rules out the exclusivity of a
cache line. Note that, Hercules applies exclusion to each TransTag, which means that an evicted transactional
cache line, once reloaded into a higher-level cache, its TransTag as well as cache line will be removed from the
lower-level cache. The reason of doing so is twofold. Firstly, an exclusive housing of TransTags substantially
reduces the spatial cost of keeping duplicate cache lines with TransTags across cach levels. Secondly, it helps
to reduce microarchitectural actions. Let us illustrate with an example. Given a transactional cache line loaded
to a higher level, e.g., L2→L1D, for read purpose, an inclusive cache hierarchy has it at both levels holding the
latest version. When the transaction commits, Hercules needs to reset TxStates twice for the same cache line
across levels. Given a transactional cache line loaded to a higher level for updating, cache coherence protocols
like MESI or MESIF help an inclusive cache hierarchy to invalidate the older version at L2 upon a modiication,
but that costs a microarchitecture-level coherence state transition (� ⇒ �). Hercules’s exclusion circumvents
these inessential state resets or transitions.
Cache Coherence. Hercules collaboratively interacts with cache coherence protocols like MESI or MOESI.

TransTags and the directory for cache coherence [74ś76, 78] share similarities in use and we can integrate them to
jointly track cache lines. Hercules does not afect the sharing of non-transactional cache lines. As to transactional
ones, the concurrency control of applications and architectural TxIDs in TransTags prevent other cores from
modifying or fetching uncommitted versions of them. Once a cache line is committed, the cache coherence
mechanism helps to broadcast the update information to other locations in remote cores’ private caches or shared
levels in the memory hierarchy by sending state transition messages. In all, Hercules inlicts no harm to cache
coherence and leverages state transitions to keep cache lines that have been involved in transactions up-to-date
for availability.

4.5.2 The Granularity, State Reset, and Isolation Schemes of Hercules’s Transactions.

Transaction Granularity. A cache line is the unit transferred between CPU cache and memory, so Hercules
chooses it as the unit for transactional operations. Using programmer-deined variables is more ine-grained but
must incur higher cost and complexity.
State Reset. Because cache lines of a transaction are likely to be scattered in a multi-level cache/memory

hierarchy, all prior designs commit them with concrete eforts for atomic durability [20, 29, 33, 35ś37]. For

ACM Trans. Embedd. Comput. Syst.

18 • Ye et al.

example, TC forcefully persists data in the side-path cache to pmem [29] while Kiln lushes down cache lines
from upper-level volatile caches [20]. HOOP migrates all data staying in its out-of-place (OOP) bufer installed in
the MC to its in-pmem OOP region [37]. FWB has to wait for the drain of current log updates [36]. Comparatively,
Hercules’ commit is much more eicient and lightweight, as it just sets TxLen and resets TxStates for cache
lines that a transaction covers. Since TransTags form a structure similar to the directory for cache coherence used
to track and transit states for cache lines, Hercules employs an auxiliary circuit to select ones with a TxID and
clear their TxStates. For data that might be prematurely lushed before the commit, Hercules uses the auxiliary
circuit to notify the integrated MC and wait for the completion of resetting TxStates in relevant eWPQ entries.
Generally these resets can be swiftly done like state transitions for cache coherence. We preset a uniform state
reset latency in which Hercules is supposed to inish, with a discussion presented in Section 5.3.
Isolation. Not all pmem systems supporting transactions provide thread-atomicity (isolation) [97]. As men-

tioned, like using prior hardware designs [14, 20, 32, 33, 37, 64], with Hercules programmers are responsible
for the isolations between threads through concurrency control methods (e.g., locks or semaphores). Hercules
also ofers an additional safeguard by aborting transactions if a transactional cache line is to be fetched from
another core. In addition, if false sharing happens to a cache line belonging to an uncommitted transaction,
Hercules would abort the transaction to retain transactional granularity of cache line at the architecture level. As
a result, developers using Hercules for atomic durability need to attend the placement and separation of data in
order to rule out unexpected aborts and keep smooth execution. In particular, developers shall be responsible
for handling recurrent aborts appropriately to guarantee a forward progress with regard to their awareness of
semantic conlicts and contentions on shared transactional data [8, 66]. Hercules helps them to catch each abort
such that they can implement a mechanism with retry/ignore to properly attain their targets.

4.5.3 The Support of System Sotware for Hercules.

Currently, the extensive utilization of pmem is still being explored. Adjustments to the operating system (OS)
are required not only for Hercules but also for state-of-the-art hardware designs discussed in the paper. For
example, the compiler and OS should be augmented to recognize and compile primitives (e.g., tx_start and
tx_commit) introduced by Hercules-like hardware designs. During the recovery process, the OS needs to perform
address mapping before Hercules-like hardware designs can access and manage the log area to recover data. More
than that, when the log zone is used up, Hercules would extend it with the assistance of OS for space allocation.

5 EVALUATION

We implement Hercules with gem5 in the syscall emulation (SE) mode and ‘classic caches’ model. Table 2 captures
the settings of CPU with three-level inclusive caches that align with prior works [14, 20, 29, 34, 37]. We conigure
that the pmem embraces a longer read latency than write latency according to recent studies on Intel Optane DC
memory [59, 61]. An SRAM or DRAM bufer built in pmem eiciently absorbs write requests while a read request
is likely to directly load data from slower NVM. We conigure an in-pmem log zone in 256MB. We set default
TransTag ratios to be 100%/50%/25% for L1D/L2/L3 caches. As L1D cache impacts the most on performance in
CPU cache hierarchy, in order to make a fair and strict evaluation on Hercules, we reduce L1D size from 32KB to
30KB for Hercules by evenly removing some ways in cache sets within gem5 to counterbalance the spatial cost of
it. We further estimate the spatial and energy costs for Hercules in Section 5.4. For a cache line access involving a
TransTag, we increase the tag latency by 30% as extra time cost. We set the state reset latency in ten clock cycles
by default with a discussion in Section 5.3. We also set ten clock cycles for searching the eWPQ to check if a
cache line has been prematurely lushed.

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 19

Table 2. System Configuration

Component Setting Remarks

Processor
3GHz, out-of-order, 8 cores, ROB size=192 [75, 98, 99],

Generic

issue/write-back/commit width=8, MESI protocol
L1I Cache 32KB, 4-way, 2-cycle latency
L1D Cache 32KB, 4-way, 2-cycle latency
L2 Cache 256KB, 8-way, 8-cycle latency
LLC 16MB, 16-way, 30-cycle latency

Pmem
Read/write latency=150ns/100ns [26, 61], capacity=512GB,
single channel, read/write bufer size=64

Smaller L1D 30KB, 4-way, 2/2 cycles read/write latencies Hercules

Side-path TC 4KB, FIFO, 40/50 cycles read/write latencies TC [29]

STT-RAM LLC 64MB, 16-way, 40/50 cycles read/write latencies Kiln [20]

0.0

0.2

0.4

0.6

0.8

1.0

Array Swap Binary Heap B+-Tree Hash Table Linked List RB-Tree SDG GMean

T
h

ro
u

g
h

p
u

t

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

Fig. 5. A Comparison on Throughput of Micro-benchmarks (Normalized against OPT’s)

Table 3 lists micro- and macro-benchmarks we use. We consider ones that have been widely used in prior
works [16, 20, 33, 35ś37]. These prevalent benchmarks are not only used for evaluating architectural supports for
atomic durability but also for testing ile systems and pmem libraries [57, 67, 100, 101]. Our evaluationmethodology
strictly follows prior works to conigure them. We run one million transactions with each benchmark.

