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Abstract

Blood flow in sickle cell disease (SCD) can substantially differ from normal blood flow due to sig-

nificant alterations in the physical properties of the red blood cells (RBCs). Chronic complications,

such as inflammation of the endothelial cells lining blood vessel walls, are associated with SCD, for

reasons that are unclear. Here, detailed boundary integral simulations are performed to investigate

an idealized model flow flow in SCD, a binary suspension of flexible biconcave discoidal fluid-filled

capsules and stiff curved prolate capsules that represent healthy and sickle RBCs, respectively,

subjected to pressure-driven flow in a planar slit. The stiff component is dilute. The key obser-

vation is that, unlike healthy RBCs that concentrate around the center of the channel and form

an RBC-depleted layer (i.e. cell-free layer) next to the walls, sickle cells are largely drained from

the bulk of the suspension and aggregate inside the cell-free layer, displaying strong margination.

These cells are found to undergo a rigid-body-like rolling orbit near the walls. A binary suspen-

sion of flexible biconcave discoidal capsules and stiff straight (non-curved) prolate capsules is also

considered for comparison, and the curvature of the stiff component is found to play a minor role

in the behavior. Additionally, by considering a mixture of flexible and stiff biconcave discoids, we

reveal that rigidity difference by itself is sufficient to induce the segregation behavior in a binary

suspension. Furthermore, the additional shear stress on the walls induced by the presence of cells

is computed for the various cases. Compared to the small fluctuations in wall shear stress for a

suspension of healthy RBCs, large local peaks in wall shear stress are observed for the binary sus-

pensions, due to the proximity of the marginated stiff cells to the walls. This effect is most marked

for the straight prolate capsules. As endothelial cells are known to mechanotransduce physical

forces such as aberrations in shear stress and convert them to physiological processes such as acti-

vation of inflammatory signals, these results may aid in understanding mechanisms for endothelial

dysfunction associated with SCD.

∗ Corresponding author. E-mail: mdgraham@wisc.edu
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I. INTRODUCTION

Blood is composed primarily of red blood cells (RBCs) suspended in plasma, with the

hematocrit (i.e. volume fraction of RBCs) ranging from 0.1 − 0.3 in the microcirculation

to 0.4 − 0.5 in large vessels such as arteries [1]. Two other major types of cells in blood,

white blood cells (WBCs) and platelets, are both considerably outnumbered by RBCs, by

∼ 500 − 1000 : 1 and 12 − 32 : 1, respectively [2]. In addition to the drastic difference in

population density, these three cellular components exhibit distinct contrasts shape, size, and

rigidity [3]. Typically, RBCs are fluid-filled biconcave discoids with a radius of ∼ 3.8− 4.0

µm, WBCs are approximately spherical and slightly larger than RBCs, while platelets are

the smallest. Healthy RBCs are highly flexible, while both WBCs and platelets are much

stiffer. Under pathological conditions, diseased RBCs often display substantial alterations

in physical properties compared to healthy RBCs. This is particularly pertinent in blood

disorders such as sickle cell disease (SCD), as all SCD patients have a small percentage

(1−10%) of RBCs that are permanently stiffened and misshapen [4]. These alterations may

lead to significant aberrance in the behavior of blood flow, and further cause complications.

The insufficient understanding of both the dynamics of blood flow in SCD and the mechanism

for complications associated with SCD forms the principal motivation of the present work.

A significant feature of blood flow in the microcirculation, the network of microvessels

(5 − 200 µm in diameter [5]) consisting of arterioles, capillaries, and venules, is that all

types of blood cells display a non-uniform distribution across the vessels. Flexible RBCs

tend to migrate away from the vessel wall and form an RBC-depleted region termed the

cell-free layer next to the wall [6–10]. In contrast, the stiffer WBCs and platelets are found

to reside near the vessel walls, a phenomenon known as margination [7, 9, 11–14]. Many

prior experimental [11, 12, 15–23] and computational [14, 24–33] studies have attempted to

characterize the effects of a variety of parameters, such as cell stiffness, shear rate, channel

width, hematocrit, and RBC aggregation, on the strength of margination of WBCs and

platelets. For example, recent experiments by Fay et al. [21] showed that WBC margination

was substantially attenuated after treatment with dexamethasone or epinephrine, both of

which were found to greatly reduce the stiffness of WBCs. Furthermore, margination-based

cell separation has been realized using lab-on-a-chip devices. Examples include separation

of WBCs from whole blood [13], and of stiffened RBCs such as those infected in malaria
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from the healthy ones [34–36].

A series of recent computational efforts have examined the individual roles of various

cell properties in the segregation behavior. Using direct simulations, Kumar et al. [37, 38]

determined the role of stiffness difference by considering a confined binary suspension of

capsules that differ only in deformability. Here the stiffness (or deformability) of a capsule

is characterized by the dimensionless capillary number, which represents the ratio of viscous

stresses on the particle to elastic restoring stresses. In both simple shear flow and pressure-

driven flow, when the stiffer capsules are the dilute component, they display substantial

margination. In contrast, flexible capsules tend to enrich around the centerline of the channel

when they are dilute, a behavior termed demargination. The effect of size contrast was also

revealed [38]: in a mixture of large and small capsules with equal capillary number, the

small capsules marginate while the large particles demarginate, in their respective dilute

suspensions. Similarly, Sinha and Graham [39] explored the shape-mediated segregation

behavior in binary suspensions of spherical and ellipsoidal capsules in flow, and showed that

the effect of shape (aspect ratio) contrast depends on whether the equatorial radius or the

volume of the capsules is held constant.

A number of phenomenological theories have also been developed for the segregation be-

havior in flowing multicomponent suspensions of deformable particles [38, 40–43]. These

incorporate the two key sources of cross-stream particle fluxes in flowing suspensions un-

der confinement: wall-induced migration flux of deformable particles away from walls [44],

and shear-induced diffusive flux due to hydrodynamic pair collisions between particles. An

example is a recent theory developed by Henŕıquez Rivera et al. [45, 46] that consists of

a set of drift-diffusion equations. Predictions of cell-free layer thickness are found [46] to

agree well with the values reported in other experimental [47], numerical [38] and theoret-

ical [42] studies. Moreover, several regimes of segregation arise in both simple shear flow

and pressure-driven flow, depending on the value of a so-called “margination parameter”,

which charactierizes the relative significance of the wall-induced migration and the collisional

fluxes. Furthermore, a sharp “drainage transition”, characterized by complete depletion of

one component from the bulk flow toward the walls, is also identified.

