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Predictive model of thrombospondin-1 and vascular
endothelial growth factor in breast tumor tissue
Jennifer A Rohrs1, Christopher D Sulistio1 and Stacey D Finley1,2

Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for
reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, and less is known about the therapeutic effects of
mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis
that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including
crosstalk with pro-angiogenic factors. Owing to the complexity of TSP1 signaling, a predictive systems biology model would
provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed,
mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The
model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved
form owing to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of
enhancing TSP1’s interactions with its receptors and with VEGF. To provide additional predictions that can guide the development
of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model
predicts that the CD47-binding TSP1 mimetic markedly decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in
favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to
TSP1 mimetics.
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INTRODUCTION
A hallmark of cancer is angiogenesis, the formation of new blood
capillaries from pre-existing vessels. This process enables oxygen
and nutrients from the surrounding microenvironment to reach
the tumor. In fact, angiogenesis promotes cancer development,
invasion, and metastasis. For these reasons, angiogenesis has
become a prominent target for cancer drugs.1

Therapies aimed at inhibiting angiogenesis (‘anti-angiogenic
therapies’) target many aspects in the process of new blood vessel
growth, with a focus on inhibiting pro-angiogenic factors.2

Anti-angiogenic therapeutics that target signaling mediated by
the vascular endothelial growth factor-A (VEGF), a potent
promoter of angiogenesis, are approved for treatment of various
cancer types.3 These agents include drugs that bind to VEGF and
prevent it from binding to and activating its receptors, as well as
tyrosine kinase inhibitors that impede activation of VEGF receptors
intracellularly. These treatment strategies, however, have not been
successful in all cancer types. In fact, antibody therapy targeting
VEGF is no longer approved for breast cancer treatment. In
addition, many tumors, including breast tumors, become resistant
to anti-VEGF or other anti-angiogenic treatments.4 Numerous
preclinical studies show that targeting a single factor within the
angiogenesis signaling network is insufficient to arrest tumor
growth and vascularization since tumors may ‘escape’ treatment
by utilizing alternative pathways.5 Thus, there is a critical need to
better understand the effects of these pro- and anti-angiogenic
pathways in order to develop effective treatment strategies,

including multi-modal therapies that can address the issue of drug
resistance.6,7

Both pro- and anti-angiogenic factors determine the extent of
vascularization8 and the response to anti-angiogenic therapy.9

Therefore, another means of increasing the efficacy of anti-
angiogenic treatment may be to mimic the action of inhibitors of
angiogenesis, while simultaneously inhibiting the promoters. For
example, in a preclinical model of pancreatic cancer, altering the
balance between pro- and anti-angiogenic factors was shown to
modulate tumor growth.10

To this end, several anti-angiogenic factors have been identified
as potential cancer therapeutics. Thrombospondins (TSPs) are a
family of multi-domain, calcium-binding glycoproteins that are
highly expressed during development.11 Of the five TSPs,
thrombospondin-1 (TSP1) is the most studied, was the first
endogenous anti-angiogenic factor identified,12 and has been
investigated for anti-angiogenic therapy. TSP1 acts to impede the
growth of new blood vessels in multiple ways. First, TSP1
influences growth factor availability. It can bind to VEGF and
other pro-angiogenic factors to reduce intracellular signaling
through their receptors and to clear the pro-angiogenic growth
factors from the cell via the low-density lipoprotein receptor-
related protein 1 (LRP1). TSP1 also inhibits the activation of matrix
metalloprotease-9 (MMP9),13 which among its many functions,
is able to cleave VEGF.14 In addition to altering growth factor
availability, TSP1 inhibits angiogenesis by binding to and
activating its own receptors. TSP1 signaling through the CD36
receptor results in reduced cell survival and activation of apoptosis

1Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA and 2Mork Family Department of Chemical Engineering and Materials Science,
University of Southern California, Los Angeles, CA, USA.
Correspondence: SD Finley (sfinley@usc.edu)
Received 12 March 2016; revised 9 August 2016; accepted 12 August 2016

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

http://dx.doi.org/10.1038/npjsba.2016.30
mailto:sfinley@usc.edu
http://www.nature.com/npjsba


pathways via caspase-3.13 TSP1-mediated activation of the CD47
receptors antagonizes nitric oxide signaling via endothelial
cell-derived nitric oxide synthase,15 which is important in cell
migration and proliferation.16 CD47 also couples to the VEGF
receptor R2 to inhibit VEGF-mediated activation.17 In addition,
TSP1 binds to β1 integrins, which further antagonizes VEGF
signaling.13

Interestingly, TSP1 has been shown to elicit both pro- and
anti-angiogenic effects, depending on the microenvironment.18

This effect is not fully understood; thus, the complex TSP1
interactome19 and its context-dependent role suggest that a
predictive systems biology model would greatly aid in the
optimization of TSP1-based therapeutics.
Quantitative models of angiogenesis provide insight into the

fundamental mechanisms of neovascularization. For example,
systems biology models are useful in optimizing anti-angiogenic
treatment strategies and identifying prognostic biomarkers,20,21

thereby complementing preclinical and clinical studies. We have
previously developed and applied mechanistic, systems biology
models to examine the effects of drug and tumor properties
on the response to anti-VEGF agents22 and to predict drug
pharmacokinetics.23 The relative distribution of the angiogenic
factors in their free and receptor-bound forms and the number of
pro- and anti-angiogenic complexes, are key quantities that
influence downstream signaling to modulate angiogenesis. These
quantities are difficult to measure and enumerate experimentally;
however, systems biology models enable their quantitative
prediction.
Here we present a novel computational model that incorporates

the molecular interactions between TSP1, VEGF, and their
respective receptors in breast cancer tumor tissue. Our systems-
level model predicts the concentrations of these factors and their
distributions in breast tumor tissue. The model also predicts the
effects of altering TSP1’s binding rates on various quantities that
characterize the angiogenic state of the tumor. Finally, we apply
the model to simulate the effects of TSP1 mimetics. We provide a
quantitative framework to understand the distribution of angio-
genic factors and to investigate the effects of anti-angiogenic
strategies that mimic the actions of TSP1.