Table 3. Benchmarks Used in Evaluation

Category Benchmark Remarks

Array Swap Swaps two elements in an array
Binary Heap Inserts/deletes entries in a binary heap

Micro- B+-Tree Inserts/deletes KV pairs in a B+-Tree
benchmarks Hash Table Inserts/deletes KV pairs in a hash table

Linked List Inserts/deletes entries in a linked list
RB-Tree Inserts/deletes KV pairs in a RB-Tree
SDG Inserts/deletes edges in a scalable large graph

Macro- TPC-C OLTP workload (New-order transactions)
benchmarks YCSB 80%/20% of write/read

ACM Trans. Embedd. Comput. Syst.

20 • Ye et al.

1000 KB

10 MB

100 MB

1 GB

10 GB

100 GB

Array Swap Binary Heap B+Tree Hash Table Linked List RB-Tree SDG GMean

P
m

e
m

 W
ri

te
s

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

Fig. 6. A Comparison on Pmem Writes of Micro-benchmarks (Y Axis in Logarithmic Scale)

We compare Hercules to state-of-the-art hardware designs, including Kiln, TC, HOOP, Proteus, FWB, and PiCL.
They represent diferent approaches to guarantee atomic durability for in-pmem data (see Section 2.2). As PiCL is
with periodical checkpointing, we discuss it separately at the end of Section 5.1. In Table 2, the STT-RAM LLC and
side-path cache are for Kiln and TC, respectively, both conigured in line with STT-RAM’s characteristics [20, 102].
Software logging with eADR (SWL_eADR) is also compared while software logging with cache line lushes is
omitted for brevity. By using memory fence instructions, SWL_eADR persists original data in an in-pmem log
prior to updating data in place (undo log). It is necessary to insert memory fence instructions to guarantee the
ordering between logging actions and in-place updating, since without them, a reordered store sequence of, say,
logging after in-place updating may cause the logged copy to lose trustworthiness and recoverability [9]. In
order to maintain the atomic durability of data structures, it is crucial to log any critical changes made to the
structure. Take B+-Tree and RB-Tree for example. An insertion to B+-Tree and RB-Tree may incur node split and
self-balancing, respectively. All such structural changes should be logged and tracked for recovery, which we
have taken into full consideration in implementing SWL_eADR as well as other state-of-the-art designs.

5.1 Micro-benchmark

Throughput.We normalize the throughputs (txn/�� , transactions per microsecond) of all designs against that
of OPT, which demonstrates the optimal performance without the involvement of logging, cache line lush,
memory fence, or anything else for the guarantee of atomic durability. As shown in Figure 5, we include the
geometric mean of throughputs over benchmarks for a high-level overview [14, 20, 29, 34, 37]. Hercules achieves
comparable performance to OPT. It signiicantly outperforms prior works with on average 89.2%, 29.2%, 15.2%,
51.3%, 48.0%, and 57.0% higher throughput than SWL_eADR, Kiln, TC, HOOP, Proteus, and FWB, respectively.
Hercules leverages CPU cache hierarchy to absorb and coalesce transactional updates and mainly commits them
on-chip. It gains superior eicacy in handling continuous transactions with such a spacious transient persistence
domain.

The throughputs of Kiln and TC are limited by two factors. One is due to STT-RAM’s longer write/read latencies.
The other one is that Kiln and TC have enforced limits in using persistent caches, such as using a small side-path
cache [29] or taking a fall-back path to write pmem for backup in case of an almost full request queue [20]. Other
hardware designs, such as HOOP, Proteus, and FWB, exploit hardware components like undo/redo log bufers,
WPQ, or pmem to compose and persist backup copies. Continuous transactions keep limited log bufers or WPQ
entries being fully occupied over time. They are hence inferior to Hercules that leverages the extensive CPU
cache hierarchy to absorb and process data.

Figure 5 exhibits diferent observations across benchmarks, as their transactions are with diferent semantics
and complexities. For example, two insertions with Linked List and RB-Tree difer a lot. Unlike prior designs

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 21

varying signiicantly across benchmarks, Hercules shows consistently superior performance. Its strong robustness
is mainly accredited to CPU cache it exploits. A multi-level cache hierarchy has been proved to be efectual for
various workloads over decades.

Pmem writes. To minimize pmem writes is another goal of Hercules. Figure 6 captures the quantity of
pmem writes caused in running transactions with micro-benchmarks (Y axis in the logarithmic scale). Hercules
signiicantly reduces pmem writes. On average, the data it writes is 29.8%, 37.4%, 5.3%, 1.4%, 1.5%, and 2.1% that
of other designs in the foregoing order, respectively. Write-backs of Hercules only happen upon normal cache
replacement or power-of, so it performs pmem writes in a passive and lazy way. SWL_eADR incurs double writes.
Kiln takes a fall-back path that forcefully sends cache lines to pmem with an overlowing request queue. TC
has a similar fall-back path to write pmem when its side-path cache is almost full. Also, whenever a transaction
commits, TC issues relevant stores to pmem. Other hardware designs explicitly write backup copies to pmem.
HOOP, for example, does address indirection at the MC and migrates data between pmem locations over time for
out-of-place updating. Proteus leverages the WPQ for bufering to reduce pmem writes, but the limited capacity
of WPQ impedes its eicacy. By using CPU cache in numerous megabytes to absorb and coalesce data updates,
Hercules efectively minimizes pmem writes.
Tail latencies. Without loss of generality, we record 99P/99.9P (99- and 99.9-percentile) tail latencies for

transactions and show them for three benchmarks in Figure 7a and 7b, respectively, with Y axes in the logarithmic
scales. These results further justify Hercules’ eicacy as it makes much shorter tail latencies with various
workloads. Take B+-Tree for example. Hercules’ 99.9P tail latency is 40.5% and 55.1% shorter than that of Kiln
and HOOP, respectively.

A comparison to the approach of checkpointing. PiCL checkpoints data periodically in pmem for recovery
without forming transactions [34, 45]. In Figure 8 we present the number of clock cycles and the quantity of
pmem writes Hercules and PiCL have done to complete all operations for each benchmark. PiCL’s checkpointing
is like undo-logging all data at the start of every epoch, which, albeit being simplistic, causes on average 78.3%
more time and 34.1× pmem writes than Hercules. Hercules only covers data programmers place in ine-grained
transactions and leverages CPU cache to log and bufer them. This is why Hercules costs both much less time
and dramatically fewer pmem writes than PiCL.

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

1E+0

1E+2

1E+4

B+-Tree Linked List RB-Tree

Ta
il

 L
a

te
n

cy
 (

C
yc

le
s)

(a) 99P Tail Latency

1E+0

1E+2

1E+4

B+-Tree Linked List RB-Tree

Ta
il

 L
a

te
n

cy
 (

C
yc

le
s)

(b) 99.9P Tail Latency

Fig. 7. A Comparison on the 99P and 99.9P Tail Latencies

ACM Trans. Embedd. Comput. Syst.

