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Abstract
It has been proposed that animals and humans might choose a speed-accuracy tradeoff that
maximizes reward rate. For this utility function the simple drift-diffusion model of two-alternative
forced-choice tasks predicts a parameter-free optimal performance curve that relates normalized
decision times to error rates under varying task conditions. However, behavioral data indicate that
only ≈ 30% of subjects achieve optimality, and here we investigate the possibility that, in allowing
for uncertainties, subjects might exercise robust strategies instead of optimal ones. We consider
two strategies in which robustness is achieved by relinquishing performance: maximin and robust-
satisficing. The former supposes maximization of guaranteed performance under a presumed level
of uncertainty; the latter assumes that subjects require a critical performance level and maximize
the level of uncertainty under which it can be guaranteed. These strategies respectively yield
performance curves parameterized by presumed uncertainty level and required performance.
Maximin performance curves for uncertainties in response-to-stimulus interval match data for the
lower-scoring 70% of subjects well, and are more likely to explain it than robust-satisficing or
alternative optimal performance curves that emphasize accuracy. For uncertainties in signal-to-
noise ratio, neither maximin nor robust-satisficing performance curves adequately describe the
data. We discuss implications for decisions under uncertainties, and suggest further behavioral
assays.
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1 Introduction
There is a substantial literature on random walk and drift-diffusion (DD) processes as
models for behavioral measures of reaction time and error rates on two-alternative forced-
choice (2AFC) tasks, e.g. Stone (1960); Laming (1968); Ratcliff (1978); Ratcliff et al.
(1999); Smith and Ratcliff (2004). Additionally, in vivo recordings in monkeys trained to
respond to motion stimuli show that neural spike rates in certain oculo-motor regions evolve
like sample paths of a DD process, rising to a threshold prior to response initiation (Schall,
2001; Gold and Shadlen, 2001; Roitman and Shadlen, 2002; Ratcliff et al., 2003; Mazurek et
al., 2003; Ratcliff et al., 2006). Such experiments support a picture in which the state of the
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DD process, interpreted as a difference between accumulating, noisy evidence streams, is
integrated until it reaches a confidence threshold.

The simple DD process with constant signal-to-noise ratio (SNR) is a continuum limit of the
sequential probability ratio test (SPRT), which is optimal for statistically stationary tasks in
the sense that, on average, it renders a decision of specified accuracy for the smallest
number of observations (Wald, 1947; Wald and Wolfowitz, 1948). It therefore offers a
normative theory of decision making against which human and animal behaviors can be
assessed (Gold and Shadlen, 2002). Specifically, both speed and accuracy are often at a
premium, and a key issue is how these requirements are balanced in a speed-accuracy
tradeoff (SAT). Wald and Wolfowitz (1948) used a weighted sum of decision time and error
rate as an objective function in their analysis of SPRT, and Edwards (1965) generalized this
to model how human subjects choose decision thresholds. This was further extended and
tested in Rapoport and Burkheimer (1971) and Busemeyer and Rapoport (1988), and a
related theory, involving a competition between reward and accuracy (COBRA), has also
been proposed (Maddox and Bohil, 1998; Bohil and Maddox, 2003). A review of these
theories appears in Bogacz et al. (2006), which also describes how the DD process with
constant SNR emerges from various evidence accumulator models, as parameters approach
particular limits.

Gold and Shadlen (2002) then proposed that the DD model be used to derive an explicit
SAT that optimizes reward rate. Holmes et al. (2005) and Bogacz et al. (2006) performed
this computation and carried out 2AFC experiments on human subjects to test its
predictions. As discussed below, and at greater length in Bogacz et al. (2009), the
experiments reveal that, while a significant subset of 80 subjects performed near-optimally,
most were substantially suboptimal, favoring accuracy over speed.

Several explanations have been advanced to account for such behavior. Physiological
constraints might prevent neural circuits from integrating evidence in the optimal manner
prescribed by the SPRT (cf. Bogacz et al. (2006) and see discussions below). Secondly,
attention may wax and wane, leading to variable SNR (also, experimental protocols often
mix stimuli of different discriminability, violating the stationarity assumed in the SPRT and
in the blocked experiments of Bogacz et al. (2009)). Thirdly, intentional emphases on
accuracy or speed, as in Maddox and Bohil (1998) and Bohil and Maddox (2003), can
modulate the SAT at the level of individual subjects. Finally, in addition to assuming
statistical stationarity, the SPRT-based optimality theory of Gold and Shadlen (2002);
Holmes et al. (2005) and Bogacz et al. (2006) implicitly assumes that key parameters such
as experimenter-imposed response-to-stimulus delays and SNR are precisely known to the
subject.

In this paper we shall briefly discuss all these factors before focusing on the final one. We
suppose that only uncertain estimates are available for key parameters and apply robust
strategies to predict robust, rather than optimal, SATs. We find that uncertainties in inter-
trial delays can account for suboptimality in the data of Bogacz et al. (2009), while
uncertainties in the SNR cannot. Furthermore, we show that a robust strategy, which also
involves only one free parameter, provides a better fit than a version of the COBRA theory
that includes a weight for accuracy.

The paper is structured as follows. In §2 we review the DD model and derivation of the
optimal SAT, describing how it can be expressed as an optimal performance curve (OPC).
Robust strategies for 2AFC, which account for parameter uncertainties, are developed in §3,
and used to derive the robust performance curves. In §4 we compare the predictions of the
robust approaches with experimental data of Bogacz et al. (2006) and with alternative
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optimization strategies, and we briefly assess the effects of parameter mis-estimates. §5
contains a discussion and proposals for future experiments to further explore our
conclusions. Many proofs and other mathematical and statistical details are relegated to
Appendices. Common abbreviations used in the paper are summarized in Table 1.

