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Abstract. Carboxylesterases (CESs, E.C.3.1.1.1) constitute a large class of enzymes that determine the therapeutic efficacy and
toxicity of ester/amide drugs. Without exceptions, all mammalian species studied express multiple forms of carboxylesterases.
Two human carboxylesterases, CES1 and CES2, are major contributors to hydrolytic biotransformation. Recent studies have
identified therapeutic agents that potently inhibit carboxylesterases-based catalysis. Some of them are reversible whereas others
irreversible. The adrenergic antagonist carvedilol, for example, reversibly inhibits CES2 but this carboxylesterase is irreversibly
inhibited by orlistat, a popular anti-obesity medicine. Kinetically, the inhibition occurs competitively, non-competitively or in
combination, depending on a carboxylesterase. For example, the calcium channel blocker diltiazem competitively inhibits CES1
but non-competitively inhibits CES2. In addition to inhibited catalysis, several therapeutic agents or disease mediators have
been shown to regulate the expression of carboxylesterases. For example, the antiepileptic drug phenobarbital induces both
human and rodent carboxylesterases, whereas the antibiotic rifampicin induces human carboxylesterases only. Conversely, the
proinflammatory cytokine interleukin-6 (IL-6) suppresses the expression of carboxylesterases across species, but depending on
the concentrations of glucose in the culture medium. Transactivation, transrepression and altered mRNA stability contribute to the
regulated expression. Several nuclear receptors are established to support the regulation including constitutive androstane receptor,
glucocorticoid receptor and pregnane X receptor. In addition, non-ligand transcription factors are also involved in the regulation
and exemplified by differentiated embryo chondrocyte-1, nuclear factor (erythroid-derived 2)-like 2 and tumor protein p53. These
transcription factors coordinate the regulated expression of carboxylesterases, constituting a regulatory network for the hydrolytic
biotransformation.

Keywords: Carboxylesterases, nuclear receptors, transactivation, suppression, pregnane X receptor, constitutive androstane
receptor, differentiated embryo chondrocyte-1 and tumor protein p53.

1. Introduction lipids [1-3]. These enzymes rapidly hydrolyze carboxylic

acid esters, and to a less extent, amides and thioesters [3].
Carboxylesterases (E.C.3.1.1.1) constitute a large class of Without exceptions, all mammalian species studied express
hydrolytic enzymes that play critical roles in the metabolism  multiple forms of carboxylesterases. The human genome
of drugs, detoxification of insecticides and mobilization of ~ contains seven carboxylesterase genes [1]. Nevertheless, only
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two carboxylesterases, CES1 and CES2, are recognized to
play major roles in the metabolism of common drugs [1, 3].
CESI is encoded by two genes: CES1A1 and CES1A2 [1].
The CES1A1 and CES1A2 proteins differ by four amino
acids, and they are located in the N-terminal signal peptide
[4]. As a result, the CES1A1 and CES1A2 genes actually
produce the same mature protein, namely CES1. CES2, on
the other hand, is encoded by a single gene but has variants
produced through such mechanisms as alternative splicing

[5].

CES1 and CES?2 exhibit two major differences: substrate
specificity and tissue distribution. Both carboxylesterases are
abundant in the liver with CES1 being more abundant. In
contrast, CES2 is more abundant in the gastrointestinal tract
[3, 6]. CES1 has a broad tissue distribution, whereas CES2
is more tissue-restricted [6]. Both CES1 and CES2 rapidly
hydrolyze standard substrates such as p-nitrophenylacetate.
However, many drugs are hydrolyzed predominately by one
of them [7-9]. We and other investigators have shown that
the relative sizes between the alcohol and acyl moieties of an
ester contribute significantly to isoform-specific hydrolysis.
For example, the anti-influenza prodrug oseltamivir has a
smaller alcohol group (Top/Left of Fig. 1) and is hydrolyzed
by CES1 [8]. In contrast, the anticancer prodrug irinotecan
has a larger alcohol moiety (Top/Right of Fig. 1) and
is hydrolyzed preferably by CES2 [9, 10]. This rule is
applicable to dual ester drugs such as dabigatran with one
ester bond being preferably hydrolyzed by CESI1 and the
other by CES2 [11]. Nonetheless, there are exceptions [12].
For example, CES2 hydrolyzes cis-permethrin 7 times as fast
as CESI, but they comparably hydrolyze trans-permethrin
(Bottom of Fig. 1) [12]. In addition, CES1 but not CES2
has been shown to catalyze transesterification in the presence
of ethanol [7]. Transesterification has been implicated in
ethanol-drug interactions such as with the stimulate dI-
methylphenidate [13-15].

