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Abstract

As cloud computing is increasingly adopted, the trend is to offer software functions as modular 

services and compose them into larger, more meaningful ones. The trend is attractive to analytical 

problems in the manufacturing system design and performance improvement domain because 1) 

finding a global optimization for the system is a complex problem; and 2) sub-problems are 

typically compartmentalized by the organizational structure. However, solving sub-problems by 

independent services can result in a sub-optimal solution at the system level. This paper 

investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization 

of loosely-coupled sub-problems, each may be modularly formulated by differing departments and 

be solved by modular analytical services. The result demonstrates that ATC is a promising method 

in that it offers system-level optimal solutions that can scale up by exploiting distributed and 

modular executions while allowing easier management of the problem formulation.
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1 Introduction

As cloud computing is increasingly adopted, the trend is to offer software functions, 

including analytical software functions, as modular services and compose them into larger, 

more meaningful ones [1, 2]. The trend is attractive to analytical problems in the 

manufacturing system design and performance improvement domain because 1) finding a 

global optimization for the system is a complex problem; and 2) sub-problems are typically 

compartmentalized by the organizational structure. However, solving sub-problems 

independently can result in a sub-optimal solution at the system level.

This paper investigates the technique called Analytical Target Cascading (ATC) to 

coordinate the optimization of loosely-coupled sub-problems. Each sub-problem may be 
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independently formulated by each stake-holding organization and be solved by modular 

analytical software services.

This study is motivated by the Factory Design and Improvement reference activity model 

developed in [4]. The model decomposes major activities into subtasks and key decision-

makings needed in a typical factory design and performance improvement project. It entails 

the needs for interactions across optimization problems at multiple control-levels.

For simplification of the illustration, this paper investigated the ability of ATC to coordinate 

three sub-problems at the manufacturing process control level including capacity design, lot 

sizing, and storage layout design. These three sub-problems are interlinked and typically 

dealt by different stakeholders. Their linkages are shown in Fig. 1.

Many analytical techniques have been developed to solve each of these three sub-problems. 

These techniques are often used in isolation, but these problems are not independent. A 

change in one formulation can influence the outcomes and feasibilities of the other two. 

Therefore, capturing those dependencies and using them to integrate these three sub-

problems is crucial.

ATC has been used to solve multidisciplinary-design-optimization problems that comprise 

heterogeneous sub-problems. These sub-problems are solved separately; but, each of their 

interim solutions is communicated regularly. This not only speeds convergence, it also gives 

a better solution than the one that is generated with no communication or one-way 

communication (such as in the hierarchical model in Fig. 1). The algorithm that ATC uses 

has been studied extensively and its convergence properties have been established 

mathematically [5]. The primary application of ATC has been in designing complex 

products such as automobiles and aircrafts [6, 7]. Nevertheless, it has also been used in 

integrating supply chains and integrating marketing and production (DFM) [8, 9].

The result of this investigation indicates that ATC is a promising method in that it offers (1) 

easier management of the problem formulation of the overall system and (2) coherent, 

optimal solutions that can scale up to the size of the overall system by exploiting distributed 

and modular executions.

The rest of the paper is organized as follow. In Section 2, the analytical sub-problems are 

introduced; and it discusses drawbacks of the two traditional integration structures to 

compose these sub-problems: centralized and hierarchical. Then, the mathematical 

formulation of the proposed ATC-based collaborative structure illustrated in Fig. 1(c), is 

described in Section 3. In Section 4, we apply ATC to the sub-problems and analyze the 

results using data from a production project at Penn State [10]. Finally, the conclusion is 

presented in Section 5.

2 Composing Manufacturing Analytical Models

In this section, we introduce the three optimization sub-problems and their corresponding 

links. The exact links depend on the multi-criteria optimization of throughput (TH), 
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inventory (INV), and work-in-process (WIP). Links can be seen as either common decision 

variables or input/output parameters, which are assumed to be non-negative.

Note: π(·) is a penalty function which is used in the collaborative model and will be 

explained in section 3.1. In this section, we set it as a zero function.

2.1 Capacity Optimization

The important concern when optimizing capacity is that cycle times and WIP levels grow 

dramatically with increasing utilization [11]. Thus, the designers of this activity should 

decide on a reasonable throughput which minimizes the average WIP.

(1-1)

(1-2)

(1-3)

(1-4)

where cw is the unit cost for holding one unit of WIP during the planning period, and π 
represents any penalty functions. Equation (1-1) represents the approximation of the waiting 

time in queue, CTq, in a G/G/1 system. The formulation shows that CT is effected by the 

coefficient of variation (CV) of inter-arrival times ca, the CV of effective processing times 

ce, the utilization u, and the effective process time te. The formulation can be generalized to 

multi-machine, multi-station systems. (1-2) represents the Little's law formula. (1-3) shows 

the equation of utilization and (1-4) restricts TH.

