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a b s t r a c t

We consider the unconstrained traveling tournament problem, a sports timetabling
problem that minimizes traveling of teams. Since its introduction about 20 years
ago, most research was devoted to modeling and reformulation approaches. In
this paper we carry out a polyhedral study for the cubic integer programming
formulation by establishing the dimension of the integer hull as well as of faces
induced by model inequalities. Moreover, we introduce a new class of inequalities
and show that they are facet-defining. Finally, we evaluate the impact of these
inequalities on the linear programming bounds.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The traveling tournament problem is an optimization problem that involves aspects from tournament
imetabling as well as from tour problems such as the traveling salesman problem. It was introduced by
aston, Nemhauser and Trick in 2001 [1]. To formally state the problem, we consider an even number n ≥ 4 of

ports teams, each playing at its own venue, and the problem of designing a double round-robin tournament.
uch a tournament consists of slots S := {1, 2, . . . , 2n− 2} and in each slot, each team i ∈ V := {1, 2, . . . , n}
lays against another team j ∈ V , either at its home venue or away, i.e., at j’s home venue. Moreover, every
wo teams i, j ∈ V play each other exactly twice, once at i and once at j. Finally, distances di,j between
he venues i, j ∈ V for all pairs (i, j) ∈ A := {(i, j) ∈ V × V : i ̸= j} are given and the goal is to find
tournament with the minimum total traveling distance. Between two consecutive slots in which a team

lays at different venues j and k, it travels dj,k units. In particular, if both matches are played away, then
t directly travels from venue j to venue k. Before slot 1 and after slot 2n − 2 each team shall reside at its
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home venue, i.e., if the first or last match is played away, then the team has to travel between this venue and
its home venue. This problem is known as the unconstrained traveling tournament problem (TTP), which is
known to be NP-hard [2].

There exist several variants, including the classic TTP. Here, the unconstrained TTP is further restricted
by requiring that the two matches of teams i and j shall not be in consecutive slots. Moreover, no team shall
play more than 3 consecutive home matches and no more than 3 consecutive away matches. This variant is
also NP-hard [3].

The first solution approaches were developed in [4], where a column generation framework was combined
with constraint programming techniques. The authors of [5] discuss several integer programming formu-
lations in their paper on a single-round-robin variant of the TTP. In particular, they describe a cubic
formulation (with O(n3) variables) that naturally generalizes to one for the unconstrained TTP.

Already the tournament construction without a traveling aspect is nontrivial. While there exist several
efficient methods to construct a feasible solution (see [6–9]), the addition of more constraints or an objective
function often makes the problem intractable. For instance, the optimization version, called the planar 3-
index assignment problem, is NP-hard [10]. However, there exist several polyhedral studies in which the
integer hull of the natural integer programming formulation of the planar 3-index assignment problem was
investigated [11–13].

Outline. In Section 2 we introduce the cubic integer programming formulation in order to define the
unconstrained traveling tournament polytope as its integer hull. In Section 3 we deal with equations valid for
the polytope and establish its dimension. Moreover, in Section 4 we show that some of the model inequalities
are facet-defining while others are lifted to have this property. Finally, in Section 5 we introduce a new class
of inequalities and show that they are facet-defining. For the proofs in Sections 3 to 5 we need to construct
tournaments with a variety of properties. These constructions can be found in Appendix. The paper is
concluded in Section 7 where we evaluate the impact of our findings computationally.

2. The unconstrained traveling tournament polytope

A match between i ∈ V and j ∈ V \ {i} at venue i that is played in slot k ∈ S is denoted by the triple
(k, i, j) and by M we denote the set of all possible matches. The formulation has play variables xm ∈ {0, 1}
or each match m ∈ M and travel variables yt,i,j ∈ {0, 1} for all t ∈ V and all (i, j) ∈ A. The interpretation
s that xk,i,j = 1 if and only if match (k, i, j) is played, and yt,i,j = 1 if (but not only if) team t travels
rom venue i to venue j. Note that in a tournament each team travels along such an arc at most once. The
ormulation reads

min
∑

(i,j)∈A

di,j

∑
t∈V

yt,i,j (1a)

s.t.
∑

j∈V \{i}

(xk,i,j + xk,j,i) = 1 ∀k ∈ S : k ≥ 2, ∀i ∈ V, (1b)

∑
k∈S

xk,i,j = 1 ∀(i, j) ∈ A, (1c)

xk,i,t + xk+1,j,t − 1 ≤ yt,i,j ∀k ∈ S \ {2n− 2}, ∀(i, j) ∈ A, ∀t ∈ V \ {i, j}, (1d)∑
i∈V \{t}

xk,t,i + xk+1,j,t − 1 ≤ yt,t,j ∀k ∈ S \ {2n− 2}, ∀(t, j) ∈ A, (1e)

xk−1,i,t +
∑

j∈V \{t}

xk,t,j − 1 ≤ yt,i,t ∀k ∈ S \ {1}, ∀(i, t) ∈ A, (1f)
x1,j,t ≤ yt,t,j ∀(t, j) ∈ A, (1g)
2
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x2n−2,i,t ≤ yt,i,t ∀(i, t) ∈ A, (1h)
xk,i,j ∈ {0, 1} ∀(k, i, j) ∈ M, (1i)
yt,i,j ∈ {0, 1} ∀(t, i, j) ∈ V ×A. (1j)

The objective (1a) minimizes the total traveled distance. Constraints (1b) ensure that each team plays
xactly once (either home or away) in each slot k ≥ 2. For k = 1, the same equations are implied (see
roposition 1). Constraints (1c) ensure that each home-away pair occurs exactly once. This constitutes a
orrect model for a double round-robin schedule with binary variables x. Note that the classic traveling
ournament instances also require custom constraints such as a no-repeater constraint (requiring that the
wo matches of two teams are not scheduled in a row) and upper bounds on the number of consecutive
ome/away games. However, for our polyhedral study we omit these constraints to keep the model simple.
he remaining constraints (1d)–(1h) force the travel variables to be 1 if the corresponding travel occurs.
To carry out a polyhedral study, it is worth to define the integer hull of IP (1). To this end, we

efine a tournament as a subset T ⊆ M of matches whose play vector χ(T ) ∈ {0, 1}M, defined via
(T )k,i,j = 1 ⇐⇒ (k, i, j) ∈ T , satisfies (1b) and (1c). Its travel vector is the vector ψ(T ) ∈ {0, 1}V ×A

ith ψ(T )t,i,j = 1 if and only if team t travels from venue i to venue j. In the IP, a travel variable yt,i,j can
e set to 1 although team t does not travel from i to j. If the distances di,j are positive, this will however
ever happen in an optimal solution. The integer hull of the IP, which we call the unconstrained traveling
ournament polytope, is thus equal to

Putt(n) := conv{(χ(T ), y) ∈ {0, 1}M × {0, 1}V ×A : T tournament and y ≥ ψ(T )}.

A natural question is why we require y ≥ ψ(T ) in the definition. This is accordance with the existing
integer programming model the literature (see [5]), in which y-variables are only constrained from below.
The variant in which y = ψ(T ) is enforced is much harder to study theoretically, but we will later obtain the
corresponding polytope as a face of Putt(n), see Theorem 16. Finally, by O we denote the zero vector, where
its length can be derived from the context. Note that Putt(n) resembles the basic properties of the traveling
tournament model. More restrictions and corresponding linear constraints are discussed in Section 6.

3. Equations and dimension

3.1. Known equations

Proposition 1. For each team t ∈ V , Eqs. (1b) for (k, i) = (1, t) follow from Eqs. (1b) for all k ∈ S \ {1}
and i = t together with Eqs. (1c) for all (i, j) ∈ A with t ∈ {i, j}.

Proof. Let t ∈ V . The sum of Eqs. (1c) for all (i, j) ∈ A with j = t plus the sum of Eqs. (1c) for all
(i, j) ∈ A with i = t minus the sum of Eqs. (1b) for all k ∈ S \ {1} and i = t yields∑

i∈V \{t}

∑
k∈S

xk,i,t +
∑

j∈V \{t}

∑
k∈S

xk,t,j −
∑

k∈S\{1}

∑
j∈V \{t}

(xk,t,j + xk,j,t)

= (n− 1) + (n− 1) − (2n− 3) ⇐⇒
∑

j∈V \{t}

(x1,t,j + x1,j,t) = 1,

which is equation (1b) for (k, i) = (1, t). □

We define the following column basis Bk̄ ⊆ M via

Bk̄ := {(k, i, j) ∈ M : k = k̄ or i = 1 or (i, j) = (2, 3)}. (2)

We will often use the following lemma which states that the play variables indexed by Bk̄ induce an invertible

submatrix of the equation system of interest.

3
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Lemma 2. Let k̄ ∈ S and let Cx = d be the system defined by Eqs. (1b) and (1c). Then the submatrix
f C induced by variables xm for m ∈ Bk̄ is invertible. In particular, these |Bk̄| = 3n2 − 4n equations are

irredundant.

Proof. Observe that variables xk̄,i,j only appear in Eq. (1c) for (i, j) ∈ A. Thus, by cofactor expansion it
emains to prove invertibility of the coefficient submatrix C ′ of C whose rows correspond to Eqs. (1b) and
hose columns correspond to variables xk,i,j for (k, i, j) ∈ M with k ̸= k̄ and i = 1 or (i, j) = (2, 3).
The matrix C ′ is a block diagonal matrix. The blocks are the submatrices Ck whose rows and columns

re the same as those of C ′ but for fixed k. For the remainder of the proof we fix k ∈ S \ {k̄} and prove that
k is invertible. For ℓ ∈ {3, 4, . . . , n}, consider the submatrices Ck,ℓ ∈ Rℓ×ℓ of C induced by Eqs. (1b) for k

and for i = 1, 2, . . . , ℓ and by variables xk,2,3, xk,1,2, xk,1,3, xk,1,4, . . . , xk,1,ℓ. One easily verifies that Ck,3 is
nvertible and that for ℓ ≥ 4, Ck,ℓ is obtained from Ck,ℓ−1 by adding a unit row with the one in the added
olumn. By induction on ℓ, cofactor expansion shows that Ck,n is invertible. The fact that Ck,n = Ck holds,

concludes the proof. □

A consequence of Lemma 2 is that every equation that is valid for Putt(n) or some of its faces can be
turned into an equivalent one that involves no xm for m ∈ Bk̄. Hence, in many subsequent proofs we will
assume that such an equation a⊺x+ b⊺y = γ satisfies

am = 0 for each m ∈ B := B1, (B)

and refer to this as requiring the equation to be normalized with respect to slot k̄ = 1. in our proofs.

3.2. Tournaments from 1-factors

We consider the tournament construction based on perfect matchings (also called 1-factors) of the
complete graphs on n nodes (see [6]). In each tournament T , for each k ∈ S, the matches (k, i, j) ∈ T

in slot k, interpreted as edges {i, j}, form a perfect matching. Thus, each tournament is characterized by |S|
such perfect matchings whose edges are oriented so that no arc (i, j) ∈ A appears twice. Since the latter is
the only restriction, we can first determine the |S| perfect matchings Mk for all k ∈ S and afterwards orient
their edges in a complementary fashion, that is,

each edge {i, j} is oriented differently in the two perfect matchings in which it is contained. (3)

We call such an orientation complementary. The following canonical factorization is one specific set
{M1,M2, . . . ,M2n−2} of perfect matchings [6], where Mk for k < n is determined by

Mk := {{k, n}} ∪ {{k + i, k − i} : i = 1, 2, . . . , n/2 − 1},

where k + i and k − i are taken modulo n− 1 as one of the numbers 1, 2, . . . , n− 1. The remaining perfect
matchings are Mk := Mk−n+1 for all k ∈ {n, n+ 1, . . . , 2n− 2}. Hence,

for each edge {i, j} there is a unique k ∈ {1, 2, . . . , n− 1} with {i, j} ∈ Mk and {i, j} ∈ Mk+n−1

a unique k′ ∈ {n, n+ 1, . . . , 2n− 2} with {i, j} ∈ Mk′ (which satisfies k′ = k + n− 1). (4)

We will often construct tournaments obtained from the canonical factorizations by permuting slots or teams.
In many cases, it is easy to see that corresponding permutations exist. Hence, we typically state that a
tournament is constructed from a canonical factorization such that certain requirements are satisfied, e.g., by

specifying certain matches that shall be played.

4
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Operations on tournaments. Three fundamental operations to modify a given tournament are the cyclic
hift, the home-away swap and the partial slot swap, defined as follows.

Let s ∈ Z and let T be a tournament. We say that tournament T ′ is obtained by a cyclic shift by s if T ′

arises from T by mapping each slot k ∈ S to slot k + s, where slots are considered modulo 2n − 2 in the
range 1, 2, . . . , 2n− 2.

Proposition 3 (Home-Away Swap). Let T be a tournament with matches (k1, i, j), (k2, j, i) ∈ T . Then

T ′ := T \ {(k1, i, j), (k2, j, i)} ∪ {(k1, j, i), (k2, i, j)} (HAk1,k2,i,j)

is also a tournament.

Proposition 4 (Partial Slot Swap). Let T be a tournament with matches (k1, i, j), (k1, i
′, j′), (k2, i, j

′),
(k2, i

′, j) ∈ T . Then

T ′ := T \ {(k1, i, j), (k1, i
′, j′), (k2, i, j

′), (k2, i
′, j)}

∪ {(k1, i, j
′), (k1, i

′, j), (k2, i, j), (k2, i
′, j′)} (PSk1,k2,i,j,i′,j′)

is also a tournament.

3.3. Dimension of the unconstrained traveling tournament polytope

Theorem 5. The affine hull of Putt(n) is described completely by the irredundant Eqs. (1b) and (1c).

Proof. We first observe that Lemma 2 implies that the equations are irredundant, i.e., none of them is a
linear combination of the others. It remains to prove that every valid equation is a linear combination of
these equations. To this end, we show that for any equation a⊺x+ b⊺y = γ that is valid for Putt(n) and that
is normalized with respect to slot 1 (i.e., it satisfies (B)) that (a, b) = O holds.

Claim 5.1. For each (t, i, j) ∈ V ×A there exists a tournament in which team t never travels from venue i
to venue j.

A tournament T from Claim 5.1 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except
for y′

t,i,j = 1. Hence, (χ(T ), y), (χ(T ), y′) ∈ Putt(n) and thus a⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′ holds. We
btain

b = O. (§5.1)

laim 5.2. For each k ∈ S \ {1} and for distinct i, j ∈ V there exist tournaments T and T ′

atisfying (HA1,k,i,j).

For the tournaments T and T ′ from Claim 5.2 we have b⊺ψ(T ) = b⊺ψ(T ′) due to (§5.1). Using the
act that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)), a⊺χ(T ) + b⊺ψ(T ) = γ =
⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j = ak,j,i for each k ∈ S \ {1} and for all distinct i, j ∈ V. (§5.2)

laim 5.3. For each k ∈ S \ {1} and for distinct i, j, i′, j′ ∈ V there exist tournaments T and T ′

′ ′
atisfying (PS1,k,i,j,i ,j ).
5
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For the tournaments T and T ′ from Claim 5.3 we have b⊺ψ(T ) = b⊺ψ(T ′) due to (§5.1). Using (B),
⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for each k ∈ S \ {1} and for all distinct i, j, i′, j′ ∈ V. (§5.3)

Consider a slot k ∈ S \ {1}. For each ℓ ∈ {4, 5, . . . , n}, (§5.3) implies ak,1,ℓ + ak,2,3 = ak,1,3 + ak,2,ℓ

hich, together with the fact that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)),
ields ak,2,ℓ = 0. Combined with (§5.2) we also obtain ak,ℓ,2 = 0. For all distinct ℓ, ℓ′ ∈ {3, 4, . . . , n}, (§5.3)
mplies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with (B), this shows ak,ℓ,ℓ′ = 0. Hence, a = O holds, which
oncludes the proof. □

orollary 6. The dimension of Putt(n) is equal to 3n3 − 8n2 + 6n.

roof. The ambient space of Putt(n) has dimension |M|+n · |A|. By Theorem 5, the affine hull is described
y the 3n2 − 4n Eqs. (1b) and (1c), which are irredundant by Lemma 2. Hence,

dim(Putt(n)) = (2n− 2) · n · (n− 1) + n · n · (n− 1) − (3n2 − 4n) = 3n3 − 8n2 + 6n.