In light of these advances, in this work we investigate the dynamics of blood flow in

SCD, an inherited blood disorder characterized by abnormal sickle hemoglobin. Under

deoxygenated conditions, sickle hemoglobin molecules self-assemble inside RBCs, forming
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long rigid polymers, a process termed sickling. These polymers mechanically alter and

damage the membrane of RBCs, leading to the classic “sickled” (or crescent-like) shape

[48, 49] for sickle cells. In fact, in addition to this characteristic sickle shape, a large variation

in cell morphology has been observed within the population of sample sickle cells. Byun et al.

[50] recently performed optical measurements of individual sickle RBCs, and classified them

into echinocytes, discocytes, and the typical crescent-shaped irreversibly sickled cells (ISCs)

based on their morphological features, similar to the observations in a prior study by Kaul et

al. [51]. Here ISCs refer to cells afflicted with irreversible membrane damage after repeated

intracellular sickling-unsickling cycles, which have permanently lost membrane elasticity

and remain sickle-shaped even when exposed to extensive oxygenation [48, 52, 53]. In SCD

patients, ISCs take up a small percentage (1−10%) of RBCs [4] due to the much shorter life

span (∼ 15 days [54]) than healthy RBCs (∼ 115 days [55]). ISCs also have a much smaller

volume than healthy RBCs due to dehydration [56, 57]. In addition, a general increase in

membrane rigidity has been determined for sickle cells compared to that of healthy RBCs,

although the extent of stiffening varies greatly from cell to cell [50, 58–62].

The pathophysiology of SCD has canonically been thought to lie in the acute vaso-

occlusive crisis, in which diseased RBCs, upon deoxygenation, tend to obstruct microvessels

due to the sickled shape and increased stiffness, resulting in restricted local blood flow

and subsequent tissue ischemia accompanied by acute pain. However, this view of SCD

pathophysiology overlooks a common yet important complication of SCD, chronic sickle

vasculopathy, in which the endothelial cells that line the blood vessels are dysfunctional and

in a pro-inflammatory state in most regions in the circulation. Of particular clinical impor-

tance in understanding SCD vasculopathy is its association with stroke, one of the leading

yet least understood causes of mortality in SCD. Indeed, the fact that vasculopathy perva-

sively occurs even in the oxygenated conditions in both small and large vessels necessitates

a new understanding of SCD pathophysiology that extends beyond, and is independent

of, vaso-occlusion, which, occurs only under the deoxygenated conditions in microvessels.

Specifically, how the abnormality in physical properties of sickle cells, such as the distorted

shape and increased stiffness, alters the dynamics of blood flow, and ultimately, how this

alteration may be linked to the underlying mechanism for the endothelial inflammation in

SCD and subsequent complications such as stroke, are important issues to address.

Endothelial cells mechanotransduce the shear forces of the hemodynamic microenviron-
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ment into cellular biological signals [63–65]. Bao et al. [66] measured the mRNA expression

of MCP-1 and PDGF-A, two genes related to endothelial inflammation, by endothelial cells

subjected to laminar flows with different well-defined wall shear stress profiles, namely (1)

ramp flow in which shear stress was smoothly changed from zero to a maximum value and

then sustained, (2) step flow in which shear stress was abruptly applied at flow onset followed

by steady shear stress for a sustained period, and (3) impulse flow in which shear stress was

abruptly applied and then removed. A steady shear stress profile was also considered for

comparison. They showed that rapid changes in shear stress (as in impulse flow and the

onset of step flow) and steady shear stress (as in ramp flow and the steady component of

step flow) stimulate and diminish the expression of both genes, respectively. In particular,

the impulse flow case was found to induce the highest level endothelial expression of the

pro-infammatory signals compared to the other profiles. Other studies [63, 67–75] have also

elucidated a variety of shear stress-induced signal transduction pathways of the endothe-

lium, and revealed the opposing effects of steady and unsteady shear stresses on endothelial

dysfunction.

While well-studied in the context of cardiovascular disease, this issue has yet to be ex-

plored in SCD. To the best of our knowledge, there exist only a limited number of compu-

tational studies of the behavior of sickle cells in suspensions in association with mechanisms

for SCD complications. Examples are [76–78], which aimed to investigate the mechanism for

vaso-occlusive crisis. In these studies, simulations were performed for suspensions containing

sickle cells in a cylindrical tube of diameter D = 10 µm, mimicking post-capillary flow, to

quantify the consequences of adhesive interactions between sickle cells and the endothelium

(tube wall) during flow, and determine the effects of cell morphology and rigidity. However,

given their particular focus on blood flow in post-capillaries, these studies considered suspen-

sions with only a very small number of cells under strong confinement, so that characteristic

dynamics of multicomponent suspensions such as flow-induced segregation and margination

were not incorporated.

The aim of the present study is to take a first step toward understanding these phenomena

in SCD. Using large-scale direct simulations, we investigate a number of binary suspensions

containing primarily flexible healthy RBCs with a small fraction of stiff cells with different

rest shapes in confined pressure-driven flow at zero Reynolds number. WBCs and platelets

are not included in the suspensions due to their extremely small number fractions in blood
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flow. We predict that sickle cells display strong margination toward the walls due to their

increased rigidity and reduced size compared to healthy RBCs. The effects of shape, size,

and rigidity differences between the components on the behavior of different suspensions

are studied. We also characterize the orbital dynamics of single cells in the suspensions.

Furthermore, the hydrodynamic effects of the cell suspensions on the walls, particularly the

additional wall shear stress induced by the marginated cells are quantified to establish a

connection with issues in SCD such as shear-induced endothelial dysfunction.

The rest of the paper is organized as follows: in Section II we describe the models for the

cells and suspension systems considered in this work, as well as the numerical methods and

algorithms employed to compute the flow field and cell motion; in Section III we present

detailed results and discussion on the behavior of different suspensions and the dynamics of

single cells, followed by a characterization of the hydrodynamic effects of the suspensions on

the walls. Concluding remarks are presented in Section IV.

II. MODEL FORMULATION

A. Model and discretization

We consider a flowing suspension of deformable fluid-filled elastic capsules in a planar

slit bounded by two parallel rigid walls (FIG. 1). In the wall-normal (y) direction, no-slip

boundary conditions are applied to the two rigid walls at y = 0 and y = 2H, where H

is the distance from each wall to the centerplane of the slit domain. In the flow (x) and

the vorticity (z) directions, periodic boundary conditions are imposed, with spatial periods

Lx and Lz, respectively. The suspension is subjected to a unidirectional pressure-driven

(Poiseuille) flow, and the undisturbed flow velocity field is given by

u∞(x, y, z) = 2U0
y

H

(
1− y

2H

)
ex, (1)

where U0 is the undisturbed flow velocity at the centerplane of the channel, and ex is the

unit vector in the x direction. In the present study a constant pressure drop is imposed,

which is equivalent to fixing the mean wall shear rate at γ̇w = 2U0/H. We take the fluids

outside and within the capsules to be incompressible and Newtonian with viscosity η and

λη, respectively, so λ denotes the viscosity ratio between the fluids inside and outside the

capsules.
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FIG. 1: Schematic of the simulation domain.