2 A drift-diffusion model and optimal performance curves
The simplest version of a DD process is described by the following stochastic differential
equation:

(1)

where A denotes the drift rate and σ dW increments drawn from a Wiener process with
standard deviation σ (Gardiner, 1985), also known as the Wiener process with drift
(Diederich and Busemeyer, 2003). In the 2AFC context, the state variable x(t) represents a
running estimate of the logarithmic likelihood ratio (Gold and Shadlen, 2002), the two
stimuli produce drift rates ±A respectively, and on each trial a choice is made when x(t) first
crosses either of the predetermined thresholds ±xth. It is implicitly assumed here that stimuli
are presented with equal probabilities, that x(0) is initialized midway between the thresholds
at the start of each trial as in the optimal SPRT, and that drift, noise level and thresholds
remain constant over each block of trials. We shall refer to Eq. (1) as a pure DD process, to
distinguish it from the extended processes described in §2.1.

Average performance on a block of trials is characterized by the probability of making an
error, p(err), and the mean decision time, 〈DT〉 (the first passage time for (1)), which can be
computed explicitly as

(2)

(Gardiner, 1985; Busemeyer and Townsend, 1993), cf. (Bogacz et al., 2006, Appendix).
Here the parameters η ≡ (A/σ)2 and θ ≡ |xth/A| are the SNR (having the units of inverse
time), and the threshold-to-drift ratio: i.e., the passage time for the noise-free process x(t) =
At. (The present notation differs from Bogacz et al. (2006) to avoid confusion with that used
below to describe uncertainty.) In (2) 〈DT〉 is that part of the mean reaction time 〈RT〉
ascribed to mental processing per se, excluding the non-decision latency T0 required for
sensory transduction and motor response, i.e., 〈DT〉 = 〈RT〉 − T0.

The formulae of Eq. (2) may be inverted to solve for the DD model parameters, η and θ, in
terms of the two performance parameters, p(err) and 〈DT〉:

(3)

Given a suitable objective function for performance, these explicit formulae allow us to
predict a parameter-free optimal performance curve that relates p(err) and 〈DT〉. Before
describing this, we address some shortcomings of the simple DD model of Eq. (1), starting
with physiological factors.

As noted in §1, the DD model gains support from neurophysiology. A decision model in
wide use employs a pair of leaky, mutually-inhibiting accumulators whose states represent
averaged firing rates of populations of neurons preferentially sensitive to different stimuli
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(Usher and McClelland, 2001). The DD variable x(t) is the difference between these states.
However, reduction to a single variable is valid only if leak and inhibition are high, and to a
DD process only if they are balanced (Bogacz et al., 2006) and firing rates remain in ranges
in which linearization is justified (Cohen et al., 1990). Recent studies of multi-unit spiking
neuron models (Wang, 2002; Wong and Wang, 2006) question these assumptions and
suggest that nonlinear models may be necessary (Roxin and Ledberg, 2008). In view of the
SPRT results noted above (Wald, 1947; Wald and Wolfowitz, 1948), all such
generalizations, and the extended DD models described next, are necessarily non-optimal
decision makers.

2.1 Extensions to the DD model
In addition to the neurobiologically-motivated nonlinear accumulator models mentioned
above, extended DD processes have been introduced to better account for human and animal
behaviors. In particular, mean reaction times for error and correct trials typically differ, slow
errors being frequently observed, whereas the pure DD process (1) predicts identical forms
for the probability distributions of DTs for both trial types.

Slow errors can be produced by selecting the drift rate A for each trial from a Gaussian
distribution, and fast errors result by selecting initial conditions x(0) on each trial from a
uniform distribution (Ratcliff et al., 1999). Including a possible overall bias, so that 〈x(0)〉 ≠
0, these increase the number of DD parameters from two to five. To further allow for
variability, the nondecision time T0 can also be taken from a distribution (Ratcliff and
Tuerlinckx, 2002). Alternatively, time-dependent drift rates A(t), which can represent
varying attention, can produce slow or fast errors (Ditterich, 2006a,b; Liu et al., 2008;
Eckhoff et al., 2008), in principle expanding the model to an infinite-dimensional parameter
space.

Variable drift rates (either within or between trials) seem most relevant to account for
differences in the reaction time distributions of error and correct decisions. However, as
noted at the end of §2.2, the resulting optimal performance curves fail to match the observed
preference for accuracy over speed in the present data (Bogacz et al., 2006). Here we
develop a normative theory of robust decision making, based on the pure DD model, which
accounts well for this observed preference. We introduce a new factor: the degree of
uncertainty in estimating specific model parameters. Comparing the effects on different
parameters, we are able to assess which source of uncertainty may best explain the observed
behavior, and to contrast it with the emphasis placed on accuracy in theories such as
COBRA (Maddox and Bohil, 1998; Bohil and Maddox, 2003). Furthermore, we show that
uncertainties in SNR also allow variable drift rates, and thus can account for differences in
DT distributions for error and correct decisions.

2.2 Optimal performance curves
To determine optimal strategies for a given experimental paradigm, we must specify an
objective or utility function. Here we consider the paradigm of Gold and Shadlen (2002), in
which a subject is presented with a stimulus and is free to indicate a choice (by motor or
oculomotor response) at any time. Correct responses are rewarded and after each response
there is a fixed delay or response-to-stimulus interval (RSI), denoted DRSI, before the next
trial begins. This may be increased by a penalty delay Dpen ≥ 0 in the event of an error.
Trials are run sequentially in blocks in which delays and stimulus discriminabilities are
constant. The duration of each block, rather than the number of trials within it, is fixed,
thereby presenting subjects with a clear challenge of balancing accuracy with speed (the
number of trials completed in the block).
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Gold and Shadlen (2002) propose that subjects seek to maximize their average reward rates
(RR), defined as the fraction of correct responses divided by the average time between
responses:

(4)

Appendix A.1 shows that the mean number of correct decisions per unit time is given
asymptotically by Eq. (4). For simplicity we have assumed that the non-decision time T0 and
the response-to-stimulus interval DRSI remain fixed during each block of trials over which
the reward rate is to be maximized, but if these are variable one would simply replace them
with their means 〈T0〉 and 〈DRSI〉. Since only the combination T0 + DRSI appears in (4), we
define the non-decision delay D = T0 + DRSI, and for future use, the total delay Dtot = D +
Dpen.