This concludes the proof. □

4. Model inequalities

In this section we consider the inequalities from (1) and determine when they are facet-defining. While
for many integer programming problems such a verification is a simple task that does not yield any insight,
in our case we already observe that establishing facetness is nontrivial. This is due to the combinatorics of
tournament schedules which do not admit the construction of simple (and affinely independent) solution
vectors. This complexity is already indicated by Proposition 4 where eight coordinates must be changed in a
very structured way in order to move from one solution vector to another. Moreover, our attempts to prove
that inequalities (1d) are facet-defining failed, and it turned out that they actually are not. However, they
are almost facet-defining in the sense that the dimension of their induced face is to low by 1, and we provide
the corresponding two facets that have this face as their intersection. Within the proofs we will sometimes
argue about symmetry of the formulation, for which we state the following lemma.

Lemma 7. Putt(n) and formulation (1) are symmetric with respect to permuting teams and with respect to
mirroring all slots, i.e., exchanging roles of slots k and 2n− 1 − k for all k ∈ {1, 2, . . . , n− 1}.

Proof. Symmetry with respect to team permutations is clear for Putt(n) and for the formulation.
Moreover, symmetry with respect to mirroring slots is easy to see for Putt(n): when slots are exchanged,

all traveled arcs are simply reversed. For the formulation, the roles of (1e) and (1f) as well as (1g) and (1h)
are exchanged. □

We start with the nonnegativity constraints for the play variables.

Theorem 8. Inequalities xk,i,j ≥ 0 are facet-defining for Putt(n) for all (k, i, j) ∈ M.

Proof. Consider the inequality xk⋆,i⋆,j⋆ ≥ 0 for some match m⋆ = (k⋆, i⋆, j⋆) ∈ M. By Lemma 7, we
can assume k⋆ ≥ n and i⋆ = 3 and j⋆ = 4. This implies m⋆ /∈ B. Let a⊺x + b⊺y ≥ γ define any facet F
that contains the face induced by this inequality. Without loss of generality, the equation is normalized with
respect to slot 1, i.e., it satisfies (B). It remains to prove that b = O and γ = 0 hold and that a is a multiple

⋆ ⋆ ⋆
of χ({(k , i , j )}).
6
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Claim 8.1. For each (t, i, j) ∈ V ×A there exists a tournament T with m⋆ /∈ T and in which team t never
ravels from venue i to venue j.

A tournament T from Claim 8.1 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except for
′
t,i,j = 1. Since χ(T )m⋆ = 0 holds, we have (χ(T ), y), (χ(T ), y′) ∈ F . The equation a⊺χ(T ) + b⊺y = γ =
⊺χ(T ) + b⊺y′ simplifies to bt,i,j = 0. We obtain

b = O. (§8.1)

laim 8.2. For each (k, i, j) ∈ M with k ≥ 2 and (k, i, j) ̸= (k⋆, i⋆, j⋆), (k⋆, j⋆, i⋆) there exist tournaments
and T ′ satisfying (HA1,k,i,j) and (k⋆, i⋆, j⋆), (k⋆, j⋆, i⋆) /∈ T ∪ T ′.

The tournaments T and T ′ from Claim 8.2 satisfy χ(T )m⋆ = χ(T ′)m⋆ = 0 and thus we have
χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . Using the fact that the equation is normalized with respect to slot 1 (i.e., it
atisfies (B)) and 8.1, a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j = ak,j,i for each (k, i, j) ∈ M with k ≥ 2 and (k, i, j) /∈ {(k⋆, i⋆, j⋆), (k⋆, j⋆, i⋆)}. (§8.2)

laim 8.3. For each slot k ∈ S \ {1} and for distinct i, j, i′, j′ ∈ V with k ̸= k⋆ or (i⋆, j⋆) /∈
(i, j), (i′, j′), (i′, j), (i, j′)} there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) and m⋆ /∈ T ∪ T ′.

The tournaments T and T ′ from Claim 8.3 satisfy χ(T )m⋆ = χ(T ′)m⋆ = 0 and thus we have
χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . Using the fact that the equation is normalized with respect to slot 1 (i.e., it
atisfies (B)) and (8.1), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for each k ∈ S \ {1} and for all distinct (i, j, i′, j′) ∈ V

with k ̸= k⋆ or (i⋆, j⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. (§8.3)

Consider a slot k ∈ S \ {1}. For each ℓ ∈ {4, 5, . . . , n}, (§8.3) implies ak,1,ℓ + ak,2,3 = ak,1,3 + ak,2,ℓ

hich, together with the fact that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)),
ields ak,2,ℓ = 0. Combined with (§8.2) we also obtain ak,ℓ,2 = 0. For all distinct ℓ, ℓ′ ∈ {3, 4, . . . , n}
xcept for (ℓ, ℓ′) = (4, 3), (§8.3) implies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with the fact that the
quation is normalized with respect to slot 1 (i.e., it satisfies (B)), this shows ak,ℓ,ℓ′ = 0 for all but the entry
orresponding to match (k⋆, i⋆, j⋆).

Hence, the inequality reads ak⋆,i⋆,j⋆ ·xk⋆,i⋆,j⋆ ≥ γ. Since χ(T )k⋆,i⋆,j⋆ = 0 holds for each of the considered
ournaments T , we obtain γ = 0. Finally, since there exist tournaments T for which χ(T )k⋆,i⋆,j⋆ = 1 holds,
k⋆,i⋆,j⋆ must be positive, which concludes the proof. □

We continue with inequalities (1d) which are not facet-defining. However, they can be lifted to these two
tronger ones.

xk,j,t + xk,i,t + xk+1,j,t − 1 ≤ yt,i,j ∀k ∈ S \ {2n− 2}, ∀(i, j) ∈ A, ∀t ∈ V \ {i, j} (5a)
xk+1,i,t + xk,i,t + xk+1,j,t − 1 ≤ yt,i,j ∀k ∈ S \ {2n− 2}, ∀(i, j) ∈ A, ∀t ∈ V \ {i, j} (5b)

ndeed, in order to obtain (1d) they only need to be combined with nonnegativity constraints for x. These
nequalities turn out to be facet-defining.
7
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Theorem 9. Inequalities (5) are facet-defining for Putt(n) for each slot k ∈ S \ {2n − 2} and all distinct
eams i, j, t ∈ V .

roof. We only prove the statement for inequalities (5a) since the proof for (5b) is similar. Moreover, we
ssume n ≥ 6 since we verified the statement for n = 4 computationally. For this, we used the software
ackage IPO [14], which can exactly compute dimensions of polyhedra that are defined implicitly via an
ptimization oracle, in this case an MIP solver (see Chapter 2 in [15] for the algorithmic background).

Consider the inequality xk⋆,j⋆,t⋆ +xk⋆,i⋆,t⋆ +xk⋆+1,j⋆,t⋆ −yt⋆,i⋆,j⋆ ≤ 1 for some slot k⋆ ∈ S \{2n−2}, and
distinct teams i⋆, j⋆, t⋆ ∈ V . By Lemma 7, we can assume k⋆ ≥ n, i⋆ = 4, j⋆ = 5 and t⋆ = 6. The inequality
is valid for Putt(n) since the only possibility of scheduling more than one of the three matches (k⋆, j⋆, t⋆),
(k⋆, i⋆, t⋆) and (k⋆ + 1, j⋆, t⋆) consists of the latter two which implies that team t⋆ travels from venue i⋆ to
venue j⋆. The following claim is used several times throughout the proof.

Claim 9.1. Let T be a tournament that contains

(a) match (k⋆, i⋆, t⋆) and in which team t⋆ plays away in slot k⋆ + 1, or
(b) one of the matches (k⋆, j⋆, t⋆), (k⋆, i⋆, t⋆) or (k⋆ + 1, j⋆, t⋆), and in which team t⋆ never travels from

venue i⋆ to venue j⋆.

Then (χ(T ), ψ(T )) satisfies (5a) with equality.

In order to prove that the inequality is facet-defining, let a⊺x+ b⊺y ≤ γ define any facet F that contains
the face induced by this inequality. We will prove that it is a multiple of inequality (5a). Without loss of
generality, we assume that the equation is normalized with respect to slot 1, i.e., it satisfies (B).

Claim 9.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, i⋆, j⋆) there exists a tournament T in which team t

never travels from venue i to venue j and which satisfies condition (a) of Claim 9.1.

A tournament T from Claim 9.2 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except for
y′

t,i,j = 1. By Claim 9.1 we have (χ(T ), y), (χ(T ), y′) ∈ F . In this case, a⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′

implifies to
bt,i,j = 0 for all (t, i, j) ∈ V ×A with (t, i, j) ̸= (t⋆, i⋆, j⋆). (§9.2)

laim 9.3. For each (k, i, j) ∈ M \ {(k⋆, i⋆, t⋆), (k⋆, t⋆, i⋆), (k⋆, j⋆, t⋆), (k⋆, t⋆, j⋆), (k⋆ + 1, j⋆, t⋆),
k⋆ + 1, t⋆, j⋆)} with k ≥ 2 there exist tournaments T and T ′ satisfying (HA1,k,i,j) and condition (b) of
laim 9.1.

The tournaments T and T ′ from Claim 9.3 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F by Claim 9.1.
sing the fact that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)) and (9.2),
⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j = ak,j,i for each (k, i, j) ∈ M \ {(k⋆, i⋆, t⋆), (k⋆, t⋆, i⋆),

(k⋆, j⋆, t⋆), (k⋆, t⋆, j⋆), (k⋆ + 1, j⋆, t⋆), (k⋆ + 1, t⋆, j⋆)}. (§9.3)

laim 9.4. Let k ∈ S \ {1}, let i, j, i′, j′ ∈ V be distinct and let P := {(i, j), (i′, j′), (i, j′), (i′, j)}. If
⋆ ⋆ ⋆ ⋆
(i) (i , t ) /∈ P and (j , t ) /∈ P , or

8
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(ii) (i⋆, t⋆) /∈ P , (j⋆, t⋆) ∈ P and k /∈ {k⋆, k⋆ + 1}, or
(iii) (i⋆, t⋆) ∈ P , (j⋆, t⋆) /∈ P and k ̸= k⋆, or
(iv) (i⋆, t⋆) ∈ P , (j⋆, t⋆) ∈ P and k = k⋆

olds, then there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) and condition (b) of Claim 9.1.

The tournaments T and T ′ from Claim 9.4 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F by Claim 9.1.
sing the fact that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)) and (9.2),
⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for all (k, i, j, i′, j′) satisfying the conditions in Claim 9.4. (§9.4a)

Consider a slot k ∈ S\{1}. For each ℓ ∈ {4, 5, . . . , n}, (§9.4a) for (i, j, i′, j′) = (1, ℓ, 2, 3) is applicable since
ondition (i) of Claim 9.4 is satisfied due to {i⋆, j⋆} ∩ {1, 2} = ∅. This implies ak,1,ℓ + ak,2,3 = ak,1,3 + ak,2,ℓ

hich, together with the fact that the equation is normalized with respect to slot 1 (i.e., it satisfies (B)),
ields ak,2,ℓ = 0. Moreover, for each ℓ ∈ {3, 4, . . . , n}, (§9.3) for (i, j) = (ℓ, 2) implies ak,ℓ,2 = ak,2,ℓ = 0.

For distinct ℓ, ℓ′ ∈ {3, 4, . . . , n} with (k, ℓ, ℓ′) /∈ {(k⋆, t⋆, i⋆), (k⋆, t⋆, j⋆), (k⋆ + 1, t⋆, j⋆)}, (§9.4a) for
i, j, i′, j′) = (1, ℓ′, ℓ, 2) is applicable, which implies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with the fact
hat the equation is normalized with respect to slot 1 (i.e., it satisfies (B)) this shows

ak,i,j = 0 for all (k, i, j) ∈ M \ {(k⋆, i⋆, t⋆), (k⋆, j⋆, t⋆), (k⋆ + 1, j⋆, t⋆)}. (§9.4b)

ince for each of the matches (k⋆, i⋆, t⋆), (k⋆, j⋆, t⋆), (k⋆ + 1, j⋆, t⋆) there exists a tournament containing
xactly this match and in which team t⋆ never travels from venue i⋆ to venue j⋆, and since there exists a
ournament satisfying condition (a) of Claim 9.1, we obtain

γ = ak⋆,i⋆,t⋆ = ak⋆,j⋆,t⋆ = ak⋆+1,j⋆,t⋆ = γ = ak⋆,i⋆,t⋆ + ak⋆,j⋆,t⋆ − bt⋆,i⋆,j⋆ .

his shows that a⊺x+ b⊺y ≤ γ is a positive multiple of inequality (5a), which concludes the proof. □

Similar to (1d), inequalities (1e) are not facet-defining. A lifted inequality reads

x1,j,t + xk,j,t +
∑

i∈V \{t}

xk,t,i + xk+1,j,t − 1 ≤ yt,t,j ∀k ∈ S \ {2n− 2}, ∀(t, j) ∈ A (6)

ndeed, in order to obtain (1e) one only needs to combine (6) with nonnegativity constraints for x. The lifted
nequalities turn out to be facet-defining.

heorem 10. Inequalities (6) are facet-defining for Putt(n) for all k ∈ S \ {2n− 2} and (t, j) ∈ A.

roof. We assume n ≥ 6 since we verified the statement for n = 4 computationally [14]. Consider the
nequality x1,j⋆,t⋆ + xk⋆,j⋆,t⋆ +

∑
i∈V \{t⋆} xk⋆,t⋆,i + xk⋆+1,j⋆,t⋆ − yt⋆,t⋆,j⋆ ≤ 1 for some slot k⋆ ∈ S \ {2n− 2}

nd distinct teams t⋆, j⋆ ∈ V . By Lemma 7, we can assume j⋆ = 3 and t⋆ = 4. The inequality is valid for
utt(n) since the only possibilities in which x1,j⋆,t⋆ + xk⋆,j⋆,t⋆ +

∑
i∈V \{t⋆} xk⋆,t⋆,i + xk⋆+1,j⋆,t⋆ exceeds 1

re for k⋆ = 1 (since then (1, j⋆, t⋆) and (k⋆, j⋆, t⋆) are identical) or if team t⋆ plays at home in slot k⋆ and
way against team j⋆ in slot 1 or k⋆ + 1. In either case, team t⋆ travels from its home venue to j⋆, forcing
t⋆,t⋆,j⋆ = 1.

The following claim is used several times throughout the proof.
laim 10.1. Let T be a tournament with
9
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(a) (1, j⋆, t⋆) ∈ T and k⋆ = 1 holds, or
(b) (1, j⋆, t⋆) ∈ T and team t⋆ plays at home in slot k⋆, or
(c) (k⋆ + 1, j⋆, t⋆) ∈ T and team t⋆ plays at home in slot k⋆, or
(d) (k⋆ + 1, j⋆, t⋆) ∈ T and team t⋆ plays away in slot k⋆, or
(e) (k⋆, j⋆, t⋆) ∈ T , k⋆ ≥ 2 and team t⋆ plays away in slot k⋆ − 1, or
(f) team t⋆ plays at home in slot k⋆ and never travels from its home venue to venue j⋆.

hen (χ(T ), ψ(T )) satisfies (6) with equality. Moreover, team t⋆ travels from its home venue to venue j⋆ if
nd only if one of conditions (a)–(c) is satisfied.

In order to prove that the inequality is facet-defining, let a⊺x+b⊺y ≤ γ define any facet F that contains the
ace induced by this inequality. We will prove that it is a multiple of inequality (6). Let k̄ ∈ S\{1, k⋆, k⋆ +1}.

By Lemma 2 we can assume that the equation is normalized with respect to slot k̄, i.e., it satisfies

am = 0 for each m ∈ Bk̄. (§10.1)

ote that, in contrast to previous proofs, we do not normalize with respect to slot 1.

laim 10.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, t⋆, j⋆) there exists a tournament T satisfying a
condition from Claim 10.1.

