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Abstract
Finding the synchronization between Electroencephalography (EEG) and human cognition is an essential aspect of cog-

nitive neuroscience. Adaptive Control of Thought-Rational (ACT-R) is a widely used cognitive architecture that defines the

cognitive and perceptual operations of the human mind. This study combines the ACT-R and EEG-based cortex-level

connectivity to highlight the relationship between ACT-R modules during the EEG-based n-back task (for validating

working memory performance). Initially, the source localization method is performed on the EEG signal, and the mapping

between ACT-R modules and corresponding brain scouts (on the cortex surface) is performed. Once the brain scouts are

identified for ACT-R modules, then those scouts are called ACT-R scouts. The linear (Granger Causality: GC) and non-

linear effective connectivity (Multivariate Transfer Entropy: MTE) methods are applied over the scouts’ time series data.

From the GC and MTE analysis, for all n-back tasks, information flow is observed from the visual-to-imaginal ACT-R

scout for storing the visual stimuli (i.e., input letter) in short-term memory. For 2 and 3-back tasks, causal flow exists from

imaginal to retrieval ACT-R scout and vice-versa. Causal flow from procedural to the imaginal ACT-R scout is also

observed for all workload levels to execute the set of productions. Identifying the relationship among ACT-R modules

through scout-level connectivity in the cortical surface facilitates the effects of human cognition in terms of brain

dynamics.

Keywords Electroencephalography � Adaptive control of thought-rational � Granger causality � Multivariate transfer

entropy

Introduction

Adaptive Control of Thought-Rational (ACT-R) is the

widely used cognitive architecture based on a rigorous

theory of human cognition Anderson et al. (2008). In the

ACT-R model, the input-to-output conversion is performed

with the help of different modules such as visual, motor,

working memory (imaginal), declarative memory (re-

trieval), procedural module, and goal module. The visual

and aural modules (i.e., perceptual modules) scan, per-

ceive, and encode the visual and auditory information from

the external environment. The motor/manual module pro-

duces the output. The goal module holds the current control

information to perform the task. The declarative module

(DM) stores all the knowledge-based information. DM

used the retrieval buffer, which is used during the matching

of specific requests of another module. The imaginal

module works as an intermediate memory that stores the

perceptual information from the visual module Anderson

(2009). The central module (i.e., procedural module)

communicates with the other modules to execute a specific

task by implementing a set of productions. The cortex-level

activation can be measured through different physiological

measures such as EEG, Functional magnetic resonance

imaging (fMRI), and positron emission tomographic (PET)

imaging. However, EEG with high temporal resolution

became more popular to identify the cortex-level activation

over time with a person’s cognitive behavior. In van Vugt

(2014), authors illustrated the relationship between the

ACT-R model and Electroencephalography (EEG) oscil-

lation power. The author found that the working memory of
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ACT-R has been related to the parietal theta band oscil-

lation of EEG. In an EEG-based n-back task, the partici-

pant has to remember the stimulus with a longer sequence

with the increasing value of n, which occupies more cog-

nitive resources Chakladar et al. (2024, 2022). Apart from

cognitive tasks Chakladar et al. (2022), EEG can also be

used in neuro-recommendation system Panda et al. (2024)

and neuromarketing application Panda et al. (2024). Cog-

nitive load can be measured during attentional-based

emotional tasks Mishra et al. (2023); Prasad et al. (2023),

whereas the machine learning model (i.e.; multi-layer

perceptron-based regressor) is used to find the cognitive

dynamics during emotional tasks Panda et al. (2020);

Prasad et al. (2024). The EEG-based neurocognitive

mechanism is used to find the changes in prosocial emo-

tional behaviors of participants Tarai and Bit (2021); Tarai

et al. (2022). Each ACT-R module can be mapped to

specific brain sources to identify the underlying brain

dynamics with respect to cognitive processing. Therefore,

it is important to identify cortical sources for ACT-R

modules. Source localization methods have been used to

find sources from the cortical surface from scalp EEG

signal Mosher et al. (1999).

The source localization was performed in two ways:

Dipole source localization and distributed source imaging. In

the first approach, a localized set of dipoles is selected based

on the prior assumption, assuming that scalp potential is

generated from those dipoles. However, as the dipole

localization is totally based on prior assumptions, the source

localization can be biased for the missing relevant dipoles

Michel and He (2019). On the other hand, in Distributed

source imaging (Minimum Norm Dale and Sereno (1993),

Low-resolution electromagnetic tomography (LORETA)

Pascual-Marqui et al. (1994), Standardized low-resolution

brain electromagnetic tomography (sLORETA) Pascual-

Marqui (2002)), a large number of dipoles are distributed in

fixed positions over the entire source space and the strength

of dipoles is estimated to measure the scalp potential. Due to

the minimum localization error and low model complexity

Jatoi et al. (2014), the sLORETA-based source estimation

method is used. sLORETA is widely used in EEG-based

motor imagery application Li et al. (2019), stimuli-based

Event-Related Potential (ERP) analysis Tsolaki et al.

