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Abstract
A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders
and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the
basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars
interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and
corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which
correlate closely to thalamic responses and hencemotor programme fidelity. It can be demonstrated that depending on different
levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean
synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects
the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal
and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges
above 130 Hz.

Keywords Mathematical modelling · Neuronal network · Basal ganglia · Movement disorders · Deep brain stimulation
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1 Introduction

1.1 Basal ganglia connectivity

Parkinson’s disease (PD) and dystonia, including different
types, belong to the most common movement disorders and
hence pose a considerable health burden (Chesselet andDelfs
1996;Defazio 2010; deLau andBreteler 2006). It is generally
accepted that they arise from a dysfunction of the basal gan-
glia (BG), shown as simplified circuitry in Fig. 1 and result in
hypokinetic or hyperkinetic symptoms, depending on which
part of the circuitry is affected. In this circuitry, cortical glu-
tamatergic projections are thought to activate GABAergic
medium spiny neurons (MSN) and interneurons of cor-
pus striatum (striatum in Fig. 1). From the medium spiny,
inhibitory neurons, the so-called direct pathway, project to
globus pallidus pars interna (GPi). The inhibitionofGPi leads
to activation of thalamus (THA) (via disinhibition); one can
thus speculate that the thalamus faithfully responds to initial
cortical signals (to initiate movement). In the so-called indi-
rect pathway, the activation of striatum inhibits the globus
pallidus pars externa (GPe) which projects to the subthala-
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Fig. 1 Representation of the basal ganglia and thalamus network and
the relevant connections in their approximate anatomical positions a, as
reduced functional scheme in healthy conditions b and under Parkinso-
nian conditions c, where the crossed out green arrows denote the reduced
dopaminergic input from the substantia nigra. The striatum is function-
ally separated into 2 areas: one with predominantly D1-receptors, and
the other predominantly expressing D2 receptors. The sensorimotor
cortex projects to the thalamus and to the striatum as input region of
the basal ganglia. The basal ganglia network consists of the striatum,
the globus pallidus, external and internal parts (GPe and GPi, respec-
tively), the subthalamic nucleus (STN), substantia nigra (considering
pars compacta here only, SN). The green area in (a) marks the part of

the network which has been modelled mathematically. Blue lines with
arrows depict excitatory connections, while red lines inhibitory ones.
Green arrows depict dopaminergic projections from the SN, which will
activate the striatum in the direct pathway via D1 receptors, and inhibit
the striatum in the indirect pathway via D2 receptors. In (b) and (c),
bold lines depict increases in corresponding synaptic projections and
thin lines reductions, respectively. The thunderbolt arrow indicates the
target of deep brain stimulation (DBS) in the STN. We hypothesize
that under DBS conditions, the increased excitation (bold blue projec-
tion from STN to GPi) will be reduced, and the disinhibition (thin red
projection from GPe to Gpi) will be normalized

mic nucleus (STN), enhancing its activity. An increased STN
activation, in turn, will lead to an increment of GPi activity,
resulting in an inhibition of the thalamus (and hence reduc-
tion of locomotive activityCalabresi et al. 2014), see also Fig.
1. Parkinson’s disease constitutes a paradigmatic hypokinetic
syndrome, which results from the degeneration of the sub-
stantia nigra (SN in Fig. 1). It is characterised by rigidity,
tremor and hypokinesia, i.e. the inability to start movements
fluently (DeLong 1990; Maiti et al. 2017). Looking at the
circuitry, the motor symptoms can well be explained by a
loss of both activating and inhibitory projections of the SN
to the striatum, leading to disinhibition in the so-called indi-
rect (striatum–GPe–STN–GPi–THA) and over-activation in
the so-called direct pathways (striatum–GPi–THA) (Cal-
abresi et al. 2014). Hyperkinetic syndromes, characterised by
involuntary movements or muscle contractions, in turn, are
generally thought to originate from functional or structural
damage or degeneration of striatum (dystonia or choreatic

syndromes) and of STN; ballistic syndromes. Again, the sim-
plified circuitry depicted in Fig. 1 can serve to explain the
functional outcome of e.g. striatal over-activation speculated
to result in a shift of balance toward the so-called direct path-
way in dystonias (Wichmann and Dostrovsky 2011).

1.2 Role of activity patterns

While the simplified circuitry suggests an explanation for the
emergence of hyper- or hypokinetic syndromes, in fact it does
not take into consideration the patterning of activity although
information in the nervous system is actually conveyed by
spatio-temporal activity patterns. Pattern propagation, how-
ever, will typically depend on nonlinear couplings between
the interacting compartments of the system (Bevan et al.
2002).Hence, one cannot assume that inhibitory or excitatory
activitywill straight-forwardly propagate across the network.
Importantly, both in PD and in dystonia, changes in oscilla-
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tory activity patterns in the basal ganglia and the cortex seem
to be markers of the diseases (Eusebio and Brown 2007).
Thus, in PD, synchronised beta-band activity in both cortex
and STN seems to be associated with hypokinesia (Crowell
et al. 2012; Kühn et al. 2008). This prominent beta-band is
speculated to be caused by the synchronised network activ-
ity between the different basal ganglia nuclei (Schmidt et al.
2013). Indeed, a shift of network behaviour fromautonomous
oscillations of STN and GPe neurons, to synchronous abnor-
mal low-frequency bursting, is observed (Bevan et al. 2002).
These findings provide further support for the view that the
basal ganglia use both the pattern and the rate of neuronal
activity to encode information. Synchronous abnormal pat-
terns of activity of this local circuit should also be reflected in
similar changes regarding to the activity of the basal ganglia
output and the thalamic activity.

1.3 Deep brain stimulation

Deep brain stimulation (DBS) has been deemed to be the
most important innovation inmovement disorder therapy and
has revolutionised treatment for PD, dystonia and essential
tremor patients, first having been approved for the latter con-
dition by the FDA (Food and Drug Administration, USA) in
1997 (Krack et al. 2019). Moreover, DBS is currently being
introduced also for the therapy of mental disorders such as
depression and obsessive-compulsive disorder (Holtzheimer
and Mayberg 2011). DBS improves levodopa-related motor
complications in PD and often, motor symptoms in dystonia
(Deuschl et al. 2006; Vidailhet et al. 2013). For PD, we know
that the efficiency of the treatment depends strongly on the
frequencyof the stimulus; high-frequency stimulation (HFS),
f > 90 Hz (McConnell et al. 2012) improves motor symp-
toms, while low frequencies are ineffective or worsen the
motor disorders (Koeglsperger et al. 2019). Unfortunately,
HFS may worsen frontal functions such as verbal fluency. In
contrast to motor functions, very low frequency (10Hz) on
STN DBS has significantly better results in verbal fluency
(Wojtecki et al. 2006). Until now, the main mechanism of
DBS remains elusive (Krack et al. 2019; Ashkan et al. 2017;
Udupa and Chen 2015). The main hypotheses put forward so
far are (Rubin andTerman2004;Guoet al. 2008) (a) an inacti-
vation of the target nuclei, (b) changes in transmitter release,
(c) neuroprotective and electrostatic effects (i.e. structural
plasticity), and network effects resulting in firing pattern
alterations. In addition, DBS does not cause a total silencing
of neuronal activity of the target nuclei, but rather complex
responses. These include sequences of prolonged activation
or activity reduction (Luo and Kiss 2016), possibly because
of a dissociation between somatal and axonal activation (Hol-
sheimer et al. 2000). One of the most attractive explanations
at the moment is the disruption of hypersynchronised oscil-
lations (Kühn et al. 2008). Indeed, recordings from animal

models suggest that DBS in the STN results in more peri-
odic and regular firing at higher frequencies in the thalamus
(Xu et al. 2008). Thalamic neurons receive inhibitory sig-
nals from GPi, an output nucleus of the basal ganglia which
provides inhibitory input to the thalamus. Thus GPi activity
affects its thalamic targets, generating a possible pathway for
STN-DBS, to modify basal ganglia–thalamocortical activity.
As a consequence, STN-DBS alters Parkinsonian GPi activ-
ity which might improve thalamo-cortical fidelity (Guo et al.
2008; So et al. 2012; Santaniello et al. 2015).

1.4 Predicting network dynamics under DBS using
computational approaches

From a computational perspective, one of the main obsta-
cles to explain or predict DBS effects on network activity
is the lack of a coherent framework which could bridge the
different scales (Deco et al. 2008; Siettos and Starke 2016)
of network models ranging frommicroscopic (cellular activ-
ity) to macroscopic (symptom) (Pavlides et al. 2012, 2015).
An intermediate level, the mesoscopic level, is related to the
dynamics of specific networks of neurons in different nuclei
of the basal ganglia. These mesoscopic networks constitute
the bridge between micro- and macroscales. Examples of
these network dynamics and variations of activity pattern are
confirmed in a number of animal model studies in Parkin-
son models. For instance, DBS in the STN leaves firing rates
unaltered in GPe and increases the firing rate in the thala-
mus (i.e. the nucleus the GPi projects on). While single unit
recordings thus indicate changes in firing rates in projection
areas of the STN during DBS, one overarching motive of all
observations is that DBS effectively changes firing patterns
(McConnell et al. 2012; Xu et al. 2008; So et al. 2012, 2017;
Dorval et al. 2010) as the essential element of its therapeutic
success.