Carboxylesterases split a drug into two parts, causing
large changes in the structure, lipophilicity or both [I,
3]. As a result, the action of carboxylesterases determines
the therapeutic intensity and toxicity of drugs metabolized
by these enzymes [7, 8, 10, 16]. The antiplatelet agent
clopidogrel, an oxidative prodrug, undergoes hydrolysis and
its hydrolytic metabolite no longer has antiplatelet activity
[17, 18]. Likewise, aspirin is hydrolyzed by CES2 and the
metabolite no longer covalently modifies its target cyclooxy-
genase [3, 19]. In contrast, irinotecan requires hydrolysis to
exert anticancer activity [10]. Accumulation of its hydrolytic
metabolite SN-38 in the intestinal mucosa, at least partially
due to the action of intestinal CES2, contributes to late-onset
diarrhea, a major dose-limiting toxicity of irinotecan [20-22].

Recent studies have identified therapeutic agents
that potently inhibit carboxylesterases-based catalysis
[23-25]. Some of them are reversible whereas others
irreversible. Kinetically, the inhibition occurs competitively,
non-competitively or in combination, depending on a

carboxylesterase or a substrate [23]. In addition to inhibited
catalysis, several therapeutic agents or disease mediators
have been shown to induce or suppress the expression of
carboxylesterases [2, 3]. Transactivation, transrepression and
altered mRNA stability contribute primarily to the regulated
expression. Several major nuclear receptors are established
to support the regulation including constitutive androstane
receptor and pregnane X receptor [26-29]. In addition,
several non-ligand transcription factors such as the tumor
suppressor p53 are established to regulate the expression
of carboxylesterases [30, 31]. These transcription factors
constitute a regulatory network and coordinate the regulated
expression of carboxylesterases in response to therapeutic
agents, environmental chemicals, disease mediators,
nutritional status and hormones. This review is focused
on therapeutic agents and disease mediators that regulate
the activity and/or the expression of carboxylesterases.
The transcriptional network for the regulated expression is
discussed in details.

2. Clinical Inhibitors of Carboxylesterases

An increased number of compounds have been shown to
inhibit carboxylesterase activity including but are not limited
to insecticides, natural products and therapeutic agents [23—
25, 32-35]. The inhibition is implicated in alteration of the
efficacy, safety and bioavailability of drugs metabolized by
these enzymes. Some inhibitors act reversibly whereas others
irreversibly [23-25]. A few examples are chosen for further
discussion largely due to their high potency, selectivity
between CES1 and CES2, distinction in inhibitory kinetics
and/or confirmation of inhibited hydrolysis of ester drugs.

2.1. Reversible drug inhibitors. Majority of drug inhibitors
for carboxylesterases act reversibly (Table 1) [36—40]. These
inhibitors exhibit structural diversity (Fig. 2) and functional
distinction in terms of therapeutic targets (Table 1). While
there are exceptions, majority of these drugs have antihy-
pertensive, antidiabetic or lipid-lowering activity (Table 1).
Some of them are highly potent and efficaciously inhibit
carboxylesterases even at nanomolar concentrations. For
example, fenofibrate, a lipid-lowering agent, inhibits the
hydrolysis of irinotecan with a Ki of 0.04 4M [39]. Irinotecan
is a CES2 substrate, although it is also hydrolyzed by CES1
but to a much less extent [10, 41]. Many of the inhibitors are
esters, thus they exert competitive inhibition (Fig. 2 and Table
1). Nevertheless, the kinetic mode of inhibition depends
on the structure of an inhibitor and a carboxylesterase. For
example, the lipid-lowering drug simvastatin inhibits both
CES1 and CES2 with comparable Ki values: 0.11 versus
0.67 uM (Table 1), however, the inhibition of CES1 occurs
competitively, whereas the inhibition of CES2 occurs non-
competitively [18]. Likewise, diltiazem, an ester, inhibits
CES1 competitively but CES2 non-competitively [38]. It
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Figure 1: Structure of oseltamivir, irinotecan and trans-permethrin

Table 1: Drug inhibitors of CES1 and/or CES2.