Different suspension systems comprising various types of cells are investigated in this

work. Figure 2 shows the rest shapes of the cell models. A healthy RBC is modeled as a

flexible capsule with a biconcave discoidal rest shape [79, 80], with the geometry given by

y =
a

2

√
1− r2(C0 + C2r

2 + C4r
4), (2)

where r2 = x2 + z2 6 1, C0 = 0.2072, C2 = 2.0026, and C4 = −1.1228; a denotes the radius

of the biconcave discoid, which is ∼ 3.8− 4.0 µm for human RBCs. In contrast to a healthy

RBC, a typical ISC is crescent-shaped with a characteristic length c slightly greater than a

[50, 81]. In this study, an ISC is modeled as a stiff capsule with a curved prolate spheroidal

rest shape. This shape is constructed by first polar stretching and equatorial compression

of a spherical capsule with radius a, which results in a slender prolate capsule with polar

radius a1 = c = 1.2a and equatorial radius a2 = 0.25a (aspect ratio AR = a1/a2 = 4.8). The

resulting straight prolate capsule is then subjected to a quadratic unidirectional displacement

of membrane points perpendicular to the polar axis of the capsule, which eventually generates

a curved prolate capsule. Details regarding the transformation procedure for the sickle RBC

model are found in [82]. For our models, the volume of a straight or curved prolate capsule

is ∼ 20% that of a biconcave discoid.

Having introduced the models for the morphologies of different cells, we now describe the

membrane mechanics of the capsules. In this work, the capsule membrane is modeled as

an isotropic and hyperelastic surface that incorporates shear elasticity, area dilatation, and

bending resistance. For an arbitrary capsule, the total energy E of the capsule membrane

S is:

E =
KB

2

∫
S

(2κH + c0)
2dS +KB

∫
S

κGdS +

∫
S

WdS, (3)
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FIG. 2: Rest shapes of a biconcave discoidal capsule (top) as a model for healthy RBCs, a

straight prolate capsule (bottom left), and a curved prolate capsule (bottom right) as a

model for typical sickle cells.

where KB and KB are the bending moduli, and W is the shear strain energy density; κH and

κG are the mean and Gaussian curvature of the membrane surface, respectively; c0 = −2H0

is the spontaneous curvature, H0 being the mean curvature of the spontaneous shape. In

this equation, the first two terms represent the Canham-Helfrich bending energy [83, 84],

and the third term corresponds to the shear strain energy. The behavior of the capsule

membrane in response to the in-plane shear elastic force is described using a membrane

model by Skalak et al. [85], in which the shear strain energy density W is given by

WSK =
G

4

[
(I21 + 2I1 − 2I2) + CaI

2
2

]
, (4)

where G is the in-plane shear modulus of the membrane, and Ca characterizes the energy

penalty for area change of the membrane. The strain invariants I1 and I2 are functions of

the principal stretch ratios λ1 and λ2, defined as

I1 = λ21 + λ22 − 2, I2 = λ21λ
2
2 − 1. (5)

Barthès-Biesel et al. [86] showed that for Ca & 10, the tension of a Skalak membrane

becomes nearly independent of Ca under a simple uniaxial deformation, so Ca is set to 10

for all capsules in our simulations. Sinha and Graham [80] have validated this model for

the membrane mechanics of a healthy RBC, showing that the strain hardening behavior of

the membrane predicted by this model agrees very well with the experimentally determined

response of an RBC membrane to optical tweezer stretching by Mills et al. [87].
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The deformability of a capsule in pressure driven flow is characterized by the dimensionless

wall capillary number Ca =ηγ̇wl/G, where l is the characteristic length of the capsule. The

bending modulus of a capsule is expressed nondimensionally by κ̂B = KB/l
2G, which is

∼ O(10−4 − 10−2) in the physiological context [88, 89]; here we set κ̂B = 0.04 for all

capsules, which also prevents the cell membranes from any buckling instabilities. Taking

the first variation of the total membrane energy E in Eq. 3 gives the total membrane strain

force density:

fm = fb + f s, (6)

where fb and f s are bending and shear elastic force densities, respectively. For any capsule in

this work, unless noted otherwise, the natural shape for shear and the spontaneous shape for

bending elasticities of the capsule membrane are both chosen to be the same as the rest shape

of the capsule, so that any in-plane or out-of-plane deformation would lead to an increase

in the membrane energy and thus to an elastic restoring force. The capsule membrane is

discretized into N4 piecewise flat triangular elements; in this work N4 = 320, resulting

in 162 nodes. We have verified that increasing the number of nodes makes no difference

to the cell dynamics, and this mesh resolution keeps the computational cost manageable

given that very long simulation times are required for the dynamics of the suspensions to

reach steady state. Note that in this work, steady state refers to the state in which the

suspension dynamics are statistically invariant or stationary. Based on this discretization,

the calculation of the total membrane force density fm follows the work of Kumar and

Graham [90] and Sinha and Graham [80] using approaches given by Charrier et al. [91] for

the in-plane shear force density f s and Meyer et al. [92] for the out-of-plane bending force

density fb, respectively. Details regarding these calculations are found in [90] and [80].

Now we describe the suspension systems considered in this work. A base case is a ho-

mogeneous suspension of flexible biconcave discoidal capsules representing purely healthy

RBCs. In our simulations Ca is always set to 1.6 for flexible biconcave discoids in all sus-

pensions, which is in accordance with the biomechanical properties of the membrane of a

healthy RBC within the physiological ranges, assuming the shear rate of blood flow in the

microcirculation γ̇w ∼ O(102− 103) s−1 [93], the viscosity of plasma η ∼ 1.2 mPa s [94], and

the in-plane shear modulus of a healthy RBC membrane G ∼ 7.1± 1.6 µN/m [50].

One of the major aims of this study is to understand the effects of deformability, shape,

and size contrast on the dynamics of a flowing suspension of capsules. To this end, different
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cases of binary suspensions are considered. The “primary” component, i.e., the component

with a larger population, is always the flexible biconcave discoids (healthy RBCs), and

denoted as ‘p’. The other component is stiff, termed “trace” and denoted as ‘t’. The number

fractions for the capsules of these two components in all binary suspensions considered in this

work are set to Xp = 0.9 and Xt = 0.1, respectively, with a number density ratio np/nt = 9.