RESULTS
Model construction
We have constructed a compartment model of TSP1, VEGF, and
their receptors in tumor tissue (Figure 1). The molecular
interactions are described below and illustrated in Figure 2, and
the kinetic rates that govern the interactions are provided in the
Materials and Methods section. VEGF and TSP1 are both secreted
by endothelial and tumor cells. As in our previous work, we
consider two main VEGF isoforms, VEGF121 and VEGF165. A third
isoform (VEGF114) is produced following cleavage of VEGF165 by
proteases. We also include receptors VEGFR-1 and -2 (R1 and R2,
respectively), as well as the neuropilin co-receptors NRP-1 and -2
(N1 and N2, respectively), as shown in Figure 2a. TSP1 interacts
with its receptors, CD36, CD47, LRP1, and αxβ1 integrins
(β1, representing several species), illustrated in Figure 2b. All
receptors are present on endothelial and tumor cells, at specific
densities.
Receptors can be internalized by the cell and recycled back to

the surface, and we assume that for each type of receptor the total
number (ligated plus unbound) is conserved. In addition,
receptors (whether ligated or unbound) can associate with one
another, forming multi-protein complexes. Once bound to a cell
surface receptor, TSP1 and VEGF can be removed from the tumor
interstitial space via receptor-mediated internalization. TSP1 and
VEGF bind to one another, other soluble factors, or heparan sulfate
proteoglycans (termed glycosaminoglycan, GAG, chains) present

in the ECM and basement membranes (Figure 2c). The growth
factors can be degraded via proteolysis. In addition, TSP1 is
subject to cleavage via multiple factors,24 generating an inactive
TSP1 species.
The model includes three other soluble factors only secreted by

endothelial cells: two active proteases, MMP3 and MMP9, and the
inactive form of MMP9, proMMP9 (Figure 2d). MMP3 is able to
activate MMP9, and both proteases cleave soluble and matrix-
bound VEGF165 to form VEGF114, which is unable to bind to VEGF
receptors.14 TSP1 decreases the protease action of MMP9 by
binding to MMP3 and preventing it from activating proMMP9.13

The MMPs can be degraded or removed from the tissue via
LRP1-mediated internalization.25

Global sensitivity analysis
We investigated the sensitivity of several model outputs to
variations in three sets of parameters: receptor numbers; secretion
and degradation rates; and kinetic parameters (Figure 3). We
selected these parameters because there is uncertainty in their
values owing to a lack of quantitative data available in the
literature. We use the eFAST analysis (see Materials and Methods)
to quantify how sensitive the steady-state concentrations of TSP1,
VEGF, proMMP9, MMP9, the TSP1-VEGF and MMP3-TSP1 com-
plexes, and the ratio of receptor-bound VEGF to receptor-bound
TSP1 (termed the ‘angiogenic ratio’) are to those parameters.
This global sensitivity analysis reveals that the densities of CD47,

LRP1, R1 and R2 on tumor cells influence the model outputs both
alone and in combination with other receptor numbers. These
results quantify the importance of receptor coupling. LRP1 density
particularly affects the predicted concentrations of several species
in the model, including TSP1 and the MMP species. This is because
TSP1 binding to LRP1 leads to internalization, removing TSP1 from
the tissue and influencing its availability to bind to other species.
Significantly and non-intuitively, the angiogenic ratio is particu-
larly influenced by the density of CD47 receptors, indicating that
this species may have an important role in controlling the extent
of angiogenesis.
The sensitivity analysis revealed that the degradation and

production rates are more influential in combination, rather than

Figure 1. Compartment model of TSP1 and VEGF. The model is
comprised of a single compartment representing a solid breast
tumor and involves 18 molecule types. The soluble species TSP1,
VEGF121, VEGF165, proMMP9, and MMP3 are secreted by endothelial
cells. Tumor cells secrete VEGF121 and VEGF165. Other soluble species
can be formed, including cleaved TSP1, active MMP9, and VEGF114.
All soluble species are subject to degradation. TSP1 receptors (CD36,
CD47, β1, and LRP1) and VEGF receptors (R1, R2) and co-receptors
(N1, N2) are localized on endothelial and tumor cells.
Glycosaminoglycan (GAG) chains are present in the interstitial
space, representing the extracellular matrix and endothelial and
parenchymal cell basement membranes.
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Figure 2. Schematic of TSP1 and VEGF interactions. The compartment model includes: (a) molecular interactions of two VEGF isoforms
(VEGF121 and VEGF165), receptors (R1 and R2), and co-receptors (N1 and N2); (b) interactions between TSP1, its receptors (CD36, CD47, β1, and
LRP1), and VEGF; (c) sequestration of VEGF165 and TSP1 by GAG chains in the ECM and the cellular basement membranes; and (d) activation of
proMMP9 via cleavage by MMP3, proteolysis of VEGF165 to form VEGF114 by active MMPs, cleavage of TSP1, and degradation of all soluble
species. The receptor coupling and multi-protein complexes indicate the large amount of crosstalk between the pro- and anti-angiogenic
interaction networks.