22 • Ye et al.

Table 4. A Summary of TxLens for benchmarks

Benchmark Array Swap Binary Heap B+-Tree Hash Table Linked List RB-Tree SDG
Min. TxLen 7 8 15 3 12 2 22

Max. TxLen 9 1,021 143 7 18 71 149

Avg. TxLen 8.0 11.6 34.4 6.2 12.5 50.6 33.8

5.2 Tests for Premature Flush and TransTag Ratios

We summarize TxLens on inishing all transactions for benchmarks in Table 4. Modern cache hierarchy has no
diiculty in putting few to dozens of cache lines. Hercules hence efectually suits ordinary workloads and almost

0

1×10 ^10

2×10 ^10

3×10 ^10

4×10 ^10

5×10 ^10

6×10 ^10

A
rr
ay

 S
w
ap

B
in

ar
y

H
ea

p
B
+-

Tr
ee

H
as

h
Ta

bl
e

Li
nk

ed
 L

is
t

R
B
-T

re
e

S
D
G

G
m

ea
n

Hercules PiCL

(a) CPU Clock Cycles

1000 KB

10 MB

100 MB

1 GB

10 GB

100 GB

1000 GB

A
rr
ay

 S
w
ap

B
in

ar
y

H
ea

p
B
+
-T
re
e

H
as

h
Ta

bl
e

Li
nk

ed
 L

is
t

R
B
-T

re
e

S
D
G

G
m

ea
n

Hercules PiCL

(b) Pmem Writes

Fig. 8. A Comparison between Hercules and PiCL

0.0

0.2

0.4

0.6

0.8

1.0

1k 10k 20k 30k 40k 50k 60k

T
h
ro

u
g
h
p
u
t

Unlimited eWPQ entries
Limited eWPQ entries

(a) Varying Transaction Sizes

0.0

0.4

0.8

1.2

1.6

2
5

%

5
0

%

7
5

%

1
0

0
%

2
5

%

5
0

%

7
5

%

1
0

0
%

L2 (L1/L3:
100%/25%)

L3 (L1/L2:
100%/50%)

T
h
ro

u
g
h
p
u
t

Ratio of TransTags

(b) Impact of TransTag Ratios

Fig. 9. The Throughputs with Artificial Huge Transactions

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 23

0.0

0.2

0.4

0.6

0.8

1.0

1k 10k 60k

T
h
ro
u
g
h
p
u
t

OPT Hercules Kiln TC

HOOP Proteus FWB

Fig. 10. A Comparison on Artificial Huge Transactions with the Scale-down Configuration

all transactions can be committed on-chip. Meanwhile, ordinary transactions in small sizes are hardly afected by
the change of TransTag ratios and seldom cause premature lushes or GC.
To thoroughly evaluate Hercules, we run unrealistic artiicial tests executed in a shrunk cache hierarchy.

We scale down L1D/L2/L3 caches by 8× to be 3840B/32KB/2MB and synthesize test cases in which a huge
transaction is composed of massive write-intensive operations and keeps doing with continuous caches lines in a
read-modify-write fashion. Such an access pattern showed spatial locality on cache lines being updated in the
huge transaction. We set the length of a transaction to be 1k, 10k, 20k to 60k (k: ×103) and run with unlimited and
512 eWPQ entries, respectively. Figure 9a shows the throughputs normalized against that with unlimited eWPQ.
For a huge transaction involving tens of thousands of cache lines, CPU cache and eWPQ would be saturated and
Hercules must use the in-pmem eWPQ extension. The impact of premature lushes grows up. For example, the
throughput with 512 eWPQ entries declines by 32.8% at the 60k case.
In order to further comprehensively evaluate the robustness of Hercules as well as state-of-the-art software

and hardware designs, we reduce the size of cache hierarchy and hardware resources used to support transactions
for Hercules and other designs by a scale-down of eight times. A shrunk cache hierarchy more impacts the
eiciency of designs that rely on caching to aggregate modiied data for transactions, such as Hercules, Kiln, and
TC. Figure 10 captures the results of throughput for all in running aforementioned artiicial huge transactions
with overwhelming data. Figure 10 clearly demonstrates that, even with the scale-down coniguration, Hercules
still outperforms other state-of-the-art designs with, for example, 13.3% and 51.8% greater throughput than that
of Proteus and TC, respectively.

We also run unrealistically huge transactions when varying TransTag ratios at L1D, L2, and L3. Without loss
of generality, we illustrate with the 30k test case upon changing TransTag ratios at L2 and L3. In Figure 9b, we
normalize the throughputs against that of default 100%/50%/25% ratios. There is an evident uptrend along an
increasing ratio at L3. A 2MB L3 cache has 32,768 cache lines. An increased ratio means more space to house the
working set of 30k case. Only 100% ratio at L3 manages to it all 30,000 cache lines of 30k and yields the highest
throughput without premature lush.

5.3 The Impacts of Factors on Hercules

State reset latency. We set the default state reset latency per transaction as ten clock cycles to toggle TxStates
of aggregated TransTags with auxiliary circuit. We can deploy circuits in diferent complexities to gain diferent

ACM Trans. Embedd. Comput. Syst.

24 • Ye et al.

latencies. Figure 11 shows the throughput (txn/�s) curves on running micro-benchmarks when we vary the
latency duration from the ideal (zero) to 90 cycles. With a longer latency, the throughputs of Linked list, Hash
Table, Array Swap, and Binary Heap decrease more severely than those of B+-Tree, RB-Tree, and SDG. The curves
in Figure 11 complement TxLens in Table 4. The throughput of a benchmark with smaller transactions is surely
more sensitive to the increase of state reset latency, since a smaller transaction itself takes less execution time.
Take RB-Tree and Linked List for comparison again. An insertion to RB-Tree is generally more complicated and
involves 50.6 transactional cache lines per transaction. Yet an insertion to Linked List deals with 12.5 cache lines
per transaction on average. As a result, increasing the state reset latency more afects lighter benchmarks like
Linked List.
WPQ size. We further test when varying the size of WPQ. Without loss of generality, we choose Linked

List and present throughputs of all designs in Figure 12. Hercules’ bottleneck is not on write-backs via the
WPQ to pmem, so its performance has no evident luctuations. This justiies the robustness of Hercules in
utilizing extensive CPU cache for atomic durability. A larger WPQ helps prior works like HOOP and Proteus
yield performance improvements. Proteus leverages the WPQ of MC for transactional operations while HOOP
depends on the MC to do address indirection and data movements. They hence beneit more from an increase of
WPQ entries.

0

0.2

70 90
State Reset Latency (Unit: clock cycles)

Array Swap Binary Heap B+-Tree Hash Table

Linked List RB-Tree SDG
0.8

0.6

0.4

T
h

ro
u

g
h

p
u

t
(t

xn
/μ
s)

Ideal 10 30 50

Fig. 11. The Impact of State Reset Latency

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

0.0

0.2

0.4

0.6

0.8

1.0

32 64 128

T
h

ro
u

g
h

p
u

t

Fig. 12. The Impact of WPQ Size on Linked List

0.0

0.2

0.4

0.6

0.8

1.0

50 100 200

T
h

ro
u

g
h

p
u

t

Fig. 13. The Impact of Pmem Latency (ns) on Linked List

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 25

Pmem latency. The default write latency of pmem is 100ns. We vary it to emulate diferent pmem products.
Figure 13 captures the throughputs of all designs again on Linked List with three write latencies. By keeping
all transactional data in CPU caches without incurring pmem writes, Hercules is unafected by varying pmem
latencies. Notably, the performances of prior works that rely on writing data to pmem for backup badly degrade.
In summary, leveraging the capacious transient persistence domain made of CPU caches enables Hercules with
high adaptability to various pmem products.