Drug inhibitor CESI inhibition CES?2 inhibition Mechanism of action
Carvedilol Irinotecan: K;: 1.60 (Comp) [36] Adrenergic antagonist
Diltiazem Trandolapril: K;: 9 uM (comp) [37] Irinotecan: K;: 0.25 (Noncomp) [38] Calcium channel blocker
Fenofibrate Irinotecan: Ki: 0.04 (Comp) [39] PPAR-a Activator
Loperamide MLA: K;: 1.50 [Comp) [40] p-opioid receptor agonist
Nitrendipine Imidapril: K;: 1.24 yM (mix) [3] Calcium channel blocker
Physostigmine Irinotecan: Ki: 0.3 (Mix) [36] Acetylcholinesterase inhibitor
Simvastatin Imidapril: K;: 0.11 uM (comp) [39] Irinotecan: K;: 0.67 (noncomp) [39] HMG-CoA Reductase inhibitor
Telmisartan Imidapri: K;: 1.69 uM (comp) [38] Angiotensin II receptor blocker
Troglitazone Imidapri: K;: 0.62 uM (Mix) [39] PPAR agonist

MLA: Methylumbelliferyl acetate; Comp: competitive; Noncomp: noncompetitive; Mix: competitive and noncompetitive; PPAR: activating peroxisome
proliferator-activated receptor; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A.

should be noted that simvastatin is a CES1 substrate but
diltiazem is not hydrolyzed by CES1 or CES2 [38, 42].

In addition to esters, many non-ester drugs are shown
to inhibit carboxylesterases with high potency (Fig. 2,
Table 1). For example, telmisartan, an antihypertensive by
blocking angiotensin II receptor, inhibits CES1 with a Ki of
1.69 uM [38]. Likewise, troglitazone, an antidiabetic agent
by activating peroxisome proliferator-activated receptors,
efficaciously inhibits CES1 with a Ki of 0.62 uM [39]. Both
drugs inhibit CES2 but the inhibition is only modest [38,
39]. In contrast, carvedilol and loperamide show relatively
high levels of selectivity in inhibiting CES2. Carvedilol acts
on adrenergic receptor blocker and lowers blood pressure
[36], whereas loperamide acts on the wu-opioid receptors
and is commonly used to treat diarrhea [40]. Carvedilol
and loperamide inhibit CES2 with a comparable Ki value
(1.60 versus 1.50 uM) [36, 40]. It remains to be determined

how these drugs achieve high levels of inhibitory selectivity
toward a particular carboxylesterase.

2.2. Irreversible drug inhibitors. In contrast to the large
number of reversible inhibitors, much fewer drugs are shown
to inhibit carboxylesterases irreversibly [24, 25, 43]. Orlistat,
a popular weight loss medicine for over a decade [44-
47], has been shown to inhibit CES2 irreversibly [24].
Orlistat at 1 nM inhibits CES2 by 75% [24]. The potent
inhibition remains after native gel electrophoresis (remove
unbound inhibitor), establishing covalent modifications for
the inhibition [25]. Another potent irreversible inhibitor is
sofosbuvir, a paradigm shift anti-hepatitis C viral (HCV)
agent approved a few years ago by the Food and Drug Admin-
istration. Sofosbuvir has shown unprecedented efficacy for
HCYV mono- and HCV/HIV co-infection (human immunode-
ficiency virus) [48-51]. Sofosbuvir at 0.1 M inhibits CES2
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Figure 2: Structure of diltiazem, simvastatin, telmisartan, troglitazone, carvedilol and loperamide.

by 45% ([24], unpublished data). The potent inhibition by
sofosbuvir, as seen with orlistat, remains after electrophoresis
[24]. Rivastigmine, a drug for treating moderate dementia,
has been shown to inhibit CES1 irreversibly, but the potency
is relatively low with an IC50 value of > 100 uM [42].

Orlistat and sofosbuvir, although sharing the high potency
on CES2 inhibition, differ markedly in structure and
lipophilicity. As shown in Fig. 3, orlistat contains a
long-carbon chain (21 carbon), whereas sofosbuvir is a
phenoxyphosphorylamino-propanoate combined with dihy-
dropyrimidin and methyltetrahydrofuran. In addition, orlistat
has a LogP value of 1.6 whereas sofosbuvir has a LogP value
of 8.1, suggesting that they differ markedly in ionization at

the physiological pH. Clearly their differences in structure
and lipophilicity may contribute insignificantly to their
potent inhibition toward CES2, although these differences
may determine the initial contact with CES2. On the
other hand, orlistat and sofosbuvir are esters and undergo
hydrolysis [5, 47]. Sofosbuvir is hydrolytically activated
by CES1 [45], but the enzyme(s) for orlistat hydrolysis
remains to be determined. CES1 and CES2 use the triad (Ser-
His-Glu) for hydrolysis [1, 3, 4]. This catalytic machinery
follows two steps for hydrolysis; the nucleophilic attack
via the serine on a substrate followed by hydrolyzing the
acylated-carboxylesterase intermediate via an activated water
molecule. The velocity of step two determines if an ester is a
substrate (fast) or inhibitor (slow).
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Figure 3: Structure of orlistat and sofosbuvir.