These values are within the physiological ranges in the context of SCD [4]. In the first

binary suspension, the ‘t’ component is stiff biconcave discoidal capsules with the same rest

shape as the flexible (healthy) ones to investigate the isolated role of rigidity difference in

the dynamics of the binary suspension. In the second case, we study a binary suspension

with the ‘t’ component being stiff curved prolate capsules that represent typical sickle cells,

and this system serves as an idealized model for blood flow in SCD. For comparison, we

also consider a suspension containing stiff straight prolate capsules with no curvature to

illustrate the effect of curvature on the behavior of the suspension. In all cases of the binary

suspensions, Cat is always set to 0.4 for the ‘t’ component to control variables. Indeed,

this value is physiological given that the membrane shear modulus of a typical sickle cell is

experimentally determined to be roughly four times that of a healthy RBC [50].

In this study, the total volume fraction of the capsules is φ ≈ 0.15 for all suspensions,

with φ being slightly lower for the cases containing curved and straight prolate capsules

due to their smaller volume than a biconcave discoid, as noted above. This volume fraction

is consistent with the physiological hematocrit in small vessels (∼ 40 µm across) in the

microcirculation [95, 96]. The domain is periodic in x and z with lengths Lx = Lz = 2H =

10a, where a again is the radius of a biconcave discoid as described above. The domain

height H = 5a so the confinement ratio C = H/a = 5. We have verified that changing the

domain period in the x direction from Lx = 10a to Lx = 20a makes negligible difference

in the cross-stream distribution and dynamics of capsules (not shown). Furthermore, the

suspending fluid and the fluid inside the capsules are always assumed to have the same

viscosity, i.e., λ = 1 for all suspensions, to keep the computational cost manageable. This is

different than the physiological viscosity ratio of ∼ 5. However, our previous investigations

have revealed that the dynamics of a single sickle cell [82] or straight prolate capsule [97]

remain qualitatively unchanged as the viscosity ratio λ is increased from 1 to 5. Furthermore,

as shown by the simulation results below (Section III A 1), the dynamics of single healthy

RBCs in the suspensions assuming λ = 1 are consistent with the orbital behavior observed
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in a number of prior experimental [98–100] and numerical [101, 102] studies with λ = 5.

B. Fluid motion

In our simulations, the particle and channel Reynolds numbers, defined as Rep = ργ̇wl
2/η

and Rec = ργ̇wH
2/η, respectively, both have magnitude of ∼ O(10−3 − 10−2) based on the

physiological range of the parameter values for blood flow in the microcirculation as noted

in Section II A. The Reynolds numbers are assumed to be sufficiently small so that the fluid

motion is governed by the Stokes equation. To determine the velocity field at each time

instant, we use an accelerated boundary integral method of Kumar and Graham [90] for

simulations of capsule suspensions. The fluid velocity u at any point x0 in the simulation

domain can be written as:

uj(x0) = u∞j (x0) +

Np∑
m=1

∫
Sm

qi(x)Gji(x0,x)dS(x), (7)

where the single layer density q(x0) satisfies

qj(x0) +
λ− 1

4π(λ+ 1)
nk(x0)

Np∑
m=1

∫
Sm

qi(x)Tjik(x0,x)dS(x) = − 1

4πµ

(∆fj(x0)

λ+ 1
+
λ− 1

λ+ 1
f∞j (x0)

)
.

(8)

Here u∞(x0) is the undisturbed fluid velocity at a given point x0, Sm denotes the surface of

capsule m; f∞(x0) is the traction at x0 due to the stress generated in the fluid corresponding

to the undisturbed flow u∞(x0); ∆f(x0) is the hydrodynamic traction jump across the

membrane interface, which relates to the total membrane force density by ∆f(x0) = −fm

assuming the membrane equilibrium condition; G and T are the Green’s function and its

associated stress tensor.

The acceleration in this implementation is achieved by the use of the General Geometry

Ewald-like Method (GGEM) by Hernandez-Ortiz et al. [103]. The key idea is to decompose

the overall problem into a local and a global problem, specifically by splitting the Green’s

function for the Stokes equation into a singular but exponentially-decaying (short-ranged)

part and a smooth but long-ranged part. The solution associated with the local problem is

obtained assuming free-space boundary conditions, i.e., it is independent of the geometry of

interest. The solution associated with the global problem, on the other hand, is nonsingular

and ensures that the boundary conditions for the overall problem are satisfied. In this work,
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we compute the global solution by employing the discrete Fourier series approximation in

the periodic x (flow) and z (vorticity) directions and the discrete Chebyshev polynomial

approximation in the y (wall-normal) direction. This approach ensures that the simulations

in this work are performed at constant pressure drop. The overall solution for the velocity

or stress field is the sum of the local and global solutions. For a flowing suspension in a

slit geometry as considered in the present study, the computational cost of the algorithm

scales as O(N logN), where N is proportional to the product of the total number of capsules

Np and the number of triangular elements N4 upon surface discretization. Details of the

numerical method and algorithm are found in [90].

Once the flow field is determined, the positions of the element nodes on the discretized

capsule membrane are advanced in time using the second-order explicit Adams-Bashforth

method with adaptive time step ∆t = 0.02Cad, where d is the minimum node-to-node

distance. Time is nondimensionalized with the wall shear rate γ̇w, and in this work, t always

represents dimensionless time.

III. RESULTS AND DISCUSSION

In this section, we first present and discuss simulation results for the dynamics of different

suspension systems as described above (Section III A). Specifically, we focus on understand-

ing the flow-induced segregation behavior as well as determining the orbital dynamics of

single cells, especially the stiff cells, in each suspension. Substantial margination of the stiff

cells is observed in all binary suspensions. Following these results, we further characterize

the hydrodynamic effects of the suspensions on the walls, particularly the additional wall

shear stress induced by the marginated stiff cells (Section III B). We reveal that compared

to the small fluctuations in wall shear stress observed in the case of a homogeneous suspen-

sion of healthy RBCs, the marginated cells in the binary suspensions induce intermittent

local wall shear stress peaks. We further discuss the implications of these findings on the

mechanism for endothelial inflammation in SCD.
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A. Cross-stream distribution and dynamics of cells in different suspensions

1. Homogeneous suspension of healthy (flexible) RBCs

We first consider the base case with a homogeneous suspension of flexible biconcave dis-

coidal capsules representing purely healthy RBCs, and assume that the spontaneous shape

of the capsules is the same as their rest shape, i.e., a biconcave discoid. The effect of spon-

taneous shape will be discussed shortly. To obtain the cross-stream distribution for the cells

of component α in a general suspension, we compute the normalized number density profile

of the cells based on their wall-normal center-of-mass positions, given by n̂α(y) = nα(y)/n0
α,

where n0
α is the mean number density of the cells of component α in the suspension; for a

uniform distribution, n̂α(y) = 1 at all y positions. Figure 3(a) shows the time-averaged wall-

normal number density distribution profile for healthy RBCs in a homogeneous suspension.