Table 5. Miss Rate of an Ordinary Thread that is Competing for Cache Lines

Structure B+-Tree RB-Tree

Contending with Transactional thread Ordinary thread Transactional thread Ordinary thread
L1 59.51% 57.88% 39.25% 38.89%

L2 80.27% 80.25% 71.29% 71.23%

L3 1.24% 1.24% 21.58% 21.60%

Cache contention. To demonstrate the impact of Hercules’s cache replacement strategy on performance for
ordinary threads, we conduct an experiment involving two threads competing for cache space. In particular, we
run an ordinary thread without transactions that is continuously operating with B+-Tree (resp. RB-Tree). In the
meantime, we engage the other contending thread, which is either an ordinary non-transactional thread doing
with another B+-Tree (resp. RB-Tree) or a transactional thread relying on Hercules for performing transactions
with the second B+-Tree (resp. RB-Tree), in running on the same core. Table 5 presents the cache miss rates for the
ordinary thread when it simultaneously executes with the other contending thread. A comparison between either
tree’s two columns clearly conveys that the replacement strategy of Hercules hardly afects the performance of
non-transactional ordinary thread.

Table 6. The Spatial Cost of Hercules

TransTags (Unit: KB) eWPQ (Unit: Bytes)

L1D L2 L3 Entries Validity Bitmap LogHead & LogTail

1.29 (per core) 6.25 (per core) 208 4,096 64 16

5.4 Recoverability, Energy and Spatial Costs of Hercules

Recovery. We tailor gem5’s checkpoint function to save all metadata and data into the log zone backed by iles
and emulate a crash by encountering a simulator magic instruction. Hercules manages to recover properly and
resume execution.
Spatial cost. Table 6 summarizes the overall spatial cost of Hercules such that removing 2KB at L1D per

core is sound to evaluate it. Similar to on-chip bufers used by prior works [18, 29, 34ś36, 38], TransTags incur
the main on-chip spatial cost for Hercules. Due to the space limitation, we brief an estimate with a 4-way L1D
cache in 30KB. As we use all L1D cache lines, a TransTag needs 22 bits (21-bit TxID and 1-bit TxState) without
WayNo. The original metadata per line, such as cache tag and state, takes at most 48 bits for a VIPT cache [98, 103].

TransTags thus cost 3.9% (
22

48 + 64 × 8
× 100%) more space. This also explains why we increase the tag latency by

30% on accessing a transactional cache line (
22

48 + 22
× 100% ≈ 31.4%). Similarly we estimate the proportions of

ACM Trans. Embedd. Comput. Syst.

26 • Ye et al.

0.0

0.2

0.4

0.6

0.8

1.0

TPC-C YCSB (64B) YCSB (256B) YCSB (1KB) YCSB (4KB) Gmean

T
h

ro
u

g
h

p
u

t

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

Fig. 14. A Comparison on Throughput of Macro-benchmarks with One Thread (Normalized against OPT’s)

0.0

0.2

0.4

0.6

0.8

1.0

TPC-C YCSB (64B) YCSB (256B) YCSB (1KB) YCSB (4KB) Gmean

T
h

ro
u

g
h

p
u

t

Hercules OPT SWL_eADR Kiln TC HOOP Proteus FWB

Fig. 15. A Comparison on Throughput of Macro-benchmarks with Four Threads (Normalized against OPT’s)

TransTags at L2 and L3 to be 2.2% and 1.2%, respectively. We also estimate the spatial cost in the integrated MC
for Hercules. The metadata for a transactional cache line in each eWPQ entry requires 64 bits of storage (1 bit for
TxState, 21 bits for TxID, 21 bits for home address, and the last 21 bits for the address of log entry). With 512
entries by default, the total size of eWPQ entries is 4KB. Additionally, Hercules needs 64B, 8B, and 8B for the
eWPQ Validity Bitmap, LogHead, and LogTail, respectively. In all, the spatial cost of Hercules is insigniicant.

Energy cost. If a crash occurs, besides the eADR’s ordinary lushes, Hercules persists the TransTag and home

address that are estimated as at most 10B (e.g., ≥
22 + 48

8
at L1D) for a transactional cache line. The energy costs

per store from L1D, L2, and L3 caches to pmem on a crash are respectively 11.839��/B, 11.228��/B, and 11.228��/B
[18, 104]. The base cost of lushing the entire cache hierarchy is thus 214.831�� for 8-core CPU. Regarding
3840/16384/65536 transactional cache lines at L1D/L2/L3 with eight cores, all of them are dirty and uncommitted
in the worst case. The cost to lush TransTags and home addresses for them is about 9.653�� . Hercules also
needs to identify transactional cache lines by comparing WayNo in each TransTag and all comparisons cost about
84.045�� with an up-to-date comparator taking 0.98� � per comparison [105]. Overall, Hercules maximally brings

about 4.49% (
9.653 + 84.045 × 10−6

214.831
× 100%) extra energy cost, which is practicable in upgrading the eADR. In

addition, a TxID in more bits may increase such extra cost to be beyond 5.0% or even greater, and also impose
further challenges on designing and producing chips with eiciency and reliability [99, 106ś108].

ACM Trans. Embedd. Comput. Syst.

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 27

0.00

4.00

8.00

12.00

16.00

TPC-C YCSB (64B) YCSB (256B) YCSB (1KB) YCSB (4KB) Gmean

T
h

ro
u

g
h

p
u

t
(N

o
rm

a
li

ze
d

a
g

a
in

st
 1

 t
h

re
a

d
)

1 thread 2 threads 4 threads 8 threads 16 threads

Fig. 16. Scalability Experiment with Varying Threads on Macro-benchmarks (Normalized against 1 thread’s)

5.5 Macro-benchmark

We utilize TPC-C and YCSB workloads from WHISPER [16, 35, 109] to evaluate Hercules for two purposes.
Firstly, we measure the performance and robustness of Hercules with more sophisticated workloads of realistic
applications. Secondly, we run with multi-threads to test the scalability of Hercules in serving concurrent
transactions. TPC-C’s New-order follows the de facto semantics. As to YCSB, we vary the value size for a
comprehensive test.
As shown in Figure 14, on dealing with more complicated transactions of macro-benchmarks, Hercules still

yields a higher throughput than SWL_eADR, Kiln, TC, HOOP, Proteus, and FWB by 39.2%, 20.5%, 19.0%, 31.5%,
41.1%, and 41.7% on average, respectively. Furthermore, with a larger value, the performance gap between Hercules
and prior designs generally becomes wider. The root cause is Hercules’ robust design. It leverages the suicient
CPU cache to take in transactions. The eADR renders a value almost persistent in CPU cache. A larger value does
not greatly increase the cost of persisting the value, especially on the critical path. Comparatively, the double
writes of logging again hinder SWL_eADR from achieving high performance. As to Kiln and TC, a larger value
imposes more burdens in using FIFO queues and side-path cache, respectively, and triggers more executions
through fall-back paths that severely afect their throughputs. For FWB and Proteus, larger transactions still make
immense data updates that continually run out of their log bufer and WPQ entries, respectively. As to HOOP,
larger values consume more pmem bandwidths and incur longer time for the MC to wait for the completion of
data migrations.
The results with running four threads in Figure 15 justify the scalability of Hercules, which produces 43.7%,