(2017). An extended version of the spatiotemporal source

imaging method has been implemented to identify the brain

network Sohrabpour et al. (2020). Their brain network

estimated spatially coherent regions and temporally trans-

formed information between them.

Three brain connectivity systems exist to communicate

between different brain regions: structural, functional, and

effective connectivity He et al. (2019). The synaptic con-

nections between different brain regions represent struc-

tural connectivity. On the other hand, the functional

connectivity system identifies the statistical relationship

between anatomically separated brain regions. The causal

activation between two brain regions is established by

effective connectivity. In Sakkalis (2011), authors dis-

cussed functional connectivity analysis based on model-

based techniques (correlation, magnitude squared coher-

ence) and data-driven techniques (mutual information: MI,

principal component analysis). They have also discussed

effective connectivity methods such as Dynamic Causal

Modeling: DCM, Granger causality: GC, and Partial

directed coherence. In Chakladar et al. (2021), authors

have developed a graphical brain network using GC and

MI to measure the brain dynamics during the mental

arithmetic task. A hybrid framework of Magnetoen-

cephalography (MEG)/EEG-based GC analysis and source

imaging technique is used to find the underlying brain

networks in epilepsy application Sohrabpour et al. (2016).

Protopapa et al.Protopapa et al. (2014) employed EEG-

based GC analysis to reveal distinct network structures in

various spatial working memory tasks.

Epstein et al.Epstein et al. (2014) effectively identified

epileptic seizure origins using GC and source localization

of EEG. However, due to the non-linear characteristics of

EEG, GC is not a good choice for identifying information

flow between brain regions Vicente et al. (2011). Like GC,

Transfer Entropy (TE) does not depend on the underlying

model or prior information; rather, it assesses dynamic

directional information flow between time series data in a

non-linear manner Gao et al. (2018); Schreiber (2000). TE

is an extension of mutual information that measures the

directed information transfer between the time series of a

source variable and a target variable Schreiber (2000). TE

is also widely used to determine stimulus–response rela-

tionships and underlying brain dynamics Vicente et al.

(2011). Information transfer between brain regions during

sustained attention-driven driving has been measured using

TE Huang et al. (2015). At the intermediate level of vigi-

lance during driving, they found a strong association

between frontal, parietal, and central brain regions. How-

ever, the bivariate analysis (i.e., bivariate transfer entropy:

BTE/ TE) may infer spurious or redundant interactions

where multiple sources provide the same information about

the target Wollstadt et al. (2018). To overcome the issue of

BTE, multivariate transfer entropy (MTE) has been

implemented Bonmati et al. (2018). In MTE, multiple

sources jointly transfer more information to the target than

the contributions of an individual source Wollstadt et al.

(2018); Novelli et al. (2019). MTE can model better Non-

linear causal interaction between different brain regions

than BTE and GC in EEG-based schizophrenia data anal-

ysis Harmah et al. (2020). The authors found a strong

activation in the temporal lobe for schizophrenia patients
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with MTE. MTE model is also used for EEG-based face

perception task Chakladar and Pal (2024).

Most of the existing studies van Vugt (2014); Prezenski

and Russwinkel (2016) discussed the relationship between

ACT-R and scalp potential of EEG signal or highlighted

the EEG-based source localization techniques Sohrabpour

et al. (2016, 2020). However, the connectivity between

ACT-R modules is also not explored. Therefore, this paper

proposes a hybrid framework combining the ACT-R model

and EEG-based source imaging technique. The proposed

framework identifies the mapping between ACT-R mod-

ules and brain scouts (in the cortical surface) and then finds

the connectivity among those scouts. The proposed

framework is shown in Fig. 1. In the proposed model, I

identify the brain scouts/sources for ACT-R modules using

the sLORETA method and find the effective connectivity

approaches (GC and MTE) between the time series of brain

scouts. The novelties of the studies are as follows:

• This is the first work that combines the ACT-R model

and EEG source imaging technique. The source imag-

ing technique identifies the cortical sources/scouts

related to the ACT-R modules, leading to the effects

of neural activity on human cognition.

• To identify the causal effects and information flow

among cortical sources, the proposed framework imple-

ments two widely used effective connectivity methods

(GC and MTE). The statistical test also validates the

direction of causal connectivity between sources.

The remainder of the paper is organized as follows. The

proposed model is discussed in Sect. ‘‘Methods’’. The

experimental results of the proposed model are represented

in Sect. ‘‘Results’’. Finally, Sect. ‘‘Discussion and conslu-

sion’’ highlights the discussion of the work and concludes

the paper.