Substituting Eqs. (2) into Eq. (4) yields the reward rate that can be achieved as a function of
the decision parameter θ and the task parameters η, D and Dtot:

(5)

The response-to-stimulus interval, DRSI, penalty delay, Dpen, and stimulus discriminability
are under the experimenter’s control and remain fixed throughout each block of trials.
Stimulus discriminability determines the SNR, η, at least partially. To the extent that
subjects can manipulate η, e.g., by increasing attention and thus decreasing the noise-
variance σ2, Eq. (5) implies that it should be maximized to achieve optimal RR. We
therefore assume that η is fixed in each block (this will be relaxed when addressing
uncertainties in §3). Under these conditions, the threshold-to-drift ratio, θ, is the only
adjustable parameter, so local maxima of RR occur at zeros of ∂RR/∂θ, and the optimal
threshold θop satisfies:

(6)

The left hand side of (6) is monotonically increasing with θ and its right hand side is
monotonically decreasing, so it has a unique solution θop that depends only upon η and Dtot.
This unique solution determines the globally optimal normalized threshold, leaving the
optimal decision maker with no free decision parameter. The corresponding optimal reward
rate is given by RRop = RR(θop :η, D, Dtot), and depends also on D.

Eq. (6) establishes a relationship among θ, η and Dtot that must hold if RR is maximized.
Substituting Eqs. (3), the DD model parameters θ and η can be replaced by the performance
parameters 〈DT〉 and p(err) to obtain:

(7)

This optimal performance curve (OPC), pictured in Fig. 1 and first derived in Holmes et al.
(2005) and Bogacz et al. (2006), is a unique, parameter-free relationship that describes the
SAT: the tradeoff between speed (〈DT〉/Dtot) and accuracy (1 − p(err)) that must hold in
order to maximize RR for the given task conditions. Each condition, specified by SNR η and
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total delay Dtot, determines a unique optimal threshold-to-drift ratio θop, given by Eq. (6),
and hence a SAT that maximizes the RR for that condition. As task conditions vary – by
manipulating η via stimulus discriminability, or Dtot via the RSI – θop changes, and with it,
the SAT that maximizes RR. To illustrate this, in Fig. 1(a) we mark eight points,
corresponding to different SNR and Dtot values, on the OPC. Each of these conditions yields
a different RR, as enumerated in the figure caption, but each RR is optimal for that
condition; indeed, all (p(err), 〈DT〉/Dtot) pairs on the OPC correspond to optimal
performances.

The form of the OPC may be intuitively understood by observing that very noisy stimuli (η
≈ 0) contain little information, so that given a priori knowledge that they are equally likely,
it is optimal to choose at random without examining them, giving p(err) = 0.5 and 〈DT〉 = 0
(note the points for η = 0.1 in Fig. 1(a)). At the opposite limit η → ∞, noise-free stimuli are
so easy to discriminate that both 〈DT〉 and p(err) approach zero (note the points for η = 100
in Fig. 1(a)). This limit yields the highest RRs, but when SNR is finite, due to poor stimulus
discriminability or a subject’s inability to clearly detect a signal, making immediate
decisions is not optimal. Instead, it is advantageous to accumulate the noisy evidence for just
long enough to make the best possible choice (see the points for η = 1 and η = 10 in Fig.
1(a)).

Thresholds that differ from the optimal threshold cause sub-optimal performance, as
illustrated by the diamonds in Fig. 1(a), which result from setting θ 25% above or below θop
for η = 1 and Dtot = 2. In both cases the RR degrades by ≈ 1.3%.

To test whether humans can optimize their performance, two experiments were carried out
using different 2AFC tasks, as detailed in Bogacz et al. (2006, 2009). In the first, 20 subjects
viewed motion stimuli (Britten et al., 1993) and received 1 cent for each correct
discrimination. The experiment was divided into 7-minute blocks with different penalty
delays and response-to-stimulus intervals: three with Dpen = 0 and DRSI = 0.5s, 1.0s, and
2.0s, respectively, and one with Dpen = 1.5s and DRSI = 0.5s. One block of trials was run for
each condition except for Dpen = 0, DRSI = 2.0s, for which two blocks were required to
gather suffcient data. In the second experiment, 60 subjects discriminated if the majority of
100 locations on a visual display were filled with stars or empty (Ratcliff et al., 1999). The
design was the same as that of the first experiment except that blocks lasted for 4 minutes,
and the set of 5 blocks was repeated under two diffculty conditions. In both cases subjects
were instructed to maximize their total earnings, and unrewarded practice blocks were
administered before the tests began.

Since the OPC is independent of the parameters defining the DD process, and Dtot enters
only as the denominator of the normalized decision time, data from different subjects and
blocks of trials, with various SNRs and delays, can be combined in a single histogram for
comparison with the OPC. For each subject and condition p(err)s were computed and mean
decision times 〈DT〉 estimated by fitting the DD model to reaction time distributions, as
described in Bogacz et al. (2006). The range of error rates from 0 – 50% was then divided
into 10 bins and a mean normalized decision time 〈DT〉/Dtot. PH: This is correct: Dtot is
constant on each block. computed for each bin by averaging over all subjects and task
conditions with error rates in that bin, yielding the white bars in Fig. 1 (Holmes et al., 2005;
Bogacz et al., 2009). The shaded bars show results of the same analysis restricted to
subgroups of subjects ranked according to their total rewards accrued over all blocks of
trials and conditions. This reveals that the top 30% of subjects perform near the optimal
SAT (the darkest bars lie close to the OPC), but that those with lower total scores exhibit
significantly longer mean normalized decision times.
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As noted in §1, this suboptimal behavior may reflect valuation of accuracy over speed, but it
may also happen that subjects try to optimize their performances and fail to do so due to
erroneous estimates of delays or SNR. (Since optimal thresholds depend on Dtot and η (Eq.
(6)), errors in estimating them would lead to sub-optimality.) In this case, however, both
under- and over-estimation would be expected to occur, yielding individual performances
both below and above the OPC (see diamonds on Fig. 1(a)), in contrast with the averaged
performance above the OPC in Fig. 1(b). We shall revisit this point at the end of §4, after
showing in §3 that the data is captured well by assuming that subjects apply robust rather
than optimal strategies and explicitly account for uncertainties in delays.