2.3. Clinical significance of carboxylesterase inhibition. No
systemic studies have been performed to establish the clinical
significance of inhibiting carboxylesterases. Pharmacoepi-
demiological studies in this topic area are scarce and limited.
The clinical significance, particularly for reversible inhibi-
tion, is difficult to be established. The inhibition is largely
established with a few isoform-specific substrates such as
imidapril for CES1 and irinotecan for CES2 (Table 1). As a
result, co-administration of a substrate drug (e.g., irinotecan)
with a corresponding drug inhibitor (e.g., carvedilol) may
not happen frequently. In addition, a drug substrate and a
drug inhibitor (reversible), if administered few hours apart,
may not cause interactions with clinical significance. The
action of carboxylesterases is usually coupled with the action
of other enzymes (e.g., cytochrome P450 enzymes) [54,
55] or transporters (e.g., Multidrug resistance protein 4)
[56, 57]. Consequently, the clinical significance in terms of
inhibiting carboxylesterases is complicated by other proteins.
And finally, subtract drug and inhibition drug have func-
tional interactions that dominate the potential metabolizing
interactions. For example, the anticancer drug irinotecan is
hydrolytically activated by CES2 [10], and simvastatin (lipid-
lowering drug) is a potent CES2 inhibitor [38] and assumed
to decrease irinotecan activation and therapeutic activity.
However, combination of irinotecan and simvastatin delivers
better anticancer activity [58, 59]. One of the explanations is
that simvastatin exerts anticancer activity by inhibiting cell
proliferation and enhancing apoptosis [58, 59].

Irreversible inhibitors, on the other hand, have been
implicated in pharmacokinetic interactions. For example,
sofosbuvir has been shown to increase by 56-197% the
plasma levels of tenofovir [60]. Tenofovir is the active
metabolite of tenofovir disoproxil, an ester prodrug listed as
an essential me-dicine for HIV therapy [61, 62]. The ester
bonds are critical for its absorption [63—65]. In support of this
notion, inhibited hydrolysis of tenofovir disoproxil by straw-
berry extracts increased its absorption [64, 65]. Likewise,
coadministration of orlistat has been linked to enhance the
therapeutic activity of aspirin [66]. It has been reported that
aspirin is hydrolyzed by several enzymes. However, CES2
is the kinetically favorable one [7]. Aspirin exerts potent

anti-inflammatory activity by acetylating cyclooxygenase-
1 and hydrolysis leads to lost acetylation ability. It should
be noted that orlistat, although not readily absorbed, suf-
ficiently reaches the systemic circulation. In humans, after
oral administration at therapeutic doses, orlistat reaches a
blood concentration of 0.20-8.77 ng/ml depending on an
individual [67]. Its major metabolites, on the other hand,
have concentrations of 20-50 times of the parent compound
[67, 68]. It is therefore estimated that orlistat can reach low-
micromolar concentrations after oral administration in the
mucosa of the gastrointestinal tract and the liver. Clearly,
CES2 can be potently inhibited by regular dosing regimens
of orlistat, certainly with a dominant inhibition of CES2 in
the gastrointestinal tract.

3. Regulated Expression of Carboxylesterases
by Drugs and Disease Mediators

The expression of carboxylesterases, like many other drug-
metabolizing enzymes, is regulated by therapeutic agents,
disease mediators and physiological factors (e.g., hormones
and nutrition) [26-31]. Some of these factors induce
carboxylesterase expression, whereas others suppress the
expression. This section focuses on therapeutic agents with
defined mechanism of action and immunostimulants that
have broad pathological implications.

Both induction and suppression of carboxylesterases have
been reported [26-31]. Majority of these studies were
performed in the livers or hepatocytes, where the expression
of carboxylesterases is high. As a result, the induction, in
most cases, is modest (Table 2). In contrast, the suppres-
sion is profound in most of these cases. The induction is
exemplified by dexamethasone, fluorouracil, phenobarbital
and rifampicin, depending on a species. The suppression is
exemplified by interlekin-6 and lipopolysaccharides as well
as dexamethasone. Selection of these examples is based on
several important considerations: species variation, isoform
dependency, differential outcomes, and differences in the
mechanisms of action. All drugs discussed below are listed
as essential medicines by the World Health Organization
[61] including dexamethasone, fluorouracil, phenobarbital
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Table 2: Regulators of CES1 and CES2 expression.

Regulator Function CES1 CES2 Rodent carboxylesterases
Dexamethasone Anti-inflammatory 25%1 [75] 25%1 [75] 60-90% 1175, 76]
Fluorouracil Anti-cancer “ 50%1 [31]

Phenobarbital Anti-epilepsy 20%1 [75] 20%1 [75] 40-70% [96, 97]
Rifampicin Aantibiotics 30%1 [75] 30%1 [75]

Interleukin-6 Proinflammatory 40%] [109] 40%) [109] 10-30%12, 10-15%/ [110]
Lipopolysaccharides Immunostimulant 71%| [110, 113] 51%| [110, 113] 5-20%12, 10-20% [110, 113]

!Induction of certain isoforms and increased expression of certain suppressed forms by high concentrations; 2at low glucose concentrations in culture media.