More specifically, in McConnell et al. (2012), DBS leads
to reduced low-frequency neuronal oscillations in GPe and
SNr, increased neuronal oscillations at the stimulation fre-
quency, and increased phase locking with the stimulus
pulses. Moreover, coherence within and across the GPe and
SNr during HFS was reduced in the band of pathological
low-frequency oscillations and increased in the stimula-
tion frequency band. These findings provide evidence that
effective high-frequencyDBS suppresses low-frequency net-
work oscillations and entrains neurons in the basal ganglia.
Therefore, these results support the hypothesis that the effec-
tiveness ofHFS stems from its ability to override pathological
firing patterns in the basal ganglia by inducing a new regu-
larized pattern of synchronous neuronal activity.

In this spirit we propose a computational large-scale bio-
physical model related to the Parkinson disease (PD) and
DBS treatment. Based on the work presented in Terman et al.
(2002); Rubin and Terman (2004) and using complex net-
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work theory (Bassett and Bullmore 2006;Watts and Strogatz
1998; Bullmore and Sporns 2009), three areas of the BG:
the globus pallidus (partes externa/interna) (GPe-GPi), the
subthalamic nucleus (STN), and the thalamus, are modelled.
We show, in accordance with the dopaminergic dysfunction
during Parkinson’s disease, that different levels of striatal
inhibition to BG areas change the behaviour from “nor-
mal” to “Parkinsonian”, i.e. switching from faithful transfer
of information through the network to a state of disturbed
information transmission. The model can also reproduce
the action of DBS in the STN and illustrates how high-
frequency stimulation (HFS) influences the whole network
with respect to its computational features. Specifically, dur-
ing DBS conditions, the model reveals a de-synchronisation
or declustering of GPe and GPi activity which is projected
to the thalamus. Defining and quantifying the response effi-
cacy of thalamic activation during DBS, we deduce ranges
of stimulation frequencies optimal for therapeutic success.
Our model uses a significantly large number of neurons
and connections (approx. two orders of magnitude larger
compared to Terman et al. 2002; Rubin and Terman 2004;
So et al. 2012) which makes the model more realistic and
allows us to describe the behaviour of the neural network
macroscopically. Although the detailed description is on the
microscale (level of neurons), a macroscopic analysis is of
interest, specifically the mean activity of interconnected neu-
rons. The results of the macroscopic analysis suggest that a
strong nonlinear response is obtained in the basal ganglia net-
work, similar to resonating mechanical systems e.g. (Asadi
et al. 2021; Bureau et al. 2014, 2013; Schilder et al. 2015).
The following analysis proposes optimal frequencies above
130Hz, suggesting the investigation of DBS treatment with
frequencies beyond 130Hz in animal experiments.

2 Mathematical modelling of basal ganglia
and thalamic neurons

Our network model includes in addition to 3 areas of the
basal ganglia: the subthalamic nucleus (STN), the globus
pallidus internal (GPi) and external (GPe) also a part of the
thalamus (THA), see Fig. 1. In this section we formulate the
mathematical description for the neurons in each area of the
basal ganglia (BG) and the thalamus.
In the model, the STN plays a key role as DBS is applied
there to treat Parkinson’s disease. The dynamics of eachSTN,
GPe, andGPi neuron are governed by aHodgkin–Huxley for-
malism, and the current balance equation for the membrane
potential reads (Terman et al. 2002; Bevan andWilson 1999;
Popovych and Tass 2019):

C
dVi
dt

= −ILEAK − IK − INa − ICa − IT − IAHP

−Isyn + Iapp + IDBS (1)
dxi
dt

= (x∞ − xi )/τxi (2)

d[Ca2+]i
dt

= k2
(
−ICa − IT − kCa[Ca2+]i

)
, (3)

where C is the membrane capacity, Vi is the membrane
potential of the i-th neuron, xi denotes the gating variables
n, h, r , and [Ca2+]i is the intracellular concentration of cal-
cium. For all basal ganglia areas the currents are described
below: The leak currents ILEAK = gLEAK(Vi − ELEAK),

the potassium calcium and sodium currents are given by
IK = gKn4(Vi − EK), ICa = gCas2∞(Vi − ECa) and
INa = gNam3∞h(Vi − ENa), while the low-threshold T-type
calcium current for STN is IT = gTa3∞b2∞(Vi − ECa). In the
case of GPe, GPi neurons, the low-threshold calcium current
has the form IT = gTa3∞r(Vi − EK), reducing the burst-
ing activity of the GPe relative to STN neurons. The current
underlying the after-hyperpolarizing potential has the form
IAHP = gAHP([Ca2+]/(k1 + [Ca2+])(Vi − EK).

The current IDBS in eq. (1) models the deep brain stimu-
lation of STN neurons and is set to the value 0 in the absence
of DBS. The current Iapp is applied to the STN, GPe, and
GPi, but with different physiological meaning. In the case
of STN neurons, Iapp simulates the afferent synaptic input
from the cortex (Terman et al. 2002), while in the case of
GPe and GPi the Iapp represents the incoming signal from
the striatum with different levels of inhibition of GPe and
GPi, respectively.

In eq. (2) the equilibrium state is x∞ = x∞(Vi ) =
1/(1 + e−(Vi−θx )/σx ) for x = n,m, h, a, r , s, while for
the equilibrium state of T-type current the following form
is used: b∞(Vi ) = 1/(1 + e(ri−θb)/σb ) − 1/(1 + e−θb/σb ).
The voltage-dependent timescale τx has the form τx (Vi ) =
[τx0+τx1/(1+e−(Vi−θτ x )/στ x )]/Ax , for the STNneurons and
τx (Vi ) = τ for GPe and GPi neurons (Terman et al. 2002).

Figure 2 depicts the dynamics of one (uncoupled) STN
neuron, firing at a frequency of 3Hz, while in all simu-
lations we use Iapp = 4pA resulting in an STN activity
of 6–7Hz (Bevan and Wilson 1999) (all values of param-
eters are given in table 1, see also Terman et al. 2002).
When a negative current is applied for a short time, the
neuron is hyperpolarized accordingly. Due to the presence
of hyperpolarization-activated currents (HCN currents), a
rebound burst occurs after the current injection.

According to experimental findings (Plenz andKital 1999;
Kita and Kitai 1991), GP neurons show similar ionic currents
with respect to the STN cells, yet with different parameters.
In the followingwe explain that the resulting dynamical prop-
erties are reproduced by our mathematical model. The main
attributes are a spontaneous firing activity at a frequency of
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Fig. 2 Modelled activity of single STN neurons under different current
injection input conditions described by eqs. (1), (2), (3), and resulting
current–frequency tuning curve. a STN neurons without current injec-
tion fire with a frequency around 3 Hz. b A negative current injection
(current injection depicted in the lower part of the diagram, red curve)
applied between t=1.0 and t=1.2 sec results in transient silencing of the

neuron and subsequent rebound firing due to IT (also known as IH).
c Injection of 10 pA positive current (current injection depicted in the
lower part of the diagram, red curve) results in tonic firing activity at
15Hz. dCurrent–frequency tuning curve over the entire range of current
injection modelled (0-150 pA)

≈ 30Hz (Cooper and Stanford 2000; Kita and Kitai 1991),
(see also (Terman et al. 2002) and the references there in),
and a rebound response to a hyperpolarizing current (Ter-
man et al. 2002; Kita and Kitai 1991; Cooper and Stanford
2000). Simulations of one GPe/GPi neuron are shown in Fig.
3, where the GP neuron fires at a frequency of 30Hz at rest
shown in subfigure 3a. Figure 3b depicts the dynamics for
small negative Iapp resulting in intermittent bursting activity.
A small depolarizing current, in turn, results in fast tonic dis-
charges at nearly twice resting discharge frequency 3c. The
entire tuning curve depicting responses to different levels of
current injections is depicted in 3d.

2.1 Description of the basal ganglia synaptic
connectivity

The coupling between the neurons is described by the
synaptic current Isyn. In the model, GPe and GPi neurons
are connected through a Watts and Strogatz (WS) small-
world topology (Watts and Strogatz 1998; Bullmore and
Sporns 2009; Stam and Reijneveld 2007; Gafarov 2016;
De Santos-Sierra et al. 2014; Netoff et al. 2004; Bertalan
et al. 2017; Fang et al. 2017), where neurons nearby are
densely connected; additionally, a small number of large dis-
tance connections exist. Following the experimental findings
(Gouty-Colomer et al. 2018) which suggest sparse connec-

tions in the STN area, we chose a modified small-world
topology with sparse internal connectivity. The detailed
description of the network structure is given in sec. 2.3.

The small-world network is considered in the synaptic
currents defined by the activation variable s, which are given
by Laing and Chow (2002), Ermentrout and Terman (2012),
Compte et al. (2000):

dsi
dt

= α(1 − si )H(Vi − θ0) − βsi , (4)

where H(V ) is a smooth approximation of a step function,
i.e. H(V ) = 1/(1 + e−(V−θx )/σx ).