20.1%, 27.8%, 31.6%, 42.9%, and 43.7% higher throughput, respectively, than prior designs on average. A multi-level
private/shared cache hierarchy with the set-associativity management implies an innate scalability to support
multi-threading with multi-cores. Hercules gains scalability accordingly. Threads may share GlobalTxID register
at the start of a transaction and eWPQ outside of the critical path for prematurely lushed cache lines. Though,
getting a TxID can be swiftly done in an atomic operation while the probability of massive synchronizations
under a spacious cache hierarchy is low. For prior designs, the contention on resources between multi-threads is
much iercer. Take HOOP for illustration again. As it depends on the MC for out-of-place data updates, multiple
threads contend lushing data through the MC. This ofsets the efect of CPU cache for concurrency and makes
the MC a busy synchronization point being shared at runtime, thereby limiting HOOP’s scalability.

ACM Trans. Embedd. Comput. Syst.

28 • Ye et al.

We evaluate the scalability of Hercules through an experiment on macro-benchmarks running with varying
threads. The result presented in Figure 16 demonstrates that Hercules exhibits a well scalability throughout
handling both TPC-C and YCSB workloads. For example, the average throughput in geometric mean with 2 to 16
threads for Hercules is 1.9×, 3.8×, 6.8×, and 12.2×, respectively, that of one thread. We note that TPC-C and YCSB
with large values have complex operations and long code paths. This is likely to result in ierce contentions for
transactional cache lines and premature lushes via the eWPQ, as mentioned in Section 5.2. These indings suggest
that Hercules gains both eicacy and scalability in leveraging CPU cache hierarchy as well as multi-core CPU for
transactional support. Compared to state-of-the-art hardware designs that have been built on components in
much lower capacities, say, the WPQ used by Proteus or side-path cache of TC, Hercules makes signiicantly
higher scalability.

6 CONCLUSION

Researchers are revolutionizing computer architecture with promising features to facilitate the use of pmem.
Among them, the eADR radically changes the fact that CPU cache hierarchy has been practically volatile for
decades. In this paper, we propose Hercules, a systematic hardware design leveraging the transient persistence
domain made of CPU cache in scores of megabytes to enable the transaction-level atomic durability for in-
pmem data. Hercules has comprehensive control logics and data-paths installed in CPU cache, MC, and pmem.
It provides transactional primitives and protocols to deine and proceed transactions. Hercules well serves
typical applications. Experiments conirm that it signiicantly outperforms prior works with higher performance.
Hercules also substantially minimizes pmem writes with ample CPU cache bufering data.

ACKNOWLEDGEMENT

This work was jointly supported by National Key R&D Program of China No. 2022YFB4401700, Nature Science
Foundation of Shanghai under Grants No. 22ZR1442000 and 23ZR1442300, and ShanghaiTech Startup Funding.

REFERENCES

[1] SK Hynix. SK Hynix developed the world’s highest density 16GB NVDIMM. https://news.skhynix.com/sk-hynix-developed-the-

worlds-highest-density-16gb-nvdimm/, October 2014. Accessed: 06-15-2022.

[2] Intel. 3D XPointTM: A breakthrough in non-volatile memory technology. https://www.intel.com/content/www/us/en/architecture-

and-technology/intel-micron-3d-xpoint-webcast.html. Accessed: 04-22-2022.

[3] Micron. NVDIMM: Persistent memory performance. https://media-www.micron.com/-/media/client/global/documents/products/

product-lyer/nvdimm_lyer.pdf?rev=0c295086bb4c43729b89f369219259bc, December 2017. Accessed: 06-15-2022.

[4] Dell. Dell EMC NVDIMM-N persistent memory: user guide. https://dl.dell.com/topicspdf/nvdimm_n_user_guide_en-us.pdf, February

2021. Accessed: 06-15-2022.

[5] Hewlett Packard Enterprise. HPE NVDIMMs. https://www.hpe.com/psnow/doc/c04939369.html, November 2021. Accessed: 06-15-2022.

[6] Intel. Intel® OptaneTM memory - responsive memory, accelerated performance. https://www.intel.com/content/www/us/en/products/

details/memory-storage/optane-memory.html, July 2022. Accessed: 07-13-2022.

[7] Everspin. Everspin releases highest density MRAM products to create fastest and most reliable non-volatile storage class mem-

ory. https://www.everspin.com/sites/default/iles/Everspin%20Releases%20Highest%20Density%20MRAM%20Products%20FINAL%

20041216.pdf, April 2016. Accessed: 07-10-2022.

[8] Intel. Intel® 64 and IA-32 architectures software developer manuals. https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-sdm.html. Accessed: 05-12-2022.

[9] Steve Scargall. Programming persistent memory: A comprehensive guide for developers. APress, Berlin, Germany, 1 edition, 2020.

[10] Vaibhav Gogte, Aasheesh Kolli, and F. Thomas Wenisch. A Primer on Memory Persistency. Number 1935-3243 in Synthesis Lectures on

Computer Architecture. Springer Cham, 1 edition, 2022.

[11] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding the idiosyncrasies of real persistent memory. Proc. VLDB Endow.,

14(4):626ś639, dec 2020.

[12] Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. Revamping hardware persistency models: View-based and axiomatic

persistency models for Intel-x86 and Armv8. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming

ACM Trans. Embedd. Comput. Syst.

https://news.skhynix.com/sk-hynix-developed-the-worlds-highest-density-16gb-nvdimm/
https://news.skhynix.com/sk-hynix-developed-the-worlds-highest-density-16gb-nvdimm/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://media-www.micron.com/-/media/client/global/documents/products/product-flyer/nvdimm_flyer.pdf?rev=0c295086bb4c43729b89f369219259bc
https://media-www.micron.com/-/media/client/global/documents/products/product-flyer/nvdimm_flyer.pdf?rev=0c295086bb4c43729b89f369219259bc
https://dl.dell.com/topicspdf/nvdimm_n_user_guide_en-us.pdf
https://www.hpe.com/psnow/doc/c04939369.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.everspin.com/sites/default/files/Everspin%20Releases%20Highest%20Density%20MRAM%20Products%20FINAL%20041216.pdf
https://www.everspin.com/sites/default/files/Everspin%20Releases%20Highest%20Density%20MRAM%20Products%20FINAL%20041216.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 29

Language Design and Implementation, PLDI 2021, pages 16ś31, New York, NY, USA, 2021. Association for Computing Machinery.

[13] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. ASAP: A speculative approach to persistence. In 2022 IEEE International

Symposium on High-Performance Computer Architecture (HPCA), pages 892ś907, 2022.