2.2 Lot-Sizing Optimization

A wealth of models can be used for making lot-size decisions including EOQ (Economic 

Order Quantity) and EPL (Economic Production Lots) [11]. Here, we minimize the total 

inventory cost over T periods.

(2-1)
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(2-2)

(2-3)

where pt is the unit production cost and ht is the unit holding cost for period t. Equation (2-1) 

shows the inventory balance in each period, in which Dt is the demand and xt is the 

production amount in period t. The constraint (2-2) indicates the production amount should 

be less than capacity limit, in which WH is the available working hours during the period. 

Equation (2-3) shows the inventory level should be less than INV.

2.3 Storage Layout Optimization

The storage layout sub-problem determines the optimal layout to minimize the material 

handling costs in terms of the distances 1) from WIP storage locations to locations of 

machines, and 2) between finished-goods inventory locations to the shipping docks. The 

storage layout problem is usually formulated as an assignment problem in which the storage 

floor is first subdivided into N grid squares and each item (WIP or INV) is assigned to a grid 

square.

(3-1)

(3-2)

(3-3)

(3-4)

where  and  are the material handling cost for respectively storing one work-in-

process and inventory in the grid square k.  is a binary decision variable, which 

value is 1 if one unit of WIP (INV) is assigned to the grid square k. (3-1) and (3-2) represent 
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the storage spaces demanded for WIP and INV, respectively. (3-3) restricts that one grid 

square can store only one unit of the items.

2.4 Centralized vs. Hierarchical Integration Structures

The centralized-structure approach, shown as Fig. 1(a), is an intuitive and coherent way to 

think about integrating the sub-problems. It results from minimizing the three objective 

functions of the sub-problems subject to all constraints (1-1) to (3-4). So, in essence there is 

only one, multi-objective function and one set of constraints. There are, however, two 

serious drawbacks associated with this centralized approach. First, is the issue of poor 

scalability of the approach in terms of the increasing number of decision variables and 

constraints. The other drawback occurs when reformulation of the model is needed, e.g., 

when the factory changes: essentially you basically have to start over.

The hierarchical-structure approach, shown in Fig. 1(b), reduces, but does not eliminate, the 

difficulty in addressing these two challenges. The sub-problems are solved individually, so 

reformulation is easier. Additionally, the sub-problems are typically solved in a prescribed 

order. That order is PCP, PLS, then PSL [4]. The links are directed links and are obtained as 

the outputs of the previously solved sub-problems. Clearly, this approach is not guaranteed 

to find a coherent, optimal solution. In addition, the quality of the final solution is highly 

dependent on the initial inputs to the initial process, PCP. Therefore, in practice, it requires 

many experiments, by varying the input conditions until an optimal solution is found across 

all the sub-problems!

3 Proposed Collaborative Approach

Our collaborative approach achieves both the high solution quality of the centralized 

approach as well as the re-configurability of the hierarchical approach. The ATC algorithm 

connects sub-problems as if they were building-blocks. First, sub-problems at two ends of a 

link are assigned two specific roles: sender or receiver. Then, the link value in each sub-

problem is replaced by two variables: target ti and response ri The sender solves the target ti 
and the receiver solves the response variable ri within its own local variables and constraints. 

The ATC algorithm seeks to minimize the discrepancies between targets and responses with 

respect to the links. In this paper, as we said above, PCP is the sender of both WIP and TH; 

PLS is the receiver of TH and the sender of INV; and PSL is the receiver of both WIP and 

INV as Fig. 1(c).

3.1 The Collaboration strategy

In order to achieve global consistency, each of the three sub-problems is assigned a different 

penalty function. It “punishes” a sub-problem, by adding high costs to its objective function, 

when its solution violates consistency constraints. Realizing this, we decided to use the 

augmented Lagrangian as our penalty function and the basis for our collaboration strategy 

[12]. The penalty function is shown in equation (4). Note that the notation “∘” means the 

elementwise product for arrays.
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(4)

The Lagrangian penalty function includes two new variables, Lagrangian multiplier vi and 

quadratic penalty weight wi. They are updated in the outer loop of ATC. The updating 

methods are expressed below, where l represents the iteration of the ATC algorithm.

(5)

(6)

The ATC algorithm has three main steps:

Step 1: Inner loop - solving sub-problems separately and updating the target and 

response variables.

Step 2: Outer loop - updating the Lagrangian multipliers and weights via expression 

(5) and (6).