Methods

This section is divided into two subsections: (a) EEG

scouts estimation, and (b) Effective connectivity estimation

between scouts. A detailed description of each subsection

is mentioned below.

EEG scouts estimation

The distributed source imaging method is established to

find active localized sources/scouts with minimum local-

ization error Jatoi et al. (2014). Among many distributed

imaging methods, LORETA and sLORETA are mostly

used in EEG-based cognitive and behavioral science

applications Jatoi et al. (2014). LORETA introduces the

minimization of the Laplacian of the sources, leading to a

smooth (low resolution) distribution of the 3D activity

Pascual-Marqui et al. (1994). LORETA assumes that the

current density at any given point on the cortex is maxi-

mally similar to the average current density of its neighbor

Fig. 1 The proposed framework of scout-level connectivity between

ACT-R modules. The scouts corresponding to the ACT-R modules

are estimated from the EEG-source localization method (sLORETA),

which is validated by the location of the Brodmann area. The

connectivity between scouts is performed based on the activation time

course of each scout. Effective (Granger causality, Multivariate

transfer entropy) connectivity analyses are performed to identify the

causal connectivity and information flow between the brain scouts
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Jatoi et al. (2014). An advanced version of LORETA is

sLORETA, where the current density is measured from the

variance of the EEG noise and biological variance of the

signal Pascual-Marqui (2002). The biological variance is

assumed to be distributed uniformly across the brain,

leading to zero localization error Jatoi et al. (2014). As the

zero localization error efficiently estimates better sources,

this paper used the sLORETA algorithm to estimate brain

scouts at the cortex surface. Only visual stimuli (letters/

digits in the n-back task) are used in the experimental

dataset, and no auditory stimuli are used. The visual

module of ACT-R is associated with the fusiform Gyrus

(Brodmann’s area: BA 37), and the motor module is related

to the primary motor cortex (BA 2 and 4) Qin et al. (2007)

of the brain. The retrieval module of ACT-R is mapped

with the dorsolateral prefrontal cortex (DLPFC). The

DLPFC region is mapped to the BA 45 and 46 Qin et al.

(2007). The working memory (imaginal) module is asso-

ciated with a subregion of the parietal cortex on the border

of the intraparietal sulcus (BA 7,39 and 40) Qin et al.

(2007). The goal module is associated with the anterior

cingulate cortex (BA 24, 32), and the procedural module

with the basal ganglia Anderson et al. (2008). Three

components of basal ganglia (striatum, pallidum, and tha-

lamus) are used for controlling the input and output

information of the brain and performing information flow

among brain regions Houk and Wise (1995). The thalamus

is mainly used for information flow and execution of

instructions Sherman and Guillery (2002); therefore, I

select it for mapping the production module of ACT-R.

Effective connectivity estimation between scouts

After identifying the scouts of each ACT-R module (in the

earlier section), the scouts’ time series is identified for the

4 s (display of two digits as per Fig. 2). The effective

connectivity approaches are performed on the scouts’ time-

series data. Here, two well-known effective connectivity

methods (GC and MTE) are illustrated for identifying the

information flow among brain scouts. GC is widely used

for estimating brain connectivity in EEG-based cognitive

workload studies Chakladar et al. (2021). However, due to

the non-linear characteristics of EEG, a non-linear model-

free method (MTE) is used to find the information flow

among brain scouts. A detailed discussion of GC and MTE

is defined below.

Granger causality

Granger causality (GC) predicts a one-time series of data

from the past values of another time-series data. The

GC (1) is mainly calculated by univariate and bivariate

autoregressive (AR) models using variance (Var) of both

the AR models’ residuals (ex; exyÞ Cohen (2014). GC can

be interpreted as if signal Y is causal to signal X, then X can

be better predicted by incorporating the past values of Y

than only information from itself. GC for Y to X is calcu-

lated using the following equation Cohen (2014).

GCðY ! XÞ ¼ ln

 
VarðexÞ
VarðexyÞ

!
ð1Þ

Multivariate transfer entropy

Transfer Entropy (TE) is derived from the mutual infor-

mation theory to find the conditional transitional proba-

bilities between two paired processes. For two-time series

data X ¼ xt and Y ¼ yt, the delay embedded vector of X is

defined by: xdt ¼ ðxt; xt�s; ::; xt�ðd�1ÞsÞ; similar representa-

tion can also be done for ydt . The dimension of embedding

space and delay are d and s, respectively. The entropy rate

of the system X is the average number of bits that are

required to represent an additional state, provided all pre-

vious states are known. The entropy rate for the time series

X is defined below Huang et al. (2015):

hðxtþujxdt Þ ¼ �
X
xtþu;x

d
t

pðxtþu; x
d
t Þ log pðxtþujxdt Þ ð2Þ

where, pðxtþujxdt Þ ¼ pðxtþu; x
d
t Þ=pðxdt Þ. pðxtþ1jxdt Þ denotes

the transition probability (based on Markov process of

order d). The prediction time is u, and pð�Þ is the proba-

bility. If pðxtþujxdt Þ ¼ pðxtþujxdt ; ymt Þ, then no information

transfer takes place between X and Y. The amount of

information transfer from process X to Y can be defined by

Transfer Entropy (TEðX ! Y)) Schreiber (2000), which is

calculated as follows:

TEðX ! YÞ ¼
X

pðytþu; y
d
t ; x

m
t Þ log

� pðytþujydt ; xmt Þ
pðytþujydt Þ

�
ð3Þ

where, xmt ¼ fxt; xt�s; :::; xt�ðm�1Þsg describing the time

series Y depends on m states of X.