[14] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. Proteus: A lexible and fast software supported hardware

logging approach for NVM. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17,

pages 178ś190, New York, NY, USA, 2017. Association for Computing Machinery.

[15] Siddharth Gupta, Alexandros Daglis, and Babak Falsai. Distributed logless atomic durability with persistent memory. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, pages 466ś478, New York, NY, USA, 2019.

Association for Computing Machinery.

[16] Xijing Han, James Tuck, and Amro Awad. Dolos: Improving the performance of persistent applications in ADR-supported secure

memory. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, pages 1241ś1253, New York,

NY, USA, 2021. Association for Computing Machinery.

[17] Intel. eADR: New opportunities for persistent memory applications. https://www.intel.com/content/www/us/en/developer/articles/

technical/eadr-new-opportunities-for-persistent-memory-applications.html, January 2021. Accessed: 07-15-2022.

[18] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and Yan Solihin. BBB: Simplifying persistent programming

using battery-backed bufers. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 111ś124,

2021.

[19] Mazen Alwadi, Vamsee Reddy Kommareddy, Clayton Hughes, Simon David Hammond, and Amro Awad. Stealth-persist: Architectural

support for persistent applications in hybrid memory systems. In 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 139ś152, 2021.

[20] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln: Closing the performance gap between systems with and

without persistence support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-46,

pages 421ś432, New York, NY, USA, 2013. Association for Computing Machinery.

[21] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime

and security of PCM-based main memory with start-gap wear leveling. In 2009 42nd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 14ś23, 2009.

[22] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug Burger, and Thomas Moscibroda. Dynamically replicated memory: Building

reliable systems from nanoscale resistive memories. In Proceedings of the Fifteenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XV, pages 3ś14, New York, NY, USA, 2010. Association for Computing

Machinery.

[23] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin Lee. Security refresh: Protecting phase-change memory against malicious wear out.

IEEE Micro, 31(1):119ś127, January 2011.

[24] Rujia Wang, Lei Jiang, Youtao Zhang, and Jun Yang. SD-PCM: Constructing reliable super dense phase change memory under write

disturbance. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’15, pages 19ś31, New York, NY, USA, 2015. Association for Computing Machinery.

[25] Mohammad Khavari Tavana, Amir Kavyan Ziabari, and David Kaeli. Block cooperation: Advancing lifetime of resistive memories by

increasing utilization of error correcting codes. ACM Trans. Archit. Code Optim., 15(3), aug 2018.

[26] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. FlatStore: An eicient log-structured key-value storage

engine for persistent memory. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 1077ś1091, New York, NY, USA, 2020. Association for Computing Machinery.

[27] Stephen Longofono, Seyed Mohammad Seyedzadeh, and Alex K. Jones. Virtual coset coding for encrypted non-volatile memories with

multi-level cells. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 1128ś1140, 2022.

[28] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. Loose-ordering consistency for persistent memory. In 2014 IEEE 32nd International

Conference on Computer Design (ICCD), pages 216ś223, 2014.

[29] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. Leave the cache hierarchy operation as it is: A new persistent memory accelerating

approach. In Proceedings of the 54th Annual Design Automation Conference 2017, DAC ’17, New York, NY, USA, 2017. Association for

Computing Machinery.

[30] Sara Mahdizadeh Shahri, Seyed Armin Vakil Ghahani, and Aasheesh Kolli. (Almost) fence-less persist ordering. In 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 539ś554, 2020.

[31] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu. ThyNVM: Enabling software-transparent crash

consistency in persistent memory systems. In Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48, pages

672ś685, New York, NY, USA, 2015. Association for Computing Machinery.

[32] Kshitij Doshi, Ellis Giles, and Peter Varman. Atomic persistence for SCM with a non-intrusive backend controller. In 2016 IEEE

International Symposium on High Performance Computer Architecture (HPCA), pages 77ś89, 2016.

ACM Trans. Embedd. Comput. Syst.

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

30 • Ye et al.

[33] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. ATOM: Atomic durability in non-volatile memory through hardware

logging. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 361ś372, 2017.

[34] Tri M. Nguyen and David Wentzlaf. PiCL: A software-transparent, persistent cache log for nonvolatile main memory. In Proceedings

of the 51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-51, pages 507ś519. IEEE Press, 2018.

[35] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. Eicient hardware-assisted logging with asynchronous and

direct-update for persistent memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-51, pages 520ś532. IEEE Press, 2018.

[36] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. Steal but no force: Eicient hardware undo+redo logging for persistent

memory systems. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 336ś349, 2018.

[37] Miao Cai, Chance C. Coats, and Jian Huang. HOOP: Eicient hardware-assisted out-of-place update for non-volatile memory. In 2020

ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 584ś596, 2020.

[38] Xueliang Wei, Dan Feng, Wei Tong, Jingning Liu, and Liuqing Ye. MorLog: Morphable hardware logging for atomic persistence in

non-volatile main memory. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA ’20,

pages 610ś623. IEEE Press, 2020.

[39] Gem5. The gem5 simulator. https://www.gem5.org/. Accessed: 01-30-2022.

[40] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change memory as a scalable DRAM alternative. In

Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, pages 2ś13, New York, NY, USA, 2009.

Association for Computing Machinery.

[41] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger. Phase-change technology

and the future of main memory. IEEE Micro, 30(1):143ś143, 2010.

[42] Moinuddin K. Qureshi, Andre Seznec, Luis A. Lastras, and Michele M. Franceschini. Practical and secure PCM systems by online

detection of malicious write streams. In Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer

Architecture, HPCA ’11, pages 478ś489, USA, 2011. IEEE Computer Society.

[43] Mohammad Arjomand, Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. Boosting access parallelism to PCM-based

main memory. In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA ’16, pages 695ś706. IEEE Press, 2016.

[44] Wujie Wen, Yaojun Zhang, Mengjie Mao, and Yiran Chen. State-restrict MLC STT-RAM designs for high-reliable high-performance

memory system. In Proceedings of the 51st Annual Design Automation Conference, DAC ’14, pages 1ś6, New York, NY, USA, 2014.

Association for Computing Machinery.

[45] Ping Chi, Cong Xu, Tao Zhang, Xiangyu Dong, and Yuan Xie. Using multi-level cell STT-RAM for fast and energy-eicient local

checkpointing. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’14, pages 301ś308.

IEEE Press, 2014.

[46] Hengyu Zhao, Linuo Xue, Ping Chi, and Jishen Zhao. Approximate image storage with multi-level cell STT-MRAM main memory. In

Proceedings of the 36th International Conference on Computer-Aided Design, ICCAD ’17, pages 268ś275. IEEE Press, 2017.

[47] Armin Haj Aboutalebi and Lide Duan. RAPS: Restore-aware policy selection for STT-MRAM-based main memory under read

disturbance. In 2017 IEEE International Conference on Computer Design (ICCD), pages 625ś632, 2017.

[48] Xiaochen Guo, Mahdi Nazm Bojnordi, Qing Guo, and Engin Ipek. Sanitizer: Mitigating the impact of expensive ECC checks on

STT-MRAM based main memories. IEEE Transactions on Computers, 67(6):847ś860, June 2018.