Table 3: Transcription factors involved in regulated expression of carboxylesterases.

Transcription factors Trigger CESlor2 Rodent
Constitutive androstane receptor (CAR, NR113) Phenobarbital CES1 and 2 1 [75] 1 [97]
Differentiated embryo chondrocyte-1 (DEC1, BHLHE40) Proinflammatory CES1 and 2 | [143] 1 [124]
Glucocorticoid receptor (GR, NR3C1) Dexamethasone (DEX) CESI1 and 2 1 [75] 1l [76, 7T7]*
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, NFE2L.2) Guggulsterone CESI1 1 [30, 147, 148] 1 [148]
Pregnane X receptor (PXR, NR112) Rifampicin/Dex CES1 and 2 1 [75] 1 [97]
Tumor protein p53 (p53) Fluorouracil CES2 1 [31, 151]

*Depending on a carboxylesterase.

This synthetic glucocorticoid regulates the expression
of carboxylesterases in a species- and isoform-dependent
manner.

Box 1: Unique feature of dexamethasone-regulated carboxylesterase
expression.

and rifampicin. It should be noted that uppercases are used
for human carboxylesterases whereas lowercases for rodent
enzymes.

Dexamethasone. It is a synthetic glucocorticoid and
widely used to treat a number of diseases such as arthritis,
allergic reactions, bowel disorders, respiratory diseases and
even cancer [69—71]. This glucocorticoid is stable and has
a long half-life (35-54 h) [70]. As a result, this drug suffers
from its broad and sustained activities. Dexamethasone has
been implicated in pharmacokinetic interactions with a large
number of drugs, probably due to its activity of regulating
the expression of genes involved in drug metabolism and
transport [72—74]. This glucocorticoid induces the expression
of CES1 and CES2, but the induction is modest [75]. Dex-
amethasone has also been shown to regulate the expression
of rodent carboxylesterases [75, 76]. However, the outcomes
of the regulation vary depending on a carboxylesterase and/or
concentrations. Dexamethasone at nanomolar concentrations
suppresses the expression of rat family-1 carboxylesterases
[76]. Micromolar concentrations are less suppressive and
even induce some of the suppressed carboxylesterase genes
[76]. Dexamethasone has been reported to induce family-2
carboxylesterases in rats [77].

Induction of CES-2 by fluorouracil enhances the
activation and its anticancer activity of irinotecan,
a major anticancer medicine.

Box 2: Unique feature of fluorouracil-upregulated CES2.

Fluorouracil (5-FU). It is a fluorinated pyrimidine and
functions as a potent inhibitor of RNA synthesis and function
[78, 79]. Indeed, 5-FU and its prodrug capecitabine are anti-
cancer agents with a broadest spectrum of treating cancers
including colon cancer, esophageal cancer, stomach cancer,
pancreatic cancer, breast cancer, and cervical cancer [§0—82].
In addition, 5-FU is used to treat cancer-related disorders
such as actinic keratosis and skin warts [83, 84]. In many
cases, 5-FU is used together with other anticancer agents such
as irinotecan, a prodrug hydrolytically activated by CES2
[10, 85, 86]. 5-FU has been shown in tumor cell lines and
xengrafts to efficaciously induce the expression of CES2
[31]. The induction leads to enhanced cell killing activities
of anticancer ester prodrugs including irinotecan. Both 5-FU
and irinotecan are in the conventional chemotherapy regimen
FOLFIRI (Folinic acid, Fluorouracil and Irinotecan) [87, 88].

Phenobarbital. It is widely used to treat certain types
of epilepsy and seizures [89-91]. Phenobarbital has been
well established to increase the number of microsomes, an
organelle with an abundant presence of drug metabolizing
enzymes [92, 93]. As a result, phenobarbital is a prototype of
inducers that increase the expression of these enzymes, par-
ticularly cytochrome P4502B subfamilies [92-95]. In human
primary hepatocytes, phenobarbital modestly induces both
CES1 and CES2 [75]. In mice and rats, this anti-epileptic
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Phenobarbital is a broad inducer with modest potency
and induces carboxylesterases across species
and isoforms, although.

Box 3: Unique feature of phenobarbital-regulated expression.

Induction of carboxylesterases by rifampicin is
species-specific.