Now, let’s consider the Xn, Yn, and Zn as the stochastic

variables obtained after sampling the processes at present

n. The vector variables of past processes of X, Y and Z are

denoted as X�
n ¼ ½Xn�1;Xn�2; ::::�, Y�

n ¼ ½Yn�1; Yn�2; ::::�
and Z�

n ¼ ½Zn�1; Zn�2; ::::� respectively. Then, the MTE

from X to Y conditioned on Z is defined below Montalto

et al. (2014):

MTEðX ! YjZÞ ¼
X

pðYn;Y�
n ;X

�
n ; Z

�
n Þ

log
� pðYnjY�

n ;X
�
n ; Z

�
n Þ

pðYnjY�
n ; Z

�
n Þ

� ð4Þ
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Here, the MTE is calculated using the IDTxl tool Wollstadt

et al. (2018).

Results

The results section is divided into four subsections, namely

(a) Dataset and experimental analysis, (b) Sequential

activities of ACT-R modules & Cortex activation analysis,

(c) Effective connectivity analysis among brain scouts, and

(d) Statistical analysis of Granger prediction results. A

detailed discussion of each section is mentioned below.

Dataset and experimental analysis

An open access dataset Shin et al. (2018) is used to eval-

uate the proposed model. Therefore, no ethical permission

is required for data collection. The dataset contains EEG

recordings of twenty-six subjects (9 males and 17 females,

average age of 26.1±3.5 years). EEG data were recorded

using 30 EEG electrodes according to the international 10-

5 electrode placement system (Fp1, Fp2, AFF5h, AFF6h,

AFz, F1, F2, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8,

CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, POz, O1, O2, TP9

(reference) and TP10 (ground)). The sampling frequency

was 200 Hz. The raw EEG was already filtered (fourth-

order of Chebyshev type II) with a passband of 1� 40 Hz

to remove high-frequency noise from the EEG. The fourth-

order Chebyshev type II filter provides a sharp transition

between the passband and stopband. This characteristic of

the Chebyshev type II filter effectively isolates the desired

frequency components of the EEG signal from noise,

especially when the noise is close to the frequency band of

interest. Moreover, the stopband attenuation feature of this

filter is useful for filtering out specific noise components,

leading to better filtered EEG data Sree et al. (2023).

In the n-back test, participants need to identify the letter/

digit presented n stimuli earlier in the sequence. The

experimental dataset includes three sessions, each with

three series of 0, 2, and 3-back (i.e.; n ¼ 0; 2; 3) tasks

arranged in a counterbalanced order. Participants com-

pleted nine series of n-back tasks in total. Each series

consisted of a 2s instruction, a 40s task period, and a 20s

rest period. During the rest period, a fixation cross was

shown. In the task period, a random digit/number appeared

in every 2s, with 20 trials per series where the targets

appeared with a 30% chance (70% non-targets). Each

number was displayed for 0.5s, followed by a fixation cross

for the remaining 1.5s. For the 0-back task, participants

either pressed the target or non-target button without

recalling any earlier digit. For the 2- and 3-back tasks, they

pressed the target button if the current number matched the

one 2 or 3 positions back, respectively. Participants com-

pleted a total of 180 trials (20 trials � 3 series � 3 sessions)

for each n-back task across the three sessions. For com-

putational constraints, randomly two consecutive digits of

the task are selected to identify the activation time

sequences of different ACT-R modules.

Sequential activities of ACT-R modules & cortex
activation analysis

All the ACT-R modules are activated at a specific time in

the n-back task (from visualizing the input stimuli to

pressing the key). ACT-R modules are communicated

using their buffer. The activation sequence diagram of

Fig. 2 Activation time sequence diagram of ACT-R modules for

EEG-based n-back task. The duration of each digit presentation (with

fixation cross) is 2 s. Here, only the first two input digits are

considered to illustrate the retrieval operation. For the first stimulus in

the trial, the participant presses the button without checking the target

letter. Activation time denotes the duration of the ACT-R module’s

activation while the subject performs a specific event (i.e., digit

encoding, pressing key, etc). After a digit presentation, a fixation

cross appears in the rest state
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ACT-R modules according to the experimental dataset is

shown in Fig. 2. In each trial of the n-back dataset, a digit

is presented for 2 s (0.5 s for the input letter and 1.5 s for

the fixation cross). The diagram shows the activities of

different ACT-R modules according to the timings of the

two input letters of a single trial. The goal module only

holds the current control information for the task, which is

checked with the execution of the final production (P3).