The error bars represent estimated error using the “blocking” method [104]. A cell-free layer

is evidently observed next to the wall (y/a = 0), which is a consequence of the competition

between the effects of wall-induced migration [44] and hydrodynamic pair collisions. The

two substantial peaks in the profile, which have been observed in prior experiments [105],

simulations [38, 39, 106–108], and theoretical predictions [46, 105] for suspensions of RBCs

and other deformable capsules, indicate that the healthy RBCs accumulate both around the

centerplane of the channel and near the wall right beyond the cell-free layer. In addition, we

also determine the hematocrit profile by computing the local volume fraction of the RBCs.

The time-averaged hematocrit profile is shown in FIG. 3(b). We note that this profile closely

resembles those in a previous numerical study by Zhao, Shaqfeh and Narsimhan [29] for an

RBC suspension with similar parameters.

Furthermore, in the near-wall region where the local shear rate is high, healthy RBCs

approximate a “rolling” orientational motion, where the axis of symmetry (the short axis

in the case of an oblate object) orients in the z-direction and the cell rolls like a wheel, as

observed in the simulation snapshot (FIG. 4(a)). Two periods of the simulation domain are

shown in both x and z directions in this snapshot as well as all future snapshots for other

suspensions. This rolling orbit assumed by an RBC at high shear rate, or a transition of

the cell dynamics toward the rolling orbit upon increasing shear rate, has also been revealed

in both experimental [98–100] and numerical [101, 102, 109] studies for single RBCs under
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(a) (b)

FIG. 3: (a) Wall-normal number density profile n̂ for healthy RBCs assuming different

spontaneous shapes (c0) in a homogeneous suspension at steady state. (b) Hematocrit

profile for the healthy RBC suspension. The two positions at y/a = 0 and y/a = 5

correspond to the wall and centerplane of the channel, respectively.

physiological conditions in which the viscosity ratio between the fluids inside and outside the

cell is typically λ ≈ 5, although the viscosity ratio is set to λ = 1 in this work, again, to make

the computational cost manageable. We note, though, that the spontaneous shape (c0) has

a nontrivial effect on the dynamics of single RBCs. For example, as shown in FIG. 4, the

near-wall healthy RBCs reorient from a rolling orbit into a “tank-treading” configuration

when their spontaneous shape is changed from a biconcave discoid to an oblate spheroid,

consistent with the findings in a prior numerical investigation by Sinha and Graham [80]. (In

tank-treading, points on the surface of the cell move but the cell shape itself remains nearly

time-independent.) In spite of the change in orientational dynamics when the spontaneous

shape is changed, no substantial change is observed in the wall-normal number density

profile for healthy RBCs (FIG. 3(a)). Indeed, we have further verified that for the binary

suspensions that will be presented next, the segregation behavior and dynamics of stiff cells

are only weakly affected by the orientational dynamics of healthy (flexible) RBCs.
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(a) (b)

FIG. 4: Simulation snapshots for a homogeneous suspension at steady state of flexible

biconcave discoidal capsules (healthy RBCs) with Ca = 1.6 assuming either a biconcave

discoidal (a) or an oblate spheroidal (b) spontaneous shape.

2. Binary suspension of flexible and stiff RBCs: isolated effect of rigidity difference

We now consider a binary suspension of flexible (Cap = 1.6) and stiff (Cat = 0.4) RBCs

with a number density ratio np/nt = 9. To characterize the collective dynamics of the

cells of each component, we define a parameter s =
〈
(ycm −H)2

〉1/2
/a, which measures the

root-mean-square (RMS) distance of the cells from the centerplane of the channel; here ycm

is the center-of-mass position of an arbitrary cell in the wall-normal direction. The time

evolution of s for the cells of each component is plotted in FIG. 5(a). It is obvious that

though starting with comparable values for both components, s decreases for flexible RBCs

while increasing for stiff RBCs, before reaching a plateau (steady state) at sp ≈ 2.2 and

st ≈ 3.2, respectively, indicating a segregation behavior in the binary suspension.

Furthermore, to quantify the cell distributions, the steady-state wall-normal number den-

sity profiles n̂(y) are computed for both components and shown in FIG. 6. In this case where

stiff RBCs are dilute, the key observation is that, in contrast to flexible RBCs that exhibit

a profile similar to that in their pure suspension, a majority of stiff RBCs are drained

from the center of the channel and aggregate in the near-wall region, undergoing substan-

tial margination. This margination and segregation behavior is also evident in snapshots

from simulation for this binary suspension (FIG. 7). These results demonstrate that rigidity

difference by itself is sufficient to induce the segregation behavior in a binary suspension,

which is consistent with the findings in prior studies [37, 38, 46] considering a suspension

of spherical capsules that differ only in rigidity. The marginated stiff RBCs are found to
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(a) (b)

FIG. 5: Time evolution of the parameter s =
〈
(ycm −H)2

〉1/2
/a for (a) flexible

(i.e. healthy) RBCs in suspension with stiff RBCs, and for (b) healthy RBCs in suspension

with sickle cells and straight prolate capsules, respectively.

take an approximate in-plane “tumbling” orbit near the walls: i.e. the axis of symmetry

undergoes as an approximately circular trajectory in the x-y plane. In addition, we have

verified that the existence of a small number fraction of stiff RBCs makes little difference to

the orientational dynamics of flexible RBCs (not shown).

3. Binary suspension of healthy and sickle RBCs: combined effect of rigidity, shape, and size

differences

In this section we present simulation results for a binary suspension of healthy and sickle

RBCs (specifically ISCs), which is the focus of this work. Again, healthy RBCs are modeled

as flexible biconcave discoidal capsules (Cap = 1.6), while sickle cells as stiff curved prolate

capsules (Cat = 0.4); the number density ratio between these two components is np/nt = 9.

In the meantime, results for the case in which sickle cells, the trace component, are replaced

by stiff straight prolate capsules (Cat = 0.4 and Xt = 0.1) are also presented for comparison

to illustrate the effect of curvature for the trace component.

Figure 5(b) shows the time evolution of the parameter s =
〈
(ycm − H)2

〉1/2
/a for each
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FIG. 6: Wall-normal number density profiles n̂ for flexible (solid red) and stiff (dotted

blue) RBCs in a binary suspension at steady state.