Step 3: Termination - terminating the algorithm when the discrepancies of all target 

and response pairs are smaller than a given tolerance.

3.2 Reconfigurability and Discrepancy Visualization

As mentioned in the previous section, the ATC algorithm connects the sub-problems through 

target and response variables. It has the advantage of reusability. Suppose, for instance, a 

company wants to replace their current EOQ sub-problem with a (Q, r) sub-problem for lot-

sizing design; the other two sub-problems are still reusable. Furthermore, since the overall 

system-problem has been partitioned into three sub-problems, the structural complexity of 

the overall system is reduced. Stakeholders of each sub-problem can also formulate their 

problems independently; therefore, the factory design and performance improve project can 

progress efficiently.

The ATC approach also allows feasibility issues across sub-problems to be conveniently 

resolved. It monitors the target/response values and showing the discrepancies between 

differing objectives in sub-models. For example, if there was a space reduction made in PSL 

problem causing the responses rWIP and rINV not meeting the targets given by the other two 

sub-problems. The discrepancy can be shown in the results. This allows for the stakeholders 

to effectively collaborate and resolve the specific conflict.

4 Case Study

We use the IME Inc. project [10] to demonstrate the potential benefits of our collaborative 

approach over the other two. The aluminum chess set is the primary product in this case 
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study. The associated process plan includes only one turning center and 240 labor hours. In 

addition, the product will be delivered to customers at the end of each quarter (March 31th 

June 30th etc.). Note, this knowledge could be used to determine the minimum value for 

storage size. That minimum value has to be large enough to store both WIPs and finished 

products during that time. Table 1 shows the parameters for the design sub-problems. ca is 

approximated by the variance of the demand and ce is significant because of the long set-up 

time of this product. te represents the effective processing time for the whole chess set. The 

production costs pt changes because of the fluctuation of material costs. The holding cost for 

one set per one week is estimated by the typical interest rate per quarter (about 6.25%) times 

the production costs. The factory has 150×75 (cm2) area for both WIP and the finished 

products (see Fig. 2). A finished product is wrapped into a 15×7.5×7.5 (cm3) box. Moreover, 

the boxes cannot be piled up because of the strength of the boxes. Hence, the storage area is 

divided into a grid of 100 squares, each of which can store only one box or one working-in-

process. The material handling cost of a finished product at a certain location is calculated 

by multiplying the unit operation cost with the rectangular distance between the machine 

and the exit dock. With a technician's suggestion, we assume the unit costs of the material 

handling costs is $0.01/2.5 centimeter.

The desired throughput (initial value) is determined by the average demand rate 0.43 sets/hr. 

The three models were constructed and run in MATLAB 2015a. The collaborative model 

was terminated after 96 iterations, resulting in a tolerance value of 10E-6 for the 

discrepancies between sub-problems. When terminated, w = (1, 1, 1) and v = (-3.75, 1.34, 

1.76). The results show that the proposed collaborative approach can find the same solution 

as overall optimal solution generated by the centralized approach, but the hierarchical 

approach cannot. However, the computation time of the collaborative model is much larger 

than those of the other two (less than 5 seconds). This implies that the collaborative model is 

more suitable for solving problems in the factory “design stage,” where the system 

complexity issue is much more critical than the computational time. Nevertheless, a parallel 

computing model could be explored to speed up the solver to provide a solution in a near 

real-time.

5 Conclusion

In this paper, we proposed a collaborative approach, called Analytical Target Cascading 

(ATC), to composing analytical sub-problems and possibly associated software services to 

meet the overall objective. Our experiment shows a promising result. Sub-problems can be 

formulated and executed modularly and possibly under a distributed computing scheme. 

Even so, ATC connects these sub-problems and has the capability to achieve the coherent 

optimal as in the centralized model. Furthermore, unlike the centralized approach, our 

approach allows sub-problems to be changed or improved easily. Moreover, the 

discrepancies between targets and responses in each sub-problem are visible allowing for 

feasibility issues to be easily resolved. In the future work, we are planning to integrate 

control-level problems and design-level problems.
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Fig. 1. Integration models of analytical sub-problems
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Fig. 2. Factory layout
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Fig. 3. The storage layouts
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Table 2
The Computational Results

Centralized model Hierarchical model Collaborative model

Comp Time (sec) 4.9176 0.0742 132.7390

Total Cost ($) 8290.5 8388.4 8290.5

(TH0, WIP0, INV0) (0.43, 0, 0) (0.43, 0, 0) (0.43, 0, 0)

(TH*, WIP*, INV*) (0.67,7.80,80.01) (0.43,0.54,62.5) (0.67,7.80,80.01)
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