Figure 3. Sensitivity indices of model parameters. The extended Fourier Amplitude Sensitivity Test (eFAST) was used to estimate the variance
in the model output with respect with variance in individual model inputs (first-order indices) and covariances in combinations of model
inputs (total indices). The eFAST method was used to investigate the sensitivity to receptor numbers, secretion and degradation parameters,
and kinetic parameters. The ‘ratio’ refers to the ratio of TSP1 secretion by the endothelial cells compared to the tumor cells.
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alone, indicated by the higher total indices compared with the first
indices. TSP1 is sensitive to its own production and degradation
rates, as well as the degradation rate of the MMPs. The
concentrations of the other soluble species are more sensitive to
only their own production and degradation rates. Interestingly,
the concentration of MMP9 is predicted to be sensitive to VEGF
secretion. This is because both MMP9 and the TSP1-bound
VEGF isoforms bind to and are internalized by LRP1. Thus, VEGF
influences MMP9’s removal from the tissue. Such results are not
immediately intuitive; therefore, the analysis provides valuable
insight into the system.

Finally, we quantified the effects of variance in the kinetic rates.
Several of the model outputs are more sensitive to variations in
combinations of the kinetic parameters than individual kinetic
rates. TSP1 tissue concentration is most sensitive to its cleavage
rate. This is to be expected, as the rate at which TSP1 is cleaved is
large compared with the other kinetic rates (see Materials and
Methods). The concentrations of active and inactive MMP9 are
particularly sensitive to the binding rate of MMP3 and proMMP9,
and we set their values based on published studies.
The global sensitivity analysis identified the parameters to

which the model outputs are most sensitive. Because of their

Table 1. Experimental and predicted steady-state concentrations

Predicted value mean± s.d. Measured value Cancer type and References

VEGF (pmol/l)a 178± 8 8–389 Multiple, compiled in ref. 22

TSP1
Total (pmol) 61± 4 52–64b Breast34

Hepatocellular carcinoma35

Unbound (pmol/l)a 185± 5 c

Cleaved (nmol/l)a 2.2± 0.06 c

MMP3
Total (pmol) 162± 0.02 160b Oral squamous cell carcinoma33

Unbound (nmol/l)a 9.0± 5× 10− 3 c

MMP9
Total (pmol) 161± 0.1 160b Oral squamous cell carcinoma33

Active (% of total) 3%± 8× 10− 4% 8% Oral squamous cell carcinoma33

Active (pmol/l)a 295± 7 c

aRefers to unbound protein in the available interstitial space.
bThe model predicts the extracellular protein concentrations, whereas experimental data reflect the total amount (extracellular and intracellular), as the tissue
is homogenized prior to protein quantification. We assume that 50% of the total protein amount is localized to the extracellular space. This assumption can
easily be changed, given more experimental data.
cModel prediction, no data available.

Figure 4. Distribution TSP1 and VEGF in tumor. (a) The predicted percentage of TSP1 (‘T’) and VEGF (‘V’) bound to different factors in the tissue, and
the predicted percentage of receptor-bound forms of the angiogenic ligands: (b) bound TSP1 distribution; (c) bound VEGF distribution.
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impact on the model outputs, it is especially important to have
high confidence in the values of these parameters. We use the
model to predict the concentrations of the angiogenic factors, to
investigate the effects of varying the rates at which TSP1 binds to
certain species, and to simulate the response to TSP1 mimetics.
For all of the model predictions, we present the mean and
standard deviation of 5,000 Monte Carlo (MC) results. The MC
analysis generates a range of model predictions by varying
specific model parameters shown by the sensitivity analysis to
significantly influence the outputs. This analysis enables inter-
pretation of the robustness of the model predictions.

Predicted concentrations and tissue distributions
The model generates novel predictions for the absolute
concentration of the angiogenic species in the tissue interstitial
space, including unbound ligands and receptor-ligand complexes.
We report the average concentrations for 5,000 MC simulations,
along with the s.d.
The concentration of soluble TSP1 is predicted to be

2.3 ± 0.06 nmol/l, including 185 ± 5 pmol/l unbound and
2.2 ± 0.06 nmol/l cleaved TSP1 (Table 1). The concentration of
cleaved TSP1 is predicted to be several fold higher than unbound
TSP1 (12-fold, s.d. = 8 × 10− 5); thus, a large proportion of soluble
TSP1 is in an inactive form. In comparison, the concentration of
total soluble VEGF is 178 ± 8 pmol/l, including 165 ± 5, 8 ± 0.6, and
5 ± 6 pmol/l of VEGF121, VEGF165, and VEGF114, respectively.

Therefore, nearly all of soluble VEGF, 97%±3%, is in an active
form (VEGF121 or VEGF165).
The model also predicts that pro- and anti-angiogenic ligands

have significantly different soluble and bound distributions in
tumor tissue (Figure 4a). We found that most TSP1 in the tumor
tissue is either in the cleaved form, due to proteolysis, or is bound
to the extracellular matrix (63 ± 4% and 22 ± 1%, respectively).
Approximately 5 ± 0.4% of TSP1 is unbound, while receptor- and
VEGF-bound TSP1 comprise 8 ± 6% and 0.1 ± 0.04%, respectively,
of total TSP1 in the tumor. In comparison, VEGF largely exists in
complexes with its receptors (82 ± 0.6% of total VEGF in the
tumor). Unbound and ECM-bound VEGF comprise 12 ± 0.5%
and 6± 0.4% of total VEGF, respectively. The predicted VEGF
distribution is nearly the same as that predicted by our previous
model of VEGF transport and kinetics in human cancer patients,23

indicating that the presence of TSP1 does not influence VEGF
binding in tumor tissue.
The model quantifies the distribution of receptor-bound ligands

(Figure 4b,c). TSP1-CD47 interactions are predicted to comprise
58± 28% of receptor-bound TSP1. These complexes include
species that antagonize pro-angiogenic signaling mediated by
VEGF, either by directly modulating nitric oxide signaling
(TSP1 bound to CD47 alone) or through the formation of
inhibitory complexes (TSP-CD47 complexes involving R2 and
VEGF). Another significant percentage of receptor-bound TSP1 is
complexed with LRP1 (30 ± 26%). Binding of TSP1 to this receptor