Therefore, the execution of the goal module occurs almost

simultaneously with the P3 (within the same period of P3),

so the goal module is excluded from the experimental

analysis. The first input letter (7) appears on the computer

screen in the sequence diagram, and the first production

(P1) is fired to perceive the letter. Next, the visual module

encodes that input letter, and after a slight delay, that letter

is stored in the imaginal module. The imaginal module

works as an intermediate or short-term memory in the

ACT-R module. After the presentation of input stimuli, a

fixation cross appears for 1.5 s, and at 2 s, the subject

presses the key based on target or non-target stimuli. The

next input (8) appears on the screen and follows a proce-

dure similar to the first input. By this time, the imaginal

module transfers the previous input letter (7) as a chunk to

the declarative module. Once the second input letter is

encoded & stored, the second production (P2) is fired to

fetch the previous letter from the declarative memory. The

Goal module holds the present input stimuli, and when the

third production (P3) is fired, the Goal module communi-

cates with the procedural module to check whether the

present input is the same as the previous letter in the

sequence (retrieved from the declarative memory). Finally,

based on the matching or non-matching letter of current

stimuli with the previous one, the subject presses the key

by calling the motor module of ACT-R.

After identifying the ACT-R activation time sequence

(refer to Fig. 2), I identify the activation of brain sources

for each ACT-R module. The mapping of ACT-R modules

and its corresponding brain sources/scouts are identified

based on anatomical positions of BA Qin et al. (2007)

(refer to Fig. 3b). Initially, the brain scouts for each n-back

task are identified using the sLORETA method. To illustrate

the ACT-R modules’ operations, I used two consecutive

letters in a trial. Execution of other letters follows the same

process. The activation of scouts in the cortex surface for

the different time durations (interval of 1 s) is presented in

Fig. 3. As neural activation is distributed over the cortex

surface, scouts and their nearest locations are activated

during a specific time. The cortex activation for 0, 2, and

3-back tasks is presented at the top, middle, and bottom

rows of Fig. 3a. I start the scout activation after presenting

input stimuli (i.e., 1 s). At 1 s, procedural (basal ganglia),

visual (fusiform gyrus: BA-37), and imaginal modules are

activated to present and process the visual stimulus of the

0-back task. Production 1 (P1) is activated for perceiving

the input letter (refer to Fig. 2). At 2 s, the first letter

presentation is completed, and the subject presses the

button, so the motor module (BA-2,4) is activated. After 2

s, a second letter appears on the screen. From 2 to 3 s,

multiple works perform in a sequence: (a) visual perception

of the second letter and firing of P1 for processing the

letter, (b) storing the second letter in the imaginal module,

(c) fetching the previous letter from the declarative/re-

trieval module (BA-45) after execution of P2, and (d) P3 is

fired to find a match between the retrieved letter and cur-

rent letter. The goal module is communicated with P3 to

find the matched or non-matched letter. Finally, at 4 s, the

motor module is activated while the subject presses the

button.

Effective connectivity analysis among brain
scouts

After the scout identification, the time series of each scout

corresponding to the ACT-R module is extracted. The time

series are extracted for target and non-target stimulus for

all workload levels (0,2 and 3-back). Then, the band-pass

filter (0-32 Hz) is applied to remove noise from time series

data. For simplicity, the scouts’ time series of target stimuli

is presented in Fig. 4. Once the time-series extraction is

performed, the effective connectivity analysis among

scouts is identified through GC and MTE. The activation

time series of ACT-R scouts is extracted using the brain-

storm software Tadel et al. (2011). The information flow

among ACT-R modules through GC and MTE methods is

presented in the subsequent subsections.

Information flow analysis using GC

The GC analysis between two scouts is estimated using bi-

variate autoregressive models (BVAR) and time windows

(i.e., the segment of the scout’s activation data). The

BVAR model’s order is selected using the Bayesian

information criterion using the Source Information Flow

Toolbox (SIFT) Delorme et al. (2011). From SIFT, the

optimal model’s order for the experiment is set as seven.