[49] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shimeng Yu, and Yuan Xie. Overcoming the

challenges of crossbar resistive memory architectures. In 2015 IEEE 21st International Symposium on High Performance Computer

Architecture (HPCA), pages 476ś488, 2015.

[50] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and Frederic T. Chong. Mellow writes: Extending lifetime in

resistive memories through selective slow write backs. In Proceedings of the 43rd International Symposium on Computer Architecture,

ISCA ’16, pages 519ś531. IEEE Press, 2016.

[51] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen Hu, Hung-Sheng Chang, and Hsiang-Pang Li. Sparse

ReRAM engine: Joint exploration of activation and weight sparsity in compressed neural networks. In Proceedings of the 46th

International Symposium on Computer Architecture, ISCA ’19, pages 236ś249, New York, NY, USA, 2019. Association for Computing

Machinery.

[52] Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang. CASCADE: Connecting RRAMs to extend analog datalow in an end-to-end

in-memory processing paradigm. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

’52, pages 114ś125, New York, NY, USA, 2019. Association for Computing Machinery.

[53] SMART Modular Technologies. Advanced memory - DDR4 NVDIMM. https://www.smartm.com/api/download/fetch/17, January 2022.

Accessed: 06-15-2022.

[54] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He. NV-Tree: Reducing consistency cost

for NVM-based single level systems. In Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST’15, pages

167ś181, USA, 2015. USENIX Association.

ACM Trans. Embedd. Comput. Syst.

https://www.gem5.org/
https://www.smartm.com/api/download/fetch/17

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 31

[55] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent memory. In Proceedings of the Sixteenth

International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 91ś104, New

York, NY, USA, 2011. Association for Computing Machinery.

[56] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-Yuan Michael Wang. NVM Duet: Uniied working memory and

persistent store architecture. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’14, pages 455ś470, New York, NY, USA, 2014. Association for Computing Machinery.

[57] Joel Coburn, Adrian M. Caulield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making

persistent objects fast and safe with next-generation, non-volatile memories. In Proceedings of the Sixteenth International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 105ś118, New York, NY, USA, 2011.

Association for Computing Machinery.

[58] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren. DudeTM: Building durable

transactions with decoupling for persistent memory. In Proceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’17, pages 329ś343, New York, NY, USA, 2017. Association for

Computing Machinery.

[59] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and Jishen Zhao. Characterizing and modeling non-volatile

memory systems. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 496ś508, 2020.

[60] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri, Changwoo Min, and Sudarsun Kannan. Durable

Transactional Memory Can Scale with TimeStone, pages 335ś349. Association for Computing Machinery, New York, NY, USA, 2020.

[61] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. An empirical guide to the behavior and use of

scalable persistent memory. In 18th USENIX Conference on File and Storage Technologies (FAST 20), pages 169ś182, Santa Clara, CA,

February 2020. USENIX Association.

[62] Alexandro Baldassin, João Barreto, Daniel Castro, and Paolo Romano. Persistent memory: A survey of programming support and

implementations. ACM Comput. Surv., 54(7), July 2021.

[63] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. Programming for non-volatile main memory is hard. In Proceedings of

the 8th Asia-Paciic Workshop on Systems, APSys ’17, New York, NY, USA, 2017. Association for Computing Machinery.

[64] Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. Eicient atomic durability on eADR-enabled persistent memory.

In Andreas Klöckner and José Moreira, editors, Proceedings of the International Conference on Parallel Architectures and Compilation

Techniques, PACT 2022, Chicago, Illinois, October 8-12, 2022, pages 124ś134. ACM, 2022.

[65] Dushyanth Narayanan and Orion Hodson. Whole-system persistence. In Tim Harris and Michael L. Scott, editors, Proceedings of the

17th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2012, London, UK,

March 3-7, 2012, pages 401ś410. ACM, 2012.

[66] Intel. Restricted transactional memory overview. https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-

developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-

transactional-mem-ops/restricted-transactional-memory-overview.html, March 2023. Accessed: 03-09-2023.

[67] Jifei Yi, Mingkai Dong, Fangnuo Wu, and Haibo Chen. HTMFS: strong consistency comes for free with hardware transactional memory

in persistent memory ile systems. In Dean Hildebrand and Donald E. Porter, editors, 20th USENIX Conference on File and Storage

Technologies, FAST 2022, Santa Clara, CA, USA, February 22-24, 2022, pages 17ś34. USENIX Association, 2022.

[68] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Unioning of the bufer cache and journaling layers with non-volatile memory. In 11th

USENIX Conference on File and Storage Technologies (FAST 13), pages 73ś80, San Jose, CA, February 2013. USENIX Association.

[69] Gang Liu, Kenli Li, Zheng Xiao, and Rujia Wang. PS-ORAM: Eicient crash consistency support for oblivious RAM on NVM. In

Proceedings of the 49th Annual International Symposium on Computer Architecture, ISCA ’22, pages 188ś203, New York, NY, USA, 2022.

Association for Computing Machinery.

[70] Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and Stefanos Kaxiras. TSOPER: Eicient coherence-based strict persistency.

In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 125ś138, 2021.

[71] Youyou Lu, Jiwu Shu, and Long Sun. Blurred persistence: Eicient transactions in persistent memory. ACM Trans. Storage, 12(1),

January 2016.

[72] Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. Farrens. Eager writeback - a technique for improving bandwidth utilization. In

Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 33, Monterey, California, USA, December

10-13, 2000, pages 11ś21. ACM/IEEE Computer Society, 2000.

[73] Moinuddin K. Qureshi, Michele Franceschini, Ashish Jagmohan, and Luis A. Lastras. Preset: Improving performance of phase change

memories by exploiting asymmetry in write times. In 39th International Symposium on Computer Architecture (ISCA 2012), June 9-13,

2012, Portland, OR, USA, pages 380ś391. IEEE Computer Society, 2012.

[74] Li Zhao, Ravi Iyer, Srihari Makineni, Don Newell, and Liqun Cheng. NCID: A non-inclusive cache, inclusive directory architecture for

lexible and eicient cache hierarchies. In Proceedings of the 7th ACM International Conference on Computing Frontiers, CF ’10, page

121ś130, New York, NY, USA, 2010. Association for Computing Machinery.

ACM Trans. Embedd. Comput. Syst.

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html

32 • Ye et al.

[75] Daniel Molka, Daniel Hackenberg, Robert Schone, and Wolfgang E. Nagel. Cache coherence protocol and memory performance of the

Intel Haswell-EP architecture. In Proceedings of the 2015 44th International Conference on Parallel Processing (ICPP), ICPP ’15, page

739ś748, USA, 2015. IEEE Computer Society.

[76] Yan Solihin. Fundamentals of Parallel Multicore Architecture. Chapman and Hall/CRC, Berlin, Germany, 1st edition, 2015.

[77] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence protocol states vulnerable to information leakage? In 2018 IEEE

International Symposium on High Performance Computer Architecture (HPCA), pages 168ś179, 2018.

[78] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not

caches: Side channel attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy (SP), pages 888ś904, 2019.

[79] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely, and Joel Emer. SHiP: Signature-based hit

predictor for high performance caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-44, pages 430ś441, New York, NY, USA, 2011. Association for Computing Machinery.