We believe that the conditions under which this data was collected, with stimulus
discriminability and RSIs fixed during each block of trials, along with training sessions and
emphasis on maximizing rewards, strongly encouraged subjects to improve their ability to
extract signal from noise, thereby driving their decision mechanisms closer to that described
by the optimal DD process. Indeed, while fits to an extended DD process with variability in
A and x(0) improved on pure DD fits, detailed comparison, summarized in Appendix D,
reveals that both models capture a similar proportion of the variance in subjects’ thresholds.
Furthermore, allowing variability in A and x(0) results in OPCs that differ qualitatively from
the experimental data (Bogacz et al., 2006, Fig. 14). Specifically, trial-to-trial variability in
A decreases the mean normalized decision time for a given error rate, favoring speed over
accuracy, and variability in x(0) results in mean normalized decision times higher than those
observed at low error rates. We therefore believe that it is reasonable to use pure DD fits in
comparing the data from all 80 subjects with the OPC, and with the alternative performance
curves described below.

2.3 Performance curves weighted for accuracy
The tendency to value accuracy over speed has been noted earlier (Myung and Busemeyer,
1989; Maddox and Bohil, 1998; Bohil and Maddox, 2003). This motivates the investigation
of alternative objective functions (Holmes et al., 2005; Bogacz et al., 2006). We give two
examples.

The first is a modified reward-accuracy rate that additionally penalizes errors, as suggested
by the COBRA theory (Maddox and Bohil, 1998; Bohil and Maddox, 2003):

(8)

Here q specifies the relative weight placed on accuracy, and the characteristic time Dtot is
included so that the units of both terms are (time)−1. Secondly, for monetary rewards one
can suppose that errors are penalized by subtraction from previous winnings, leading to the
modified reward rate:

(9)

(Here we require q < 1, so that rewards are positive.) The functions defining RA and RRm
each involve a single parameter q, and since errors are explicitly penalized in the
expressions (8) and (9), no additional delay Dpen is included in Dtot here. Both reduce to RR
for q = 0.
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In Appendix A.2 we derive one-parameter families of OPCs for these objective functions
and briefly characterize them (Eqs. (A.3–A.4) and (A.6)). We show that mean normalized
decision times are well-defined for RA provided that q ≤ 1.096, and that they all peak at
p(err) ≈ 0.1741, as for RR. In contrast, the OPCs of RRm exhibit peaks that move rightward
with increasing q. These modified OPCs will be assessed against the data in §4, along with
predictions from robust decision making (see Fig. 6).

In the next section we develop decision strategies for the 2AFC task that are robust against
uncertainties in either delays (§3.1) or SNR (§3.2). We show that they differ from the
optimal strategies described above, and in §4 we argue that the data is more consistent with
the use of robust decision strategies against uncertainties in delays than for any of the
optimal procedures, especially for 70% of the subjects with lower total scores. In common
with optimal ones, robust strategies require threshold setting, or, equivalently, the
formulation of a stopping criterion for the decision procedure. We do not consider these
issues here, but see Myung and Busemeyer (1989) and Busemeyer and Myung (1992) for
models of criterion learning, and see Simen et al. (2006) for a neural network
implementation of threshold setting in the DD model context.

3 Robust decisions under uncertainties
Optimal decision theory presumes that subjects maximize a relevant utility function, given
the actual task parameters. However, these parameters are rarely known with accuracy and
decisions must be made under uncertainties. In 2AFC tasks, as shown in §2.2, the RR
depends on inter-trial delays and the SNR: quantities that may be difficult to estimate.

There are two major methodologies for handling parameter uncertainty, based on whether
parameters are assumed to be stochastic or not (Ben-Tal and Nemirovski, 2008). The
stochastic approach presumes that the uncertain parameters are characterized by a joint
probability distribution. Given the distribution, the optimal strategy may be applied to select
the decision that maximizes the expected utility. More generally, when only the class of
possible distributions - but not the exact distribution - is known, the maximin strategy may
be applied to select the decision that maximizes the minimum expected utility across all
possible distributions (Wald, 1950). In either case, the stochastic approach requires
additional information about the distribution function or the class of possible distributions.

Here we pursue a non-stochastic approach, which presumes that the parameters are
deterministic but unknown (Ben-Tal and Nemirovski, 2008; Ben-Haim, 2006). First, we
consider the case of bounded uncertainty, in which parameters are assumed to be bounded
within a specific uncertainty set, and apply the maximin strategy to select the decision that
maximizes the minimum utility (§3.1). We consider both uncertainties in delays (§3.1.1) and
in SNR (§3.1.2) and show that the basic pattern of maximin performance curves for the
former agrees well with the experimental data, while that for uncertainties in SNR does not.

We then consider the case in which only the family of uncertainty sets, rather than a specific
one, is known. In this case, robust decisions are based on the notion of satisficing, i.e.,
satisfying an aspiration level of performance that is deemed sufficient. Simon (1956, 1982),
who coined this term, suggested that the tendency to satisfice appears in many cognitive
tasks including game playing, problem solving, and financial decisions, in which people
typically do not or cannot seek optimal solution (Reber, 1995). Given an aspiration level of
performance, the robust-satisficing strategy (Ben-Haim, 2006) selects the decision that
achieves that performance under the largest uncertainty set as detailed in §3.2. The resulting
performance curves are slightly inferior to the maximin performance curves in fitting the
experimental data. We therefore outline this strategy only briefly, and discuss its potential
relevance for other 2AFC experimental paradigms.
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Robust decisions under parameter uncertainties can also account for trial-to-trial variations
in the parameter. Trial-to-trial variations in drift rate are of special interest, given their role
in explaining differences between correct and error response times (§2.2). Bounded trial-to-
trial variations in drift rate are considered in §3.1.2, where, in terms of the maximin strategy,
they are shown to be a special case of uncertainties in the SNR. As mentioned above, robust
decisions under uncertainties in the SNR do not explain the experimental data well, so while
trial-to-trial variations in drift rate may occur, they cannot alone explain the observed sub-
optimal performance.