The GC is computed based on the time series data of

scouts. As transient connectivity is lost with a large time

window, a shorter time window (i.e., 2 ms) is used to

estimate the GC efficiently Cohen (2014). Moreover, using

a short time window in GC analysis offers several signif-

icant advantages, particularly in enhancing temporal reso-

lution. First, it allows for the detection of rapid and

transient interactions between variables that may be missed

with longer windows. This higher temporal granularity

enables researchers to capture detailed dynamics and finer-

scale causal relationships Cohen (2014). The GC is
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calculated for this time segment sequentially for the entire

scout time series data of 4 s. Finally, the GC analysis for all

such time segments is merged to find the final effective

connectivity between the two scouts. The result of GC

between different scouts across all the workload levels is

presented in Fig. 5a–l. The direction of GC between two

Fig. 3 a Time-wise activation of brain scouts for different workload

levels. Top row: 0-back, middle row: 2-back, and last row: 3-back

task. The activation time is written at the top of each cortex image.

b The scout region in each ACT-R module is marked in a circle.

Bright (yellow) and dark (blue) colors represent the high and low

brain activations respectively

Fig. 4 Scouts’ time series of n-back task: a 0-back, b 2-back, and c 3-back. Each stimuli time duration is 2 s (0.5 s for digit and 1.5 s for fixation

cross.)
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scouts (A!B) also refers to the information flow between

those scouts. The direction of information flow using GC is

also validated through the statistical analysis (refer to

Table 2). Here, the GC analysis are performed for target

(Fig. 5) and non-target stimuli (Fig. 6) of 2-back and 3-

back tasks (as 0-back task only includes fixation cross).

The Imaginal module of ACT-R works as a working

memory that stores the information and is manipulated

during problem-solving Peebles (2019), so I used the GC

analysis from Imaginal to other ACT-R modules and vice-

versa. The main aim of the paper is to check the infor-

mation flow between different ACT-R modules (e.g.;

scouts) during different events of n-back tasks such as: the

presentation of stimuli of n-back task (imaginal-visual

modules, vice-versa), information processing/recall

(imaginal-procedural/retrieval, vice-versa), and button

press event (imaginal-motor, vice-versa). So I used the GC

analysis from Imaginal to other modules. In the 0-back

task, visual to-imaginal ACT-R scout activation is

observed during stimulus presentation (0:5� 1 s) (Fig. 5a).

Information flow from procedural to imaginal ACT-R scout

is observed during stimulus presentation (Fig. 5d). For the

target stimuli of 2 and 3-back tasks, a high peak in GC

value is observed between visual and imaginal ACT-R

scout immediately after the appearance of visual stimuli

(Fig. 5e and i). A larger GC value leads to better infor-

mation flow between brain scouts. For all the 2 and 3-back

tasks, information flow is observed from the procedural to

the imaginal ACT-R scout (Fig. 5h and l) for the execution

of a set of productions (P1, P2, and P3 in Fig. 2). For the

execution of P2 and P3, there is an information flow in both

directions between the imaginal and retrieval ACT-R

scouts for storing the current letter into short-term memory

(imaginal buffer) and recalling past n letters from short-

term memory (Fig. 5g and k). For all n-back tasks, causal

effects are observed from the motor to imaginal ACT-R

Fig. 5 Effective connectivity (GC) analysis among activation time

series of ACT-R scouts for target stimuli (a–l). GC analysis is divided

into 0-back (a–d), 2-back (e–h), and 3-back (i–l) tasks. The time

segment for computing Granger prediction is 2ms. The order of the

BVAR model is 7. Abbreviations in legends of images are as follows:

imaginal (Imag), retrieval (Retr), motor (Mot), procedural (Proc) and

visual (Vis)
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scout (Fig. 5f and j) at 2 s, when the subject presses the

button. In the case of non-target stimuli, I found similar GC

flow in visual and imaginal ACT-R scouts (Fig. 6a and e).

Information flow between the imaginal and retrieval ACT-

R scouts and vice-versa is also observed to check whether

the current letter is target or not (Fig. 6c and g). Infor-

mation flow from procedural to the imaginal ACT-R scout

is observed for 2-back and 3-back tasks for executing the

productions (Fig. 6d and h).

Information flow analysis using MTE

The non-linear effective connectivity analysis is performed

using MTE. The MTE computation is performed using the

IDTxl tool Wollstadt et al. (2018), where the transfer

entropy is depicted between a set of significant sources and

the target. Here, the MTE connectivity is performed

through the time series of scalp electrodes. The MTE

connectivity analysis is performed using the ‘‘IDTxl‘‘ tool

Wollstadt et al. (2018), where the input dimension is no of

process/channels and no of samples. Therefore, the scalp

electrodes for scouts are required for MTE analysis. The

scalp electrodes for each ACT-R module are selected in

such a way so that they are validated through BA’s/nearest

BA’s anatomical location Qin et al. (2007). The ACT-R

module and EEG electrode with the nearest BA location

are shown in Table 1.1 The results of MTE connectivity

graphs among different ACT-R modules are shown in

Fig. 7. All MTE graphs are demonstrated based on the

activation time of the presentation of two stimuli (i.e., 4 s).