Figure 5. Effect of enhancing TSP1 affinity for its binding partners. The model predicts the effect on various quantities that characterize the
angiogenic state of the tumor tissue in response to individually decreasing the dissociation rates between TSP1 and β1, CD36, CD47, LRP1,
and MMP3 by 100-fold: (a) percentage change in total receptor-bound TSP1; (b) percentage change in the relative amounts of unbound and
cleaved TSP1, unbound and receptor-bound VEGF, and the ratio of receptor-bound VEGF to receptor-bound TSP1.
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leads to internalization and endocytosis and serves as a means of
removing TSP1 from the extracellular space. In contrast, more than
half of the receptor-bound VEGF complexes are pro-angiogenic
(56 ± 4%). These include VEGF165-R2-N1 and VEGF121-R1-N1
complexes, which promote angiogenesis signaling. In addition,
the range of model predictions for the distribution of VEGF
receptors is tighter than the TSP1 receptor distribution.
To summarize these results, the model predicts that nearly all

unbound VEGF is in one of its active forms, and receptor-bound
VEGF is participating in pro-angiogenic complexes. Although the
majority of receptor-bound TSP1 is promoting anti-angiogenic
signaling, receptor-bound TSP1 comprises only a small percentage
of total TSP1. A large percentage of TSP1 is in an inactive form.
Altogether, these predictions indicate that the tumor is
significantly shifted towards a pro-angiogenic state.

Effects of enhancing TSP1 binding rates
Using the model, we are able to quantify the contribution of
specific TSP1-mediated anti-angiogenic mechanisms on particular
quantities that characterize the angiogenic state of the tissue.
Specifically, we investigated the effects of varying the binding of
TSP1 with its receptors, as well as VEGF. We decreased the
dissociation rates for β1, CD36, CD47, LRP1, and MMP3,
individually, to make TSP1 bind 100-fold more tightly to each
partner. It is possible, in principle, to evolve and select for TSP1
variants with desired kinetic properties.26 Thus, our simulations
provide important predictions as to the effect of TSP1 mimetics
with altered binding kinetics compared with the endogenous
protein.
Increasing the affinity of TSP1 to its binding partners is

predicted to affect the percentage of receptor-bound TSP1
(Figure 5a, ‘% rec-TSP1’). As expected, when TSP1 binds more
tightly to receptors β1, CD36, CD47, or LRP1, more TSP1 is in the
receptor-bound form. However, the increase in receptor-bound
TSP1 varies to different degrees depending on the particular
interaction strengthened. Allowing TSP1 to bind more tightly to
CD47 has the largest impact on the percentage of receptor-bound
TSP1 (an increase of more than 14-fold). Strengthening the
association between TSP1 and β1 or LRP1 increases receptor-
bound TSP1 by 1.9- and 5.5-fold, respectively. The different
affinities and numbers of receptors contribute to these results.
However, these results are highly variable, depending on the
receptor coupling rates and TSP1 density values. Interestingly,
the effect on receptor-bound TSP1 does not vary linearly with the
affinity or receptor density; therefore, the model provides novel
and quantitative predictions regarding the effects of enhancing
TSP1’s interactions with its receptors.
Upon altering the affinity, we also used the model to predict the

percent change in the relative amounts of unbound and cleaved
TSP1, as well as the relative amounts of unbound and receptor-
bound VEGF, and the ratio of receptor-bound VEGF to receptor-
bound TSP1 (Figure 5b). Having more receptor-bound than
unbound TSP1 may be a desired outcome of anti-angiogenic
therapy. Therefore, we sought to understand whether enhancing
the interactions between TSP1 and the selected binding partners
could reduce the percentage of unbound TSP1. The model
predicts that increasing the affinity to CD47 has the largest effect
on the amount of unbound TSP1 (Figure 5b, ‘% Unbound TSP1’).
Although this result varies across the 5,000 MC simulations,
overall, increasing the binding affinity for TSP1 to CD47 decreases
unbound TSP1 by 64 ± 24%). Increasing the affinity of TSP1 to β1,
CD36, LRP1, or VEGF reduces unbound TSP1 between 6 and 24%.
Reducing cleaved TSP1 is also of interest, as a significant

proportion of TSP1 is in this inactive form (63 ± 4%; Figure 4a),
preventing TSP1 from exerting its anti-angiogenic actions. The
model predicts that allowing TSP1 to bind more tightly to any of
the five selected binding partners decreases the percentage of

cleaved TSP1, indicating that the species are able to displace TSP1
from proteases and protect it from cleavage.
Altering the affinity of TSP1 to its binding partners also has a

slight influence on the distribution of VEGF. The model predicts
that altering TSP1 binding kinetics with VEGF can reduce unbound
VEGF and shift the balance toward an anti-angiogenic state.
Overall, increasing the association of TSP1 with VEGF has the
largest effect on the distribution of VEGF in the tumor tissue
(Figure 5b, ‘% Unbound VEGF’, ‘% rec-VEGF’). The effect of a tighter
association with VEGF influences the relative amount of unbound
VEGF the most (a decrease of 16 ± 5%). Interestingly, the relative
amount of receptor-bound VEGF is insensitive to changes in
TSP1’s affinity to its binding partners. Only increasing the affinity
of TSP1 to VEGF is able to slightly reduce the percentage of ligated
VEGF (decreasing it by 3 ± 0.8%).
Finally, the model predicts the effects of TSP1’s affinity on the

ratio of receptor-bound VEGF to receptor-bound TSP1 (Figure 5b,
‘rec-VEGF:rec-TSP1’). This quantity provides an indication of TSP1’s
anti-angiogenic effect, leading to reduced VEGF signaling and
increased TSP1-mediated apoptosis. For the baseline model, the
rec-VEGF:rec-TSP1 ratio is 7.8:1, indicating a state in which the
signaling complexes that promote new blood vessel formation
greatly outnumber those that oppose angiogenesis. We used the
model to predict how this angiogenic ratio is affected by the
affinity of TSP1 to selected binding partners.
Increasing the affinity of TSP1 to β1 or LRP1 decreases the

rec-VEGF:rec-TSP1 ratio in the tumor tissue by 74± 22% and
58± 40%, respectively. Increasing the affinity of TSP1 to CD47 has
the largest effect, decreasing the ratio by more than 96 ± 4%.
Allowing TSP1 to bind more tightly to VEGF also decreases the
ratio. This is because TSP1, even when bound to VEGF, can bind to
LRP1, increasing the number of anti-angiogenic receptor
complexes, despite having a limited effect on the percentage of
free or receptor-bound VEGF. Interestingly, the effects of tighter
binding between TSP1 and CD47 are significantly less variable
across the MC simulations, as compared to a tighter association
between TSP1 and β1, CD36, or LRP1, or VEGF.