A tournament T from Claim 10.2 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except for
y′

t,i,j = 1. By Claim 10.1 we have (χ(T ), y), (χ(T ), y′) ∈ F . In this case, a⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′

simplifies to
bt,i,j = 0 for all (t, i, j) ∈ V ×A with (t, i, j) ̸= (t⋆, t⋆, j⋆). (§10.2)

Claim 10.3. For each (k, i, j) ∈ M with k ̸= k̄, {i, j} ̸= {j⋆, t⋆} and for which k = k⋆ implies t⋆ /∈ {i, j}
there exist tournaments T and T ′ satisfying (HAk̄,k,i,j) such that T and T ′ satisfy the same condition from
Claim 10.1.

The tournaments T and T ′ from Claim 10.3 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F due to Claim 10.1.
Using (§10.1) and (10.2), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j = ak,j,i for each (k, i, j) ∈ M with {i, j} ≠ {j⋆, t⋆} for which k = k⋆ implies t⋆ /∈ {i, j}. (§10.3)

Claim 10.4. Let k ∈ S \ {k̄}, let i, j, i′, j′ ∈ V be distinct with (j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)} or
with k /∈ {1, k⋆, k⋆ + 1}. Then there exist tournaments T and T ′ satisfying (PSk̄,k,i,j,i′,j′) such that T and T ′

satisfy the same condition from Claim 10.1.

The tournaments T and T ′ from Claim 10.4 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F due to Claim 10.1.
Using (§10.1) and (10.2), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for all distinct i, j, i′, j′ ∈ V with

(j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)} or k /∈ {1, k⋆, k⋆ + 1}. (§10.4a)

Consider a slot k ∈ S \ {k̄}. For each ℓ ∈ {4, 5, . . . , n}, (§10.4a) for (i, j, i′, j′) = (1, ℓ, 2, 3) is applicable since
(j⋆, t⋆) = (3, 4) is not among the matches (i, j), (i′, j′), (i, j′), (i′, j). This implies ak,1,ℓ+ak,2,3 = ak,1,3+ak,2,ℓ

which together with (§10.1) yields ak,2,ℓ = 0. Moreover, for each ℓ ∈ {3, 4, . . . , n} with (k, ℓ) ̸= (k⋆, t⋆),
(§10.3) for (i, j) = (ℓ, 2) implies a = a = 0.
k,ℓ,2 k,2,ℓ

10
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For distinct ℓ, ℓ′ ∈ {3, 4, . . . , n} with (ℓ, ℓ′) ̸= (3, 4) or k /∈ {1, k⋆.k⋆ + 1}, (§10.4a) for (i, j, i′, j′) =
(1, ℓ′, ℓ, 2) is applicable, which implies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with (§10.1) this shows

ak,i,j = 0 for all (k, i, j) ∈ M with

(k, i) ̸= (k⋆, t⋆) and for which (i, j) = (j⋆, t⋆) implies k /∈ {1, k⋆, k⋆ + 1}. (§10.4b)

ogether with (§10.2), we obtain that the support of inequality a⊺x+ b⊺y ≤ γ is a subset of the support of
nequality (6). It remains to prove that the coefficients agree (up to a positive multiple).

It is easy to see that for each condition of Claim 10.1 there exists a tournament T satisfying it.
rom (§10.2) and (§10.4b) we obtain the following equations: If k⋆ = 1, then

γ
(a)= a1,j⋆,t⋆ − yt⋆,t⋆,j⋆

(c)= ak⋆+1,j⋆,t⋆ + ak⋆,t⋆,j − yt⋆,t⋆,j⋆
(d)= ak⋆+1,j⋆,t⋆

(f)= ak⋆,t⋆,j

holds, which implies a1,j⋆,t⋆ = 2 and a1,t⋆,j = a2,j⋆,t⋆ = bt⋆,t⋆,j⋆ = γ = 1 for each j ∈ V \ {t⋆}. Otherwise,
i.e., if k⋆ ≥ 2, then

γ
(b)= a1,j⋆,t⋆ + ak⋆,t⋆,j − yt⋆,t⋆,j⋆

(c)= ak⋆+1,j⋆,t⋆ + ak⋆,t⋆,j − yt⋆,t⋆,j⋆
(d)= ak⋆+1,j⋆,t⋆

(c)= ak⋆,j⋆,t⋆
(f)= ak⋆,t⋆,j

holds, which implies a1,j⋆,t⋆ = ak⋆,j⋆,t⋆ = ak⋆,t⋆,j = ak⋆+1,j⋆,t⋆ = bt⋆,t⋆,j⋆ = γ = 1 for each j ∈ V \ {t⋆}.
This shows that a⊺x+ b⊺y ≤ γ is a positive multiple of inequality (6), which concludes the proof. □

The symmetric lifted version of inequality (1f) reads

x2n−2,i,t + xk,i,t +
∑

j∈V \{t}

xk,t,j + xk−1,i,t − 1 ≤ yt,i,t ∀k ∈ S \ {1}, ∀(i, t) ∈ A (7)

Using Lemma 7, we obtain the following corollary of Theorem 10.

Corollary 11. Inequalities (7) are facet-defining for Putt(n) for all k ∈ S \ {2n− 2} and (i, t) ∈ A.

Theorem 12. Inequalities (1g), x1,j,t ≤ yt,t,j, are facet-defining for Putt(n) for all (t, j) ∈ A.

Proof. We assume n ≥ 6 since we verified the statement for n = 4 computationally [14]. Consider the
inequality x1,j⋆,t⋆ ≤ yt⋆,t⋆,j⋆ for distinct teams t⋆, j⋆ ∈ V . By Lemma 7, we can assume j⋆ = 3 and t⋆ = 4.
The inequality is valid for Putt(n) since the team t⋆ has to travel from its home venue to venue j⋆ if it plays
there in slot 1.

The following claim is used several times throughout the proof.

Claim 12.1. Let T be a tournament

(a) in which team t⋆ never travels from its home venue to venue j⋆, or
(b) with (1, j⋆, t⋆) ∈ T .

Then (χ(T ), ψ(T )) satisfies (1g) with equality. Moreover, team t⋆ travels from its home venue to venue j⋆ if
and only if condition (b) is satisfied.

In order to prove that the inequality is facet-defining, let a⊺x+ b⊺y ≤ γ define any facet F that contains
the face induced by this inequality. We will prove that it is a multiple of inequality (1g).
By Lemma 2 we can assume that the equation is normalized with respect to slot 1, i.e., it satisfies (B).
11
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Claim 12.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, t⋆, j⋆) there exists a tournament T satisfying a
ondition of Claim 12.1.

A tournament T from Claim 12.2 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except for
′
t,i,j = 1. By Claim 12.1 we have (χ(T ), y), (χ(T ), y′) ∈ F . In this case, a⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′

implifies to
bt,i,j = 0 for all (t, i, j) ∈ V ×A with (t, i, j) ̸= (t⋆, t⋆, j⋆). (§12.2)

laim 12.3. For each (k, i, j) ∈ M with k ̸= n and {i, j} ≠ {j⋆, t⋆} there exist tournaments T and T ′

atisfying (HAn,k,i,j) such that T and T ′ satisfy the same condition from Claim 12.1.

The tournaments T and T ′ from Theorem 12 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F by Claim 12.1.
sing (B) and (12.2), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j = ak,j,i for each (k, i, j) ∈ M with {i, j} ≠ {j⋆, t⋆}. (§12.3)

laim 12.4. Let k ∈ S \ {n}, let i, j, i′, j′ ∈ V be distinct such that (k, j⋆, t⋆) /∈ {(1, i, j), (1, i′, j′), (1, i, j′),
1, i′, j)} holds. Then there exist tournaments T and T ′ satisfying (PSn,k,i,j,i′,j′) such that T and T ′ satisfy
he same condition from Claim 12.1.

The tournaments T and T ′ from Claim 12.4 satisfy (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F due to Claim 12.1.
sing (B) and (12.2), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for all distinct i, j, i′, j′ ∈ V with

(j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. (§12.4a)

Consider a slot k ∈ S \ {n}. For each ℓ ∈ {4, 5, . . . , n}, (§12.4a) for (i, j, i′, j′) = (1, ℓ, 2, 3) is applicable
since (j⋆, t⋆) = (3, 4) is not among the matches (i, j), (i′, j′), (i, j′), (i′, j). This implies ak,1,ℓ + ak,2,3 =

k,1,3 + ak,2,ℓ which together with (B) yields ak,2,ℓ = 0. Moreover, for each ℓ ∈ {3, 4, . . . , n}, (§12.3) for
i, j) = (ℓ, 2) implies ak,ℓ,2 = ak,2,ℓ = 0.

For distinct ℓ, ℓ′ ∈ {3, 4, . . . , n} with (k, ℓ, ℓ′) ̸= (1, 3, 4), (§12.4a) for (i, j, i′, j′) = (1, ℓ′, ℓ, 2) is applicable,
hich implies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with (B) this shows

ak,i,j = 0 for all (k, i, j) ∈ M \ {(1, j⋆, t⋆)}. (§12.4b)

Together with (§12.2), we obtain that the support of inequality a⊺x+ b⊺y ≤ γ is a subset of the support of
inequality (1g).

It remains to prove that the coefficients agree (up to a positive multiple). From Claim 12.1 it is clear that
a1,j⋆,t⋆ = −bt⋆,t⋆,j⋆ and that the right-hand side γ must be equal to 0. This concludes the proof. □

Again, we obtain the following corollary by applying Lemma 7.

Corollary 13. Inequalities (1h), x2n−2,i,t ≤ yt,i,t, are facet-defining for Putt(n) for all (i, t) ∈ A.

5. New inequality classes

Flow inequalities. Formulation (1) can be strengthened by the following flow inequalities.∑
yt,i,j ≥ 1 ∀i, t ∈ V : i ̸= t (8a)
j∈V \{i}

12
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∑
j∈V \{i}

yt,j,i ≥ 1 ∀i, t ∈ V : i ̸= t (8b)

hey state that each team t has to leave (resp. enter) each other team’s venue at least once. We now prove
hat all these inequalities define facets of Putt(n).

heorem 14. Inequalities (8) are facet-defining for Putt(n) for all i, t ∈ V with i ̸= t.

Proof. We only prove the statement for inequalities (8a). For (8b), it then follows from Lemma 7. In
addition, we assume n ≥ 8 since we verified the statement for n ∈ {4, 6} computationally [14].

Let i⋆, t⋆ ∈ V with i⋆ ̸= t⋆. The inequality for i := i⋆ and t := t⋆ is valid since team t⋆ has to play an
away match against team i⋆ after which it leaves to some other venue.

To establish that the inequality is facet-defining, let a⊺x + b⊺y ≥ γ define any facet F that contains the
face induced by

∑
j∈V \{i⋆} yt⋆,i⋆,j ≥ 1. Without loss of generality, the equation is normalized with respect

to slot 1, i.e., it satisfies (B).

Claim 14.1. For all (t, i, j) ∈ V × A with (t, i) ̸= (t⋆, i⋆) there exists a tournament in which team t never
ravels from venue i to venue j and in which team t⋆ leaves venue i⋆ exactly once.

A tournament T from Claim 14.1 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except
or y′

t,i,j = 1. We have (χ(T ), y) ∈ F and if (t, i) ̸= (t⋆, i⋆) holds, also (χ(T ), y′) ∈ F . In this case,
⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′ simplifies to bt,i,j = 0. We obtain

bt,i,j = 0 for all (t, i, j) ∈ V ×A with (t, i) ̸= (t⋆, i⋆). (§14.1)

laim 14.2. For all distinct i, j ∈ V and for each k ∈ S \ {1} there exist tournaments T and T ′

atisfying (HA1,k,i,j) such that in both tournaments team t⋆ leaves venue i⋆ exactly once and to the same
enue.

In the tournaments T and T ′ from Claim 14.2 team t⋆ leaves venue i⋆ exactly once and to the same
enue. Hence, we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . Moreover, together with (§14.1) it implies b⊺ψ(T ) =
⊺ψ(T ′). Combining this with the fact that the equation is normalized with respect to slot 1 (i.e., it
atisfies (B)), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to ak,i,j = ak,j,i. Thus, we have

ak,i,j = ak,j,i for each (k, i, j) ∈ M. (§14.2)

laim 14.3. For each slot k ∈ S \ {1} and for distinct teams i, j, i′, j′ ∈ V with (i⋆, t⋆) /∈ {(i, j), (i′, j′),
i, j′), (i′, j)} there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) such that in both tournaments team
⋆ leaves venue i⋆ exactly once and to the same venue.

In the tournaments T and T ′ from Claim 14.3 team t⋆ leaves venue i⋆ exactly once and to the same
enue. Hence, we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . Moreover, together with (§14.1) it implies b⊺ψ(T ) =
⊺ψ(T ′). Combining this with the fact that the equation is normalized with respect to slot 1 (i.e., it
atisfies (B)), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak,i,j + ak,i′,j′ = ak,i,j′ + ak,i′,j for each k ∈ S \ {1} and for all distinct i, j, i′, j′ ∈ V

⋆ ⋆ ′ ′ ′ ′
with (i , t ) /∈ {(i, j), (i , j ), (i, j ), (i , j)} (§14.3)
13
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Since the formulation is symmetric with respect to teams, we can now, by permuting teams, assume
(i⋆, t⋆) = (4, 3). Consider a slot k ∈ S \ {1}. For each ℓ ∈ {4, 5, . . . , n}, (§14.3) implies ak,1,ℓ + ak,2,3 =

k,1,3 + ak,2,ℓ which together with the fact that the equation is normalized with respect to slot 1 (i.e., it
atisfies (B)) yields ak,2,ℓ = 0. Combined with (§14.2) we also obtain ak,ℓ,2 = 0. For all ℓ, ℓ′ ∈ {3, 4, . . . , n}
xcept for (ℓ, ℓ′) = (4, 3), (§14.3) implies ak,1,ℓ′ + ak,ℓ,2 = ak,1,2 + ak,ℓ,ℓ′ . Together with the fact that the
quation is normalized with respect to slot 1 (i.e., it satisfies (B)), this shows ak,ℓ,ℓ′ = 0 for all (ℓ, ℓ′) ̸= (4, 3).
rom (§14.2) we also have ak,4,3 = ak,3,4 = 0 and obtain a = O.

laim 14.4. For distinct j, j′ ∈ V \ {i⋆} there exist tournaments T and T ′ such that in both tournaments
eam t⋆ leaves venue i⋆ exactly once, namely to venue j in T and to venue j′ in T ′.