Box 4: Unique feature of rifampicin-regulated expression.

drug induces all carboxylesterases tested including family-
1 and family-2 carboxylesterases [96, 97]. The magnitude
of the induction is more profound in neonatal mice. As
discussed below, phenobarbital-type inducers activate two
nuclear receptors: constitutive androstane receptor (primar-
ily) and pregnane X receptor to increase the expression of
their target genes [93, 98].

Rifampicin. It is an antibiotic and used to treat infection
of Mycobacterium tuberculosis, the bacteria that cause
tuberculosis [99, 100]. While phenobarbital is a prototype
inducer of cytochrome P450 2B subfamilies [95], rifampicin
is a prototype inducer that induce cytochrome P450 3A
enzymes [101-103]. In contrast to phenobarbital, rifampicin
is more potent and induces drug-metabolizing enzymes in
a species-dependent manner. In human primary hepatocytes
or hepatic cell lines, rifampicin at 10 uM efficaciously
induce CES1 and CES2 [75]. In addition, rifampicin activates
pregnane X receptor but not constitutive androstane receptor
[104, 105].

Interlekin-6 (IL-6) and lipopolysaccharides (LPS). IL-
6 is generally considered as a proinflammatory cytokine,
although it has anti-inflammatory effect [106-108]. Never-
theless, this cytokine has been shown to downregulate the
expression of both CES1 and CES2 [109]. Treatment of IL-6
in human primary hepatocytes suppresses the expression of
both carboxylesterases by as much as 40%. The suppression
lead to significant changes in cellular responsiveness to
clopidogrel, irinotecan and oseltamivir in terms of efficacy
and toxicity [109]. These drugs are all ester prodrugs but
their hydrolytic metabolites differ from respective parent
drugs in cellular toxicity. Likewise, IL-6 has been shown
to downregulate mouse carboxylesterases, but the downreg-
ulation requires the presence of high glucose in the media
[110]. LPS, on the other hand, is an immunostimulant and
potently stimulates immune cells to secrete proinflammatory
cytokines [111, 112]. Like IL-6, LPS downregulates the
expression of human and rodent carboxylesterases [110,
113]. The downregulation is more profound than IL-6
mediated suppression [109], pointing to the possibility that
other cytokines stimulated by LPS, in addition to IL-6, also
downregulate carboxylesterases.

Proinflammatory cytokines such as

IL-6 and immunostimulant such as LPS
generally downregulate carboxylesterases
cross the species.

Box 5: Unique feature of IL-6/LPS-regulated expression.

Metabolic disorders alter the expression

of carboxylesterases and the alteration likely
occurs in a species- and/or isoform- dependent
manner.

Box 6: Unique feature of lipid/glucose-regulated expression.

Glucose and obesity. The catalytic action of CESI,
predominately as a hydrolase, is considered to favor lipid
elimination. On the other hand, several studies with human
tissues point to a role of CES1 in lipid retention [114, 120].
The level of CES1 correlates well with body mass index and
waist circumference [116, 117]. In the adipose tissues, the
expression of CES1 is higher in obese patients than lean
individuals [116, 119]. Also, the levels of CES1 correlate
inversely with parameters such as total serum cholesterol,
low-density-lipoprotein cholesterol and the level of insulin
during glucose tolerance test [116]. These parameters are
commonly associated with metabolic syndrome [121, 122].
Consistent with increased expression of CESI1 in dyslipi-
demia, glucose has been shown to induce the expression
of mouse carboxylesterases including Cesld, Cesle and
Ceslg [100, 123, 124]. Interestingly, diabetic condition
induced by streptozocin in mice increases the expression
of carboxylesterase (i.e., Ceslg) [123], whereas high-fat-
diet induced diabetic condition decreases the expression of
carboxylesterases (i.e., Cesld and Cesle) [124]. Insulin,
nevertheless, decreases the expression of these mouse car-
boxylesterases as well as human enzymes (CES1 and CES2)
[123, 124].

4. Involvement of Nuclear Receptors
and other Transcription Factors in
the Regulation

Transcriptional regulation is recognized to play the pri-
mary role in the regulated expression of carboxylesterases
(Table 3). Many nuclear receptors have been established or
implicated in the regulation such as constitutive androstane
receptor [27], farnesoid X receptor [125], glucocorticoid
receptor [76], peroxisome proliferator-activated receptors
[126] and pregnane X receptor [27, 28]. It should be noted
that expression of CES1 regulates the signal transduction
supported by peroxisome proliferator-activated receptors and
liver X receptor [127]. These receptors are ligand-dependent
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transcription factors and majority of them are tradition-
ally called orphan receptors [128]. In addition, several
ligand-independent transcription factors (non-ligand) have
recently been established in the regulated expression of car-
boxylesterases such as differentiated embryo chondrocyte-1
[129], nuclear factor (erythroid-derived 2)-like 2 [30] and
tumor protein p53) [31].