The excitatory and inhibitory synaptic currents for the i-th
neuron are given, respectively, by

Ii,Glu = gGlu(Vi − EGlu)
∑
j

Ai j s j , (5)

with EGlu = −10mV , and

Ii,GABA = gGABA(Vi − EGABA)
∑
j

Ai j s j , (6)

with EGABA = −70mV , where Ai j has the value 1 or 0,
depending on whether neurons i and j are connected or not.
The summation is taken over all presynaptic neurons.
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Table 1 Values of parameters that used in section 2 for mathematical mod-
elling

STN Value GPe/GPi Value

gLEAK 2.25 nS/μm2 gLEAK 0.1 nS/μm2

gK 45.0 nS/μm2 gK 30 nS/μm2

gNa 37.5 nS μm2 gNa 120 nS/μm2

gT 0.5 nS/μm2 gT 0.5 nS/μm2

gCa 0.5 nS/μm2 gCa 0.15 nS/μm2

gAHP 9.0 nS/μm2 gAHP 30.0 nS/μm2

ELEAK −60.0 mV ELEAK −55.0 mV

EK −80.0 mV EK −80.0 mV

ENa 55.0 mV ENa 55.0 mV

ECa 140.0 mV EL 120.0 mV

τh1 500.0 ms τh1 0.27 ms

τn1 100.0 ms τn1 0.27 ms

τr1 17.5 ms τr1 0.05 ms

τh0 1.0 ms τh0 .05 ms

τn0 1.0 ms τn0 1.0 ms

τr0 40.0 ms τr0 30.0 ms

k1 15.0 k1 30.0

kCa 22.5 kCa 20

k2 3.75 · 10−5 ms−1 k2 10−4ms−1

θm −30.0 θm −37

θh −39.0 θh −58

θn −32.0 θn −50

θr −67.0 θr −70

θa −63.0 θa 63.0

θb 0.4 θb 0.4

θs −39.0 θs 39.0

θτh −57.0 θτh −40.0

θτn −80.0 θτn −40.0

θτr 68.0 θτr –

σm 15 σm 10

σh −31 σh −12

σn 8 σn 14

σr −2 σr −2

σa 7.8 σa 2

σb −0.1 σb –

στh −3 στh −37

στn −26 στn −37

στr −2.2 στr –

Ah 0.75 Ah 0.05

An 0.75 An 0.05

Ar 0.12 Ar 2

α 5 α 2

β 1 β 0.08

θ0 −39 θ0 −57

ADBS 200 – –

δDBS .6 ms – –

TDBS 6 ms – –

In the case of STN neurons the Isyn current is given by
the summation Isyn = ISTST + IGPST and indicates the inter-
nal excitation between the STN neurons and the incoming
inhibition from the GPe neurons, respectively. The excita-
tory glutaminergic connectionswithin the STN are expressed
by ISTST which follows eq. (5), while the inhibitory current
IGPST is given by eq. (6) and expresses the inhibition from
the GPe area.

The synaptic current Isyn for the GPe region is defined
by Isyn = IGPeGPe + ISTGPe, where the first term IGPeGPe
express the intra-layer inhibitory interaction of GPe neurons
(i.e. follows eq. (6)), while ISTGPe describes excitation from
STN neurons. For the GPi region the current Isyn is given by
Isyn = IGPiGPi + IGPeGPi + ISTGPi, where the first two terms
IGPiGPi and IGPeGPi are inhibitory connections, connections
from GPi to itself and from GPe to GPi, respectively, while
ISTGPi describes excitations from STN neurons. The values
of the parameters are given in table 1, see also tables 1, 2 of
Terman et al. (2002).

2.2 Modelling and simulations of neurons in the
thalamus

Modelling the basal ganglia network, the crucial behaviour
of the model is the response of thalamic neurons to synap-
tic input from GPi neurons. The following section hence
addresses this question. Here, a movement programme-
associated sensory-motor cortex input to the thalamus is
simulated by a repetitive periodic synaptic activation. This
is modelled by 5 pA, 5 ms current injections, at 40 Hz
(as depicted in Fig. 4), of the form Rubin and Terman
(2004): ISM = ASMH(sin(2π t/TSM) · (1 − H(sin(2π(t +
δSM)/TSM)), where H is the Heaviside function. The GPi
neuronal input (resulting, in turn, from basal ganglia network
activity) and the sensory-motor cortex input, determine the
thalamic firing activity.

Themathematical description of thalamic neurons is given
in the following equation

C
dVi
dt

= −ILEAK − IK − INa − IT − IGPTH + ISM, (7)

where C is the membrane capacity and Vi is the mem-
brane potential of the i-th neuron. The leak current has
the form ILEAK = gLEAK(Vi − ELEAK), the other ionic
currents, i.e. potassium and sodium, are given by IK =
gK(0.75(1− h))4(Vi − EK) and INa = gNam3∞h(Vi − ENa),
while the low-threshold T-type calcium current is described
by IT = gT p2∞r(Vi − ET). The gating variables h, r follow
the differential equation with first- order kinetics as in eq. (2)

dx

dt
= (x∞ − x)/τx . (8)
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Fig. 3 Modelled activity of single GP neurons under different current
injection input conditions described by eqs. (1), (2), (3), and resulting
current–frequency tuning curves. a GP neurons without current injec-
tion fire with a frequency around 30 Hz. b A constant negative current
injection (current injection depicted in the lower part of the diagram, red

curve) results in intraburst frequency at 48 Hz. c Injection of 5 pA posi-
tive current (current injection depicted in the lower part of the diagram,
red curve) results in tonic firing activity at 63 Hz. d Current–frequency
tuning curve over the entire range of current injection modelled (0-50
pA)

The equilibrium function has the form x∞(Vi ) = 1/(1 +
e−(Vi−θx )/σx ) for x = r , h,m, p, and the voltage-dependent
timescale for the gating variable r is τr = 28 + (1 +
e−(Vi+25)/10.5), while for h is defined as τh = 1/(ah + bh)
with ah = 0.128e−(Vi+46)/18 and bh = 4/(1 + e−(Vi+23)/5).
The current IGPTH represents the inhibition of the thalamus
by the GPi and has the form of eq. (6). For a detailed descrip-
tion of thalamic neurons and for the arithmetic values of
parameters, see Rubin and Terman (2004) and table 2.

As Fig. 4 shows, within an isolated cortico-thalamic
interaction, the thalamus follows cortical input absolutely
faithfully. The next important question is how the basal gan-
glia network input will modify this strong thalamocortical
interplay.

2.3 Network structure

For modelling and analysis NSTN = 500 STN neurons,
NGPe = 500 GPe neurons, NGPi = 500 GPi neurons were
used, while the thalamus was represented by NTHA = 200
neurons. Following (Watts and Strogatz 1998; Bassett and
Bullmore 2006; Bullmore and Sporns 2009; Stam and Reijn-
eveld 2007; Spiliotis and Siettos 2011; Shefi et al. 2002), the
GPe/GPi layers were modelled as separate small-world net-
works, i.e. the connections of neurons follow a small-world
topology. In such small-world complex networks (Newman
2003), not only does each neuron (node) in the network
interact with its k nearest neighbours, but there are also a
few randomly chosen remote connections (Watts and Stro-
gatz 1998). For the construction of nuclei networks (GPe
and GPi) the value k = 20 was used, while remote connec-
tions were created according to Watts and Strogatz (1998)

Table 2 The values of
parameters that used for THA
are given in the next table

THA Value

gLEAK 0.05 nS/μm2

gK 5 nS/μm2

gNa 3 nS μm2

gT 5 nS/μm2

gCa 0.5 nS/μm2

EL −70.0 mV

EK −90.0 mV

ENa 50.0 mV

ECa 140.0 mV

ET 0 mV

τh1 500.0 ms

τn1 100.0 ms

τr1 17.5 ms

τh0 1.0 ms

τr0 40.0 ms

k1 15.0

θh −41.0

θr −84.0

θm −37.0

θp −60.0

σh 4

σr 4

σm 7

σm 6.2

ASM 5

δSM 5 ms

TSM 25 ms

123



Biological Cybernetics

Fig. 4 Firing of a single
thalamic neuron receiving
periodic sensorimotor cortex
input current ISM . Cortical input
was simulated by periodic 5 pA,
5 ms current injections (red
curve), and corresponding
membrane potential changes
were calculated (blue curve).
Isolated thalamic neurons
faithfully follow the external
periodic stimulus delivered at 40
Hz in this example (see also
inset)
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with p = 0.005. Figure 5 shows a characteristic snapshot
of the network. For the STN, we chose a modified approach
with reduced internal connectivity, as it is already mentioned
in sec. 2.1, matching experimental findings which suggest
sparse connections (Gouty-Colomer et al. 2018; Ammari
et al. 2010). Specifically, in these experimental findings
(Gouty-Colomer et al. 2018), 80% of STN neurons do not
have any connections and the remaining 20% of the STN
neurons form connectionswith each other. For these connect-
ing STN neurons, measuring the distance of axonal endings
with collaterals (within STN) reveals that roughly 30% of all
synapses lie within a 200 μm radius and another 45% within
the 200-400 μm radius. The other 20% are contacts which
occur farther away, i.e. > 500 μm (Gouty-Colomer et al.
2018). In this sense, the 20% of neurons, which form STN
connections, have both local and remote connections similar
to small-world property (i.e. 20% of neurons only showing
an average of 25 connections each, see Gouty-Colomer et al.
2018). Finally, the case of denser connectivity between STN
neuron is also studied in section 4.5 and the results are shown
in Fig. 10.