Effects of TSP1 mimetics
Building on the simulations to investigate the effect of increasing
the affinity of TSP1 to its binding partners, we apply the model to
predict the effects of administering TSP1 mimetics that bind to
one of TSP1’s native receptors. Given the large size of endogenous
TSP1 (~ 450 kDa), it is not possible to directly administer the
protein as a therapeutic agent. Thus, short peptide sequences
have been derived to specifically target TSP1 receptors and inhibit
angiogenesis.27 Therapeutic use of peptide mimetics is enabled by
delivery strategies that provide a slow release of the peptides,
such as nanoparticle delivery or administration of the peptides
within a biomaterial scaffold.28 We utilized the model to
investigate the effects of CD47-, LRP1-, β1-, or CD36-binding
TSP1 mimetics (‘TSP1mim’). We simulate twice-weekly dosing
within an engineered biomaterial.29 The system is first allowed
to reach steady state (~10 h), which is the same state described
above, in terms of the concentrations and distributions of the
soluble species. Two bolus doses of 10 μg of the therapeutic are
given at days 1 and 3.5. The release of TSP1 peptides from the
delivery vehicle follows an exponential decay with rate constant
2.8 × 10− 5 s− 1. The peptide mimetics are also subject to
degradation, as are all soluble factors, with a half-life of
60 min.13 For these simulations, the mimetics bind to a particular
receptor with the same affinity as endogenous TSP1, and cannot
be cleaved. The model predicts the drug’s effects on the
distribution of TSP1 in the tissue, the relative amounts of
receptor-bound TSP1, and the rec-VEGF:rec-TSP1 ratio, quantities
that are difficult to measure in the clinic or in preclinical models.
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Below, we report the mean predicted result from 5,000 MC
simulations, and Figure 6 shows the mean± s.d.
The relative amount of receptor-bound TSP1mim and the time

over which the receptors remain bound to TSP1mim vary
depending on the particular receptor that the mimetic is binding.
We calculated the percentage of total TSP1 (‘TSP1total’, i.e.,
endogenous TSP1+TSP1mim) that is receptor-bound, as shown in
Figure 6, top row. This is the predicted amount relative to all of the
TSP1 and TSP1mim in the tissue (i.e., TSP1 in all of its various forms,
including all of the binding partners previously shown in
Figure 4a).
The CD47-binding mimetic is predicted to most significantly

increase the relative amount of ligated receptors, and its effects
last for the longest time. For this mimetic, the percentage of
receptor-bound TSP1total peaks at 48% of TSP1total in the tissue
~ 1.5 days after the therapeutic is administered (Figure 6a, top
panel). The maximum receptor-bound TSP1total for the LRP1-, β1-,
and CD36-binding mimetics are 15%, 8%, and 7%, respectively,
(Figures 6b–d, top panels, blue lines).
We next consider whether the receptor-bound TSP1mim

complexes remain bound before a second dose of the therapeutic.
The middle row of Figure 6 shows the percentage of receptor-
bound TSP1mim relative to receptor-bound TSPtotal. After the first
dose of the CD47-binding mimetic, the percentage of rec-TSP1mim

remains above 69% until the next dose is given (Figure 6a, middle
panels). In comparison, the percentage of rec-TSP1mim falls to 36%,
20%, and 5% for the LRP1-, β1-, and CD36-binding mimetics,
respectively (Figures 6b–d, middle panels).
Lastly, the model predicts that the TSP1 mimetics are able to

significantly shift the ratio of receptor-bound VEGF to receptor-
bound TSP1total in favor of anti-angiogenesis. Following each dose
of a particular TSP1 mimetic, the ratio of rec-VEGF:rec-TSP1total
varies compared to the baseline value of 7.8:1. For the
CD47-binding mimetic, the ratio shifts to 1:38 (Figure 6a, bottom
panel), indicating that the number of ligated TSP1 receptors
significantly outnumbers the number of ligated VEGF receptors.

The ratio of rec-VEGF:rec-TSP1total is 1:1.2 and 1:2.4 for the
LRP1- and β1-binding mimetics (Figure 6b,c, bottom panels).
Interestingly, a TSP1 mimetic that selectively binds CD36 shifts the
balance in favor of anti-angiogenesis (the ratio becomes 1.2:1),
but does not make receptor-TSP1total complexes outnumber
receptor-VEGF complexes as the other mimetics do.