CAR (constitutive androstane receptor, NR113). CAR
is a sequence-specific transcription factor [130]. In addition
to a DNA binding domain, this transcription factor has a
ligand binding domain that interacts with agonist, antagonist
and inverse agonist. CAR normally resides in the cytosol
and are complexed with a variety of proteins such as heat
shock protein 90 (HSP90) [131]. Interaction with a ligand or
dephosphorylation leads to nuclear translocation. In addition,
CAR is constitutively active in the absence of a ligand. As a
result, CAR transcriptionally activates target genes through
direct or indirect mechanism. The indirect mechanism is
exemplified by phenobarbital that induces the dephospho-
rylation of CAR through protein phosphatase 2 [132]. As
discussed above, phenobarbital is a broad inducer with mod-
est potency and induces carboxylesterases cross species and
isoforms [75, 96, 97]. As for the direct activation, TCPOBOP
binds directly to car (rodent receptor in lowercase) and
induces the target genes. Like phenobarbital, TCPOBOP
exerts a broad inducibility toward carboxylesterases but with
much higher potency [97]. Nonetheless, direct activation
acts species-specifically. For example, TCPOBOP activates
rodent Car but not human CAR, but the opposite is true
with CITCO [133]. It should be noted that CAR has been
established to support the induction of carboxylesterases,
however, the corresponding response elements remain to be
elucidated.

GR (glucocorticoid receptor, NR3C1). GR and CAR
share similarities in terms of subcellular localization, ligand-
dependent nuclear translocation and the overall structural
features [134]. In the absence of ligand, GR resides in the
cytosol and are complexed with a variety of proteins such
as HSPI0 [135]. In the presence of a ligand, GR is released
from the protein complex and translocated into the nucleus
when delivering transactivation and repression activity. As
discussed above, dexamethasone, a potent GR ligand, effi-
caciously represses the expression of several major rodent
carboxylesterases [75, 76]. The suppression is attenuated to
a certain extent by cotransfection of GR-f, a known negative
dominant regulator against glucocorticoid signaling [76]. In
addition, promoter reporter experiment demonstrates that
the transcriptional repression is a sequence-specific event.
Interestingly, activation of GR in response to dexamethasone
induces the expression of the pregnane X receptor [136].
As discussed below, this receptor, with a lower affinity
toward glucocorticoid, supports the induction of many
drug-metabolizing genes including carboxylesterases. As a
result, the genes regulated by both receptors, such as some

carboxylesterase genes, represent a complex interplay in
regulated expression by glucocorticoids.

PXR (Pregnane X receptor, NR1I2). PXR is established
as a master transcription factor intimately involved in the
regulated expression of drug metabolizing enzymes and
transporters [128, 129]. Like CAR, PXR structurally belongs
to the nuclear hormone receptor superfamily. Actually,
CAR and PXR share many activators and target genes,
although PXR exhibits a broader ligand specificity and a
greater species difference [137, 138]. For example, both
receptors are activated by phenobarbital [137]. Likewise,
carboxylesterases from human and rodents are induced by
PXR and CAR specific ligands [97]. However, the magnitude
of the induction varies depending on a specific ligand.
For example, TCPOBOP and PCN (pregnenolone 16a-
carbonitrile) comparably induce mouse Ces2a and Ces2e but
the former causes much greater induction of Ces2c [97].
TCPOBOP is a ligand specific to rodent Car and PCN is
specific to rodent Pxr [97].

DECI1 (differentiated embryo chondrocyte-1). DECI,
like CAR, is sequence-specific transcription factor [139,
140]. Structurally, DEC1 belongs to the basic helix-loop-
helix superfamily of transcription factors. DECI is a master
regulator involved in an array of biological process, partic-
ularly in circadian rhythmicity. At cellular levels, this tran-
scription factor is intimately involved in cell proliferation,
differentiation and survival. DEC1 has been shown to interact
with several different types of response elements such as
Spl and E-box [139, 141]. Both elements are ubiquitously
present in the human genome. Binding to E-box delivers
potent repression, whereas binding to Spl element delivers
transactivation or repression depending on a target gene
[140, 142]. Nevertheless, the expression of DECI itself is
induced by proinflammatory cytokines and LPS as well
as the antidepressant fluoxetine [124, 129, 142, 143]. The
induction is inversely correlated with the suppression of
carboxylesterases. Importantly, the suppression is attenu-
ated by knocking down DECI1 [124, 143]. A recent study
demonstrates that DECI interacts with retinoid X receptor-
a (RXRa) [143] and downregulates the expression of several
nuclear receptors that are known to support the induction of
carboxylesterases (discussed below). It is not clear whether
the interaction with RXRa represents one of the mechanisms
for the downregulation of carboxylesterases, given the fact
that DEC1 binds directly to E-box and Spl elements.
It should be noted that the p38MAPK-NF B pathway is
implicated in the downregulation of CES1 and CES2 in
response to LPS [144].