The coupling between the nuclei ismodelled in the follow-
ing way: Each GPe neuron is connected to one STN neuron
and vice versa. Furthermore, each STN neuron projects to
one GPi neuron. In addition, the GPe also sends inhibitory
signals to the GPi according to a small-world connectivity
(one GPe neuron inhibits locally GPi neighbours but also
inhibits a few randomly selected remoteGPi neurons; in total,
one GPe is connected on average with 20 GPi neurons), see
Fig. 5. Each thalamic neuron, in turn, is receiving inhibitory
inputs from three GPi neurons. Since the main interest of
this study is the impact of the basal ganglia output activ-
ity on thalamic response to sensorimotor signals (shaping
the thalamocortical interplay), this model does not include

intrathalamic connections. The spatial arrangement in Fig. 5
is made according to the indices of the neurons; their detailed
position in space is not relevant for the model (we use a
coordinate system only for visualisation). The ring satisfies
periodic boundaries conditions.

3 Macroscopic description of basal ganglia
dynamics

3.1 Synchronisation analysis of basal ganglia
dynamics

In the following, a nonlinear dynamical system of the form

ẋ = f (x), x ∈ R
n, (9)

is considered, where f is a nonlinear vector field. For a peri-
odic (or oscillatory) solution the property

x(t + T ) = x(t), (10)

holdswith period T , where x(t) defines a periodic orbit in the
phase space. If the periodic orbit shows normal hyperbolicity
(Izhikevich and Kuramoto 2004), the system of eqs. (9) can
be transformed into an angle or phase equation for the angle
θ , i.e.

θ̇ = ω, (11)

where ω = 2π/T is the natural frequency of the oscillator.
Coupled oscillators described as system of differential

equations (9) are of particular interest in neuroscience. Under
certain conditions, identical or nearly identical interacting
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Fig. 5 Schematic representation of the basal ganglia network and
its activity pattern (voltages of membranes neurons in colour). The
spatial arrangement is made according to the indices of the neu-
rons, their detailed position in space is not relevant for the model,
we use a coordinate system only for visualisation. Black solid lines
represent excitatory inputs from STN. Red dotted lines represent
inhibitory connections from GPe to STN and GPi, and from GPi
to TH, respectively. The GPe and GPi are considered to have a
small-world network structure, i.e. also contain sparse long-range con-
nections (black horizontal lines), while the STN follows the same
structure with reduced number of connections. Each GPe neuron, in

turn, is linked to one STN neuron, and vice versa. Furthermore, each
STN neuron is connected to one GPi neuron. For the model 500
STN neurons, 500 GPe neurons, 500 GPi neurons, and 200 thalamic
neurons were used. From the GPi area, 200 uniformly randomly cho-
sen neurons are connected to thalamic neurons. The ring structures
represent relative structural neighbourhood relationships emphasised
for GP and STN. For all simulations (healthy, Parkinsonian and
DBS) the following synaptic network conductance values were used:
(gSTST, gGPST, gGPeGPe, gSTGPe, gGPiGPi, gGPeGPi, gSTGPi, gGPiTha) =
(0.5, 4.5, 0.07, 0.56, 0.07, 0.01, 0.2, 0.1)

oscillators converge to a common frequency and synchro-
nise (Strogatz 2001).

The weak coupling of n oscillators (Izhikevich and
Kuramoto 2004; Kuelbs et al. 2020) is formulated by

ẋi = fi (xi )+εgi (x1, x2, .., xn) = fi (xi )+ε

n∑
j=1

gi j (xi , x j ),

(12)

where ε � 1 represents the coupling strength. The summa-
tion is over the coupling between j and i , namely over the
adjacent of the i-th oscillator (connections which project to
the i-th oscillator). Similarly, there is a transformation which
allows to express the dynamics in phase variables, i.e.

θ̇i = ωi + Q(θi )εhi (θ1, θ2, ..., θn) (13)

= ωi + ε

n∑
j=1

hi j (θi , θ j ) (14)

where θi ∈ [0, 2π ]. In the presence of external stimulation
(e.g. DBS), eq. (12) can be generalised (Monga et al. 2019;
Kuelbs et al. 2020), by including a time-periodic function
on the rhs. The weakly coupled system in terms of the phase
variable θ , i.e. eq. (14), shows a phase-locked solution if there
is a constant integer matrix Kn−1,n , such that K · θ = c with

ck > 0 (Izhikevich and Kuramoto 2004). Furthermore, the
coupled oscillators are synchronised (in-phase) when

θ1(t) = θ2(t) = ... = θn(t) = θ(t). (15)

Following the approach of Kuramoto (Arenas et al. 2008;
Kuramoto 1984b, a; Bertalan et al. 2017) which is applied
when oscillators are near a supercritical Andronov–Hopf
bifurcation, in case of fully connected network eq. (14), we
obtain

θ̇i = ωi + k/N
N∑
j=1

sin(θi − θ j ), (16)

while with arbitrary connectivity i.e. a complex network
topology

θ̇i = ωi + k/N
N∑
j=1

Ai j sin(θi − θ j ), (17)

where the coefficient Ai j ∈ {0, 1} is derived from the net-
work adjacency matrix (Bertalan et al. 2017). The emerging
macroscopic dynamics (in terms of phase) can be obtained
by taking the mean value of all phase populations (in expo-
nential form, eiθ ). This defines the synchronisation index r ,
i.e. (Kuramoto 1984b; Strogatz 2001; Kuelbs et al. 2020)
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r(t) =
∣∣∣∣∣
1

N

N∑
k=1

eiθk (t)
∣∣∣∣∣ (18)

This index is used in the following sections as a measure
describing the level of synchronised patterns within the GPi.
The synchronisation index acts as macroscopic variable
(order parameter) with range r ∈ [0, 1]. In the case of perfect
synchronisation, i.e. eq. (15), the index can be written as

r =
∣∣∣∣∣
1

N

N∑
k=1

eiθk

∣∣∣∣∣ = 1

N
N

∣∣∣eiθ
∣∣∣ = 1, (19)

while the case of r → 0 corresponds to incoherent phase
dynamics. The phase θk(t) used in eq. (18) of the k-th neu-
ron can be approximated linearly according to the following
equation

θk(t) = 2π
t − tn

tn+1 − tn
+ 2πn, (20)

where tn corresponds ton-th firing timeof the k-th neuron and
t ∈ [tn, tn+1]. Another option to compute the phase without
assuming a linear dependence of the angle θ on time, see
eq. (20) is the Hilbert transform, applied by Gabor in Gabor
(1946). For a given function x = x(t), the Hilbert transform
is defined as

X(t) = 1

π
P

∫ ∞

−∞
x(τ )

t − τ
dτ (21)

with P denoting the Cauchy principal value. The complex
signal z = z(t) = x(t) + i X(t) = A(t)eiθ(t) is defined in
order to extract the phase, where A, θ is the amplitude and
the phase of the complex signal z, respectively. The instan-
taneous phase is defined as:

θ(t) = arctan (X(t)/x(t)). (22)

The synchronisation index eq. (18) will be computed in the
next section to characterise the network activity for the cases
of normal, Parkinsonian, and DBS treatment.

An alternative macroscopic quantity which can be used to
estimate neuronal activity is themean synaptic activity index
l. It is defined by

l(t) = 1

N

N∑
i=1

si (t), (23)

where si is the synaptic variable as it is defined from eq.
(4). Coupling theoretical modelling tasks with experimental
data, the synchronisation property in essence reflects local
field potentials (LFP). The flow of the extracellular current

generating the LFP is represented by the summed up postsy-
naptic potentials from local cell groups (similar to eq. (23),
see Buzsáki 2004; Popovych and Tass 2019; Manos et al.
2018; Popovych and Tass 2018). In the next section this
mean synaptic activity will be used to measure the trans-
fer of neuronal activity (current flow information) from the
basal ganglia output, i.e. from GPi to thalamus.

4 Simulating different functional states of
the basal ganglia network

Three cases of dynamic network behaviours were studied. In
all cases the thalamus receives a periodic sensorimotor input
(simulated by periodic 5 pA current injectionsRubin andTer-
man 2004) which represents the signal for the initiation of
movement. In addition, a continuous input current to STN is
applied in order to obtain rhythmic activity (simulating affer-
ent synaptic input fromcortexTerman et al. 2002).During the
first, normal case, see Fig. 1b, basal ganglia network activity
allows a relatively faithful response of the thalamic neurons,
closely following the sensorimotor cortex input. The second
case considered is the Parkinsonian state, depicted schemati-
cally in Fig. (1c), with resulting overall increase in inhibitory
projections to the thalamus. The third case considers the situ-
ation of therapeutic intervention with deep brain stimulation
(DBS) to STN, which is simulated as a high-frequency cur-
rent injection into STN neurons, resulting in switching the
entire network dynamics and restoring functional thalamic
output close to normal behaviour.

In order to capture the transitions and to measure qualita-
tively the impact of the network dynamics, we additionally
defined macroscopic variables or observables such as the
synchronisation index and the average synaptic activity,
focusing on GPi as output region of the basal ganglia net-
work.

All simulations are made with MATLAB 2020a using the
solver ode23, a adaptive time step integration Runge–Kutta
scheme. The order of the method is three, and the default
relative and absolute tolerances in MATLAB [10−6, 10−6]
are used.