3.1 Maximin Performance Curves
3.1.1 Uncertainties in delays
Uncertainty set: Uncertainties in delays may arise from poor estimation. Extensive
investigations of interval timing, reviewed in Buhusi and Meck (2005), indicate that
estimated intervals are normally distributed around the true duration with a standard
deviation proportional to it. This is known as the scalar property of interval timing (Gibbon,
1977); it suggests that the size of the uncertainty set for the true interval increases with its
duration.

According to Eq. (5), the RR is affected by both the non-decision delay D = DRSI + T0
(which combines the response-to-stimulus interval and the non-decision latency) and the
total delay Dtot = D + Dpen (which includes also the penalty delay), so we consider
uncertainties in both of these delays. Their estimated values are referred to as the nominal
delays, and denoted by D̃ and D̃tot. Accounting for the scalar property of interval timing,
subjects are assumed to base their decisions on the assumption that the actual values are
within the presumed uncertainty set given by:

(10)

where the size of the uncertainty set is proportional to the nominal delay with a
proportionality constant αp. We refer to αp as the presumed level of uncertainty, and note
that it reflects the subject’s assessment of how well he or she may estimate interval duration.
In this section we assume that αp is known to the subject based on past experience with
interval timing.

Maximin decision strategy: The optimal strategy of §2.2 maximizes the RR that can be
achieved with the nominal delays, but ignores potential degradation in performance due to
unfavorable delays. Instead, the maximin strategy focuses on the worst RR that could be
obtained given the presumed level of uncertainty αp, and selects the maximin threshold
θMM that maximizes the worst RR, as defined next.

Definition 3.1: The maximin threshold θMM under uncertainties in the delays is the
threshold that maximizes the worst RR under the presumed uncertainty set Up(αp : D̃, D̃tot)
for the delays, given the presumed level of uncertainty, αp, the nominal delays, D̃ and D̃tot,
and the SNR, η:

(11)

Maximin performance curves: The inner minimization in Eq. (11) specifies the lowest RR
possible using the threshold θ, given that delays lie within the presumed uncertainty set.
This occurs when delays are longest, as detailed in Appendix B.1. Viewed as a function of
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threshold θ, the worst RR has a single maximum, which specifies the unique maximin
threshold θMM, as described in Appendix B.2. The resulting condition, Eq. (B.3), dictates a
unique SAT that must hold to maximize the worst RR, as stated in the first Theorem.

Theorem 3.1: Maximin performance curve under uncertainties in the delays: Maximizing
the worst RR under the presumed uncertainty set given by Eq. (10), imposes the following
tradeoff between the speed (〈DT〉/D̃tot) and accuracy (1 − p(err)):

(12)

where  is the ratio between the nominal and actual delays. This tradeoff is referred to
as the maximin performance curve (MMPC).

Proof: See Appendix B.2.

The MMPCs specified by Eq. (12) are simply scaled copies of the OPC given by Eq. (7),
which is the special case of a MMPC with αp = 0 and γ = 1. Thus, the MMPCs define a
one-parameter family of performance curves parameterized by the scaling factor γ(1 + αp),
as depicted in Fig 2. When the nominal delay is exact, i.e., Dtot = D̃tot and hence γ= 1, the
resulting MMPCs are referred to as the nominal MMPCs (Fig 2, dashed curves). When the
nominal delay differs from the actual value, the nominal MMPCs are further scaled by the
corresponding ratio γ. Assuming that the actual delay is within the presumed uncertainty
set, this ratio is bounded by (1 + αp)−1 ≤ γ ≤ (1 − αp)−1. Thus, performance may range
within a performance band bounded above by the extreme MMPC given by Eq. (12) with γ
= (1 − αp)−1 (Fig 2, dash-dotted curves) and below by the OPC obtained for γ = (1 + αp)−1)
(Fig 2, solid curve).

Since the MMPCs are scaled copies of the OPC, they all peak at the same error rate (≈
17.41%, see Appendix A.2). The MMPCs and performance bands capture the qualitative
form of the experimental data fairly well, especially for error rates in the range 15–35%, in
which mean normalized decision times peak and are widely spread. Quantitative
comparisons are given in §4.

3.1.2 Uncertainties in signal-to-noise ratios—Apart from delays, performance is also
affected by the drift rate A and noise variance σ2 that characterize the DD process.
Uncertainty in these parameters gives rise to uncertainties in the SNR η = A2/σ2. Here we
develop 2AFC strategies that are robust against uncertainties in SNR, but show that the
resulting maximin performance curves do not match the experimental data as well as
MMPCs under uncertainties in delays.

The analysis is also extended to allow for trial-to-trial variations in SNR. In particular, we
focus on variations in SNR that arise from trial-to-trial variations in drift rate, since these
have been important in explaining differences between correct and error reaction times.
Here, however, the drift rate in each trial is assumed to be bounded within a presumed
uncertainty set, instead of drawn from a Gaussian distribution (Ratcliff et al., 1999). We
show that such trial-to-trial variations do not affect the performance curves, and thus cannot
contribute to explaining the observed sub-optimal performance.

Uncertainty set for fixed SNR: First we consider the case in which the SNR is fixed but
unknown. The estimated SNR is referred to as the nominal SNR, denoted by η̃. Given η̃,
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subjects are presumed to base decisions on the assumption that the actual SNR is a fixed
value within the presumed uncertainty set specified by:

(13)

The case in which the actual SNR may vary from trial-to-trial is considered at the end of this
section.

Sources of uncertainty in SNR: A given level of uncertainty in the SNR may reflect
different combinations of uncertainties in drift rate and noise variance. While neither of
these factors appears explicitly in expression (5) for the reward rate, the drift rate appears
implicitly in defining the threshold-to-drift ratio θ = |xth/A|. Thus, specifying θ defines the
size of the actual threshold xth unambiguously only if uncertainties arise solely from
uncertainties in noise variance.

Alternatively, when uncertainties in SNR are due to drift rate alone, analysis is facilitated by
normalizing the threshold by noise variance and defining the threshold-to-noise ratio ϑ = |
xth/σ|, which does specify the size of xth unambiguously in this case. For simplicity we
consider only these two ideal cases: uncertainties in SNR arising from noise variance with
known drift rate, and uncertainties in SNR arising from drift rate, with known noise
variance.