DISCUSSION AND CONCLUSION
We have developed a molecular-detailed model of the
interactions between two important angiogenic factors: TSP1
and VEGF. The biophysically realistic model represents the
network of biochemical interactions between these molecular
species, their receptors, and relevant soluble factors. The
molecular interactions are governed by kinetic parameters taken
from experimental measurements, where available. To our
knowledge, this is the first model that explicitly accounts for
these important factors in the context of tumor angiogenesis.
The model captures experimental observations, both qualita-

tively and quantitatively. However, there are limitations that can
be addressed in future work. Given the limited amount of
quantitative data, we used measurements from tumor types other
than breast cancer. In addition, we have assumed a generic
mechanism for TSP1 cleavage, without specifying the dynamics of
the species that mediate TSP1 proteolysis. We have neglected
soluble receptors sVEGFR-1 and -2, as there are limited data with
which to specify their secretion rates, particularly for sVEGFR-2. We
focus on the extracellular interactions between the angiogenic
ligands and their receptors and do not include intracellular
signaling pathways or downstream effects, which could be added
to predict the rates of cell proliferation, apoptosis, and vascular
sprouting.30

We performed a global sensitivity analysis to quantify how
individual and combinations of model parameters influence the
steady-state concentrations of the soluble species. The global
sensitivity analysis showed that despite not having specific

Figure 6. Effect of TSP1 mimetics. The model predicts the effect of TSP1 mimetics that specifically bind to: (a) CD47; (b) LRP1; (c) β1; and
(d) CD36. Top panels: the percentage of total TSP1 (TSP1endogenous+TSP1mim) that is receptor-bound. Middle panels: the percentage of
receptor-bound TSP1mim relative to rec-TSP1total in tumor tissue. Bottom panels: the ratio of rec-VEGF to rec-TSP1, including endogenous TSP1
and the TSP1 mimetic. The gray dashed line indicates the ratio for the baseline model without TSP1mim.
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measurements for all of the molecular interactions included in the
model, for most parameters, our assumed values do not
significantly influence the model predictions. In cases where the
model parameters were shown to be important based on the
sensitivity analysis, we were able to estimate the values using
existing data. We utilize results from the global sensitivity analysis
to determine which parameters to vary in Monte Carlo (MC)
simulations. The MC analysis shows that most of the model
predictions have low s.d., indicating that the model generates
robust quantitative predictions.
The model predicts the distributions of TSP1 and VEGF among

their binding partners in tumor tissue. The species are predicted to
have very different relative amounts that are unbound or
receptor-bound. Specifically, a large percentage of VEGF (82%) is
ligated to its receptors, while receptor-bound TSP1 only comprises
8% of total TSP1. In addition, the ratio of receptor-bound VEGF to
receptor-bound TSP1 is predicted to strongly favor angiogenesis
(7.8:1). Altogether, these results show that the angiogenic balance
is significantly tipped towards a pro-angiogenic state. The model
provides a quantitative and mechanistic description as to how this
pro-angiogenic state occurs. Specifically, the predictions provide
insight into why the absolute concentration of TSP1 can be
significantly greater than VEGF, either in plasma or tumor tissue,9

but may not be sufficient to inhibit angiogenesis.
We have used the model to explore the effects of altering the

interactions between TSP1 and its binding partners. It is possible,
in principle, to select TSP1 variants with higher affinity to specific
binding partners through directed evolution via random muta-
genesis or exon shuffling.26 Therefore, these simulations represent
more than simply changing the model parameters. Rather, they
provide important quantitative predictions regarding the effect of
TSP1 mimetics with altered binding kinetics compared with the
endogenous protein.
The model predicts that increasing the rates at which TSP1

binds to CD47 has a global effect to alter the angiogenic balance
in the tumor tissue. Specifically, enhancing TSP1’s binding
interactions with CD47 decreases the relative amount of unbound
TSP1 and protects TSP1 from cleavage. In addition, the formation
of more TSP1-CD47 complexes can shift the angiogenic ratio
(rec-VEGF:rec-TSP1) in favor of anti-angiogenic complexes,
compared to the baseline model. Interestingly, it has been
postulated that the ratio of VEGF to TSP1 correlates with response
to chemotherapy and overall survival.31 Our model suggests that
the amount of the receptor-bound form of the angiogenic factors
may also be an important quantity to consider.
Of the strategies to enhance TSP1’s anti-angiogenic action, only

increasing the affinity of TSP1 for VEGF can lead to a reduction in
the relative amount of ligated VEGF (i.e., fewer pro-angiogenic
complexes between VEGF and its receptors). Thus, TSP1’s ability to
act as a sink for VEGF has the downstream effect of explicitly
reducing the number of pro-angiogenic signaling complexes.
We applied the model to investigate the response to TSP1

mimetics. The model predicts the distribution of total TSP1
(TSP1endogenous+TSP1mim) in the tissue following two doses of a
mimetic that specifically targets one of TSP1’s receptors. The
CD47-binding mimetic significantly increases the relative amount
of receptor-bound total TSP1, compared with the other mimetics.
In addition, a majority of the CD47 receptors are predicted to
remain ligated to the TSP1 mimetic longer than what occurs
with the other receptor-binding mimetics. Our results provide
quantitative and mechanistic support for the development of
TSP1 mimetics that specifically bind CD47.27 Interestingly,
compared with targeting CD47, CD36-binding peptides have a
longer history of development in vitro, in preclinical studies, and in
clinical trials; however, these drugs have only achieved limited
benefits to patients.27 Our model predicts that very few CD36
receptors are being ligated following administration of the CD36-
binding mimetic and the effects of this mimetic are short-lived.

These predictions provide some hypotheses regarding the
disappointing results of targeting CD36.
In summary, our molecular-detailed model quantifies specific

molecular interactions that determine the balance between two
opposing angiogenic factors. The model provides mechanistic
and quantitative explanations of the effects of altering the
kinetics of TSP1 binding and the response to TSP1 mimetics.
Due to the highly complex and interconnected nature of the
reaction network, it is difficult to predict these effects a priori. In
addition, although high-throughput quantitative approaches to
study ligand-receptor interactions are becoming possible,32

experimental quantification of the formation of these complexes
and the effects of disrupting the interactions is challenging.
Therefore, the model provides relevant and useful insight into the
effects of TSP1 binding. The model is a much-needed quantitative
framework that can be used to study the response to anti-
angiogenic therapies and generate testable hypotheses regarding
optimal TSP1 mimetics.