For all types of n-back tasks, it can be observed that the

visual ACT-R module is mostly activated for stimulus

presentation (digit and fixation cross). For the 0-back task

(Fig. 7a), the information flow is transferred from visual

(EEG channels: P7) to imaginal (EEG channels: P3, P4),

procedural (EEG channels: CP5), and motor (EEG chan-

nels: C3, C4) ACT-R scouts. For the 2 and 3-back tasks

(Fig. 7b–e), information flow is observed from visual (EEG

channels: P7) to imaginal (EEG channels: P3/P4), retrieval

(EEG channels: F7/F8), and motor (EEG channels: C3/C4)

ACT-R scouts. Similar to GC, information flow from

visual-to-imaginal ACT-R scouts exists for storing the

current stimuli in short-term memory (e.g., imaginal ACT-

R module). On the other hand, the connectivity between the

imaginal (EEG channels: P4) and retrieval (EEG channels:

F8) ACT-R scouts is present for 2 and 3-back tasks for

Fig. 6 Effective connectivity (GC) analysis among ACT-R scouts for non-target stimuli. GC plots are divided into two workload states

2-back(a–d) and 3-back(e–h). The parameters (time segment of GC prediction and BVAR model order) remain the same as Fig. 5

Table 1 Mapping between ACT-R module, EEG electrodes, and

Brodmann area (BA)

ACT-R modules EEG electrodes (BA)

Imaginal P3, P4(39), Pz(7)

Retrieval F7, F8(47)

Visual P7(37)

Motor C3,C4(1),Cz(5),FC1,FC2(6)

Procedural CP5, CP6 (40)

1 https://brmlab.cz/project/brain_hacking/broadmannarea

Cognitive Neurodynamics

123

https://brmlab.cz/project/brain_hacking/broadmannarea


retrieving previous digits from memory. Procedural (EEG

channels: CP5) to imaginal (EEG channels: P3) ACT-R

scout connectivity is observed for 2 and 3-back tasks

during the execution of productions P1, P2, and P3. GC

analysis also demonstrates similar findings. However, GC

requires the AR model in its backend to execute, whereas

MTE does not need any execution model.

Statistical analysis of granger prediction results

As the Granger prediction depicts the ratio of error vari-

ances of two-time series data (predicted from the autore-

gressive model), the statistical significance between two-

time series can be checked using the F-test. For all work-

load levels, the F-test (Table 2) is performed to find the

direction of causality between brain scouts with the sig-

nificance level of p ¼ 0:05. The analysis is performed

between the activation time series obtained from brain

scouts of each ACT-R module. The following hypothesis

needs to be established to find whether the Scout 1 granger

causes Scout 2.

H0: Error Variance (Scout 2) = Error Variance

(Scout 1)

Ha: Error Variance (Scout 2) [ Error Variance

(Scout 1)

If the error variance of two scouts’ time series is the

same (i.e., H0), then there is no Granger Causality (GC)

from Scout 1 to Scout 2. On the other hand, if the error

variance of the scout 1-time series is lesser than scout 2,

then scout 1 Granger causes scout 2 (Ha). H0 is rejected, if

the p value of Granger prediction (scout 1! scout 2) \
0.05 (at 5% level of significance). Here, five ACT-R

modules are considered, such as scout 1: imaginal, scout 2:

visual, scout 3: motor, scout 4: retrieval, and scout 5:

procedural in the experiment and perform the F-test to

identify the direction of Granger prediction. The prediction

validates the direction of effective connectivity between

two brain scouts (in terms of ACT-R modules).

To maintain a unique common nature across scouts for

all subjects, I average the scout time series data across 26

subjects. Then, the statistical test (F-test) is performed on

the average time series data of two scouts to find the

direction of information flow between scouts (refer to

Fig. 7 Non-linear causal connectivity analysis using MTE based on

channels mentioned in Table 1: a 0-back, b 2-back (target), c 2-back
(non-target), d 3-back (target), and e 3-back (non-target). Different

colored EEG channels denote different ACT-R modules. The edges

represent the MTE values between the two channels
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Table 2 ) for both target and non-target stimuli. For 0-back,

GC is observed from the visual to the imaginal scout and

procedural to the imaginal scout. The causal flow between

scouts is represented by the direction of GC. For the 2,3-

back tasks, the imaginal module stores previous n-back

letters in intermediate memory and send them to the

retrieval module as per the demand of the procedural

module. Thus, the GC occurs (in both directions) between

the imaginal and the retrieval scout for 2-back and 3-back

tasks. GC also occurs from the procedural to imaginal

ACT-R module for all workload levels to control the tasks.

The statistical results of information flow also validate the

outcomes of GC analysis.