(a) (b)

FIG. 7: Simulation snapshots ((a) side view, (b) front view) for a binary suspension of

flexible (red) and stiff (blue) RBCs at steady state.

component in both suspensions. Segregation behavior is observed for both cases. The trends

of increase in s display minor differences for sickle cells and straight prolate capsules, both

reaching a plateau (steady state) at st ≈ 3.6. This steady-state value is greater than that

for stiff RBCs (st ≈ 3.2). We also note that compared to the case with stiff RBCs, the cases

with sickle cells and straight prolate capsules take a longer time to reach steady state.

More details can be revealed by computing the cross-stream distribution profiles for each
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component in both suspensions. In FIG. 8(a), a cell-free layer is observed in the wall-normal

number density profiles n̂ for healthy RBCs in both cases, as well as the two peaks both

around the centerplane of the channel and right beyond the cell-free layer. In general, the

n̂ profiles for healthy RBCs in these two suspensions are similar to those in previous cases.

For sickle cells and straight prolate capsules, the profiles both show a high near-wall peak

inside the cell-free layer (FIG. 8(b)), which suggests that the trace component in both cases

is largely drained from the bulk of the suspension, displaying strong margination as seen

in the simulation snapshots in FIG. 9. No substantial differences are observed in the n̂

profiles for both cases. We also show in FIG. 10 that when the spontaneous shape (c0)

of healthy RBCs is changed from a biconcave discoid to an oblate spheroid, although an

orientational transformation is observed for the dynamics of healthy RBCs (FIGs. 10(a)

and 10(b)), insignificant differences are found in the distribution profiles for both healthy

RBCs and sickle cells in a binary suspension (FIGs. 10(c) and 10(d)).

It is noteworthy that the near-wall peaks in the n̂ profiles for sickle cells and straight

prolate capsules (FIG. 8(b)) are both of greater magnitude and closer to the wall compared

(a) (b)

FIG. 8: Wall-normal number density profiles n̂ for (a) healthy RBCs in suspension with

sickle cells (solid red) and straight prolate capsules (dotted red), and (b) for sickle cells

(solid blue) and straight prolate capsules (dotted blue) in suspension with healthy RBCs,

respectively.
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to that in the profile for stiff RBCs (FIG. 6). To explain this, we first characterize the

orbital dynamics of sickle cells and straight prolate capsules in the respective suspension.

Here the cells (capsules) are classified into two groups based on their wall-normal center-of-

mass positions: one for the cells inside the cell-free layer, and the other for those in the bulk

of the suspension. The instantaneous orientation of a single sickle cell or straight prolate

capsule in flow is given by a unit end-to-end vector p that connects the two tips of the cell

(capsule). We then define a tensor S to quantify the ensemble-averaged orientation of the

cells in each group, given as

S = 〈pp〉 =


〈pxpx〉 〈pxpy〉 〈pxpz〉

〈pypx〉 〈pypy〉 〈pypz〉

〈pzpx〉 〈pzpy〉 〈pzpz〉

 . (9)

In particular, we care about the magnitude of the components 〈pxpx〉, 〈pxpy〉(= 〈pypx〉),

〈pypy〉, and 〈pzpz〉, assuming that the values for the other components are essentially zero

given the equal probability of pz being positive or negative for an arbitrary cell. The steady-

(a) (b)

(c) (d)

FIG. 9: Simulation snapshots (left: side view; right: front view) for binary suspensions of

healthy RBCs with sickle cells (a,b) and straight prolate capsules (c,d), respectively, at

steady state.
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(a) (b)

(c) (d)

FIG. 10: Simulation snapshots (a,b) for a steady-state binary suspension of healthy RBCs

with sickle cells, as well as wall-normal number density profiles n̂ (c,d) for both

components, assuming a biconcave discoidal (a) and an oblate spheroidal (b) spontaneous

shape (c0) for healthy RBCs, respectively.

state magnitude of each of these components is presented using a bar graph in FIG. 11

for sickle cells and straight prolate capsules inside the cell-free layer and in the bulk of

the suspension, respectively. We observe that for the cells inside the cell-free layer, the

component 〈pzpz〉 dominates with the magnitude close to 1, while the other components

are vanishingly small. This suggests that the marginated sickle cells and straight prolate

capsules tend to approximate a log-rolling orbital motion inside the cell-free layer, with

the end-to-end vector p nearly aligned with the z axis, which is in agreement with the

observations from the simulation snapshots in FIG. 9. Compared to the marginated stiff

RBCs that approximate a tumbling motion, the near-wall sickle cells or straight prolate
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FIG. 11: Magnitude of the x-x, x-y, y-y, and z-z components of the tensor S = 〈pp〉 for

sickle cells and straight prolate capsules inside the cell-free layer (labelled “CFL”) and in

the bulk of the suspension (labelled “bulk”), respectively.

capsules are able to approach closer to the walls owing to a minimal volume exclusion effect

because of their near-rolling orbits, smaller volume, and slenderness in shape, which leads

to a near-wall peak in the n̂ profile that is both greater in magnitude and closer to the wall.

For sickle cells and straight prolate capsules in the bulk of the suspension, in contrast,

〈pxpx〉 dominates, with 〈pypy〉 and 〈pzpz〉 being smaller but non-zero, indicating that the cells

in the bulk generally take a “kayaking” orbit (in which the long axis of the cell lies out of the

x-y plane but is not fully aligned along the z-axis). Here the long axis is only slightly out of

the shear (x-y) plane, consistent with our previous findings on the dynamics of a single sickle

cell in unbounded simple shear flow [82]. During the evolution of the suspension dynamics,

this orbit becomes favorable for these slender cells with a high aspect ratio, given limited

space between cells (primarily healthy RBCs) in suspension. The dynamics of the healthy

RBCs do not show much difference compared to previous cases.
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B. Effect of marginated cells on the walls in binary suspensions

Having determined the cross-stream distribution and cell dynamics in different suspen-

sions, in this section we characterize the hydrodynamic effects of the suspensions on the

walls, and compare the results for the binary suspensions with the case containing purely

healthy RBCs to illustrate the impact of the marginated stiff cells in the binary suspensions.

Particularly, we compute the shear stress at the walls associated with different suspensions.