Uncertainties in noise variance: The maximin threshold and resulting MMPCs are
developed in Appendix B.3, and depicted in Fig. 3 for two levels of presumed uncertainty.
The curves exhibit a leftward shift in peak location that is not characteristic of the
experimental data, and stands in contrast with the MMPCs for uncertainties in delays (see
Fig. 2). We shall nonetheless revisit these MMPCs in the detailed comparison presented in
§4, in order to quantitatively assess the relative likelihood of uncertainties in delays versus
uncertainties in SNR (due to noise variance) in accounting for the experimental results.

Uncertainties in drift rate: The maximin threshold and resulting MM-PCs are developed in
Appendix B.4, and depicted in Fig. 4 for two levels of presumed uncertainty. They also
exhibit leftward shifts in peak values and moreover lie below the OPC for most error rates.
Since these MMPCs deviate even further from the data than those of Fig. 3, they are
excluded from the comparisons of §4. They are nonetheless important in evaluating the
maximin strategy under trial-to-trial variations in drift rate, as described next.

Trial-to-trial variations in drift rate: Trial-to-trial variations in drift rate have been
invoked to explain differences between correct and error reaction times (Ratcliff, 1978;
Ratcliff et al., 1999; Smith and Ratcliff, 2004). Here we extend our robust analysis to
account for such variations and assess their effect on performance curves. Instead of
drawing drift rates from a Gaussian distribution, we assume that they belong to an infinite
sequence of unknown but bounded values. Following the discussion above, variations in
drift rate are formulated as trial-to-trial variations in the SNR with fixed and known noise
variance. The presumed uncertainty set for an infinite sequence of SNRs is

(14)

where ηi denotes the SNR on the ith trial.
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With known noise variance, the threshold-to-noise ratio ϑ determines the actual threshold
unambiguously. For a fixed threshold-to-noise ratio, the worst case scenario that guides the
maximin strategy is independent of whether the SNR is fixed or allowed to vary from trial to
trial. Hence, as long as the presumed level of uncertainty αp is the same, the worst case
performance is the same, as stated in the next Theorem:

Theorem 3.2: Worst performance with a variable SNR: Consider a 2AFC task with fixed
threshold-to-noise ratio ϑ. The worst performance that can occur with any sequence of
bounded SNRs consistent with the presumed uncertainty set of Eq. (14) coincides with the
worst performance that can occur with a fixed SNR consistent with the presumed
uncertainty set of Eq.(13) at the same presumed level of uncertainty αp.

Proof: See Appendix B.5.

Theorem 3.2 implies that the performance curves for the variable SNR case considered
above are the same as those for the fixed SNR case depicted in Fig. 4. Since these MMPCs
do not match the experimental data well, robust strategies for uncertainties in drift rate
cannot account for the observed SATs, even when they include bounded trial-to-trial
variations.

3.2 Robust-satisficing performance curves
Robust-satisficing decision strategy—The maximin strategy presumes that the level
of uncertainty is known. Furthermore, it appeals to worst case performance, which may be
very unlikely, and it yields prudent and pessimistic decisions. Robust-satisficing instead
focuses on meeting a sufficient or required level of performance despite the uncertainties
(Ben-Haim, 2006). It has been applied successfully to explain a range of decision making,
including foraging behavior, where a critical level of food intake is required for survival
(Carmel and Ben-Haim, 2005), and equity premium, in which a critical level of return is
required (Ben-Haim, 2006).

As shown in this section, applying the robust-satisficing strategy to 2AFC tasks results in
performance curves that differ from those associated with the maximin strategy. Under
uncertainties in delays, these robust-satisficing performance curves (RSPCs) are marginally
inferior to the MMPCs in describing the experimental data, while performance curves for
uncertainties in SNR deviate substantially from it. Thus, we focus on robust-satisficing
against uncertainties in delays. While the MMPCs do match the data better, we argue in the
discussion that this may depend on the reward policy and that robust-satisficing may be
relevant for explaining decision making in other 2AFC tasks. The presentation is brief, with
details deferred to Appendices.

Info-gap model—When the level of uncertainty is unknown, only a family of uncertainty
sets, rather than a unique set, can be specified. Motivated by the scalar property of interval
timing, the presumed uncertainty set of Eq. (10) is extended to define an unbounded,
nested family of uncertainty intervals parameterized by the level of uncertainty α:

(15)

Such a structure is known as an information-gap (info-gap) model of uncertainty (Ben-
Haim, 2006). Nesting implies that the sets associated with larger uncertainty levels
include those associated with smaller levels, and all the sets include the nominal values for
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zero uncertainty. Unbounded-ness implies that the lengths of the intervals increase without
bound as the uncertainty level increases.

Robustness and robust-satisficing threshold—Consider a fixed threshold θ, which
achieves the nominal reward rate RR(θ: η, D̃, D̃tot) of Eq (5), under the nominal delays D̃
and D̃tot. As the level of uncertainty increases, adverse delays may be encountered and the
reward rate may deteriorate. Robustness assesses how far the level of uncertainty may
increase without jeopardizing the required RR. Noting that a better than nominal RR cannot
be guaranteed even without uncertainty, the robustness for such a requirement is defined to
be zero. Otherwise, the robustness is the largest level of uncertainty under which the
required RR can be guaranteed. For a fixed threshold, robustness is a non-increasing
function of RR: RR = 0 (if such would ever satisfy anyone!) may be achieved with infinite
robustness, while better than nominal RRs have zero robustness. See Appendix B.6 for
rigorous definitions and derivations.

Given a sub-optimal required reward rate Rr, the robust-satisficing strategy selects the
threshold that provides the largest robustness. The resulting RSPCs are derived in Appendix
B.7 (see Eq. (B.28)). Representative RSPCs are depicted in Fig. 5 for zero penalty delay
Dpen = 0 (i.e., D = Dtot), and three different levels of normalized required performance

. All the RSPCs peak at p(err) ≈ 13.52%: to the left of the OPCs and
MMPCs that peak at p(err) ≈ 17.41%. Since the RSPCs are evaluated for Dpen = 0, they
must be evaluated against experiments without penalty delays. This is done in §4, where it is
shown that the leftward shift slightly degrades the data fit (see Fig. 6 and Table 4).