4.1 Modelling the normal state

Parameterswere tuned to simulate normal-healthy conditions
as shown in Fig. 1b. Inhibitory signals from the striatum to
the GPe are described by the current Iapp = 5pA, whereas
from striatum to GPi the current has the value Iapp = 4pA.
Figure 6 depicts the time-dependent activity of all nuclei
under normal conditions. The STN neurons fire irregularly
at around 4–7 Hz, i.e. close to values reported in the litera-
ture (cf. Bevan andWilson (1999) Rubin et al. 2012), see Fig.
6a. The GPe activity is plotted in Fig. 6b. It is characterised
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Fig. 6 Time series representation of the network dynamics under nor-
mal conditions (Fig. 1b). The left column depicts 10 randomly chosen
neurons from each area in the network, while the thick black line shows
the average membrane potential V of all neurons in the area. The right
column depicts time series of single representative neurons in each of
the nuclei (STN, GPe, GPi, Tha), as indicated. The STN activity result-
ing froma continuous current input to STN (simulating afferent synaptic
input). At the same time, the thalamus receives periodic sensorimotor
input (simulated by rhythmic 5 pA current injections). a Under these

conditions, the time-dependent activity of all neurons in STN results in
nonsynchronised firing at approx. 4-7 Hz. b In GPe, as the plot of time-
dependent activity of neurons shows, this results in higher-frequency
bursting uncorrelated to STN activity. c The time-dependent activity in
GPi shows a lower-frequency irregular bursting of the neurons. d The
time-dependent activity plot of the neurons in thalamus demonstrates
that the combined input from GPi and sensorimotor drive results in a
periodic firing relatively faithfully following the sensorimotor input

by high-frequency irregular bursting firing with individual
clustering of action potential series (which is not visible on
population scale, but only on the level of a single neuron
as shown in the right column). Overall, there is little cor-
relation between STN and GPe activity. Similar dynamics
appear in GPi, which, in turn, also shows high-frequency fir-
ing. Looking more closely, there is, however, an underlying
weak rhythmicity at approx. 12Hz, i.e. in theβ-band, see Fig.
6, and also 12(a). The resulting time-dependent activity plot
of all neurons in the thalamus is shown in Fig. 6d, demon-
strating that under these conditions, the thalamus faithfully
responds to sensorimotor input (Fig. 6e), without however
being in a perfect phase-locked state as in the case of single
neuron, Fig. 4. Accordingly, the thalamic response efficacy
R (a macroscopic variable which measures the response of
the thalamic neurons to sensorimotor input) is approximately
0.5 under normal conditions. The response efficacy R ranges
in the interval [0,1], while the value 1 corresponds to an acti-

vation of the whole thalamus (exact definition of R, see sec.
6 and Fig. 14). In conclusion, the GABAergic synaptic out-
put from the GPi to the thalamus converts thalamic responses
(otherwise phase locked to the cortical input) to more loosely
firing of the thalamic neurons, without subduing it altogether
(thalamic activity R = 0.5) as in the Parkinsonian state (see
Fig. 7).

4.2 Modelling the Parkinsonian state

As outlined above, in Parkinson’s disease, a degeneration of
nigrostriatal dopaminergic neurons, accompanied by a reduc-
tion in the number of dendritic spines of striatal medium
spiny neurons (Gagnon et al. 2017; Fiore et al. 2016), leads
to a loss of dopamine in the striatum. The resulting over-
all reduction of D1/D2 receptor-mediated activity affects the
direct/indirect pathway functionality. In the direct pathway,
the (D1) receptors malfunction results in disfacilitation of
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Fig. 7 Time series representation of the network dynamics under
Parkinsonian conditions (Fig. 1c). The left column depicts 10 randomly
chosen neurons from each area in the network, while the thick black line
shows the average membrane potential V of all neurons in the area. The
right column depicts time series of one representative neuron in each
of the nuclei (STN, GPe, GPi, Tha) as indicated. We simulate synaptic
input to the STN and thalamic periodic sensorimotor input identical to
the normal condition. a Under Parkinsonian conditions, the continuous
current input to STN (simulating afferent synaptic input) results in an
increase in STN activity (raising the frequency from 7 to 11 Hz) at a
more synchronised level (see occasional simultaneous firing of one cell

in the right column) b In GPe, as the plot of time-dependent activity of
all neurons shows, this results in a reduction of firing frequency com-
pared to normal conditions, i.e. low-frequency bursting which is more
coupled to STN activity (compare in right column). c Time-dependent
activity in GPi shows bursting at a frequency, 4–5 times higher than
under normal conditions, which results in strong inhibition of the thala-
mus. d Indeed, this inhibition is reflected in the time-dependent activity
plot of all neurons in thalamus. It demonstrates that the combined input
from GPi and sensorimotor drive now results in very sparse firing and
essentially a loss of sensorimotor-thalamic coupling

striatal projection neurons and as a consequence a reduced
inhibition of the GPi neurons. Thus, the disinhibited GPi
increases its neuronal activity, sending higher levels of inhi-
bition to the thalamus.

In the indirect pathway, loss of D2-receptor activation will
disinhibit striatal projection neurons. These, in turn, now
decrease the activity of the GPe, to which they project. By
inhibiting the GPe, the activation of STN is increased, and
the overactive STN will enhance the neuronal activity in the
GPi which again leads to even more pronounced thalamic
inhibition, see Fig. 1c.

Consistent with this concept, the model assumes a
decrease in the level of inhibition of GPi neurons Iapp. This is
modelled by increasing depolarising current from 4 to 8 pA
(corresponding to disinhibition). At the same time, themodel
assumes an increase in the level of inhibition of GPe neurons
(therefore, the depolarising current is decreased from 5 to

3pA). Figure 7 shows the dynamics of the network under
Parkinsonian conditions. The time-dependent activity of all
neurons in STN is changed compared to the normal state:
Firing becomes more regular and occurs at higher frequency
(approx. 11 Hz). For the GPe, Fig. 7b, the consequence is a
lower burst frequency, almost following the STN activation
(see insets). Figure 7c shows that in GPi, the altered activity
is translated to high-frequency bursting, with an underlying
enhanced rhythmicity in β-activity (13-15 Hz) compared to
the normal condition, see also Fig. 12b. As a result, inhibi-
tion to the thalamus strongly increases, and the thalamus is
no longer able to transmit signals in response to sensorimotor
input, as its firing becomes very sparse.
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Fig. 8 Time series representation of the network dynamics under
Parkinsonian conditions (Fig. 1c), but now simulating DBS by high-
frequency current injection into STN. The left column depicts randomly
chosen neurons from each area in the network, while the thick black line
shows the average membrane potential V of all neurons in the area. The
right column depicts time series of one representative neuron in each
of the nuclei as indicated. For better discrimination in the left column,
the last 200 ms is shown. Right columns show activity of representative
single neurons for each of the nuclei, as indicated. The thalamus contin-
ues to receive periodic sensorimotor input (simulated by rhythmic 5 pA
current injections). a Under Parkinsonian conditions and DBS simula-
tion, the time-dependent activity of all neurons in STN converts from
periodic into tonic high-frequency firing, following the DBS input. b

In GPe, as the plot of time-dependent activity of all neurons shows,
this results in a similarly tonic, regular firing at a slightly lower fre-
quency (elevated compared to normal and even more so compared to
Parkinsonian state). c In GPi, in turn, the time-dependent activity plot
shows that this altered STN and GPe activity is translated into slightly
irregular firing at even lower frequency, very close to the normal state.
Losing the high-frequency discharges in GPi , the inhibitory drive to the
thalamus is reduced, which is reflected also in the reduction of the mean
activity index, see also Fig. 12c. d This disinhibition is reflected in the
time-dependent activity plot of the neurons in thalamus. It demonstrates
that the combined input fromGPi and sensorimotor drive, together with
DBS to STN, now stably restores firing in approximate synchrony to
sensorimotor input

4.3 Modelling the effects of DBS

The network structure and the conductanceswere kept invari-
ant with respect to Parkinsonian conditions. DBS treatment
was simulated by a high-frequency current of 184Hz, applied
to all STN neurons (this value resulted after the analysis
in section 6 and is suggested as candidate for an optimal
DBS frequency in experiments). The high-frequency current
is modelled as periodic short pulses of the form (Rubin and
Terman 2004)

IDBS = ADBSH(sin(2π t/TDBS)

·(1 − H(sin(2π(t + δDBS)/TDBS)). (24)

In all three basal ganglia nuclei and thalamus, STN-DBS
induces dramatic alternations in firing dynamics. Regard-
ing the STN, neurons follow the strong DBS signal and fire
tonically at stimulation frequency, see Fig. 8a. In GPe, this
results in regular bursting of neurons at about 90 Hz, i.e. at
3x higher frequency than normal and 4x higher frequency
than under Parkinsonian conditions, respectively. In the GPi,
in turn, the increased activity in GPe nearly normalises the
firing to slightly irregular firing at 30 Hz (compare insets
in this figure and 6) and thus strongly reduces the firing fre-
quency compared to the Parkinsonian state (which ranged
around 50–80 Hz) see Fig. 8. In summary, there is an overall
loss of synchronisation between STN, GPE, and GPi. Simul-
taneously the STN and GPe nuclei now fire tonically. With
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Fig. 9 Spatio-temporal activity
patterns for STN (left column)
and GPi (right column) under
normal (a and b), Parkinsonian
(c and d) and DBS (e and f)
conditions. Black dots depict
activated neurons (i.e. actions
potentials defined as transients
passing V = −15mV to positive
values) against time (in ms) and
space (i.e. index of neuron of the
nuclei, see also Fig. 5)

the reduction of the high-frequency tonic firing of the GPi,
the thalamus is disinhibited and resumes firing, following the
sensorimotor input relatively closely.