In the tournaments T and T ′ from Claim 14.4 team t⋆ leaves venue i⋆ exactly once. Hence, we have
χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . From a = O and (§14.1) we have that bt⋆,i⋆,j = a⊺χ(T ) + b⊺ψ(T ) = γ =
⊺χ(T ′) + b⊺ψ(T ′) = bt⋆,i⋆,j′ . This shows that (a⊺, b⊺) is a multiple of the coefficient vector of (8a). The fact
hat it is a positive multiple follows from the observation that we can take any feasible solution and setting
ll entries of y to 1 yields another feasible solution (which is not in the face anymore). □

ome-flow inequalities. Inequalities (8) also hold for t’s home venue, i.e., i = t, but in this case they are
ominated by the following home-flow inequalities.∑

j∈V \{t}

yt,t,j +
∑

j∈V \{t}

(xk,t,j + xk+n−1,t,j) ≥ 2 ∀k ∈ {1, 2, . . . , n− 1}, ∀t ∈ V (9a)

∑
j∈V \{t}

yt,t,j +
∑

j∈V \{t}

(xk,j,t + xk+n−1,j,t) ≥ 2 ∀k ∈ {1, 2, . . . , n− 1}, ∀t ∈ V (9b)

∑
i∈V \{t}

yt,i,t +
∑

i∈V \{t}

(xk,t,i + xk+n−1,t,i) ≥ 2 ∀k ∈ {1, 2, . . . , n− 1}, ∀t ∈ V (9c)

∑
i∈V \{t}

yt,i,t +
∑

i∈V \{t}

(xk,i,t + xk+n−1,i,t) ≥ 2 ∀k ∈ {1, 2, . . . , n− 1}, ∀t ∈ V (9d)

hey are valid for Putt(n) since team t leaves (resp. enters) its home venue either at least twice or it leaves
resp. enters) it only once in which case it cannot play at home (resp. away) in slots k and k + n − 1. The
um of the first two reads∑

j∈V \{t}

2yt,t,j +
∑

j∈V \{t}

(xk,t,j + xk,j,t + xk+n−1,t,j + xk+n−1,j,t) ≥ 4,

or which the subtraction of Eq. (1b) for team t and slots k and k + n− 1 yields∑
j∈V \{t}

2yt,t,j ≥ 4 − 1 − 1,

hich in turn equals (8a) for i = t. The corresponding result is as follows.

heorem 15. Inequalities (9) are facet-defining for Putt(n) for each team t ∈ V and each slot k ∈
1, 2, . . . , n− 1}.

roof. We only prove the statement for inequalities (9a). The proof for inequalities (9b) is very similar.
oreover, the result for inequalities (9c) and (9d) follows from Lemma 7. In addition, we assume n ≥ 6 since
e verified the statement for n = 4 computationally [14].
Let t⋆ ∈ V and k⋆ ∈ {1, 2, . . . , n − 1}. To see that the inequalities are valid, first observe that team t⋆

as to leave its own venue at least once. If it does so at least twice, the inequality is certainly satisfied. The

emaining case is settled by the following observation which we will use several times throughout the proof.

14
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Claim 15.1. Let T be a tournament in which t⋆ leaves its home venue exactly once. Then all away matches
of t⋆ take place in consecutive slots, and hence t⋆ plays at home in exactly one of the two slots k⋆ and k⋆+n−1.
n particular, (χ(T ), ψ(T )) satisfies (9a) and (9b) with equality.

To prove that inequality (9a) is facet-defining, let a⊺x+ b⊺y ≥ γ define any facet F that contains the face
nduced by

∑
j∈V \{t⋆} yt⋆,t⋆,j +

∑
j∈V \{t⋆}(xk⋆,t⋆,j + xk⋆+n−1,t⋆,j) ≥ 2.

Since the formulation is symmetric with respect to teams we can, by permuting teams, assume t⋆ = 4
or the remainder of the proof. Let k̄ ∈ S with k⋆ < k̄ < k⋆ + n − 1. By Lemma 2 we can assume that the
quation is normalized with respect to slot k̄, i.e., it satisfies

am = 0 for each m ∈ Bk̄. (§15.1)

Claim 15.2. For all (t, i, j) ∈ V × A with (t, i) ̸= (t⋆, t⋆) there exists a tournament in which team t never
ravels from venue i to venue j and in which team t⋆ leaves its home venue exactly once.

A tournament T from Claim 15.2 satisfies ψ(T )t,i,j = 0. Let y := ψ(T ) and let y′ be equal to y except
or y′

t,i,j = 1. By Claim 15.1 we have (χ(T ), y) ∈ F and if (t, i) ̸= (t⋆, t⋆) holds, also (χ(T ), y′) ∈ F . In this
ase, a⊺χ(T ) + b⊺y = γ = a⊺χ(T ) + b⊺y′ simplifies to bt,i,j = 0. We obtain

bt,i,j = 0 for all (t, i, j) ∈ V ×A with (t, i) ̸= (t⋆, t⋆). (§15.2)

laim 15.3. For any slot k ∈ {1, 2, . . . , n− 1} and distinct j, j′ ∈ V \ {t⋆} there exist tournaments T and
′ satisfying (HAk,k + n − 1,t⋆,j) and such that team t⋆ leaves its home venue exactly once and to the venues
in T and to j′ in T ′.

In the tournaments T and T ′ from Claim 15.3 team t⋆ leaves its home venue exactly once. Hence, by
laim 15.1 we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F . Due to (§15.1) and (§15.2) the equation a⊺χ(T ) +
⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to ak,t⋆,j + ak+n−1,j,t⋆ + bt⋆,t⋆,j = ak,j,t⋆ + ak+n−1,t⋆,j + bt⋆,t⋆,j′ .
ince j′ only appears in the last term, varying j′ yields bt⋆,t⋆,j1 = bt⋆,t⋆,j2 for all j1, j2 ∈ V \ {t⋆}. Together
ith (§15.2), this shows

b⊺ψ(T ) = b⊺ψ(T ′) for all tournaments T, T ′ with (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F

in which t⋆ leaves its home venue as often in T as in T ′. (§15.3a)

his further simplifies the equation to

ak,t⋆,j + ak+n−1,j,t⋆ = ak,j,t⋆ + ak+n−1,t⋆,j for all k ∈ {1, 2, . . . , n− 1} and all j ∈ V \ {t⋆}. (§15.3b)

laim 15.4. For each slot k ∈ S \ {k̄} and for all distinct i, j ∈ V \ {t⋆} there exist tournaments T and T ′

atisfying (HAk̄,k,i,j) and such that in both tournaments team t⋆ leaves its home venue exactly once.

In the tournaments T and T ′ from Claim 15.4 team t⋆ leaves its home venue exactly once. Hence, by
laim 15.1 we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F and by (§15.3a) also b⊺ψ(T ) = b⊺ψ(T ′). Combining

his with (§15.1), a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies to ak,i,j = ak,j,i. Thus, we have

ak,i,j = ak,j,i for each (k, i, j) ∈ M with t⋆ /∈ {i, j}. (§15.4)
15
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Claim 15.5. For distinct slots k1, k2 ∈ S and distinct teams i, j, i′, j′ ∈ V with t⋆ /∈ {i, i′} and with
2 = k1 + 1 if t⋆ ∈ {j, j′} there exist tournaments T and T ′ satisfying (PSk1,k2,i,j,i′,j′) such that in both
ournaments team t⋆ leaves its home venue exactly once.

In the tournaments T and T ′ from Claim 15.5 team t⋆ leaves its home venue exactly once. Hence, by
laim 15.1 we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F and by (§15.3a) also b⊺ψ(T ) = b⊺ψ(T ′). Combining

his with (§15.1), equation a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) yields

ak1,i,j + ak1,i′,j′ + ak2,i,j′ + ak2,i′,j = ak1,i,j′ + ak1,i′,j + ak2,i,j + ak2,i′,j′ for all distinct slots k1, k2 ∈ S

and for all distinct i, j, i′, j′ ∈ V with t⋆ /∈ {i, i′} and with |k1 − k2| = 1 if t⋆ ∈ {j, j′}. (§15.5a)

For each k ∈ S \ {k̄} and each ℓ ∈ {5, 6, . . . , n} (noting ℓ ̸= t⋆ = 4), property (§15.5a) with
(k1, k2, i, j, i

′, j′) = (k̄, k, 1, 3, 2, ℓ) implies ak̄,1,3 + ak̄,2,ℓ + ak,1,ℓ + ak,2,3 = ak̄,1,ℓ + ak̄,2,3 + ak,1,3 + ak,2,ℓ.
By (§15.1), this simplifies to ak,2,ℓ = 0, from which (§15.4) yields ak,ℓ,2 = 0.

For each k ∈ S\{k̄} and all distinct ℓ, ℓ′ ∈ {3, 5, 6, . . . , n}, (§15.5a) with (k1, k2, i, j, i
′, j′) = (k̄, k, 1, ℓ′, ℓ, 2)

implies ak̄,1,ℓ′ +ak̄,ℓ,2+ak,1,2+ak,ℓ,ℓ′ = ak̄,1,2+ak̄,ℓ,ℓ′ +ak,1,ℓ′ +ak,ℓ,2. By (§15.1) and the previous observation
ak,ℓ,2 = 0, this simplifies to ak,ℓ,ℓ′ = 0. Since also ak̄,⋆,⋆ = O, we have

ak,i,j = 0 for all k ∈ S and all i, j ∈ V \ {t⋆}. (§15.5b)

Let ℓ ∈ V \ {t⋆}. For k ∈ S \ {k̄}, the tuple (k1, k2, i, j, i
′, j′) = (k − 1, k, ℓ, t⋆, 1, 2) satisfies the conditions

of (§15.5a), and thus for ℓ ∈ {3, 5, 6, . . . , n} implies ak−1,ℓ,t⋆ +ak−1,1,2 +ak,ℓ,2 +ak,1,t⋆ = ak−1,ℓ,2 +ak−1,1,t⋆ +
ak,ℓ,t⋆ +ak,1,2. By (§15.1) and (§15.5b), this simplifies to ak−1,ℓ,t⋆ = ak,ℓ,t⋆ . By induction on k and ak̄,ℓ,t⋆ = 0,
we obtain

ak,ℓ,t⋆ = 0 for all k ∈ S and all ℓ ∈ V \ {t⋆}. (§15.5c)

With this, (§15.3b) is simplified to

ak,t⋆,j = ak+n−1,t⋆,j for all k ∈ {1, 2, . . . , n− 1} and all j ∈ V \ {t⋆}. (§15.5d)

Claim 15.6. For each slot k ∈ {k⋆ + 1, k⋆ + 2, . . . , k⋆ + n − 3} and each team j ∈ V \ {t⋆} there exist
tournaments T and T ′ satisfying (HAk,k + 1,j,t⋆) such that in both tournaments team t⋆ leaves its home venue
exactly twice and plays away in slots k⋆ and k⋆ + n− 1.

In the tournaments T and T ′ from Claim 15.6 team t⋆ leaves its home venue exactly twice and does not
play home in slots k⋆ and k⋆ + n − 1. Hence, we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F and by (§15.3a)
also b⊺ψ(T ) = b⊺ψ(T ′). Combining this with (§15.1) and (§15.5c), equation a⊺χ(T ) + b⊺ψ(T ) = γ =
a⊺χ(T ′) + b⊺ψ(T ′) simplifies to

ak+1,t⋆,j = ak,t⋆,j for each k ∈ S with k⋆ < k < k⋆ + n− 1 and each j ∈ V \ {t⋆}.

Induction on k yields that ak,t⋆,j is the same for all these k. Moreover, for each slot k ∈ S with k < k⋆ or
k > k⋆ + n− 1 the slot k + n− 1 (resp. k − n+ 1) lies between k⋆ and k⋆ + n− 1. Application of (§15.5d)
yields that ak,t⋆,j is the same for all k ∈ S \ {k⋆, k⋆ + n− 1}. As k̄ is among those, (§15.1) yields

ak,t⋆,j = 0 for each k ∈ S \ {k⋆, k⋆ + n− 1} and each j ∈ V \ {t⋆}. (§15.6)

Claim 15.7. For all distinct teams j, j′ ∈ V \ {t⋆} there exist tournaments T and T ′ satisfying
(HAk⋆,k⋆ + 1,t⋆,j) such that team t⋆ leaves its home venue exactly once, namely to venue j, in tournament T

′ ′ ⋆ ⋆
and exactly twice, namely to venues j and j , in tournament T where it plays away in slots k and k +n−1.
16
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In the tournaments T and T ′ from Claim 15.7 team t⋆ leaves its home venue either once or twice, and in the
atter case it does not play home in slots k⋆ and k⋆ +n−1. Hence, we have (χ(T ), ψ(T )), (χ(T ′), ψ(T ′)) ∈ F .
sing (§15.1), (§15.2), (§15.5c) and (§15.6), equation a⊺χ(T ) + b⊺ψ(T ) = γ = a⊺χ(T ′) + b⊺ψ(T ′) simplifies

o
ak⋆,t⋆,j + bt⋆,t⋆,j = γ = bt⋆,t⋆,j + bt⋆,t⋆,j′ . (§15.7)

y varying j and j′ and considering (§15.5d), we obtain that a⊺x + b⊺y ≥ γ is a positive multiple of
nequality (9a). This concludes the proof. □

face defined by flow inequalities. Recall the definition of the unconstrained traveling tournament polytope:

Putt(n) := conv{(χ(T ), y) ∈ {0, 1}M × {0, 1}V ×A : T tournament and y ≥ ψ(T )}.

llowing vectors y ≥ ψ(T ) augments the set of feasible solutions by suboptimal ones, which is advantageous
or finding facet-defining inequalities due to a larger dimension. Now we examine what happens if we set the
ow inequalities (8a) and (8b) to equality:∑

j∈V \{i}

yt,i,j = 1 ∀i, t ∈ V : i ̸= t (10a)

∑
i∈V \{j}

yt,i,j = 1 ∀j, t ∈ V : j ̸= t (10b)

he following theorem shows how we obtain the convex hull of all pairs of play- and travel-vectors as the
orresponding face of Putt(n).

heorem 16. The face of Putt(n) defined by Eqs. (10) is equal to

conv{(χ(T ), ψ(T )) ∈ {0, 1}M × {0, 1}V ×A : T tournament}.

onsequently, formulation (1) together with these equations is an integer programming formulation for this
olytope.

roof. Let Q be the polytope defined in the statement of the theorem.
To see that Q is contained in the mentioned face, let T be a tournament. For each i⋆, t⋆ ∈ V with i⋆ ̸= t⋆,

q. (10a) is satisfied by ψ(T ) since team t⋆ has to play exactly one away match against team i⋆ after which
t leaves this venue. Moreover, it never visits venue i⋆ again. Similarly, ψ(T ) satisfies all Eqs. (10b).

It remains to prove that every vertex (x, y) of the face lies in Q. Since Putt(n) is integral, all its faces are
ntegral as well, and thus (x, y) ∈ {0, 1}M × {0, 1}V ×A. The vector x defines a tournament T and we have
≥ ψ(T ). We have to show y = ψ(T ). Consider an entry (t, i, j) ∈ V ×A. By i ̸= j, we have t ̸= i or t ̸= j. If
̸= i, then yt,i,j appears in Eq. (10a) for (i, t) and otherwise it appears in Eq. (10b) for (j, t). Since y must
e equal to ψ(T ) on the support of this equation, we have y = ψ(T ), which concludes the proof. □

. Problem variants

Since Putt(n) only reflects the basic constraints for different variants of the traveling tournament problem,
e briefly review the variants that occur in the literature.

irrored schedules. A common requirement is that of mirrored schedules. Formally, we require that if in
lot k < n, team i plays home against team j, then in slot k+n− 1, team i plays away against team i. Note
hat the mirroring does not refer to the slots but to the home/away pattern. This requirement can easily be
nforced by adding

xk,i,j = xk+n−1,j,i ∀k ∈ {1, 2, . . . , n− 1}, ∀(i, j) ∈ A (11)

to our model.

17
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Table 1
Sources of considered test instances. Instance files were obtained from [16].

Class Source Description

NL⟨n⟩ [1] Air distances of cities in National League of Major League Baseball
SUP⟨n⟩ [17,18] Air distances of cities in Super 14 rugby cup
GAL⟨n⟩ [17,18] Venues are exoplanet locations in 3D-space
INCR ⟨n⟩ [19] Venues are on straight line, increasing distance
LINE⟨n⟩ [19] Venues are equidistant on straight line
CIRC⟨n⟩ [1] Venues are equidistant on circle
CON⟨n⟩ [20] Distance is constant

No-repeaters. In a double round-robin tournament it is often undesirable that the two matches (k, i, j) and
k′, j, i) of the teams i, j ∈ V take place directly after another, i.e., k and k′ should not be subsequent
umbers. This can be enforced via the no-repeater constraints

xk,i,j + xk+1,j,i ≤ 1 ∀k ∈ {1, 2, . . . , 2n− 3}, ∀(i, j) ∈ A (12)

hort home stands and road trips. A home stand is a set of consecutive matches of team t ∈ V in which
plays only home. Similarly, a road trip is a set of consecutive matches in which t plays away. Both such
atch sequences are undesirable in a tournament, e.g., in order to distribute the home matches of each team
ore evenly over the season. For a given parameter U ∈ Z, the length of home stands and road trips can be

estricted to at most U by adding the home stand and road trip constraints
U∑

ℓ=0

∑
i∈V \{t}

xk+ℓ,t,i ≤ U ∀k ∈ {1, 2, . . . , 2n− 2 − U}, ∀t ∈ V, (13a)

U∑
ℓ=0

∑
i∈V \{t}

xk+ℓ,i,t ≤ U ∀k ∈ {1, 2, . . . , 2n− 2 − U}, ∀t ∈ V, (13b)

espectively. While this is sufficient for the correctness of the model, the requirement has a big effect on the
mount of travel of team t. More precisely, the n− 1 home matches of each team t have to be split into at
east (n− 1)/U consecutive sequences that are disrupted by away matches. This implies that team t has to
eave (resp. enter) its home venue at least this number of times. The following home stand flow and road
rip flow inequalities ∑

j∈V \{t}

yt,t,j ≥
⌈
n− 1
U

⌉
∀t ∈ V (14a)

∑
i∈V \{t}

yt,i,t ≥
⌈
n− 1
U

⌉
∀t ∈ V (14b)

odel this effect. The fact that these inequalities actually strengthen the LP relaxation (and are thus not
ust implied by (13)) will become clear in the next section.