MATERIALS AND METHODS
Computational model
Tumor tissue. The tumor tissue is parameterized as a breast tumor 4 cm in
diameter. We assume the tissue to be a spatially averaged compartment
and do not consider concentration gradients of the molecular species, as
the timescale for the biochemical interactions is slower than that of
diffusion. The tissue is comprised of tumor cells, endothelial cells
representing the blood vessels, and interstitial space. The interstitial space
consists of the interstitial fluid, the space available to the soluble species,
and the solid phase, which consists of the extracellular matrix and
basement membranes surrounding tumor and endothelial cells. Geometric
parameters (Supplementary Table S1) characterize the compartment and
enable conversion of the concentrations from units used in the model
(moles per cm3 tissue) to more standard units (pmol/l). Although the
model represents a spatially averaged compartment, we still denote the
density of receptors on specific cell types (tumor or endothelial cells).
In addition, we specify the origin of the soluble species from the specific
cell types. This provides a molecularly detailed model and enables
investigation of the extent of ligation for receptors on distinct cell surfaces
and other mechanistic and molecular-level questions related to the
angiogenic balance.

Model parameters
The values for the VEGF secretion rates, receptor densities, and kinetic
parameters and the concentrations of ECM binding sites are the same as
those used in our previous models.22,23 Below, we present the parameters
involving TSP1 and its receptors. We explore the effects of varying these
parameters in the global sensitivity analysis (see Results).

Production of soluble species. The rates at which TSP1, MMP3, and
proMMP9 are secreted are not readily available in published literature.
Therefore, these rates must be set in order to match experimental
measurements of the proteins’ concentrations in tumor tissue.33–35

We manually changed the secretion rates for TSP1, MMP3, and proMMP9
in combination such that the total concentration of each species given by
the model matches the experimentally measured concentrations.
To our knowledge, there is no quantitative data on the relative

TSP1 secretion rates by endothelial and tumor cells. Therefore, we assume
that the ratio of endothelial cell secretion compared to tumor cell secretion
is 10:1, the opposite of the estimated ratio at which endothelial cells and
tumor cells secrete VEGF.23 Thus, we fixed the secretion ratio and only
tuned a single secretion rate for TSP1.
The values of the secretion rates required for the predicted total protein

concentrations (bound and unbound) to match experimental measure-
ments are given in Table 1. The data used to calibrate the TSP1 and MMP
secretion rates come from multiple tumor types, including breast cancer,
hepatocellular carcinoma, and oral squamous cell carcinoma. In addition,
the tuned secretion rates represent one possible combination that enables
the predicted steady-state concentration to match experimental data.
Therefore, these parameters are used in the sensitivity analysis.
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Degradation of soluble species. We set the degradation rate constants to
be ln(2)/t1/2, where t1/2 is the species’ half-life (Supplementary Table S2).
As in our previous models, we use a half-life of 60 min for VEGF. TSP1’s
half-life is nearly two-fold shorter, at 35 min.36 The half-life of MMP species
is reported to be on the order of 10 min.37

Receptor density. There is a paucity of quantitative data for the number of
TSP1 receptors on endothelial and tumor cells. We use information from
the Human Protein Atlas,38 which provides qualitative levels of protein
levels in tumor tissue. The database shows that CD47 and β1 receptors are
highly expressed in many tumor types, while LRP1 and CD36 are expressed
at moderate and low levels, respectively. Using this qualitative information,
we assume the number of receptors on tumor cells to be: 10,000 for CD47
and β1, 5,000 for LRP1 and 2,500 for CD36 (Supplementary Table S3). The
numbers of receptors on the endothelial cell within the tumor tissue are
set to be half of that for tumor cells, assuming equal distribution on the
luminal and abluminal surfaces.

Molecular interactions. The kinetic rate parameters are given in
Supplementary Table S4 and described below. The Kd values of TSP1 to
CD36, CD47, and LRP1 are 230, 10, and 12 nmol/l, respectively.39–41 It has
been shown that TSP1 binds less tightly to β1 integrins compared with
CD47.39 Therefore, we assume the affinity of TSP1 binding β1 to be
100 nmol/l (10-fold less tight binding compared with TSP1-CD47); to our
knowledge, there are no measurements of the kinetics of that interaction.
The Kd value for TSP1 binding to VEGF is 10 nmol/l,42 and we assume the
affinity of TSP1 is the same for each of the three VEGF isoforms.
The coupling rate for CD36 and β1 is assumed to be the same as the
R2-NRP coupling rate (3.1 × 1013 (mol cm− 2)− 1 s− 1). We assume the
rate for CD36 coupling to R2 and CD47 coupling to R2 to be
3.1 × 1011 (mol cm− 2)− 1 s− 1, which is two orders of magnitude smaller
than the R2-NRP coupling rate. Thus, we impose that TSP1 receptors
interact with the same kinetics as VEGF receptors and co-receptors;
however, interactions between TSP1 and VEGF receptors occur at a lower
rate. Receptors are internalized and inserted at the cell membrane such
that the total number of receptors (ligated plus unbound) is constant. The
internalization rate is 2.8 × 10− 4 s− 1, and the rate at which receptors are
recycled back to the surface is 2.8 × 10− 4 mol cm− 3 tissue per s. TSP1 can
also bind to glycosaminoglycan (GAG) chains located in the extracellular
matrix or endothelial and tumor cell basement membranes with a Kd of
200 nmol/l.43