4.4 STN-GPi interaction: synchronisation changes
and local travelling waves formation

Different spatio-temporal patterns of activation in STN on
the one hand, and GPi on the other, can be observed under
normal, Parkinsonian, and DBS conditions. Figure 9 depicts
the whole neuronal activity of STN and GPi regions in the
case of sparse connectivity between STN neurons. In nor-
mal case (a) and (b), both areas STN and GPi show irregular
patterns. By contrast, in the Parkinsonian case (c) and (d),
the regions show higher synchronous activation. Figure 9c
shows sparse, but synchronous firing in STN in the Parkin-
sonian case, with local travelling waves. These waves are
restricted to a few neurons, demonstrating clustered organi-
sation of neuronal activity. An interpretation for this is that
in the Parkinsonian state, the reduced inhibition from GPe

to the STN leads to a higher spatial synchronisation between
these nuclei, resulting in a different pattern formation with
respect to normal case 9a, b.

Which consequence does this have for the activity in the
GPi?

This nucleus receives both input from the STN (indirect
pathway) and from the striatum (direct pathway), and hence
one would expect two competing activity patterns. Under
Parkinsonian conditions, in turn, the inhibitory activity of the
direct pathway is reduced. Hence the activity in the GPi is
more pronounced, which shows series of quasi-synchronous
activations of GPi neurons, with local travelling waves form-
ing small clusters.

UnderDBS conditions, themassive synchronisation in the
STN (abolishing all travelling waves and imposing a 184 Hz
rhythm on nearly all neurons) is mirrored in a closely match-
ing synchronised activity pattern in the GPi, but at lower
frequency of around 60Hz, again overriding all other activ-
ity. This presumably results in a nearly tonic activation of

123



Biological Cybernetics

Fig. 10 Spatio-temporal activity
patterns of basal ganglia
network with the assumption of
strong connectivity of STN area,
for STN (left column) and GPi
(right column) under normal (a
and b), Parkinsonian (b and c)
and DBS (e and f) conditions.
Black dots depict the activated
neurons (i.e. actions potentials
defined as transients passing
V = −15mV to positive values)
against time (in ms) and space
(i.e. index of neuron of the
nuclei, see also Fig. 5). The
spatio-temporal activity in the
regions of STN and GPi strong
indicates travelling wave
solutions with more variable
structures in the normal state

inhibitory neurons, to which the thalamic neurons desensi-
tise, as will be discussed below.

4.5 Effects of dense STN connectivity

Since the degree of connectivity among STN neurons is still
under debate (Amadeus Steiner et al. 2019), in a next step
also a higher connectivity was considered. The increment of
connectivity, i.e. higher number of connections between STN
neurons, leads to different spatio-temporal pattern. Figure 10
shows the normal, Parkinsonian, and DBS states. The quali-
tative difference here is the strong connectivity within STN.
Each neuron nowhasmutual connectionswith other neurons,
with a mean number of connections equal to 20. The STN
structure is described as a small-world topology. Under nor-
mal and Parkinsonian conditions, the basal ganglia network
depicts strongly correlating travelling waves, which propa-
gate and are more variable in the normal state. The travelling
wave represents a propagation of similar activity levels along

onedirection, i.e. as activity peaks in neighbouringneurons in
a co-moving frame, preserving the activity shape. Also with
this much higher intra-STN connectivity, the Parkinsonian
state is characterised by increased synchronisation in GPi.
Under DBS, rhythmic activity of STN in turn is reflected in
less synchronisation in GPI. Thus, the model is rather robust
with respect to GPi output, within a wide range of STN con-
nectivity.

5 Synchronisation and synaptic activity
indices characterise transitions of network
dynamics

In order to shed light on the transitions between the different
states, and to examine the appearance of distinct patterns in
our model, we analysed both the level of synchronisation
within the GPi (computing the synchronisation index r ) and
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Fig. 11 Synchronisation index r , defined in eqs. (18, 21) for a healthy
normal, b Parkinsonian state, and c DBS. a In the healthy state, the
synchronisation index shows an oscillatory behaviour at frequency of
≈11 Hz with relatively low values of range [0.3, 0.6]. b In the Parkinso-
nian state, in turn, the synchronisation index is high. The indexfluctuates
irregularly for longer periods during the bursting activity of theGPi neu-
rons. This bursting activity is highly frequent and prolonged, shifting
to enhanced β power. As a result, the inhibitory drive to the thala-

mus is strongly increased. c Simulating STN-DBS, the synchronisation
index for 184Hz (blue curve) and 210Hz (red curve). For both frequen-
cies, r starts out at almost 1 and then wanes down to ≈0.4 in periodic,
high-frequency dips, with ongoing tonic firing in GPi, where β activ-
ity is lost. Importantly the higher frequency i.e. 210Hz provides higher
de-synchronisation in GPi activity. This also coincides with decreased
activity of GPi area, see Fig. 12c

the levels of synaptic GABAergic projection activity from
the GPi to the thalamus (defining GPi activity index l).

The theory of phase synchronisation (Izhikevich and
Kuramoto 2004; Ermentrout and Terman 2012; Tass 1999;
Pikovsky et al. 2001; Kuramoto 1984b) described in sec-
tion 3.1, allows us to characterise and analyse different
attributes and the dynamics which results from the mathe-
matical model. Themain observables are the synchronisation
index r defined in eq. (18) and the mean GPi synaptic activ-
ity index l defined in eq. (23) and depicted in Figs. 11 and
12. We further performed a Fourier analysis of the GPi mean
synaptic activity index l, in order to measure the dominant
frequencies (rhythms), and we determined its slope of the
power spectrum to estimate the distribution of frequencies in
the power spectrum (see Fig. 13).

5.1 Macroscopic dynamics in the normal state

Considering the healthy, normal state, as Fig. 11a shows, syn-
chronisation within the GPi is generally low (around 0.5).
The synchronisation index shows oscillatory behaviour (at
around 12 Hz). The local maxima of the synchronisation
index thus correspond to increased synchronous activation
of GPI neurons in the low β range. The GPi activity results
in an overall periodic, but low-magnitude inhibitory drive to
the thalamus, see 12a. Corresponding to this behaviour, the
mean synaptic GPi activity phasically oscillates around 0.2
(even if the microscopic behaviour of neurons forms burst-

ing clusters) see, Fig. 12a. This rhythm lies within the lower
frequencies (i.e. α and lower β band), see Fig. 13a. The spec-
trum analysis reveals a first peak at 7 Hz and a higher peak at
around 11 Hz, i.e. activity in the lower β band. This rhythmic
peak is centred relatively narrowly around this dominating
frequencies, since the slope of linear approximation is rela-
tively steep (around −3.6 Hz/sec), meaning that the higher
frequencies do not contribute in the magnitude of the power
spectrum.

5.2 Macroscopic dynamics in the Parkinsonian state

Under Parkinsonian conditions, the GPi neurons are gen-
erally much more active than in the normal state. The
synchronisation is very high (close to 1). This index reflects
prolonged intervals of high activity, interrupted only briefly
by small decrements in synchronisation levels. This indi-
cates that neurons are synchronised during the prolonged
and accentuated bursting in GPi in the Parkinsonian state.
As a result, the synaptic, inhibitory projection to the tha-
lamus remains periodic, but predominantly strong, and is
again only slightly reduced during short burst intervals, see
Fig. 12b. The mean GPi synaptic activity (fluctuating around
0.7) is commensurate with this high synchronisation, which
is supported by prolonged bursting of GPi neurons, only
periodically interrupted by brief periods of reduced activ-
ity. The Fourier analysis reveals a dominant α /lowβ activity
with a strong peak at 10Hz, and a secondary at 18Hz, i.e.
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Fig. 12 Synaptic activity l of GPi projecting to the thalamus over time t
defined in (23). Both the activities of cells (thin lines, different colours)
and the mean of the activity (black and red thick lines) are depicted. a
Under healthy conditions, the inhibitory input to the thalamus occurs
periodically in the low β range, and more importantly, in between these
inhibitory periods, the degree of synaptic GABAergic activity project-
ing to the thalamus is low (at ≈0.2). b Under Parkinsonian conditions,

in turn, the situation completely reverses: Presumably due to prolonged
burst firing, the mean synaptic activity l is generally high (≈0.7) and
it drops intermittently during pauses of the GPi bursts. The GPi neural
activity is characterised by β range. c Under STN-DBS for 184 (black)
and 210 Hz (red), the inhibitory drive tonically equilibrates at a mean
level of≈ 0.6 for 184Hz; and around 0.5 at 210Hz. In the case of 210Hz
(red colour) the inhibitory tones is lower than the 184 (black colour)
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Fig. 13 Fourier spectrum of the mean GPi synaptic activity for normal,
Parkinsonian, and DBS conditions. a Normal state, the power shows 2
peaks at ≈7 and 11 Hz representing the mean synaptic variable LFP.
Using linear approximation we obtain the slope of the line around−3.6.
b Fourier spectrum of the mean GPi synaptic activity under Parkinso-
nian conditions. The power shows strong peaks at 9Hz and a secondary
at 18Hz reflecting the synchronisation index fluctuations of shown in

Fig. 11b and Fig. 12b. The slope of linear approximation was calcu-
lated≈-2.5. c Fourier spectrum of the mean synaptic activity projecting
fromGPi to THA under STN-DBS conditions. The power peaks at≈60
Hz, with additional sharp peaks between ≈ 122 and 184 Hz, i.e. cor-
responding harmonics, reflecting mean synaptic activity Fig. 12c and
the synchronisation index fluctuations shown in Fig. 11c. The slope is
changed −3.1 close to normal conditions

higher β rhythm than the normal conditions. Importantly,
the frequency spectrum of this bursting is much broader, as
indicated by the corresponding linear approximation: The
slope in Fig. 13b is increasing to−2.5 Hz/sec, which reflects
that the higher frequencies contribute more (with respect to
the normal case) to the power spectrum.