. Computational impact

In this section we evaluate the addition of the inequalities that were discussed theoretically in a practical
etting. To this end, we implemented the IP models in Gurobi 9.5 [21] and assessed the impact for various
nstances.1 We ran our experiments on an Intel Xeon Gold 5217 CPU with 3.00 GHz with 64 GB memory, on
single thread and with a time limit of 1 hour. Our testbed consists of instances that were used previously

1 Our implementation can be obtained from github: github.com/discopt/traveling-tournament-cubic.
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Table 2
Characteristics of considered test instances. Number of variables, constraints and nonzeros reflect these numbers after Gurobi’s
presolve.

Variant Teams Plain Mirrored Y

Base (12)–(13) (5)–(7) (8) (14) (11)–(13) (5)–(7) (8) (14)

Parameter U {4, 6, 8} 3 3

Variables + additional
4 120 84
6 480 330
8 1232 840

Constraints + additional
4 332 +120 +24 +8 282 +120 +24 +8
6 1998 +1080 +60 +12 1785 +1134 +60 +12
8 6664 +5268 +112 +16 6132 +7655 +112 +16

Nonzeros 4 1334 +600 +72 +24 1116 +600 +72 +24
6 10260 +5400 +300 +60 8790 +5562 +300 +60
8 35168 +24540 +784 +112 30744 +31701 +784 +112

Table 3
Quality of the LP bounds after adding different (sets of) constraints to the base model (see Table 2) or after removal of (sets of)
constraints from the full model, which is the base model augmented by (5)-(7), (9), (10) and (14). The percentages indicate the ratio
“LP bound”/“best known primal solution”. (8)i=t indicates constraints (8) for i = t. Mirrored instances are indicated via Y.

Instance Addition of constraints Removal of constraints

Base (5)–(7) (8),(8)i=t (9),(10) (14) Full (5)–(7) (9),(10) (14)

NL4 Y 24.3 % 24.3 % 97.0 % 97.0 % 30.8 % 97.0 % 97.0 % 34.6 % 97.0 %
SUP4 Y 24.9 % 24.9 % 41.0 % 41.0 % 28.3 % 41.0 % 41.0 % 28.3 % 41.0 %
GAL4 Y 24.8 % 24.8 % 94.1 % 94.1 % 35.4 % 94.1 % 94.1 % 38.3 % 94.1 %
INCR4 Y 25.0 % 25.0 % 77.1 % 77.1 % 35.4 % 77.1 % 77.1 % 37.5 % 77.1 %
LINE4 Y 25.0 % 25.0 % 77.8 % 77.8 % 41.7 % 77.8 % 77.8 % 41.7 % 77.8 %
CIRC4 Y 20.0 % 20.0 % 80.0 % 80.0 % 40.0 % 80.0 % 80.0 % 40.0 % 80.0 %
CON4 Y 23.5 % 23.5 % 94.1 % 94.1 % 47.1 % 94.1 % 94.1 % 47.1 % 94.1 %
NL4 24.2 % 24.2 % 96.9 % 96.9 % 30.4 % 96.9 % 96.9 % 32.6 % 96.9 %
SUP4 5.2 % 5.2 % 20.9 % 20.9 % 10.4 % 20.9 % 20.9 % 10.4 % 20.9 %
GAL4 22.6 % 22.6 % 90.4 % 90.4 % 35.0 % 90.4 % 90.4 % 36.7 % 90.4 %
INCR4 16.7 % 16.7 % 66.7 % 66.7 % 31.3 % 66.7 % 66.7 % 31.3 % 66.7 %
LINE4 16.7 % 16.7 % 66.7 % 66.7 % 33.3 % 66.7 % 66.7 % 33.3 % 66.7 %
CIRC4 20.0 % 20.0 % 80.0 % 80.0 % 40.0 % 80.0 % 80.0 % 40.0 % 80.0 %
CON4 23.5 % 23.5 % 94.1 % 94.1 % 47.1 % 94.1 % 94.1 % 47.1 % 94.1 %

NL6 Y 11.0 % 11.0 % 53.2 % 53.2 % 30.1 % 65.5 % 65.5 % 30.7 % 53.2 %
SUP6 Y 10.8 % 10.8 % 14.1 % 14.1 % 12.6 % 29.1 % 29.1 % 12.6 % 14.1 %
GAL6 Y 11.3 % 11.3 % 65.1 % 65.1 % 35.6 % 77.2 % 77.2 % 36.1 % 65.1 %
INCR6 Y 9.0 % 9.0 % 44.2 % 44.2 % 26.0 % 56.7 % 56.7 % 26.7 % 45.0 %
LINE6 Y 8.9 % 8.9 % 44.6 % 44.6 % 28.9 % 57.8 % 57.8 % 28.9 % 45.2 %
CIRC6 Y 8.3 % 8.3 % 50.0 % 50.0 % 33.3 % 66.7 % 66.7 % 33.3 % 50.0 %
CON6 Y 12.5 % 12.5 % 75.0 % 75.0 % 50.0 % 87.5 % 87.5 % 50.0 % 75.0 %
NL6 9.1 % 9.1 % 54.8 % 54.8 % 32.1 % 72.8 % 72.8 % 32.1 % 54.8 %
SUP6 0.7 % 0.7 % 4.2 % 4.2 % 2.8 % 32.9 % 32.9 % 2.8 % 4.2 %
GAL6 12.0 % 12.0 % 72.1 % 72.1 % 39.8 % 87.3 % 87.3 % 39.8 % 72.1 %
INCR6 7.9 % 7.9 % 47.4 % 47.4 % 28.9 % 66.7 % 66.7 % 28.9 % 47.4 %
LINE6 7.9 % 7.9 % 47.4 % 47.4 % 31.6 % 68.4 % 68.4 % 31.6 % 47.4 %
CIRC6 9.4 % 9.4 % 56.3 % 56.3 % 37.5 % 75.0 % 75.0 % 37.5 % 56.3 %
CON6 14.0 % 14.0 % 83.7 % 83.7 % 55.8 % 97.7 % 97.7 % 55.8 % 83.7 %

NL8 Y 8.2 % 8.2 % 53.8 % 53.8 % 33.3 % 76.1 % 76.1 % 33.8 % 53.8 %
SUP8 Y 1.7 % 1.7 % 7.2 % 7.2 % 4.1 % 32.1 % 32.1 % 4.1 % 7.2 %
GAL8 Y 7.9 % 7.9 % 49.6 % 49.6 % 31.4 % 71.9 % 71.9 % 31.5 % 49.6 %
INCR8 Y 6.0 % 6.0 % 37.2 % 37.2 % 25.0 % 56.4 % 56.4 % 25.3 % 37.3 %
LINE8 Y 6.0 % 6.0 % 37.7 % 37.7 % 27.7 % 56.5 % 56.5 % 27.7 % 37.7 %
CIRC8 Y 5.7 % 5.7 % 45.7 % 45.7 % 34.3 % 68.6 % 68.6 % 34.3 % 45.7 %
CON8 Y 10.0 % 10.0 % 80.0 % 80.0 % 60.0 % 100.0 % 100.0 % 60.0 % 80.0 %
NL8 6.8 % 6.8 % 54.1 % 54.1 % 34.4 % 80.4 % 80.4 % 34.4 % 54.1 %
SUP8 1.0 % 1.0 % 7.7 % 7.7 % 3.9 % 39.8 % 39.8 % 3.9 % 7.7 %
GAL8 6.5 % 6.5 % 52.3 % 52.3 % 32.5 % 78.8 % 78.8 % 32.5 % 52.3 %
INCR8 5.1 % 5.1 % 41.0 % 41.0 % 28.4 % 66.7 % 66.7 % 28.4 % 41.0 %
LINE8 4.9 % 4.9 % 39.5 % 39.5 % 29.6 % 64.2 % 64.2 % 29.6 % 39.5 %
CIRC8 6.1 % 6.1 % 48.5 % 48.5 % 36.4 % 72.7 % 72.7 % 36.4 % 48.5 %
CON8 10.0 % 10.0 % 80.0 % 80.0 % 60.0 % 100.0 % 100.0 % 60.0 % 80.0 %
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Table 4
Quality of the IP bounds after adding different (sets of) constraints to the base model (see Table 2) or after removal of (sets of)
constraints from the full model, which is the base model augmented by (5)-(7), (9), (10) and (14). The percentages indicate the ratio
“IP bound”/“best known primal solution”. (8)i=t indicates constraints (8) for i = t. Mirrored instances are indicated via Y.

Instance Addition of constraints Removal of constraints

Base (5)–(7) (8),(8)i=t (9),(10) (14) Full (5)–(7) (9),(10) (14)

NL6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
SUP6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
GAL6 Y 100.0 % 100.0 % 100.0 % 100.0 % 75.9 % 100.0 % 95.0 % 85.3 % 100.0 %
INCR6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
LINE6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
CIRC6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
CON6 Y 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
NL6 42.7 % 40.3 % 70.3 % 69.8 % 63.9 % 83.6 % 84.1 % 57.9 % 69.0 %
SUP6 35.2 % 36.5 % 37.7 % 45.6 % 45.0 % 42.4 % 47.8 % 46.7 % 41.3 %
GAL6 44.2 % 39.9 % 76.3 % 77.4 % 66.1 % 89.0 % 88.7 % 65.6 % 78.3 %
INCR6 45.2 % 42.1 % 66.2 % 65.8 % 59.2 % 70.6 % 72.8 % 62.3 % 66.2 %
LINE6 53.9 % 46.1 % 67.1 % 67.1 % 57.9 % 73.7 % 76.3 % 59.2 % 68.4 %
CIRC6 62.5 % 40.6 % 64.1 % 75.0 % 75.0 % 78.1 % 76.6 % 59.4 % 75.0 %
CON6 88.4 % 83.7 % 88.4 % 83.7 % 100.0 % 97.7 % 97.7 % 74.4 % 86.0 %

NL8 Y 29.5 % 19.8 % 58.8 % 59.4 % 61.3 % 77.9 % 81.3 % 57.8 % 60.9 %
SUP8 Y 11.6 % 10.9 % 18.3 % 20.3 % 32.1 % 32.1 % 37.4 % 34.1 % 15.5 %
GAL8 Y 27.3 % 19.2 % 54.2 % 54.8 % 59.2 % 76.9 % 76.8 % 57.0 % 52.9 %
INCR8 Y 22.2 % 18.3 % 44.6 % 44.6 % 47.6 % 63.8 % 61.1 % 45.8 % 43.1 %
LINE8 Y 22.3 % 18.5 % 44.0 % 46.7 % 47.3 % 60.9 % 62.0 % 44.6 % 42.9 %
CIRC8 Y 46.4 % 30.7 % 51.4 % 51.4 % 62.9 % 70.7 % 70.7 % 50.7 % 51.4 %
CON8 Y 57.5 % 37.5 % 86.3 % 81.3 % 100.0 % 100.0 % 100.0 % 85.0 % 81.3 %
NL8 18.0 % 11.9 % 56.2 % 55.9 % 60.2 % 80.4 % 80.4 % 58.4 % 55.6 %
SUP8 9.2 % 8.8 % 15.4 % 15.3 % 35.9 % 39.8 % 39.8 % 35.9 % 15.2 %
GAL8 15.8 % 12.6 % 55.0 % 55.7 % 55.2 % 78.8 % 78.8 % 55.2 % 54.4 %
INCR8 15.1 % 11.1 % 43.4 % 44.9 % 43.6 % 66.7 % 66.7 % 43.6 % 44.6 %
LINE8 26.5 % 14.2 % 42.6 % 44.4 % 63.0 % 64.2 % 64.2 % 44.4 % 42.6 %
CIRC8 39.4 % 24.2 % 48.5 % 49.2 % 69.7 % 72.7 % 72.7 % 57.6 % 48.5 %
CON8 80.0 % 32.5 % 80.0 % 80.0 % 95.0 % 100.0 % 100.0 % 62.5 % 80.0 %

by [1,17,18,20,22]. We made use of the RobinX instance repository [16] and unified instance format [23]. The
sources and characteristics of the instances are depicted in Tables 1 and 2, respectively. We aggregated the
counts for constraints and nonzeros for (5)–(7) since these all constitute lifted model inequalities. It is easy
to see that are actually quite many such inequalities, and their number is dominated by (5) of which there
exist Θ(n4) many.

As can be seen from the tables, the integer programs neither have many variables nor many constraints.
Moreover, the instance are not particularly dense. Nevertheless, the instances for n = 6 (plain) and n = 8
(plain and mirrored) are already hard to solve, which is why we do not report about computational results
for larger problem sizes.

LP bounds. Let us consider the quality of the LP relaxations that we obtain after adding the additional
inequalities. Table 3 depicts these values relative to the corresponding best known solution value. The
latter were taken from the RobinX instance repository [16]. While the left part of the table is about the
improvement after adding a certain class of inequalities, the right part shows what happens if we remove
such a class from the strongest possible model, which is the base model augmented by (5)–(7), (9), (10) and
(14). Note that (8) is not considered in this full model since these inequalities are implied by (10) for i ̸= t

and by (9) for i = t.
First, note that adding or removing the lifted versions (5)–(7) of the model inequalities does not affect the

LP bounds. This matches the theoretical observation that the dimensions of the respective faces are already
quite high, i.e., the model inequalities are almost facet defining. Similarly, it does not matter whether we add
the flow inequalities (8) or the flow Eqs. (10) for i ̸= t or whether we add the flow inequalities (8) for i = t
or their strengthened version, the home-flow inequalities (9). Flow inequalities themselves clearly have the
20
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Table 5
Number of branch-and-bound nodes after adding different (sets of) constraints to the base model (see Table 2) or after removal of
(sets of) constraints from the full model, which is the base model augmented by (5)-(7), (9), (10) and (14). Node numbers are given
as multiples of 1000. (8)i=t indicates constraints (8) for i = t. Mirrored instances are indicated via Y.

Instance Addition of constraints Removal of constraints

Base
(5)–(7) (8),(8)i=t (9),(10) (14)

Full
(5)–(7) (9), (10) (14)

NL6 Y 202 161 190 69 345 39 57 169 53
SUP6 Y 78 96 117 41 74 35 12 79 40
GAL6 Y 248 275 343 282 270 149 301 520 196
INCR6 Y 140 137 80 90 131 17 58 120 56
LINE6 Y 96 183 86 53 122 70 19 87 11
CIRC6 Y 80 119 18 9 354 87 26 234 9
CON6 Y 8 12 2 46 3 208 104 93 30
NL6 54 51 101 81 105 100 145 158 104
SUP6 64 54 87 72 301 184 303 91 54
GAL6 56 49 103 63 94 169 274 94 71
INCR6 71 65 125 78 86 109 270 84 73
LINE6 68 52 133 110 328 234 396 220 70
CIRC6 65 120 329 362 211 227 353 175 252
CON6 133 133 545 176 96 172 307 168 117

NL8 Y 27 14 24 24 34 22 79 20 13
SUP8 Y 24 19 30 25 37 32 51 16 19
GAL8 Y 27 17 30 23 31 17 27 25 17
INCR8 Y 23 17 26 33 29 19 75 21 16
LINE8 Y 22 16 49 26 89 29 83 35 15
CIRC8 Y 25 16 117 84 128 49 120 47 14
CON8 Y 37 9 92 49 14 12 45 41 43
NL8 12 8 11 10 15 16 27 12 6
SUP8 10 6 12 10 35 16 31 23 8
GAL8 11 10 11 9 43 16 26 23 7
INCR8 11 9 10 9 33 14 29 20 4
LINE8 10 10 11 12 18 15 43 20 6
CIRC8 12 7 22 17 27 18 47 12 10
CON8 22 10 40 22 51 34 65 22 9

biggest impact, but also the home stand flow and road trip flow inequalities (14) are quite useful. Together,
they already provide the best LP bounds that we can obtain with all our proposed inequalities.