The robust satisficing strategy is relevant only when the required reward rate is sub-optimal,
i.e., Rr < RRop(η: D̃, D̃tot). In Appendix B.7 it is shown that this constrains the RSPCs to lie
above the OPC. Since the experimental data also primarily lies above the OPC, this is the
main region of interest. Nevertheless, as noted in Appendix B.7, the extension of RSPCs
below the OPC is also relevant and the complete RSPCs are used for the analysis of §4.

3.3 Summary of robust strategies
We have presented two robust strategies, maximin and robust-satisficing, and derived the
associated performance curves under different sources of uncertainty. Performance curves
strongly depend on the source of uncertainty and appear to qualitatively match the data of
Fig. 1 best for uncertainties in delays, with MMPCs seeming marginally superior to RSPCs
(Figs. 2 and 5). Uncertainties in SNR do not appear as relevant to the present data,
particularly when they arise from uncertainties in drift rate (Fig. 4) rather than noise
variance (Fig. 3).

4 Comparisons with experimental data
In this section we assess quantitative fits of robust performance curves to the behavioral
data. Following the qualitative analyses of §3 (summarized in §3.3) we focus on the three
best candidates: MMPCs and RSPCs for uncertainties in delays, and MMPCs for
uncertainties in noise variance. For comparison, we also assess the OPCs for the alternative
objective functions introduced in §2.3.

Experimental data
We limit our comparison to data from blocks with no penalty delays Dpen = 0 (i.e., Dtot =
D), because OPCs for RRm and RA are only defined for Dpen = 0, and RSPCs for
uncertainty in D involve the ratio D/Dtot, which differs between blocks with Dpen = 0 and
Dpen > 0.
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As noted in §2, the SAT differs among subjects with different total scores, and hence
performance curves must be compared with data from different groups of subjects
separately. In particular, some subjects with the lowest scores had decision times an order of
magnitude higher than others (see the bottom panel of Fig. 6), and we therefore analyze the
lowest 10% of subjects separately. We then split the remaining 90% into 3 equal groups, but
upon finding no significant difference between mean normalized decision times of the 30–
60% and 60–90% groups (paired t-test across 10 ranges of error rates: p > 0.35), we
henceforth pooled the data from these two groups. Normalized decision times for the
resulting middle 60% and for the top 30% groups are shown in the upper panels of Fig. 6.
The number of experimental conditions falling into each bin (i.e. the number of data points
averaged to obtain each mean decision time) is given in Table 2.

Fitting method
Except for the parameter-free OPC for RR, each performance curve includes one free
parameter, denoted by q or α. We estimated these parameters via the maximum likelihood
method, using the standard assumption that normalized decision times are normally
distributed around the performance curve being fitted, with variance estimated from the
data. As noted in §2.3, the OPC for RA is not defined for weight parameters q > 1.096 (cf.
inequality (A.5) of Appendix A.2) and the OPC for RRm is not defined for p(err)s close to
0.5 if q > 1, so in fitting these functions we restricted to q ≤ 1.096 and q ≤ 1 respectively.
Further comments appear below and in Appendix C.

Results
Fig. 6 shows the best-fitting performance curves for the three groups, and parameter values
estimated for each performance curve are given in Table 3. For each family of performance
curves, the corresponding parameter α or q increases as the total score decreases, being
lowest for the top 30% and highest for the bottom 10% of subjects. This is consistent with
natural interpretations of the various strategies, as follows: (i) for MMPCs it implies that
poorer performers have higher presumed uncertainty in D or SNR; (ii) for RSPCs it implies
that they require lower levels of reward, and (iii) for the RRm and RA criteria it implies that
they place higher emphasis on accuracy. Note that the best fit for the RA theory with the
lowest 10% is with q = 1.096, at the constraint limit of Eq. (A.5), and that the corresponding
OPC has become concave on either side of its sharp peak.

Comparison of likelihoods of data given different performance curves reveals that the
MMPC with uncertainty in D fits the data best for all three groups of subjects. Table 4
shows the ratios of the likelihood of the data given the MMPC with uncertainty in D, with
likelihoods given each of the other performance curves. For the top 30% of subjects all
curves fit comparably well, except the OPC for RR. Differences in fit qualities increase
significantly for the middle and bottom groups, and are also high when considering the data
from all subjects, as summarized in the last column of Table 4. These indicate that the data
is several orders of magnitude more likely given the MMPC with uncertainty in D, than
given the OPC for either RR or RRm or the MMPC with uncertainty in SNR. It also shows
that the data is over 13 (or 43) times more likely given the MMPC with uncertainty in D,
than the RSPC with uncertainty in D (or the OPC for RA). In summary, the MMPC with
uncertainty in D provides the best fit for all three subgroups, followed closely by the RSPC
for D and the OPC for RA.

At least two effects influence the reliability of the likelihood ratio estimates. First, the test
assumes that experimental decision times are normally distributed around the performance
curve being fitted. We assessed this in Appendix C, concluding that there is no evidence for
non-Gaussianity in the majority of bins, although up to 3 out of the 10 distributions in each
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group are significantly non-Gaussian, being skewed toward long DTs. Second, likelihood
ratios may depend on the way that subjects are split into groups, since we implicitly assume
a homogeneous strategy within each group. To investigate this we fitted data from six
additional splits, ranging from all 80 individuals treated singly, to two groups of 40 subjects
each. As described in Appendix C, while different splits lead to different likelihood ratios,
the relative ordering of performance curves remains essentially the same as that of Table 4.
We therefore believe that the conclusions drawn above and developed in §5, are sound.

We end this section with a brief discussion of the alternative hypothesis noted in §2.2, that
subjects may try to optimize, but do so using erroneous parameter estimates. As pointed out
there, both over- and under-estimation of thresholds would be expected in such a case,
yielding individual performances above and below the OPC. We tested this by computing,
for each subgroup of subjects, the fraction of individual performances below the OPC. For
the top 30% of subjects this is 50.6%, and for the remaining subgroups 25.9% and 0%
respectively. Although the individual subject data shows substantial scatter (not shown
here), this finding supports our contention that while the top group of subjects may indeed
try to optimize, the remaining 70% intentionally employ higher thresholds.