5.3 Macroscopic dynamics during DBS

Simulating DBS, the macroscopic activities (as the order
parameters r and l show) change dramatically (depending on
a specific range of frequencies), introducing a state dissimilar
to both normal or Parkinsonian states. The synchronisation
index in Fig. 11c within the GPi shows a dynamic devel-
opment over time, starting at values of ≈ 0.9, and then
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decreasing to≈ 0.4, during the first 500 ms of tonic irregular
firing in the GPi. After this period, the system adapts and
oscillates at high frequencies with values depending on the
applied frequency (e.g. between 0.8 and close to 1 in case of
184 Hz, between 0.6 and 0.8 in the case of 210 Hz). Similar
dynamics emerge regarding the mean GPi synaptic activity,
with a first transient period of 600 ms where the synaptic
drive is decreased (to ≈ 0.2), and a second period (t > 600
ms) where high synaptic activity is maintained (with fluc-
tuations around a mean value which depend on the applied
frequency (e.g. ≈ 0.6 in case of 184 Hz, ≈ 0.5 in case of
210 Hz) i.e. higher than under normal conditions and lower
than under Parkinsonian. Surprisingly, this would appear to
impose a strong inhibitory drive to the thalamus, see Fig.
12c. This, however, differs from the Parkinsonian condition
as it is tonic high-frequency and not repeating bursting blocks
appearing at β frequency. This qualitative change in rhyth-
micity is crucial:While a relatively high inhibitory tonic drive
seems to suggest strong thalamic inactivation, the contrary
is the case. Due to the fact that the input to the thalamus is
high-frequency tonic (peakpower at 184Hz), theGABAergic
synapses are deactivated (see eqs. (4)). Indeed, the frequency
analysis of the GPi activity shows a main peak seeming to
resonate with the external DBS stimulus (around 60Hz) and
the corresponding harmonics. Importantly, the peaks in the
lower (normal state) and higher (Parkinsonian state) β band
disappear, while the slope changes back to a value around
−3.1 Hz/sec, close to the normal case. Although this slope
is close to normal conditions, it now reflects a narrow high-
frequency band and not unclustered activity.

Taken together, the findings underscore the importance
of synchronous regular and brief, clustered burst firing in
the GPi for successful inhibition in the thalamus, which nor-
mally takes place atβ frequency.AlthoughDBS thus does not
restore normal rhythmicity in the GPi, the thalamic activity
is disinhibited by the loss of synchronisation and clustering
within the GPi.

6 DBS efficiency depends on stimulation
frequency

As the previous considerations show, the macroscopic order
parameters r and l, which are defined in eq. (18) and
(23), respectively, allow us to describe the effects of DBS
stimulation and to compare the different states (normal,
Parkinsonian, and DBS).

One critical parameter quantifying the effect of DBS
simulation is the thalamic response with respect to the senso-
rimotor cortical signals. Faithful thalamic activationwill send
strong excitatory signals to cortex, see Fig. 1a, alleviating in
this way the Parkinsonian symptoms (Guo et al. 2008). Natu-
rally, under normal conditions the thalamic response should

neither be completely uncoupled (with respect to the sensori-
motor cortical signal), as under Parkinsonian conditions (see
Fig. 7d), nor completely coupled as in an isolated cortico-
thalamic system (Fig. 4). Indeed, under normal conditions,
as shown in Fig. 6d, the thalamus follows the cortical input
closely, but not in absolute synchrony.

In order to quantify the thalamic response to cortical input,
under normal conditions or DBS with various stimulation
frequencies, we define the response efficacy R of thalamic
neurons as a mean value of the fraction of activated thalamic
neurons (per stimulus) during simulated cortical activation.
This simulation, as already discussed in Fig. 4, comprised
sensorimotor current injections of length δ (5 ms) defined by
the interval [t, t + δ], with frequency of 40 Hz. The math-
ematical formulation of response efficacy R is thus defined
as:

R( f ) = 1

Nint

Nint∑
i=1

ai (t), (25)

where ai (t) is the proportion of activated neurons, i.e. the
number of activated neuronswithin the time interval of [t, t+
2δ] divided by the total number of thalamic neurons NTHA =
200. The summation is taken over the number of intervals
Nint, for times 500 < t < 1500 ms, (i.e. Nint = 100). Under
normal conditions, as expected, R is approximately 0.5, i.e.
suggesting a coupling to cortical input at a value offering the
broadest dynamic range.

Under DBS at various frequencies, R shows a nonlinear
behaviour, starting at 0 for low DBS frequencies (around 50
Hz) to values > 0 with small peaks for frequencies around
70 and 130 Hz, see Fig 14. Very prominent peaks are found
around 184 Hz, 210 Hz, and 244 Hz. Thus, there are three
dominant optima at where the DBS maximises the thalamic
response close to normal values of R. As Fig. 8 thus shows,
the frequency of DBS is critical for thalamic firing outcome.
At low frequencies (i.e. 50–150 Hz in Fig. 14), only few
frequency bands can be found at which R > 0, while at
this low range, the effects on thalamic activation are only
transient, e.g. 50 Hz and 150 Hz (see Fig. 14). Exceptions
are the small peaks at 70 and 130 Hz; Fig. 14; reasonably
stable responses can thus be seen at 130 Hz. Only from 160
Hz onward, stable thalamic firing can be achieved by DBS.
Interestingly, this is very similar to experimental findings
in hemi-Parkinsonian rats: low-frequency DBS stimulation
up to 75 Hz actually results only in transient effects, while
permanent reductions of circling behaviour (theParkinsonian
equivalent in this animal model) were only achieved at DBS
frequencies > 130 Hz (So et al. 2017).

Computing the Shannon entropy for the macroscopic
variables r , l we confirm the optimal DBS frequency. As
suggested by Dorval et al. (2008), Arle et al. (2018), Deco
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Fig. 14 The response efficacy R of thalamic neurons changes with
DBS frequency f . The response efficacy R was computed for times
500 < t < 1500. The central graph depicts the response efficacy of
thalamic neurons to cortical input under DBS. In this context, a value
of 1 means that the thalamic neuronal firing is perfectly correlated with
the cortical input, a value of 0 that there is no correlation whatsoever.
Under normal conditions (dashed line), thalamic neuronal firing shows
intermediate correlation to cortical input, with a response efficacy of

0.518 (compare also Fig. 6d), whereas under Parkinsonian conditions,
this correlation is almost completely lost, with response efficacy close
to 0 (compare Fig. 7d. In our modelling study, using 184 Hz as DBS
frequency, the response efficacy is close normal (i.e. 0.22; see first peak
of the curve highlighted by filled circle). The insets show the resulting
firing behaviour of thalamic neurons in response to cortical input at the
different frequencies f as indicated. Note that at 150 Hz, the impact of
DBS is only transient, lasting only up to 500 ms

et al. (2012), an optimised DBS frequency can be achieved
by regularisation of the whole basal ganglia activity (Dorval
et al. 2008), i.e. minimisation of the entropy and thus a more
ordered state. The Shannon entropy E is defined by

Ex ( f ) = −
N∑
i=0

Pf (xi ) ln Pf (xi ), (26)

where xi expresses the macroscopic variable of interest (here
x = r , l, as defined in equation (18) and (23)). The com-
putation of the entropy with respect to the frequency was
performed for the first 1500 ms including also the transient
period of the first 500ms to be able to compare the initial
response in experiments once the DBS is switched on (So
et al. 2017; Mottaghi et al. 2020). The results are depicted
in Fig. 15. From this figure it can be derived that the opti-
mal frequencies for DBS are at 184 Hz and 210 Hz, where
the entropy of the macroscopic variables (order parameters)
r , l reach a local minima (in accordance with the thalamic
response efficacy R, cf. Fig. 14, circle and square markers).
A similar minima can be found when increasing f further at
244Hz,whichwould requiremore energy for theDBS stimu-
lation, likely raising the possibility of energy-dependent side
effects.
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Fig. 15 The entropy of the macroscopic variables (order parameters)
r , l, as defined in equation (18) and (23). Computations were carried out
for the timewindow [0, 1500]ms.The entropydecreaseswith increasing
DBS frequency. The graph shows both single entropy values referring
to (i) the synchronisation index (blue line) and to (ii) mean synaptic GPi
activity index. The figure is in correspondence with response efficacy,
see Fig. 14 with local minima at 184, 210, and 244 Hz marked with
circle, square, and triangle, respectively
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7 Discussion and conclusions

A large-scale basal ganglia computational model has been
used to study network dynamics in movement disorders. The
network model consists of 1700 interactive neurons with
approximately 30000 connections (representing the micro-
scopic level). The connectivity within the areas follows
small-world topology where nearby neurons are densely
connected; additionally, a small number of long-distance
connections exist. The resulting structure combines proper-
ties of both regular and random topology, e.g. high clustering
and at the same time short path length. Small-world structure
enhances signal-propagation speed and synchronizability
among the areas of the neuronal network.