IP bounds. We now investigate the bounds that the IP solver can obtain, again compared to the best known
solution values. It turned out that within the time limit of 1 h all configurations could solve the instances
with n = 4. Hence, in Table 4 we only report about the instances with n ∈ {6, 8}.

We first observe that almost all configurations could solve the mirrored instances with n = 6. One
xception stands out, namely the mirrored version of GAL6 which could be solved without any strengthening,
ut could not be solved when adding (14). We inspected the computations more closely, but could not find
proper reason: in both runs, Gurobi generated between 3000 and 3500 cutting planes of roughly the same

ypes. The bound at the end of the root node was also much worse for the successful run, which was expected
ecause inequalities (14) significantly improve the bound. Moreover, in the unsuccessful run, only slightly
ewer branch-and-bound nodes were processed. Hence, we can only guess that the reason might be a badly
hosen branching strategy which was triggered once these cutting planes were added.

Let us turn to the other instances. Here, one observes that the addition or removal of (5)–(7) does not
ave much impact on the bound after executing 1 hour of branch-and-cut. The same holds for the addition
f the flow inequalities (8) or the flow Eqs. (10) for i ̸= t or the addition of the flow inequalities (8) for
= t or their strengthened version, the home-flow inequalities (9). Moreover, the positive impact of (8) or
f (14) manifests itself also in the quality of the bounds obtained during branch-and-bound. By comparing,
or n = 8, the bounds from Table 4 with those in Table 3 one observes that the numbers do not differ
uch. This means that one hour of computation time does not close much integrality gap beyond that of

he initial LP relaxation. This gives rise to the question whether this may be due to large processing times
er branch-and-bound node.
21
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Number of branch-and-bound nodes. Consider Table 5 where the number of processed nodes is depicted. We
bserve that in some cases it takes almost a minute to process a branch-and-bound node, which however
till yields several thousand processed nodes in total. However, the bound improvement due to branching is
pparently rather low. In addition, we can easily see that constraints (5)–(7) reduce the node throughput
ignificantly, which yields a worse performance in terms of closed gap. The most likely reason for this
lowdown is the sheer amount of such cutting planes (see Table 2). This clearly explains why the bounds
btained after one hour by the full model without (5)–(7) are better than if one includes these constraints.

onclusions. We conclude our work by observing that, from a practical point of view, adding strong
nequalities to the base model pays off only in some cases. In particular, the addition of inequalities that
re lifted versions of already existing inequalities (whose faces only have a slightly higher dimension) is
ot helpful. In contrast to this, new inequalities, i.e., those for which no similar inequality already exists,
ontribute a lot to the closed gap. Moreover, since the processing of branch-and-bound nodes takes a
ontrivial amount of time for our model, branch-and-bound itself does not suffice to close a lot of remaining
ap. This means that one must first improve the LP relaxation in a different fashion, e.g., via reformulation
pproaches (see, e.g., [4]) or by finding more classes of cutting planes. Since our lifted inequalities (5)
lowed down the node processing times, we also propose to investigate whether the lazy generation of
onstraints (1d) could improve the node throughput.
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ppendix. Tournaments for facet proofs

.1. Tournaments for Theorem 5

laim 5.1. For each (t, i, j) ∈ V ×A there exists a tournament in which team t never travels from venue i
o venue j.

Proof. If t = i, let i′ ∈ V \{i, j, t} and j′ := j. Otherwise, let i′ := i and j′ ∈ V \{i, j, t}. Note that in either
case i′, j′ and t are distinct. We construct tournament T from a canonical factorization by permuting slots
and teams such that (1, i′, t), (2, j′, t) ∈ T . Hence, team t travels from venue i′ to venue j′, which implies that
team t never travels from venue i to venue j since exactly one of the teams i′, j′ is equal to its counterpart
i, j. □

Claim 5.2. For each k ∈ S \ {1} and for distinct i, j ∈ V there exist tournaments T and T ′

satisfying (HA1,k,i,j).

Proof. We construct tournament T from a canonical factorization by permuting slots and teams such that
′
(1, i, j), (k, j, i) ∈ T . Tournament T is obtained from T by (HA1,k,i,j). □
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Claim 5.3. For each k ∈ S \ {1} and for distinct i, j, i′, j′ ∈ V there exist tournaments T and T ′

atisfying (PS1,k,i,j,i′,j′).

roof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. By permuting
eams we can assume {i, j}, {i′, j′} ∈ M1 = Mn. We now exchange the roles of teams j and j′ only in
erfect matchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each edge appears in exactly
wo perfect matchings. Tournament T is obtained by orienting the edges in a complementary fashion and
ermuting slots such that (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j) ∈ T .

Finally, tournament T ′ is constructed from T by (PS1,k,i,j,i′,j′). □

.2. Tournaments for Theorem 8

For the claims in the proof of Theorem 8, we are given a particular match m⋆ = (k⋆, i⋆, j⋆) = (2, 4, 3) ∈
.

laim 8.1. For each (t, i, j) ∈ V × A there exists a tournament T with m⋆ /∈ T and in which team t never
ravels from venue i to venue j.

roof. Let tournament T be as constructed in the proof of Claim 5.1. If m⋆ ∈ T , we apply a cyclic
ermutation of the slots, mapping slot k to k + 1 for k ∈ S \ {2n− 2} and slot 2n− 2 to 1. This preserves
he second requirement and establishes m⋆ /∈ T . □

laim 8.2. For each (k, i, j) ∈ M with k ≥ 2 and (k, i, j) ̸= (k⋆, i⋆, j⋆), (k⋆, j⋆, i⋆) there exist tournaments
and T ′ satisfying (HA1,k,i,j) and (k⋆, i⋆, j⋆), (k⋆, j⋆, i⋆) /∈ T ∪ T ′.

roof. We construct tournament T ′′ from a canonical factorization by permuting slots and teams such
hat (1, i, j), (k, j, i) ∈ T ′′. If m⋆ /∈ T ′′, let T := T ′′.

Otherwise, if k⋆ ̸= k, then let k′ ∈ S be such that (k′, j⋆, i⋆) ∈ T ′′. Tournament T is obtained from T ′′

y (HAk⋆,k′,i⋆,j⋆). Due to k⋆ ̸= k and k⋆ ̸= 1, we have (1, i, j), (k, j, i) ∈ T ′′, but m⋆ /∈ T , and hence T
atisfies all requirements.

Otherwise, k⋆ = k and {i, j} ≠ {i⋆, j⋆} hold. Together with (k, j, i), (k⋆, i⋆, j⋆) ∈ T ′′ this implies that
, j, i⋆, j⋆ must be distinct. Again, let k′ ∈ S be such that (k′, j⋆, i⋆) ∈ T ′′ and construct T from T ′′

y (HAk⋆,k′,i⋆,j⋆). Since i, j, i⋆, j⋆ are distinct, we also have (1, i, j), (k, j, i) ∈ T , but m⋆ /∈ T in this case,
nd hence T satisfies all requirements.

Finally, tournament T ′ is obtained from T by (HA1,k,i,j). □

laim 8.3. For each slot k ∈ S \ {1} and for distinct i, j, i′, j′ ∈ V with k ̸= k⋆ or (i⋆, j⋆) /∈
(i, j), (i′, j′), (i′, j), (i, j′)} there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) and m⋆ /∈ T ∪ T ′.

roof. Let T be as constructed in the proof of Claim 5.3. If (k⋆, i⋆, j⋆) ∈ T , let k′ ∈ V be such that
k′, j⋆, i⋆) ∈ T1 and modify T via a home-away swap (HAk⋆,k′,i⋆,j⋆). By assumptions on k⋆, i⋆ and j⋆,
his operation does not affect the matches (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j) above, i.e., these remain in T .
owever, after the modification, we have (k⋆, i⋆, j⋆) /∈ T .
Finally, tournament T ′ is constructed from T by (PS ′ ′). □
1,k,i,j,i ,j
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A.3. Tournaments for Theorem 9

For the claims in the proof of Theorem 9, we are given a slot k⋆ ∈ {n, n+1, . . . , 2n−3} and three distinct
eams t⋆, i⋆ and j⋆. Note that we also assume n ≥ 6. To enhance readability of the proofs we restate the
laim that contains sufficient conditions for satisfying (1d) with equality.

laim 9.1. Let T be a tournament that contains

(a) match (k⋆, i⋆, t⋆) and in which team t⋆ plays away in slot k⋆ + 1, or
(b) one of the matches (k⋆, j⋆, t⋆), (k⋆, i⋆, t⋆) or (k⋆ + 1, j⋆, t⋆), and in which team t⋆ never travels from

venue i⋆ to venue j⋆.

Then (χ(T ), ψ(T )) satisfies (5a) with equality.

Claim 9.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, i⋆, j⋆) there exists a tournament T in which team t

ever travels from venue i to venue j and which satisfies condition (a) of Claim 9.1.

roof. If t = i, let i′ ∈ V \ {i, j, t} and j′ := j. Otherwise, let i′ := i and j′ ∈ V \ {i, j, t}. Note that in
ither case i′, j′ and t are distinct. We distinguish three cases.

Case 1: t⋆ ̸= t or i⋆ /∈ {i′, j′}. We construct tournament T from a canonical factorization by permuting
lots and teams such that (1, i′, t), (2, j′, t), (k⋆, i⋆, t⋆) ∈ T hold and such that t⋆ plays away in slot k⋆ + 1.
ence, team t travels from venue i′ to venue j′, which implies that team t never travels from venue i to
enue j since exactly one of the teams i′, j′ is equal to its counterpart i, j.

Case 2: t⋆ = t and i⋆ = i′. We construct tournament T from a canonical factorization by permuting
lots and teams such that (k⋆, i⋆, t⋆), (k⋆ + 1, j′, t⋆) ∈ T hold.

Case 3: t⋆ = t and i⋆ = j′. We construct tournament T from a canonical factorization by permuting
lots and teams such that (k⋆, i′, t⋆), (k⋆, i⋆, t⋆) ∈ T hold and such that t⋆ plays away in slot k⋆ + 1.

In all cases team t travels from venue i′ to venue j′, which implies that team t never travels from venue
to venue j since exactly one of the teams i′, j′ is equal to its counterpart i, j. Moreover, (k⋆, i⋆, t⋆) ∈ T

olds and team t⋆ plays away in slot k⋆ + 1, which concludes the proof. □

laim 9.3. For each (k, i, j) ∈ M \ {(k⋆, i⋆, t⋆), (k⋆, t⋆, i⋆), (k⋆, j⋆, t⋆), (k⋆, t⋆, j⋆), (k⋆ + 1, j⋆, t⋆),
k⋆ + 1, t⋆, j⋆)} with k ≥ 2 there exist tournaments T and T ′ satisfying (HA1,k,i,j) and condition (b) of
laim 9.1.

roof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. We distinguish ten
ases:

Case 1: {i, j} ∩ {j⋆, t⋆} = ∅. We permute slots such that {i, j} ∈ M1,Mk and such that there are
dges {t′, i′} ∈ Mk⋆ and {t′, j′} ∈ Mk⋆+1 with distinct t′, i′, j′ ∈ V \ {i, j}. Then we permute the
eams V \ {i, j} such that i′ is mapped to some team i# ̸= i⋆, j′ is mapped to j⋆ and t′ is mapped
o t⋆. Tournament T is obtained by orienting the matching edges in a complementary fashion such that
1, i, j), (k, j, i), (k⋆, i#, t⋆), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Note that team t⋆ travels from venue i# to venue j⋆

nd thus never from venue i⋆ to venue j⋆.
Case 2: {i, j} ∩ {i⋆, t⋆} = ∅. We permute slots such that {i, j} ∈ M1,Mk and such that there are

dges {t′, i′} ∈ Mk⋆ and {t′, j′} ∈ Mk⋆+1 with distinct t′, i′, j′ ∈ V \ {i, j}. Then we permute the
eams V \ {i, j} such that i′ is mapped to i⋆, j′ is mapped to some team j# ̸= j⋆ and t′ is mapped
o t⋆. Tournament T is obtained by orienting the matching edges in a complementary fashion such that
1, i, j), (k, j, i), (k⋆, i⋆, t⋆), (k⋆ + 1, j#, t⋆) ∈ T hold. Note that team t⋆ travels from venue i⋆ to venue j#

⋆ ⋆
nd thus never from venue i to venue j .
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Case 3: {i, j} = {i⋆, j⋆} and k = k⋆. We construct tournament T by permuting slots such that
(1, i, j), (k, j, i), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Note that team t⋆ plays against a team in V \ {i⋆, j⋆} before
traveling to venue j⋆ and thus never travels from venue i⋆ to venue j⋆.

Case 4: {i, j} = {i⋆, j⋆} and k ̸= k⋆. We permute slots such that {i, j} ∈ M1,Mk, {i⋆, t⋆} ∈ Mk⋆ and
j′, t⋆} ∈ Mk⋆+1 hold for some team j′ ̸= j⋆. Tournament T is obtained by orienting the matching edges in
complementary fashion such that (1, i, j), (k, j, i), (k⋆, i⋆, t⋆), (k⋆, j′, t⋆) ∈ T hold. Note that team t⋆ travels

rom venue i⋆ to venue j′ ̸= j⋆ and thus never travels from venue i⋆ to venue j⋆.
Case 5: {i, j} ∩ {i⋆, j⋆, t⋆} = {t⋆} and k = k⋆. We construct tournament T by permuting slots such

that (1, i, j), (k, j, i), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Note that team t⋆ travels from its home venue or some venue
different from i⋆ to venue j⋆ and thus never from venue i⋆ to venue j⋆.

Case 6: {i, j} ∩ {i⋆, j⋆, t⋆} = {t⋆} and k = k⋆ + 1. We construct tournament T by permuting slots such
that (1, i, j), (k, j, i), (k⋆, i⋆, t⋆) ∈ T hold. Note that team t⋆ travels from i⋆ to its home venue or to some
venue different from j⋆ and thus never from venue i⋆ to venue j⋆.

Case 7: {i, j} ∩ {i⋆, j⋆, t⋆} = {t⋆} and k /∈ {k⋆, k⋆ + 1}. We construct tournament T by permuting slots
such that (1, i, j), (k, j, i), (k⋆, j⋆, t⋆), (k⋆ + 1, i⋆, t⋆) ∈ T hold. Note that team t⋆ travels from venue j⋆ to
venue i⋆ and thus never from venue i⋆ to venue j⋆.

Case 8: {i, j} = {i⋆, t⋆} and k = k⋆ + 1. We construct tournament T by permuting slots such that
(1, i, j), (k, j, i), (k⋆, j⋆, t⋆) ∈ T and such that (k⋆ − 1, i⋆, t⋆) /∈ T hold. Due to the last condition, team t⋆

never travels from venue i⋆ to venue j⋆.
Case 9: {i, j} = {i⋆, t⋆} and k /∈ {k⋆, k⋆ + 1}. We construct tournament T by permuting slots such that

(1, i, j), (k, j, i), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Since team t⋆ plays at venue j⋆ in slot k⋆ + 1 but does not play
against i⋆ in slot k⋆ it never travels from venue i⋆ to venue j⋆.