In addition, both CAR and PXR as well as their target
genes are downregulated by cytokines such as IL-6 through
DECI, and the downregulation is attenuated by shDECI1
[143]. Furthermore, GR has been shown to induce both
PXR and CAR. A GR response element in the rat PXR
promoter is functionally characterized [133]. In summary,
there is a transcriptional network that determines the overall
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Figure 4: Interactively regulated expression of carboxylesterase by CAR, DEC1, GR and PXR.

expression of drug-metabolizing genes in response to disease
mediators such as IL-6 and pharmaceutical agents such as
dexamethasone. This network has members of GR, CAR,
PXR and DECI. Their interactive regulation is illustrated in
Fig. 4.

Nrf2 (Nuclear factor (erythroid-derived 2)-like 2). Nrf2
isrecognized as a cellular sensor for anti-oxidants [144]. Like
GR and CAR, it resides in the cytoplasm by complexing with
other proteins, notably Kelch like-ECH-associated protein 1
and Cullin 3. When cells are under stress, Nrf2 is released
from the complex, translocated to the nucleus and regulate
the expression of its target genes. Some Nrf2 targets are
involved in drug metabolism and transport [145, 146]. The
action of Nrf2 is therefore considered detoxification or devel-
opment of chemoresistance. Classic antioxidants and sensi-
tizers, such as sulforaphane, guggulsterone and trinitroben-
zene sulfonate, have been shown to induce carboxylesterases
(e.g., CES1) [30, 147, 148]. This induction is abolished by
Nrf2 knockdown. Several response elements are identified
for Nrf2-mediated transactivation of CES1. Interestingly, one
of the elements differ from consensus Nrf2 element but
delivers the highest transactivation activity among classic
Nrf2 response elements [30]. It appears that the induction
occurs a species-dependent manner. Ces1d, the mouse coun-
terpart of CES1 is not induced by guggulsterone, although
this phytosteroid is known to activate Nrf2 and induce
other mouse carboxylesterases including Ces2e (a mouse
carboxylesterase) [148]. Interestingly, antioxidants show no
induction activity of CES2 (a human carboxylesterase)
[147]. These results conclude the Nrf2 signaling acts a
species-specific and isoform-dependent manner in regulated
expression of carboxylesterases.

p53 (Tumor protein p53). The p53 gene and its protein
are probably the most studied, particularly related to tumor
growth, metastasis and chemosensitivity [ 149]. It is estimated

that from 5 to 95% cancer have dysfunctional p53 [150].
Like CAR, GR and Nrf2, p53 normally resides in the
cytoplasm and translocated to the nucleus in response to
myriad stressors such as ultraviolet exposure and oxidative
stress [149]. The translocation triggers an array of changes in
cellular responses such as DNA repair, cycle arrest, apoptotic
initiation and development of senescence. Recent studies
from several laboratories have shown that the status of p53
is closely related to the induction of CES2 in response
to 5-FU [31, 151]. The induction occurs in cancer cell
lines and xenografts but requires functional p53. Further
studies with promoter and cDNA luciferases reporters have
demonstrated an involvement of both transactivation and
increased RNA stability in the CES2 induction. It should be
noted that 5-FU-p53 connection does not induce CES1, thus
is isoform specific. Finally, p53 and DECI1 exert a functional
interplay in terms of cell survival [152], however it remains
to be determined whether these two transcription factors
interactively regulate the expression of CES2.

5. Conclusions/Further Perspectives

Carboxylesterases are major determinants of ester/amide
dugs in terms of therapeutic efficacy and safety. These
hydrolytic enzymes, although rapidly hydrolyze standard
substrates such as p-nitrophenylacetate, exhibit high levels of
substrate specificity toward many therapeutic agents. Their
catalytic activities are inhibited by increased number of
drugs through reversible or irreversible mechanism. Their
expression is regulated by a wide range of factors such as
drugs and disease mediators. Nuclear receptors and other
transcription factors are recognized as important players for
their expression. In many cases, these events occur in species-
dependent manners. On the other hand, several important
issues remain to be determined: clinical significance for the
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inhibited catalysis, molecular bases for the reversible and
irreversible inhibition, coordinated transcriptional regulation
and organ/cell specific expression such as the gastrointestinal
tract versus the liver.
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