For different values of parameters, the model reproduces
phase transitions for normal, Parkinsonian, and DBS, in
the emergent dynamics which are captured with suitable
macroscopic order parameters for example the change from
oscillatory to bursting behaviour of mean synaptic activ-
ity in Fig. 12a, b. Importantly, transitions produced by the
model are consistent with the physiology and experimental
observations of aberrant functionality of direct and indirect
pathways.
Experimental findings of animal studies regarding the impact
of STN-DBS on GPe, GPi, and thalamic firing could be
approximated qualitatively. Specifically, in the transition
from normal to Parkinsonian state shown in Figs. 6 and
7, the model alters the dynamics of GPe and GPi neu-
rons due to varying levels of striatal inhibition. Remarkably,
similar alternations in GPe/GPi dynamics were observed
in Galvan and Wichmann (2008) (Fig. 2 therein) in mon-
keys and mice treated with MPTP (methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) (Galvan and Wichmann 2008; Ogawa
et al. 1985). Specifically, in GPe single-cell recordings of
monkey, the firing becomes sparser. This is indeed the case
also in our model, see Fig. 7b. Concerning the GPi single
cell activity, the firing rate increases strongly in the Parkin-
sonian state which is also reflected in our model, see Fig.
7c. In the STN area, the monkey single cell activity depicts
bursting behaviour, while in our model burst firing only
occurs sparsely, or not at all. However, the overall frequency
increases similar to monkeys MPTP.

Furthermore, under DBS, in the model, the GPi and GPe
fire tonically at high frequency, following STN firing at
stimulation frequency (184 Hz), abolishing synchronised β

activity. This corresponds to the findings of McConnell et al.
(2012), who showed that STN stimulation results in a sharp
power peak at the same frequency also in GPe, and with find-
ings of Wang et al. (2018) where DBS disrupts pallidal beta
oscillations and the cortical coherence in Parkinson disease.

Regarding the β-band hypersynchrony hypothesis of
Parkinson’s disease (Kühn et al. 2008), themodel thus impor-
tantly shows that DBS actually abolishes β-band synchrony,

which also in the model is prevalent in GP without stimu-
lation. Hence, the model faithfully replicates what is known
from clinical and animal model studies both on the cellular
and on the network activity pattern levels. The model pro-
duces clusters of local travelling waves, more pronounced in
the Parkinsonian state. Remarkably, in the experimental find-
ings ofCagnan et al. (2015), it has been found that the analysis
of local field potential recordings from the subthalamic
nucleus and globus pallidus of patients with Parkinson’s dis-
ease shows beta-band propagation waves within the globus
pallidus.

Further, the model predicts that a faster firing GPi projec-
tions under DBS will result in regular firing of the thalamus,
which in turnwill essentially follow the sensorimotor input—
while under PD conditions, in fact thalamic firing was very
sparse and irregular, and did not faithfully mirror cortical
signals. These results are supported by studies in a Parkinso-
nian animal model in rhesusmonkeys (Xu et al. 2008), where
STN-DBS (as in Fig. 8) produces a change in the pattern and
periodicity of neuronal activity in the basal ganglia thala-
mic network, resulting in a regular, higher-frequency firing
pattern in the thalamus.

Moreover, macroscopic properties can be derived from
our model. Since these essentially mirror local field poten-
tial activity, these properties can be used to test predictive
modelling in future studies. For example, the model predicts
a power law power spectrum, for the mean synaptic activ-
ity (see Fig. 13) with variable critical exponent a. Similar
power law is reported in He et al. (2010) in the dynamics
of visual cortex, hippocampus, and cerebellum with similar
changes in the critical exponent a. They explained these dif-
ferences due to the different areas of activation during the
experiments. A power law behaviour (in basal ganglia areas
and cortex) with deviations also is reported in West et al.
(2018). In Huang et al. (2020) using local field potentials for
12 Parkinson’s disease patients, a power law activity in STN
and cortex is reported. The STN activity shows strong varia-
tions of the exponent a during awake and loss of consciences
state. In our case, this exponent is the slope of the linear
approximation in Fig. 13. Our analysis shows that the slope
can be distinguished between normal Parkinsonian and DBS
state. Further, the model also allows to extract variables such
as a macroscopic synchronisation and GPi synaptic activity
indices which allow to predict the transitions during DBS
application, which might pave the way for feedback control
of DBS in the future (Popovych and Tass 2018, 2019;Manos
et al. 2018).

Beyond this, the detailed analysis of the macroscopic
parameters and derived values such as entropy also allow
for an optimisation of DBS. As an outcome measure, the
response efficacy of thalamic neurons reflects the degree of
thalamic activity correlating to cortical input, which under
normal conditions is ≈ 0.5. Critically, raising stimulation
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frequency beginning with 50 Hz, the first prominent entropy
local minima of the two mesoscopic parameters precisely
coincidewith the first peak of the response efficacy R close to
normal values (≈ 0.23) at 184 Hz andmore efficient frequen-
cies over the 200Hz. These frequencies are not identical to the
most commonly used in clinical settings i.e. 130 Hz, while
in this frequency range, the model predicts sub-therapeutic
action (see Fig. 14). In addition, one can argue that our mod-
elling study does not fully replicate clinical findings, which
show that at frequencies > 185 Hz, side effects like dyski-
nesias seem to become more problematic (Dayal et al. 2017;
Karl et al. 2019). Contrariwise, the match between the exper-
imental findings in hemi-Parkinsonian rats (So et al. 2012,
2017; Mottaghi et al. 2020) and the response efficacy R is
very interesting. In So et al. (2012) the authors describe
a sustained depression of circling to values smaller than 5
turns per minute only at frequencies > 75 Hz. This inciden-
tally matches well with our findings, which show peaks in
the response efficacy R at 70 Hz and 130 Hz, and then at
peaks of 180, 210, and 245 Hz, in close approximation to the
effective frequencies reported in So et al. (2012, 2017), i.e.
185 and 260 Hz. Remarkably, similar frequency-dependent
behaviour is reported in the recent study of Mottaghi et al.
(2020), where strong impact of stimulation frequency on the
induced rotation (caused by DBS) was found in the range of
250Hz.

Our mathematical model extends previous computational
work (So et al. 2012; Dorval et al. 2010) by using a larger
number of neurons for each basal ganglia areas and complex
small-world connectivity. Additionally, we propose different
approximations in the DBS frequency. The frequency anal-
ysis of Dorval et al. (2010) differs from our investigation
since they focus on perturbations around 130 Hz (Fig. 1 and
2 in Dorval et al. 2010). In So et al. (2012) the activation
patterns of local cells and fibres passage are studied with
respect to the fidelity of thalamus. Our model suggests that
the basal ganglia network behaviour to DBS stimulates fre-
quency has a strong nonlinear response similar to resonating
mechanical systems with optimal frequencies above 130Hz,
suggesting the investigation of DBS treatment beyond the
130Hz. In summary, the mathematical model and the anal-
ysis is considered a powerful tool to explore the effects of
parameter-dependent changes of DBS and to optimise the
medical treatment.

8 Outlook

One major future topic will be the study of network topolog-
ical variations and the impact on the emergent dynamics.
Thus, the functional effects of neuroanatomical changes
observed in Parkinson’s disease (Prakash et al. 2016), such
as massive decreases of dendritic length of medium spiny

neurons (Stephens et al. 2005), could be modelled. Consid-
ering movement disorders beyond Parkinson’s disease, the
model could also be extended to further elements of the basal
ganglia, to gauge the effect of alterations in cortico-striatal
communication such as those observed in dystonic hamsters
(Köhling et al. 2004), where alternations in excitability in
dystonic tissue were described to be related to both changes
in intrinsic neuronal properties and presynaptic release prob-
ability at glutamatergic synapses. Furthermore, our analysis
can be extended beyond the initial interval of the first 1.5
sec (which contains also transient effects). The analysis of
the long-time behaviour under DBS including the effects of
neuromodulators and the changes in synapses functionality
(network plasticity) (Marschler et al. 2014; Morrison et al.
2008; Droste et al. 2013), is an interesting subject for future
studies.
In future work, it will be important also to investigate the
parameter dependence of network dynamics, using numeri-
cal bifurcation tools for multiscale problems (Spiliotis and
Siettos 2011; Marschler et al. 2014; Moon et al. 2015;
Schmidt et al. 2018), for an in-depth understanding of the
functional network changes occurring in movement disor-
ders.
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