Case 10: {i, j} = {j⋆, t⋆} and k /∈ {k⋆, k⋆ +1}. We construct tournament T by permuting slots such that
(1, i, j), (k, j, i), (k⋆, i⋆, t⋆) ∈ T hold. Since team t⋆ plays at venue i⋆ in slot k⋆ but does not play against j⋆

in slot k⋆ + 1 it never travels from venue i⋆ to venue j⋆.
It is easy to check that all allowed triples (k, i, j) are covered by the cases. Moreover, in all cases

tournament T ′ is obtained from T by (HA1,k,i,j) and also satisfies the required properties. In particular,
also in T ′ team t⋆ does not travel from venue i⋆ to venue j⋆ since all previous arguments were symmetric in
i and j. □

Claim 9.4. Let k ∈ S \ {1}, let i, j, i′, j′ ∈ V be distinct and let P := {(i, j), (i′, j′), (i, j′), (i′, j)}. If

(i) (i⋆, t⋆) /∈ P and (j⋆, t⋆) /∈ P , or
(ii) (i⋆, t⋆) /∈ P , (j⋆, t⋆) ∈ P and k /∈ {k⋆, k⋆ + 1}, or

(iii) (i⋆, t⋆) ∈ P , (j⋆, t⋆) /∈ P and k ̸= k⋆, or
(iv) (i⋆, t⋆) ∈ P , (j⋆, t⋆) ∈ P and k = k⋆

holds, then there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) and condition (b) of Claim 9.1.

Proof. Denote by I := {(1, i, j), (1, i′, j′), (1, i, j′), (1, i′, j), (k, i, j), (k, i′, j′), (k, i, j′), (k, i′, j)} the set of
matches required for tournaments T or T ′. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical
factorization. By permuting teams we can assume {i, j}, {i′, j′} ∈ M1 = Mn. We now exchange the roles of
teams j and j′ only in perfect matchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each
edge appears in exactly two perfect matchings. Then we permute slots such that {i, j}, {i′, j′} ∈ M1 and
{i, j′}, {i′, j} ∈ Mk hold.

We first describe two constructions of tournament T that are applicable in many cases. Note that
via (PS1,k,i,j,i′,j′), also tournament T ′ is determined.

Case 1: (i⋆, t⋆) /∈ P , k ̸= k⋆ and (k⋆ + 1, j⋆, t⋆) /∈ I. We can assume that {i⋆, t⋆} /∈ M1 ∪ Mk holds
⋆ ⋆ ′ ′ ⋆ ⋆
since otherwise we have {i , t } ∩ {i, j, i , j } = ∅ due to (i , t ) /∈ P , which allows to permute teams in
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V \ {i, j, i′, j′} in order to avoid this situation. Hence, we can permute slots such that {i⋆, t⋆} ∈ Mk⋆ holds,
hich is possible due to k⋆ ̸= k and k⋆ ≥ n. We can now orient the matching edges in a complementary

ashion such that (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j), (k⋆, i⋆, t⋆), (k⋆+1, j′′, t⋆) ∈ T hold for some j′′ ̸= j⋆. The
atter is possible due to (k⋆ + 1, j⋆, t⋆) /∈ I. Since in both tournaments T and T ′, team t⋆ travels from venue
⋆ to venue j′′ ̸= j⋆, it never travels from venue i⋆ to venue j⋆. Hence, T and T ′ satisfy the requirements of
he claim.

Case 2: (j⋆, t⋆) /∈ P , k ̸= k⋆ + 1 and (k⋆, i⋆, t⋆) /∈ I. We can assume that {j⋆, t⋆} /∈ M1 ∪ Mk holds
ince otherwise we have {j⋆, t⋆} ∩ {i, j, i′, j′} = ∅ due to (j⋆, t⋆) /∈ P , which allows to permute teams in
\{i, j, i′, j′} in order to avoid this situation. Hence, we can permute slots such that {j⋆, t⋆} ∈ Mk⋆+1 holds,
hich is possible due to k⋆ + 1 ̸= k and k⋆ ≥ n. We can now orient the matching edges in a complementary

ashion such that (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j), (k⋆, i′′, t⋆), (k⋆ + 1, j⋆, t⋆) ∈ T holds for some i′′ ̸= i⋆.
he latter is possible due to (k⋆, i⋆, t⋆) /∈ I. Since in both tournaments T and T ′, team t⋆ travels from venue

′′ ̸= i⋆ to venue j⋆, it never travels from venue i⋆ to venue j⋆. Hence, T and T ′ satisfy the requirements of
he claim.

If condition (i) of the claim is satisfied, then (i⋆, t⋆) /∈ P implies (k⋆, i⋆, t⋆) /∈ I and (j⋆, t⋆) /∈ P implies
k⋆ + 1, j⋆, t⋆) /∈ I. Hence, depending on k, (at least) one of the two cases above is applicable and we are
one.

If condition (ii) of the claim is satisfied, then case 1 is applicable unless (k⋆ +1, j⋆, t⋆) ∈ I holds. However,
his implies k = k⋆ + 1, which is excluded by condition (ii).

If condition (iii) of the claim is satisfied, then case 2 is applicable unless k = k⋆ + 1 or (k⋆, i⋆, t⋆) ∈ I

olds. However, the latter would imply k = k⋆, which is excluded by condition (iii). Hence, k = k⋆ + 1,
⋆ ∈ {i, i′}, t⋆ ∈ {j, j′} and j⋆ /∈ {i, j, i′, j′} hold. We permute teams V \ {i, j, i′, j′} and slots S \ {1, k}
uch that {j⋆, t⋆} ∈ Mk⋆ hold. We can now orient the matching edges in a complementary fashion such that
1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j), (k⋆, j⋆, t⋆) ∈ T holds. In tournaments T and T ′, team t⋆ plays away at
enue i⋆ in slots 1 or k⋆ + 1. Due to k⋆ ≥ n we have k⋆ − 1 ̸= 1, and thus team t⋆ travels from a venue
ifferent from i⋆ to venue j⋆, and thus never travels from venue i⋆ to venue j⋆.

If condition (iv) of the claim is satisfied, then {i, i′} = {i⋆, j⋆} and t⋆ ∈ {j, j′} hold. We orient the
atching edges in a complementary fashion such that (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j) ∈ T hold. In

ournaments T and T ′, team t⋆ plays away at venues i⋆ and j⋆ in slots 1 and k⋆ ≥ n, and thus never
ravels from venue i⋆ to venue j⋆. Moreover, match (k⋆, i⋆, t⋆) is contained in one tournament and match
k⋆, j⋆, t⋆) in the other. □

.4. Tournaments for Theorem 10

For the claims in the proof of Theorem 10, we are given a slot k⋆ ∈ S \ {2n− 2} and two distinct teams
⋆, j⋆. Note that we also assume n ≥ 8. To enhance readability of the proofs we restate the claim that
ontains sufficient conditions for satisfying (6) with equality.

laim 10.1. Let T be a tournament with

(a) (1, j⋆, t⋆) ∈ T and k⋆ = 1 holds, or
(b) (1, j⋆, t⋆) ∈ T and team t⋆ plays at home in slot k⋆, or
(c) (k⋆ + 1, j⋆, t⋆) ∈ T and team t⋆ plays at home in slot k⋆, or
(d) (k⋆ + 1, j⋆, t⋆) ∈ T and team t⋆ plays away in slot k⋆, or
(e) (k⋆, j⋆, t⋆) ∈ T , k⋆ ≥ 2 and team t⋆ plays away in slot k⋆ − 1, or
(f) team t⋆ plays at home in slot k⋆ and never travels from its home venue to venue j⋆.

hen (χ(T ), ψ(T )) satisfies (6) with equality. Moreover, team t⋆ travels from its home venue to venue j⋆ if

nd only if one of conditions (a)–(c) is satisfied.
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Claim 10.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, t⋆, j⋆) there exists a tournament T satisfying a
ondition from Claim 10.1.

roof. We distinguish two cases.
Case 1: (t, i) ̸= (t⋆, j⋆) or k⋆ ≤ 2n− 4. If t = i, let i′ ∈ V \ {i, j, t, t⋆, j⋆} and j′ := j. If t ̸= i, let i′ := i

nd j′ ∈ V \{i, j, t, t⋆, j⋆}. Note that in either case i′, j′ and t are distinct. Now observe that (j⋆, t⋆) ̸= (j′, t)
old since otherwise j′ = j, and thus t = i would hold, contradicting (t, i, j) ̸= (t⋆, t⋆, j⋆). We construct
ournament T from a canonical factorization by permuting slots and teams such that (k⋆ +1, j⋆, t⋆), (k, i′, t),
k+ 1, j′, t) ∈ T hold for k = k⋆ + 1 if (i′, t) = (j⋆, t⋆) and for some k ∈ S \ {k⋆, k⋆ + 1, 2n− 2} otherwise. In
he former case, since the first two matches (k⋆ +1, j⋆, t⋆) and (k, i′, t) are equal and k+1 = k⋆ +2 ≤ 2n−2
olds, the existence of T is obvious. In the latter case, the three distinct matches (j⋆, t⋆), (i′, t) and (j′, t)
ave two scheduled in different slots. Since t appears in two of the matches, edges {i′, t} and {j′, t} already
ppear in different matchings of a canonical factorization, and thus only slots must be permuted to construct
. It is easy to see that T satisfies either condition (c) or (d) of Claim 10.1.
Case 2: (t, i) = (t⋆, j⋆) and k⋆ = 2n− 3. We construct tournament T from a canonical factorization by

ermuting slots such that (k⋆, j⋆, t⋆), (k⋆ + 1, i′, t⋆) ∈ T hold for some i′ ∈ V \ {j, t⋆, j⋆}, and such that t⋆
lays away in slot k⋆ − 1. In this case T satisfies condition (e) of Claim 10.1. □

laim 10.3. For each (k, i, j) ∈ M with k ̸= k̄, {i, j} ≠ {j⋆, t⋆} and for which k = k⋆ implies t⋆ /∈ {i, j}
here exist tournaments T and T ′ satisfying (HAk̄,k,i,j) such that T and T ′ satisfy the same condition from
laim 10.1.

roof. We distinguish two cases. Note that via (HAk̄,k,i,j), also tournament T ′ is determined.
Case 1: k ̸= k⋆ + 1. We construct tournament T from a canonical factorization by permuting slots and

eams such that (k̄, i, j), (k, j, i), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Since k̄ ̸= k⋆ holds and k = k⋆ implies t⋆ /∈ {i, j},
ournaments T and T ′ both satisfy condition (c) or both satisfy condition (d) of Claim 10.1.

Case 2: k = k⋆ + 1. We construct tournament T from a canonical factorization by permuting slots
nd teams such that (k̄, i, j), (k, j, i), (1, j⋆, t⋆) ∈ T hold and, if k⋆ ̸= 1, team t⋆ plays at home in slot k⋆.
ournaments T and T ′ satisfy condition (a) (resp. condition (b) if k⋆ ̸= 1) of Claim 10.1. □

laim 10.4. Let k ∈ S \ {k̄}, let i, j, i′, j′ ∈ V be distinct with (j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)} or
ith k /∈ {1, k⋆, k⋆ + 1}. Then there exist tournaments T and T ′ satisfying (PSk̄,k,i,j,i′,j′) such that T and T ′

atisfy the same condition from Claim 10.1.

roof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. By permuting teams
e can assume {i, j}, {i′, j′} ∈ M1 = Mn. We now exchange the roles of teams j and j′ only in perfect
atchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each edge appears in exactly two
erfect matchings. Then we permute slots such that {i, j}, {i′, j′} ∈ Mk̄ and {i, j′}, {i′, j} ∈ Mk hold. We
escribe how to construct tournament T . Note that via (HAk̄,k,i,j), also tournament T ′ is determined. We
istinguish three cases.

Case 1: k ̸= k⋆ + 1 and (j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. We can permute teams V \ {i, j, i′, j′} and
lots S \ {k̄, k} such that {j⋆, t⋆} ∈ Mk⋆+1 hold. Tournament T is obtained by orienting the matching edges
n a complementary fashion such that (k̄, i, j), (k̄, i′, j′), (k, i, j′), (k, i′, j), (k⋆ + 1, j⋆, t⋆) ∈ T hold. Since a
artial slot swap does not change the home-away pattern of t⋆, tournaments T and T ′ both satisfy condition
c) or both satisfy condition (d) of Claim 10.1.

Case 2: k = k⋆ + 1 and (j⋆, t⋆) /∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. We can permute teams V \ {i, j, i′, j′} and
lots S \ {k̄, k} such that {j⋆, t⋆} ∈ M hold. Tournament T is obtained by orienting the matching edges in
1
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a complementary fashion such that (k̄, i, j), (k̄, i′, j′), (k, i, j′), (k, i′, j), (1, j⋆, t⋆) ∈ T hold and, if k⋆ ̸= 1,
uch that team t⋆ plays at home in slot k⋆. Since a partial slot swap does not change the home-away pattern
f t⋆, tournaments T and T ′ both satisfy (a) or both satisfy (b) of Claim 10.1.

Case 3: k /∈ {1, k⋆, k⋆ +1} and (j⋆, t⋆) ∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. Let k′ ∈ S \{1, k⋆ −1, k⋆, k⋆ +1, k̄−
1, k̄, k − 1, k} (note that n ≥ 8 implies |S| ≥ 14). We can permute teams V \ {i, j, i′, j′} and slots S \ {k̄, k}
such that {j′′, t⋆} ∈ Mk⋆ , {i′′, t⋆} ∈ Mk′−1 and {j⋆, t⋆} ∈ Mk′ hold for distinct teams i′′, j′′ ∈ V \{i, j, i′, j′}.
Tournament T is obtained by orienting the matching edges in a complementary fashion such that (k̄, i, j),
(k̄, i′, j′), (k, i, j′), (k, i′, j), (k⋆, t⋆, j′′), (k′−1, i′′, t⋆), (k′, j⋆, t⋆) ∈ T hold. Both tournaments T and T ′ satisfy
condition (f) of Claim 10.1 since team t⋆ travels from venue i′′ ̸= t⋆ to venue j⋆, and thus never travels from
its home venue to venue j⋆. □

A.5. Tournaments for Theorem 12

For the claims in the proof of Theorem 12 we are given a team t⋆ and a venue j⋆ ̸= t⋆. Note that we also
assume n ≥ 6. To enhance readability of the proofs we restate the claim that contains sufficient conditions
for satisfying (1g) with equality.

Claim 12.1. Let T be a tournament

(a) in which team t⋆ never travels from its home venue to venue j⋆, or
(b) with (1, j⋆, t⋆) ∈ T .

Then (χ(T ), ψ(T )) satisfies (1g) with equality. Moreover, team t⋆ travels from its home venue to venue j⋆ if
nd only if condition (b) is satisfied.

laim 12.2. For all (t, i, j) ∈ V × A with (t, i, j) ̸= (t⋆, t⋆, j⋆) there exists a tournament T satisfying a
ondition of Claim 12.1.

roof. If t = i, let i′ ∈ V \ {i, j, t, t⋆, j⋆} and j′ := j. If t ̸= i, let i′ := i and j′ ∈ V \ {i, j, t, t⋆, j⋆}. Note
hat in either case i′, j′ and t are distinct. Moreover, we have (j′, t) ̸= (j⋆, t⋆) since otherwise t = i and thus
t, i, j) = (t⋆, t⋆, j⋆) would contradict the assumption of the claim. If (i′, t) = (j⋆, t⋆) holds, then we construct
ournament T from a canonical factorization by permuting slots and teams such that (1, j⋆, t⋆), (2, j′, t) ∈ T

old. Otherwise, we construct T with (1, j⋆, t⋆), (2, i′, t), (3, j′, t) ∈ T .
In both cases, tournament T satisfies condition (b) and team t⋆ travels from venue i′ to venue j′, which

mplies that team t never travels from venue i to venue j since exactly one of the teams i′, j′ is equal to its
ounterpart i, j. □

laim 12.3. For each (k, i, j) ∈ M with k ̸= n and {i, j} ≠ {j⋆, t⋆} there exist tournaments T and T ′

atisfying (HAn,k,i,j) such that T and T ′ satisfy the same condition from Claim 12.1.

roof. Note that via (HAn,k,i,j), also tournament T ′ is determined. We distinguish two cases.
Case 1: k = 1. Let i ∈ V \ {j⋆, t⋆}. We construct tournament T from a canonical factorization by

ermuting slots and teams such that (n, i, j), (1, j, i), (2, i, t⋆), (3, j⋆, t⋆) ∈ T hold. In both tournaments,
eam t⋆ travels from venue i ̸= t⋆ to venue j⋆, which implies that team t⋆ never travels from its home venue
o venue j⋆. Hence, T and T ′ both satisfy condition (a) of Claim 12.1.