Protease activity. MMP9 is secreted in its inactive form, proMMP9, and is
activated by MMP3 upon binding and cleavage.44 The model includes
inhibition of MMP9 activity by TSP1; however, the exact mechanism is not
known. Using a minimal model consisting of MMP3, MMP9, proMMP9,
and TSP1, we implemented alternative mechanisms of TSP1-mediated
inhibition and fit the parameter values to experimental data.45 The data
quantify the concentration of active MMP2 in the presence or absence of
TSP1, and we assume TSP1 inhibits MMP9 in the same way.
We investigated allowing TSP1 to bind directly to MMP3, proMMP9,

or active MMP9, similar to the work of Vempati et al.46 in studying MMP9
inhibition by tissue inhibitors of metalloproteinases. We found that
allowing TSP1 to bind directly to MMP3 provides a simple mechanism of
MMP2 inhibition that fits experimental data. We set the on and off rates for
MMP3 and proMMP9 and the rate of MMP2 activation by MMP3 to be
104 (mol/l)− 1 s− 1, 10− 3 s− 1, and 10− 3 s− 1 respectively.46 Using these
values, the model captures the relative amount of active MMP2 without
TSP1 inhibition measured experimentally (Supplementary Figure S1A).
We then fit the model to experimental data of the relative amount of
active MMP2 in the presence of different concentrations of TSP1 and
estimated the rate at which TSP1 unbinds from MMP3 (assuming an on
rate of 105 (mol/l)− 1 s− 1, based on ref. 47). The model predictions,
including confidence intervals, are shown in Supplementary Figure S1B.
On the basis of this fitting, the rate of unbinding of TSP1 and MMP3 is
estimated to be 2.1 × 10− 3 s− 1 (±3.3 × 10− 4); this value is used in the full
model. Using the estimated parameter, the model predicts the data not
used in the fitting (Supplementary Figure S1C). The equations for the
minimal model are provided in Supplementary File S2.
Both MMP3 and active MMP9 are able to cleave VEGF165 to form

VEGF114, and their proteolysis rates are set to 631 (mol/l)− 1 s− 1, based on a
previous model of VEGF proteolysis by MMPs.48 MMP9 can also bind to
LRP1 with a Kd value of 53 nmol/l,49 enabling removal via internalization,
another means of regulating its activity.50

TSP1 is subject to proteolysis by multiple enzymes, generating inactive
TSP1. As a simple mechanism, we introduce a reaction in which TSP1 is
converted to a cleaved form (TSP1cleaved). The rate of cleavage is set at
3.9 × 10− 3 s− 1, assuming the same proteolysis rate as VEGF and
multiplying by the total concentration of species who act to proteolyze
TSP1 (plasmin, elastase, and thrombin), ~ 4.5 nmol/l.51,52 This is similar to a
previously estimated rate.53

Implementation of the model
Generation of the reaction network. We used BioNetGen,54 a rule-based
approach to formulate the reaction network. BioNetGen enables
automated generation of the reaction network using a set of defined
reaction rules. This approach is particularly useful in models that involve
dynamic assembly of multi-protein complexes, which occurs our model,
for example, in the case of complexes involving TSP1, VEGF, VEGFR2,
β1, and CD36. The baseline model includes 18 molecule types (Figure 2)
that can participate in 92 reaction rules to form a total of 130 molecular
species based on 488 reactions. Altogether, the model is comprised of 130
non-linear ordinary differential equations (ODEs) that predict the species’
concentrations over time. The equations were implemented in MATLAB
(The MathWorks, Natick, MA, USA). The model files are provided in
Supplementary Files S3 and S4.

Numerical implementation. The ODEs were solved using the ode15 s
solver in MATLAB. We performed a Monte Carlo (MC) analysis, in which we
ran 5,000 simulations for all cases (i.e., baseline model, each change to the
TSP1 unbinding rates, and each TSP1 mimetic). In the MC analysis, we
utilize the eFAST analysis to determine which parameters to vary. In the
simulations, the values of 12 parameters were sampled from a uniform
distribution. The selected parameters were: receptor coupling rates for
CD36-β1, CD36-VEGFR2, and CD47-VEGFR2; MMP cleavage rate; and the
density of TSP1 receptors on tumor and endothelial cells (four densities per
cell type). These are parameters that either had high individual sensitivity
indices based on the eFAST analysis, had unknown values due to a lack of
quantitative data from the literature, or both. The coupling rates were
allowed to vary 100-fold above and below the baseline values, while the
MMP cleavage rates and receptor densities varied 10-fold above and below
the baseline values.

Parameter estimation
Estimation of the kinetic parameters related to MMP activation was
achieved using the ‘lsqnonlin’ function in MATLAB, as previously
described.55

Sensitivity analysis
The extended Fourier amplitude sensitivity test (eFAST), a global variance-
based sensitivity analysis, was used to understand how different
parameters (‘model inputs’) affect model predictions (‘model outputs’). In
this method, the inputs are varied together within certain ranges at
different frequencies and the model outputs are calculated. The Fourier
transform of a model output can then be calculated to identify which
inputs have the most influence based on the amplitude of each inputs’
frequency, with greater amplitudes indicating more sensitive parameters.
By varying all of the inputs at the same time, this method allows for the
calculation of two different sensitivity indices: the first-order FAST indices,
Si, and the total FAST indices, STi. The first-order indices measure the local
sensitivity of individual inputs, while the total indices measure the global
sensitivity by accounting for second and higher-order interactions
between multiple inputs. A greater total index compared to first-order
index indicates that an input is more important in combination with other
model parameters than alone.56

We implemented the eFAST method using MATLAB code developed by
Kirschner and colleagues.56 We analyzed the effects of three groups
of parameters (receptor numbers, kinetic parameters, and secretion/
degradation rates) on seven different model outputs (the concentrations of
TSP1, VEGF, proMMP9, MMP9, and the TSP1-VEGF, and MMP3-TSP1
complexes, and the ‘angiogenic ratio’, defined as the ratio of total
receptor-bound VEGF to receptor-bound TSP1). In each case, the
parameter values were allowed to vary 100-fold above and below the
baseline values (a total range of four orders of magnitude) to account for
potentially large uncertainty in the model parameters for which there are
little data.
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