For an undisturbed planar pressure-driven flow in the absence of the capsules confined by

two walls at y = 0 and y = 2H, the mean wall shear stress is given by τw = 2ηU0/H. In

the case of a flowing suspension of capsules, however, additional wall shear stress τ ′w can

be induced by the presence of the capsules. In this work τ ′w is computed numerically using

an accelerated boundary integral method [90], as introduced in Section II B. It is worth

emphasizing, though, that since the simulations are performed at constant pressure drop,

the mean wall shear stress is the same for all suspensions considered here, and is equal to

the undisturbed wall shear stress τw, which is nondimensionalized to 2. Figure 12 shows

examples of the spatial distribution of τ̂w = τ ′w/τw on the bottom wall (y = 0) induced by

different suspensions at steady state. Note that this quantity and all the wall shear stress

quantities reported below have been normalized by the undisturbed wall shear stress τw un-

less noted otherwise. It is clear that except for the case with purely healthy RBCs in which

barely any fluctuations in wall shear stress are observed, the binary suspensions all induce

local shear stress peaks on the wall, which is certainly accredited to the marginated cells in

each suspension.

In general, an arbitrary wall position can experience dramatic fluctuations in τ̂w due to

the dynamical motion of the near-wall cells in a flowing suspension. Examples are shown in

FIG. 13 for the evolution of τ̂w experienced at a fixed wall position (x, y, z) = (0.74a, 0, 1.67a)

for different suspensions at steady state. A number of peaks with large magnitude are ob-

served in each case of the binary suspensions, suggesting that this wall position experiences

high additional shear stress intermittently. We now detailedly characterize the hydrody-

namic effect of each suspension on the walls. First, we compute the RMS of the additional

wall shear stress τ̂w for each wall position, and the results for the spatially-averaged RMS

wall shear stress, 〈(τ̂w)RMS〉, are plotted in FIG. 14(a) for different suspensions. It is ob-

served that all three types of cells as the trace component, i.e., stiff RBCs, sickle cells, and
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(a) (b)

(c) (d)

FIG. 12: Examples of the spatial distribution of the additional wall shear stress τ̂w on the

bottom wall (y = 0) induced by a homogeneous suspension of healthy RBCs (a) and

binary suspensions of healthy (flexible) RBCs with stiff RBCs (b), sickle cells (c), and

straight prolate capsules (d), respectively, at steady state.

straight prolate capsules, cause an increase (of approximately two folds) in the averaged

RMS wall shear stress in the case of the corresponding binary suspension compared to the

case with purely healthy RBCs. The magnitude of the increase is the greatest for the case

with straight prolate capsules, though the differences are small among the binary cases.

In addition, the spatially-averaged maximum additional wall shear stress, 〈(τ̂w)max〉, is also

computed for different cases (FIG. 14(b)). Again, no substantial differences are observed

among the binary cases, although the magnitude of this quantity is slightly greater for the
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(a) (b)

(c) (d)

FIG. 13: Time evolution of the additional wall shear stress τ̂w at a fixed wall position

(x, y, z) = (0.74a, 0, 1.67a) for the cases of a homogeneous suspension of healthy RBCs (a)

and binary suspensions of healthy (flexible) RBCs with stiff RBCs (b), sickle cells (c), and

straight prolate capsules (d), respectively, at steady state.

case with sickle cells than with stiff RBCs or straight prolate capsules.

However, despite the general indications, neither the RMS nor the maximum is able to

reveal the influence of the marginated cells in a binary suspension on the walls in detail.

Indeed, it is mainly these near-wall cells that generate the intermittent peaks in the addi-

tional wall shear stress, as shown in the examples in FIG. 13. To this end, we now compute

three quantities for each of the suspensions: the ensemble-averaged magnitude, duration,

and frequency of the peaks in the additional wall shear stress. To do this, we consider only

those wall shear stress peaks in each case that are greater than the expected maximum value

for the healthy case, and the associated quantities are denoted using the subscript “pk”. The
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(a) (b)

FIG. 14: The spatially-averaged RMS 〈(τ̂w)RMS〉 (a) and maximum 〈(τ̂w)max〉 (b) of the

additional wall shear stress for different suspensions at steady state. For each quantity, the

error bars represent standard error.

ensemble-averaged magnitude, duration, and frequency of these peaks are then computed,

which gives 〈(τ̂w)pk〉, 〈∆tpk〉, and 〈fpk〉, respectively. Note that an arbitrary peak in τ̂w,

as defined above, is always characterized by a spike and two dips right before and after it

(FIG. 13). Accordingly, the duration of a peak is defined as the time difference between the

onset of the dip before the spike and the end of the one after. Finally, we take the product

Apk of these three quantities, defined as

Apk = 〈(τ̂w)pk〉 × 〈∆tpk〉 × 〈fpk〉, (10)

which quantifies the overall effect of each suspension on the wall shear stress.

The results are summarized in FIG. 15. It is obvious that compared to the case with

purely healthy RBCs where Apk is vanishingly small, all three binary suspensions exert a

substantial overall effect on the wall shear stress (FIG. 15(d)). The averaged magnitude and

duration of the wall shear stress peaks, 〈(τ̂w)pk〉 and 〈∆tpk〉, show minor differences among

the cases of binary suspensions, although both are slightly greater for the case with stiff

RBCs than with sickle cells or straight prolate capsules. Significant differences, however,

are observed in the averaged frequency of the wall shear stress peaks, with 〈fpk〉 being the

greatest when the trace component is straight prolate capsules. As a result, the product Apk

also yields the greatest value for the case with straight prolate capsules, while being slightly
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(a) (b)

(c) (d)

FIG. 15: The ensemble-averaged magnitude 〈(τ̂w)pk〉 (a), duration 〈∆tpk〉 (b), and

frequency 〈fpk〉 (c), respectively, of the wall shear stress peaks experienced by all wall

positions for different suspensions at steady state, and the product Apk of these three

quantities (d). The error bars in (a), (b), and (c) represent standard error for each

quantity.

greater for the case with sickle cells than with stiff RBCs.

The differences in 〈fpk〉 among the binary suspension cases, as shown in FIG. 15(c),

may be explained by the orbital dynamics of the marginated cells. As determined in Sec-

tion III A 2, marginated stiff RBCs tend to approximate an in-plane tumbling orbit. The-

oretically, substantial additional wall shear stress is induced when the cell is oriented per-
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pendicular to the wall with a minimal distance between the edge of the cell and the wall.

However, during the periodic orbital motion of the cell, this orientation is transient before

the cell is quickly flipped by the shear effect of the flow and spend longer time at the edge

of the cell-free layer becoming parallel with the wall, which conversely leads to negligible

additional wall shear stress and, as a consequence, the lowest frequency of the wall shear

stress peaks among the binary suspension cases. The difference in 〈fpk〉 between the cases

with sickle cells and straight prolate capsules, on the other hand, is majorly an effect of cur-

vature: the steady rolling motion of marginated straight prolate capsules inside the cell-free

layer, with negligible fluctuations in the wall-normal position of the cell body compared to

the larger fluctuations for near-wall rolling sickle cells caused by curvature, ensures that at

any wall position, a peak in wall shear stress is induced whenever a straight prolate capsule

goes by.