[80] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H. Pugsley, and Chris Wilkerson. Kill the program counter:

Reconstructing program behavior in the processor cache hierarchy. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’17, pages 737ś749, New York, NY, USA, 2017.

Association for Computing Machinery.

[81] Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni, Sreenivas Subramoney, Tanay Karnik, Steven

Swanson, Ian Young, and Hong Wang. Density tradeofs of non-volatile memory as a replacement for SRAM based last level cache. In

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pages 315ś327, 2018.

[82] Subhash Sethumurugan, Jieming Yin, and John Sartori. Designing a cost-efective cache replacement policy using machine learning. In

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 291ś303, 2021.

[83] Diya Joseph, Juan L. Aragón, Joan-Manuel Parcerisa, and Antonio González. TCOR: A tile cache with optimal replacement. In 2022

IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 662ś675, 2022.

[84] Chandrashis Mazumdar, Prachatos Mitra, and Arkaprava Basu. Dead page and dead block predictors: Cleaning tlbs and caches together.

In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 507ś519, 2021.

[85] Samira Manabi Khan, Yingying Tian, and Daniel A. Jiménez. Sampling dead block prediction for last-level caches. In 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 175ś186, 2010.

[86] Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency of persist barriers using speculative execution. In Proceedings of

the 44th Annual International Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages 175ś186.

ACM, 2017.

[87] Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and Stefanos Kaxiras. TSOPER: eicient coherence-based strict persistency.

In IEEE International Symposium on High-Performance Computer Architecture, HPCA 2021, Seoul, South Korea, February 27 - March 3,

2021, pages 125ś138. IEEE, 2021.

[88] Wikipedia contributors. Write bufer. https://en.wikipedia.org/w/index.php?title=Write_bufer&oldid=1067314254, March 2023.

Accessed: 03-01-2023.

[89] Yong Chen, Surendra Byna, Xian-He Sun, Rajeev Thakur, and William Gropp. 2008 international conference on parallel processing

september 8-12, 2008 portland, oregon exploring parallel I/O concurrency with speculative prefetching. In 2008 International Conference

on Parallel Processing, ICPP 2008, September 8-12, 2008, Portland, Oregon, USA, pages 422ś429. IEEE Computer Society, 2008.

[90] Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, and Konrad Lai. Bloom iltering cache misses for accurate data speculation

and prefetching. In Kemal Ebcioglu, Keshav Pingali, and Alex Nicolau, editors, Proceedings of the 16th international conference on

Supercomputing, ICS 2002, New York City, NY, USA, June 22-26, 2002, pages 189ś198. ACM, 2002.

[91] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano

Giufrida. RIDL: Rogue in-light data load. In 2019 IEEE Symposium on Security and Privacy (SP), pages 88ś105, 2019.

[92] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:

Cross-privilege-boundary data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’19, page 753ś768, New York, NY, USA, 2019. Association for Computing Machinery.

[93] Priyank Faldu and Boris Grot. Leeway: Addressing variability in dead-block prediction for last-level caches. In 2017 26th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 180ś193, 2017.

[94] Intel. Introduction to cache allocation technology in the intel® xeon® processor e5 v4 family. https://www.intel.com/content/www/

us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html, March 2023. Accessed: 03-04-2023.

[95] Lucia Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit, and Julio Pons. Improving system turnaround time with intel cat by identifying

llc critical applications. In Euro-Par 2018: Parallel Processing: 24th International Conference on Parallel and Distributed Computing, Turin,

Italy, August 27-31, 2018, Proceedings 24, pages 603ś615. Springer, 2018.

[96] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A ile system for storage class memory. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011. Association for Computing

Machinery.

ACM Trans. Embedd. Comput. Syst.

https://en.wikipedia.org/w/index.php?title=Write_buffer&oldid=1067314254
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

Enabling Atomic Durability for Persistent Memory with Transient Persistence Domain • 33

[97] Alexandro Baldassin, João Barreto, Daniel Castro, and Paolo Romano. Persistent memory: A survey of programming support and

implementations. ACM Comput. Surv., 54(7), jul 2021.

[98] Tianhao Zheng, Haishan Zhu, and Mattan Erez. SIPT: Speculatively indexed, physically tagged caches. In 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 118ś130, 2018.

[99] Ajeya Naithani and Lieven Eeckhout. Reliability-aware runahead. In 2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 772ś785, 2022.

[100] Jian Xu and Steven Swanson. NOVA: A log-structured ile system for hybrid Volatile/Non-volatile main memories. In 14th USENIX

Conference on File and Storage Technologies (FAST 16), pages 323ś338, Santa Clara, CA, February 2016. USENIX Association.

[101] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram. SplitFS: reducing software

overhead in ile systems for persistent memory. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019,

Huntsville, ON, Canada, October 27-30, 2019, pages 494ś508. ACM, 2019.

[102] Asit K. Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, N. Vijaykrishnan, and Chita R. Das. Architecting on-chip interconnects for

stacked 3D STT-RAM caches in CMPs. In Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA ’11,

pages 69ś80, New York, NY, USA, 2011. Association for Computing Machinery.

[103] Mayank Parasar, Abhishek Bhattacharjee, and Tushar Krishna. SEESAW: Using superpages to improve VIPT caches. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA), pages 193ś206, 2018.

[104] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data movement for emerging smart phone workloads on

mobile platforms. In 2014 IEEE International Symposium on Workload Characterization (IISWC), pages 171ś180, Oct 2014.

[105] Xiyuan Tang, Linxiao Shen, Begum Kasap, Xiangxing Yang, Wei Shi, Abhishek Mukherjee, David Z. Pan, and Nan Sun. An energy-

eicient comparator with dynamic loating inverter ampliier. IEEE Journal of Solid-State Circuits, 55(4):1011ś1022, 2020.

[106] D. Bertozzi, L. Benini, and G. De Micheli. Error control schemes for on-chip communication links: the energy-reliability tradeof. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(6):818ś831, 2005.

[107] Benton H. Calhoun, Yu Cao, Xin Li, Ken Mai, Lawrence T. Pileggi, Rob A. Rutenbar, and Kenneth L. Shepard. Digital circuit design

challenges and opportunities in the era of nanoscale CMOS. Proceedings of the IEEE, 96(2):343ś365, 2008.

[108] Lillian Pentecost, Alexander Hankin, Marco Donato, Mark Hempstead, Gu-Yeon Wei, and David Brooks. NVMExplorer: A framework

for cross-stack comparisons of embedded non-volatile memories. In 2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 938ś956, 2022.

[109] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143ś154, New York, NY, USA, 2010. Association

for Computing Machinery.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Persistence Domain and Atomic Durability
	2.1 Persistence Domain
	2.2 Atomic Durability

	3 Motivation
	4 The Design of Hercules
	4.1 Hercules' Hardware Components
	4.2 Hercules' Transaction
	4.3 The Crash Recoverability of Hercules
	4.4 In-pmem Log Space Management
	4.5 Discussion

	5 Evaluation
	5.1 Micro-benchmark
	5.2 Tests for Premature Flush and TransTag Ratios
	5.3 The Impacts of Factors on Hercules
	5.4 Recoverability, Energy and Spatial Costs of Hercules
	5.5 Macro-benchmark

	6 Conclusion
	References