Discussion and conclusion

The proposed framework highlights the information flow

among ACT-R modules through different effective con-

nectivity methods. The ACT-R modules are mapped to the

respective brain scouts in the cortex surface. As per my

knowledge, it is the first study that reveals the connectivity

among ACT-R modules through brain cortices for the

EEG-based cognitive task. The experiment is performed on

an EEG-based n-back task with three workload levels

(0, 2, and 3-back). In ACT-R cognitive architecture, sev-

eral modules (visual, aural, declarative memory, motor,

working memory/imaginal, procedural, and goal) work

together to generate the desired human behavior. Each

module is activated while performing the designated task.

In the ACT-R, Working memory (WM) is an essential part

of elemental cognitive processing, as it works as a short-

term memory that holds some intermediate result Glavan

and Houpt (2019); Zhang et al. (2018). In the EEG-based

n-back task, the working memory load increases with the

increasing value of n Grissmann et al. (2017). Similarly, in

2-back and 3-back tasks, the working memory module (i.e.,

imaginal module) of ACT-R is more responsible for storing

the intermediate result (previous n letters in the sequence).

The intermediate result is retrieved later from the retrieval

buffer for checking the target or non-target letter. Each

ACT-R module is associated with some neural activities in

a specific brain area. Therefore, it is necessary to identify

the brain scouts/ROIs corresponding to ACT-R modules.

Here, EEG source imaging is performed to find the

respective ROI/scouts mapped with ACT-R modules and

then validate those scouts with locations of Brodmann

areas. Then, the activation time series for each brain scout

is extracted, and the two effective connectivity methods are

applied between different scouts/ACT-R modules. The

changes in scout activation and brain connectivity analysis

at the cortex surface for a specific time interval (1 s)

highlight the activation of ACT-R modules and underlying

brain dynamics between modules (Fig. 3).

It can be shown that retrieval, imaginal ACT-R modules

are more activated at 3 s during the retrieval operation of

the 2,3-back task, whereas the procedural module is acti-

vated most of the time (excluding the 2 and 4 s). In

Figs. 5, 6, and 7, the information flow among ACT-R

modules is demonstrated using GC and MTE along with

the scout activation. A common observation is observed in

the information flow for GC and MTE. For the 0-back task,

information flow presents from the visual to imaginal

modules for storing the stimulus in short-term memory.

After stimulus presentation, in 2 and 3-back tasks, the

information flow is observed from the imaginal to the

retrieval module to store the current letter in declarative

memory (DM) storage. Next, when the next letter appears,

the callback operation is performed to retrieve the previous

letter from DM, then information flow is observed between

Table 2 Statistical result of Granger prediction using F-test.

Workload level S1!S2 S1!S3 S1!S4 S1!S5

0-back p=0.1102, p=0.0146
(S2!S1)

p=0.1725, p=0.6202
(S3!S1)

p=0.3887, p=0.8490
(S4!S1)

p=0.1256, p=0.0035
(S5!S1)

2-back (target) p=0.7220, p=0.0141
(S2!S1)

p=0.8789, p=0.7570
(S3!S1)

p=0.0178, p=0.0362
(S4!S1)

p=0.4743, p=0.0340
(S5!S1)

3-back (target) p=0.3518, p=0.0366
(S2!S1)

p=0.8570, p=0.9420
(S3!S1)

p=0.0407, p=0.0315
(S4!S1)

p=0.9402, p=0.0422
(S5!S1)

2-back (non-

target)

p=0.2943, p=0.0468
(S2!S1)

p=0.8205, p=0.1398
(S3!S1)

p=0.0420, p=0.0131
(S4!S1)

p=0.3993, p=0.0344
(S5!S1)

3-back (non-

target)

p=0.1293, p=0.0105
(S2!S1)

p=0.5758, p=0.0789
(S3!S1)

p=0.0248, p=0.0487
(S4!S1)

p=0.3013, p=0.0298
(S5!S1)

Scout 1: imaginal, scout 2: visual, scout 3: motor, scout 4: retrieval, scout 5: procedural. In table entries, scouts are abbreviated as S. GC causes

from scout x ! scout y when statistic value (p-value)\0.05. The significant values are marked in bold. The reverse causality (e.g., S2 ! S1) is
mentioned under the p-value of each column (S1 ! S2)
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retrieval and imaginal module. Information flow is

observed between procedural and imaginal modules to

execute production for all tasks. The linear effective con-

nectivity analysis through GC is performed between the

activation time series of different scouts (Fig. 5a–l). In

contrast, the non-linear effective connectivity through

MTE is shown in Fig. 7. Two different effective connec-

tivity methods are analyzed to find the relationship between

the ACT-R module during the n-back task. As the GC

refers to the ratio of variances of two-time series data, F-

statistic is used to evaluate the statistical inference of GC

analysis and identify the direction of information flow

between scouts (Table 2).

In the near future, the proposed model will be imple-

mented with other cognitive architecture (CLARION, Soar,

LIDA, DUAL etc.) models to improve the effectiveness of

the study.
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