As mentioned in Introduction, in this work WBCs and platelets are not considered in

the suspensions assuming negligible effects due to their extremely small number fractions

in blood. To justify this assumption, we have tested the case in which one stiff spherical

capsule slightly larger than a biconcave discoid, which serves as a model for the WBC, is

placed near the wall in suspension with healthy RBCs (Xp = 0.99, Xt = 0.01). We reveal

that the overall effect of this suspension on wall shear stress, characterized by Ap as defined

above, is indeed negligible compared to that for the case containing sickle cells; note that

this number fraction of WBCs is even higher than the physiological range [2]. Therefore, it

is reasonable to exclude WBCs in our simulations. Similarly, we expect that platelets should

also have a negligible effect on wall shear stress due to both the small number fraction and

the tumbling motion taken near the walls [29] as noted above for stiff RBCs.

The findings in the present work may aid in understanding the pathophysiology of chronic

endothelial inflammation in SCD from a biophysical perspective. Indeed, the intermittent

peaks in wall shear stress induced by the marginated stiff sickle cells, as observed in this work,

resemble the spiky wall shear stress profile considered in Bao et al. [66] on flow-mediated

endothelial mechanotransduction. This spiky profile, characterized by abrupt onset and ter-

mination of shear stress, was found to induce the greatest upregulation of pro-inflammatory

signals compared to the other shear stress profiles. More generally, rapid changes in shear

stress, as opposed to steady shear stress, have been demonstrated to contribute to endothe-

lial inflammation and subsequent atherogenesis via specific mechanotransduction pathways
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of the endothelium [63, 68, 72–74]. In this sense, our results provide a possible mechanism

for chronic SCD vasculopathy.

The present work does not incorporate adhesive interactions between diseased cells and

vessel walls. While these play a significant role in the acute vaso-occlusive crisis [76, 77, 110–

112], which in turn, may cause endothelial dysfunction, our aim here was to address the

question of whether non-adhesive effects may also lead to a pro-inflammatory state of the

endothelium via mechanotransductive mechanisms. In fact, the aforementioned experimen-

tal studies on shear stress-induced endothelial expression were all performed in the absence of

adhesive events. Hence, this work suggests that purely physical (non-adhesive) interactions

between endothelial cells and sickle cells may be sufficient to cause endothelial inflammation,

which provides innovative and vital insight into SCD pathophysiology that extends beyond,

and is independent of, vaso-occlusion. In the case where adhesive events become important,

the phenomena revealed here would still be of prime importance, as the strong sickle cell

margination demonstrated here brings the cells into the vicinity of the walls, which is of

course a prerequisite for adhesion to them.

IV. CONCLUSION

In this study, we investigated different flowing suspensions of deformable capsules sub-

jected to pressure-driven flow in a planar slit using boundary integral simulations, assuming

that the flow is in the Stokes regime. The focus of this study is a binary suspension of

healthy RBCs and sickle cells, which describes the microvascular blood flow in sickle cell

disease. The parameter regime is based on the range of experimentally determined values

for RBCs and blood flow in the microcirculation.

We first characterized the cross-stream distributions and orientational dynamics of dif-

ferent types of capsules in each suspension (Section III A), and revealed a number of key

features.

(i) In a homogeneous suspension of healthy (flexible) RBCs, a cell-free layer is formed

next to the channel walls. The spontaneous shape of RBCs plays a nontrivial role in the

orientational dynamics of single cells in the suspension, but has a negligible effect on the

number density distribution. In a binary suspension of flexible and stiff RBCs with the same

rest shape but large contrast in membrane rigidity, the dilute stiff RBCs are largely drained
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from the center of the channel and display substantial margination toward the walls. This

suggests that rigidity contrast by itself is sufficient to induce the segregation behavior in a

binary suspension. The marginated stiff RBCs assume an approximate in-plane tumbling

orbit.

(ii) In a binary suspension of healthy RBCs and sickle cells, the dilute stiff sickle cells are

almost completely drained from the bulk of the suspension, and strongly aggregate inside

the cell-free layer. The marginated sickle cells tend to roll in flow with the major axis aligned

with the vorticity (z) direction. Curvature plays a minor role in the segregation behavior

and orientational motion of the stiff capsules.

Furthermore, we quantified the physical effect of each suspension on the walls (Sec-

tion III B). In particular, the additional wall shear stress induced by the capsules was com-

puted for each suspension. We found that, compared to the small fluctuations in wall shear

stress for the case with purely healthy RBCs, large local peaks in wall shear stress are in-

duced by all binary suspensions, a hydrodynamic effect of the marginated cells on the walls.

Detailed quantification showed that the shape and size of the stiff component have a sec-

ondary role, even though for the parameter space considered in this study, straight prolate

capsules seem to have a greater overall effect on the wall shear stress than do stiff RBCs

and sickle cells.

Overall, all these results represent an effort to gain an improved understanding of the

behavior of flowing suspensions of cells or capsules in complex scenarios, particularly the

blood flow in SCD which is the focus of the current study. More importantly, this work is

of essential interest from the medical point of view in that the results may help explain the

mechanism for complications associated with SCD, such as endothelial inflammation, that

are still poorly understood. In particular, this work addresses how circulating stiffened and

misshapen RBC subpopulations may directly contribute to vasculopathy in SCD, not via

vaso-occlusion or cell adhesion as canonically depicted, but via biophysical effects due to the

margination of diseased cells.

One limitation of this work is that the properties of cells of each type were identical and

unchanging – physiologically, sickle cells vary considerably in cell morphology and membrane

stiffness, which should be addressed in future studies. Other parameters of the suspensions,

such as the total volume fraction and the number fraction of each component in a binary

system, can also be altered in extended studies to investigate the effects of these parameters
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on the suspension dynamics. Furthermore, it has been observed in experiments [113] that the

flow of a suspension of sickle cells around an acute corner of a triangular pillar or a bifurcation

leads to an enhanced deposition and aggregation of cells. Therefore, complex geometries

of the flow domain other than a planar slit should be considered in future simulations.

Finally, future experimental studies are needed to elucidate to what extent the cross-stream

distribution of RBCs in SCD would be adversely altered in the microcirculation, and if so,

how this process may contribute to SCD vasculopathy. Such work could directly lead to a

new paradigm of biophysical therapeutic strategies by mitigating the potential margination

of aberrant sickle RBCs in SCD.
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