Case 2: k ≥ 2 or {j⋆, t⋆} ∩ {i, j, i′, j′} = ∅. We construct tournament T from a canonical factorization
y permuting slots and teams such that (n, i, j), (k, j, i), (1, j⋆, t⋆) ∈ T hold. Tournaments T and T ′ both

atisfy condition (b) of Claim 12.1. □
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Claim 12.4. Let k ∈ S \ {n}, let i, j, i′, j′ ∈ V be distinct such that (k, j⋆, t⋆) /∈ {(1, i, j), (1, i′, j′), (1, i, j′),
1, i′, j)} hold. Then there exist tournaments T and T ′ satisfying (PSn,k,i,j,i′,j′) such that T and T ′ satisfy
he same condition from Claim 12.1.

roof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. By permuting teams
e can assume {i, j}, {i′, j′} ∈ M1 = Mn. We now exchange the roles of teams j and j′ only in perfect
atchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each edge appears in exactly two
erfect matchings. Then we permute slots such that {i, j}, {i′, j′} ∈ Mn and {i, j′}, {i′, j} ∈ Mk hold. We
escribe how to construct tournament T . Note that via (HAn,k,i,j), also tournament T ′ is determined. We
istinguish two cases.

Case 1: k = 1. We can permute teams V \ {i, j, i′, j′} and slots S \ {n, k} such that {j⋆, t⋆} ∈ M3
nd {i′′, t⋆} ∈ M2 for some i′′ ∈ V \ {j⋆, t⋆}. Tournament T is obtained by orienting the matching edges
n a complementary fashion such that (n, i, j), (n, i′, j′), (1, i, j′), (1, i′, j), (2, i′′, t⋆), (3, j⋆, t⋆) ∈ T hold.
ournaments T and T ′ both satisfy condition (a) of Claim 12.1.

Case 2: k ≥ 2 or {j⋆, t⋆} ∩ {i, j, i′, j′} = ∅. We can permute teams V \ {i, j, i′, j′} and slots S \ {n, k}
uch that {j⋆, t⋆} ∈ M1. Tournament T is obtained by orienting the matching edges in a complementary
ashion such that (n, i, j), (n, i′, j′), (k, i, j′), (k, i′, j), (1, j⋆, t⋆) ∈ T hold. Tournaments T and T ′ both satisfy
ondition (b) of Claim 12.1.

Case 3: k ≥ 2 and (j⋆, t⋆) ∈ {(i, j), (i′, j′), (i, j′), (i′, j)}. We can permute slots such that the edges
hat match t⋆ in Mk−1, Mk, Mn−1 and Mn are different (unless k = n ± 1 in which case Mk = Mn−1 or

k−1 = Mn holds). Tournament T is obtained by orienting the matching edges in a complementary fashion
uch that (n, i, j), (n, i′, j′), (k, i, j′), (k, i′, j) ∈ T hold and such that t⋆ plays away in slots k − 1, k, n− 1
nd n. Hence, in none of the tournaments T and T ′, team t⋆ travels from its home venue to venue j⋆, which
hows that T and T ′ both satisfy condition (a) of Claim 12.1. □

.6. Tournaments for Theorem 14

For the claims in the proof of Theorem 14 we are given a team t⋆ and a venue i⋆ ̸= t⋆. Note that we also
ssume n ≥ 8.

laim 14.1. For all (t, i, j) ∈ V × A with (t, i) ̸= (t⋆, i⋆) there exists a tournament in which team t never
ravels from venue i to venue j and in which team t⋆ leaves venue i⋆ exactly once.

roof. Let T be a tournament from Claim 5.1. We do not need to restrict the schedule of team t⋆ since it
eaves i⋆ ̸= t⋆ only once, namely after playing away against i⋆. □

laim 14.2. For all distinct i, j ∈ V and for each k ∈ S \ {1} there exist tournaments T and T ′

atisfying (HA1,k,i,j) such that in both tournaments team t⋆ leaves venue i⋆ exactly once and to the same
enue.

roof. We distinguish two cases:
Case 1: {i, j} ̸= {i⋆, t⋆}. Since |S| = 2n − 2 ≥ 6 holds, there exists a slot k⋆ ∈ S \ {1, k − 1, k, 2n −

}. We construct tournament T from a canonical factorization by permuting slots and teams such that
1, i, j), (k, j, i), (k⋆, i⋆, t⋆), (k⋆ + 1, i, t⋆) ∈ T for some i ∈ V .

Case 2: {i, j} = {i⋆, t⋆}. We construct tournament T from a canonical factorization by permuting slots
nd teams such that (1, i, j), (k, j, i) ∈ T . Moreover, t⋆ shall play at home in slots 2 (unless k = 2 and this

onflicts with (k, j, i) ∈ T ) and k + 1 (unless k + 1 /∈ S).
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In both cases, tournament T ′ is obtained from T by (HA1,k,i,j). By construction, in both tournaments
eam t⋆ leaves i⋆ to its home venue t⋆, after slot 1 in one tournament and after slot k in the other

tournament. □

Claim 14.3. For each slot k ∈ S \ {1} and for distinct teams i, j, i′, j′ ∈ V with (i⋆, t⋆) /∈ {(i, j), (i′, j′),
(i, j′), (i′, j)} there exist tournaments T and T ′ satisfying (PS1,k,i,j,i′,j′) such that in both tournaments team
t⋆ leaves venue i⋆ exactly once and to the same venue.

Proof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. By permuting teams
we can assume {i, j}, {i′, j′} ∈ M1 = Mn and if both i⋆ and t⋆ are distinct from i, i′, j and j’, then
{i⋆, t⋆} /∈ M1 = Mn (this is possible because n ≥ 8). We now exchange the roles of teams j and j′ only in

erfect matchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each edge appears in exactly
wo perfect matchings. Tournament T is obtained by orienting the edges in a complementary fashion and
ermuting slots such that (1, i, j), (1, i′, j′), (k, i, j′), (k, i′, j) ∈ T .

By construction and by the assumptions of the claim, t⋆ does not play away against i⋆ in slots 1 or k.
ence, we can permute the slots in S \ {1, k} such that for some slot k′ ∈ S \ {1, k − 1, k, 2n− 2}, we have
k′, i⋆, t⋆) ∈ T and such that t⋆ plays at home in slot k′ + 1.

Finally, tournament T ′ is constructed from T by (PS1,k,i,j,i′,j′). By construction, T and T ′ satisfy all
equirements from the claim. □

.7. Tournaments for Theorem 15

For the claims in the proof of Theorem 15, we are given a team t⋆ and two slots k⋆, k̄ ∈ S with k⋆ ≤ n−1
nd k⋆ < k̄ < k⋆ + n− 1. Note that we also assume n ≥ 6.

laim 15.2. For all (t, i, j) ∈ V × A with (t, i) ̸= (t⋆, t⋆) there exists a tournament in which team t never
ravels from venue i to venue j and in which team t⋆ leaves its home venue exactly once.

roof. If t = i, let i′ ∈ V \{i, j, t, t⋆} and j′ := j. Otherwise, let i′ := i and j′ ∈ V \{i, j, t, t⋆}. Note that in
ither case i′, j′ and t are distinct. We construct tournament T from a canonical factorization by permuting
lots and teams such that (k, i′, t), (k+1, j′, t) ∈ T for some k ∈ S \{2n−2} and such that all away matches
f t⋆ are in slots 2, 3, . . . , n.

To see that this is possible, we discuss the cases in which t⋆ ∈ {i′, j′, t} holds. If t⋆ = i′, then t⋆ = i ̸= t, j′

olds and we can choose k := 1 such that in this slot team t⋆ plays at home against t. If t⋆ = j′, then t⋆ = j

nd t = i hold and we can choose k := n+ 1 such that in this slot team t⋆ plays at home against t. Finally,
f t⋆ = t, then we can choose k := 2 such that in slots 2 and 3 team t⋆ plays away against i′ and j’. □

laim 15.3. For any slot k ∈ {1, 2, . . . , n − 1} and distinct j, j′ ∈ V \ {t⋆} there exist tournaments T and
′ satisfying (HAk,k + n − 1,t⋆,j) and such that team t⋆ leaves its home venue exactly once and to the venues
in T and to j′ in T ′.

roof. We construct tournament T from a canonical factorization by permuting slots such that all away
atches of t⋆ are in slots k, k + 1, . . . , k + n − 1 in particular such that (k, j, t⋆), (k + 1, j′, t⋆) ∈ T hold.
ence, in T , team t⋆ leaves its home venue exactly once to venue j.
Finally, tournament T ′ is constructed from T via a home-away swap (HAk,k + n − 1,t⋆,j), which means that

n T ′ team t⋆ plays away in slots k + 1, k + 2, . . . , k + n− 1, starting at venue j′ after playing at home in

lot k. □
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Claim 15.4. For each slot k ∈ S \ {k̄} and for all distinct i, j ∈ V \ {t⋆} there exist tournaments T and T ′

atisfying (HAk̄,k,i,j) and such that in both tournaments team t⋆ leaves its home venue exactly once.

roof. We construct tournament T from a canonical factorization by permuting slots and teams such that
k̄, i, j), (k, j, i) ∈ T and such that team t⋆ plays away in consecutive matches k′, k′ + 1, . . . , k′ + n− 1 for
ome k′ ∈ {1, 2, . . . , n}. It is easy to see that such a slot k′ exists since we only have to make sure that t⋆

oes not play against i or j in slots k̄ and k.
Finally, tournament T ′ is constructed from T via a home-away swap (HAk̄,k,i,j), which does not affect

he home-away pattern of team t⋆ /∈ {i, j}. □

laim 15.5. For distinct slots k1, k2 ∈ S and distinct teams i, j, i′, j′ ∈ V with t⋆ /∈ {i, i′} and with k2 = k1+1
if t⋆ ∈ {j, j′} there exist tournaments T and T ′ satisfying (PSk1,k2,i,j,i′,j′) such that in both tournaments team
t⋆ leaves its home venue exactly once.

Proof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. By permuting teams
we can assume {i, j}, {i′, j′} ∈ M1 = Mn. We now exchange the roles of teams j and j′ only in perfect
matchings Mn, Mn+1, . . . , M2n−2, which maintains the property that each edge appears in exactly two
perfect matchings. We distinguish two cases:

Case 1: t⋆ ∈ {j, j′}. By symmetry we can assume t⋆ = j without loss of generality. We construct
tournament T1 by orienting the edges in a complementary fashion such that T1 contains the matches (1, i, j),
(1, i′, j′), (n, i, j′) and (n, i′, j) and such that t⋆ plays away in matches 1, 2, . . . , n − 1, except for match
k′ ∈ {2, 3, . . . , n− 1} in which t⋆ plays at home against i′ since the corresponding return match is scheduled
in slot n. Hence, we have (k′, t⋆, i′) ∈ T1.

Tournament T2 is now obtained from T1 by exchanging slots k′ and n, i.e., T2 contains matches (1, i, j),
1, i′, j′), (k′, i, j′), (k′, i′, j) and (n, t⋆, i′) and team t⋆ plays away in slots 1, 2, . . . , n− 1.

We construct tournament T3 from T2 via a cyclic shift by s := min{k1 − 1, n − 1}. We obtain
(1 + s, i, j), (1 + s, i′, j′), (k′ + s, i, j′), (k′ + s, i′, j) ∈ T3 and team t⋆ plays away in slots 1 + s, 2 + s, . . . ,

− 1 + s. Note that k1, k2 ∈ S′ := {1 + s, 2 + s, . . . , n− 1 + s}.
Finally, we construct tournament T from T3 by exchanging slots within S′ such that T contains the

atches (k1, i, j), (k1, i
′, j′), (k2, i, j

′) and (k2, i
′, j) while maintaining the property that team t⋆ plays away

n slots S′.
Case 2: t⋆ /∈ {j, j′}. We construct tournament T1 by orienting the edges in a complementary fashion such

hat T1 contains the matches (1, i, j), (1, i′, j′), (n, i, j′) and (n, i′, j) and such that t⋆ plays away in matches
, 2, . . . , n− 1.

Let s ∈ {0, 1, 2, . . . , n − 1} be such that S′ := {1 + s, 2 + s, . . . , n − 1 + s} contains exactly one of
he two slots k1, k2. By symmetry we can assume k1 ∈ S′ and k2 ∈ S \ S′ (otherwise exchange k1 with
2, i with i′ and j with j′). We construct tournament T2 from T1 via a cyclic shift by s. We obtain
1 + s, i, j), (1 + s, i′, j′), (n+ s, i, j′), (n+ s, i′, j) ∈ T2 and team t⋆ plays away in slots S′.

Finally, we construct tournament T from T2 by exchanging slot 1 + s ∈ S′ with k1 ∈ S′ and slot
+ s ∈ S \S′ with k2 ∈ S \S′, which maintains the property that team t⋆ plays away in slots S′. Moreover,

(k1, i, j), (k1, i
′, j′), (k2, i, j

′), (k2, i
′, j) ∈ T hold.

In both cases we construct T ′ from T by a partial slot swap (PSk1,k2,i,i′,j,j′). □

laim 15.6. For each slot k ∈ {k⋆ + 1, k⋆ + 2, . . . , k⋆ + n − 3} and each team j ∈ V \ {t⋆} there exist
ournaments T and T ′ satisfying (HAk,k + 1,j,t⋆) such that in both tournaments team t⋆ leaves its home venue

⋆ ⋆
xactly twice and plays away in slots k and k + n− 1.
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Proof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. We permute matchings
uch that {t⋆, j} ∈ Mk,Mk+1 and such that in matchings Mk⋆ , Mk⋆+1, . . . , Mk−1, Mk, Mk+2, Mk+3, . . . ,
Mk⋆+n−2, Mk⋆+n−1 node t⋆ is matched to every other node exactly once. Tournament T is constructed by
orienting edge {t⋆, j} as (j, t⋆) in Mk and as (t⋆, j) in Mk+1, and such that team t⋆ plays away in slots k⋆,
k⋆ + 1, . . . , k⋆ +n− 1 except for slot k+ 1. Team t⋆ leaves its home venue only before slot k⋆ and after slot
k + 1. We construct tournament T ′ by (HAk,k + 1,j,t⋆), in which t⋆ plays at home in slot k and away in slot
k + 1. Moreover, in T ′ team t⋆ leaves its home venue only before slot k⋆ and after slot k. □

Claim 15.7. For all distinct teams j, j′ ∈ V \ {t⋆} there exist tournaments T and T ′ satisfying
(HAk⋆,k⋆ + 1,t⋆,j) such that team t⋆ leaves its home venue exactly once, namely to venue j, in tournament T
and exactly twice, namely to venues j and j′, in tournament T ′ where it plays away in slots k⋆ and k⋆ +n−1.

Proof. Let Mℓ for all ℓ ∈ S be the perfect matchings of the canonical factorization. We permute matchings
such that {t⋆, j} ∈ Mk⋆ ,Mk⋆+1, {t⋆, j′} ∈ Mk⋆+2 and such that in matchings Mk⋆+1, Mk⋆+2, . . . , Mk⋆+n−1

node t⋆ is matched to every other node exactly once. Tournament T is constructed by orienting edge {t⋆, j}
as (t⋆, j) in Mk⋆ and such that team t⋆ plays away in slots k⋆ + 1, k⋆ + 2, . . . , k⋆ +n− 1. Team t⋆ leaves its
home venue exactly once, namely after slot k⋆ to venue j. We construct tournament T ′ by (HAk⋆,k⋆ + 1,t⋆,j),
in which t⋆ plays away in slot k⋆ and home in slot k⋆ + 1. Moreover, in T ′ team t⋆ leaves its home venue
exactly twice, namely before slot k⋆ to venue j and after slot k⋆ + 1 to venue j′. □
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