5 Discussion
We have developed an approach to two-alternative forced choice (2AFC) tasks that accounts
for potential uncertainties in experimental conditions, specifically, estimated delays and
signal-to-noise ratio. Two strategies – maximin and robust satisficing – were proposed. The
former assumes that subjects maximize guaranteed performance under a presumed
uncertainty level; the latter assumes that they maximize the uncertainty under which a
required level of performance can be guaranteed. We compared these strategies with optimal
procedures based on reward rate and modified reward rates weighted for accuracy, and
found that the maximin strategy with uncertainties in delays predicts performance curves
that best match behavioral data from a group of 80 subjects (Fig. 6). Performance curves
predicted by the robust satisficing strategy with uncertainties in delays, and optimization of
a modified reward-accuracy rate (RA) are the closest competitors. Additional experiments
are needed to further assess which strategy is more consistent with human decision making,
as discussed at the end of the section.

The robust strategies result in performance bands around the nominal performance curves.
These bands explain well the range of mean normalized decision times observed for a given
error rate. We also considered the alternative hypothesis that subjects may try to optimize,
but with erroneous parameter estimates. We found it inconsistent with the observation that
most subjects tended to perform above rather than below the OPC.

Accounting for uncertainty in the parameters of the pure DD model provides an alternative
to the probabilistically-extended DD model that includes trial-to-trial parameter variations
(Smith and Ratcliff, 2004). We show that uncertainty in SNR can derive from trial-to-trial
variations in drift rate, albeit bounded ones, and thus can also account for differences
between response times for correct and error trials. However, unlike those for uncertainties
in delays, we find that the resulting performance curves do not match well the experimental
data (nor do performance curves for Gaussian-distributed drift rates (Bogacz et al., 2006)).
This does not mean that trial-to-trial variations in SNR are absent, but it may imply that the
presumed uncertainty in the SNR is much smaller than the presumed uncertainty in delays.

It is notable that uncertainties in delays result in performance curves that fit the data well,
while uncertainties in SNR do not do so. A major source of the former may be attributed to
the scalar property of interval timing (Gibbon, 1977; Buhusi and Meck, 2005).
Psychophysical experiments suggest that elapsed time estimates are distributed normally
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around the true value, with a standard deviation proportional to it. Thus the sizes of
confidence intervals around an estimated experiential delay are proportional to the delay
itself. This relationship is captured by the presumed uncertainty set of §3.1, and info-gap
model of §3.2. In contrast to potential uncertainties in estimating time intervals, human
subjects seem to be very sensitive to SNR levels. For example, Luijendijk (1994) found that
the perception threshold for noise in images was as much as 27dB below signal level. This
suggests that humans can accurately assess SNR, although further, more direct, experimental
verification would be required.

The underlying assumption in this paper is that subjects either optimize or satisfice by
setting their decision thresholds based on estimates of intertrial delays and SNR, as modeled
by a DD process. In a related study, Simen et al. (2006) proposed a neural network model
for rapid threshold adjustment based on estimates of reward rate RR that are updated as
trials proceed. Their model relies on prior, long-term, learning of an approximate linear
relationship between maximum RR and threshold that is independent of SNR over an
appropriate SNR range. It too implicitly assumes the ability to estimate time intervals, since
the discrete rewards following correct responses must be converted into RR, and it also
suggests that SNR may not play as important a role as delays.

As noted in §3, satisficing was first introduced by Simon (1956, 1982) to account for
decisions motivated by a level of aspiration, rather than optimization. Optimization has been
heavily criticized due to its dependence on unrealistic amounts of knowledge and
simplifying assumptions (Gigerenzer, 2001). Instead, decision making based on bounded
rationality (Gigerenzer and Goldstein, 1996; Gigerenzer, 2001, 2002) stresses the
importance of proper cues for evaluating different alternatives and heuristics for making fast
and frugal decisions. The Take-The-Best heuristic, for example, suggests focusing on the
best cue that differentiates between the alternatives. In the context of the DD model Eq. (1),
this may suggest monitoring the state variable x(t) as the cue; but the issue of determining
the threshold is left open.

We propose two kinds of additional experiments to investigate whether subjects satisfice or
optimize in 2AFC: (i) direct investigation of the effects of induced uncertainties, and (ii)
correlation of performance in 2AFC with accuracy in interval timing. Uncertainties could be
induced by varying SNRs randomly in each block of trials, although this violates the
assumption of statistical stationarity on which the optimality proofs for the SPRT and DD
model rely. However, instead of keeping DRSI constant on each block, RSIs could be
drawn from a distribution with a fixed mean D̄RSI, thus keeping the mean D̄tot constant
on blocks. D̄RSI and the variance of the distribution could then be changed from block
to block and the effects on performance assessed in comparison with the different
decision strategies.

Alternatively, a subject’s standard deviation in interval timing, σI, could be measured
directly in separate time-estimation trials, and then correlated with performance on 2AFC
tasks. The maximin strategy suggests that the normalized decision time 〈DT〉/Dtot is
proportional to 1 + αp. Assuming that the presumed uncertainty αp is proportional to σI,
there should be a correlation (across subjects) between 〈DT〉/Dtot’s in 2AFC experiments
and average errors in interval timing. One could also correlate timing ability with
performance on a deadlined choice task with substantial penalties for failures to respond
before the deadline. Unlike the free response paradigm, poor timers are predicted to respond
prematurely, and hence faster and less accurately, under such conditions (Frazier and Yu,
2007): in the opposite direction to their suboptimal slower and more accurate free response
behavior.
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The robust satisficing strategy is relevant when a critical performance level must be met,
while the maximin strategy is appropriate for optimizing performance under an expected
level of uncertainty. The current results indicate that the majority of subjects in 2AFC tasks
seem to follow maximin rather than robust satisficing or optimal performance curves. It
would also be interesting to investigate whether subjects change their strategy under
different conditions, e.g., do they resort to robust satisficing when the success of the whole
block (and the consequent net reward) depends on achieving a specific level of performance.
This question could be addressed by additional experiments in which a fixed reward is given
when outperforming a preset required level, instead of the current paradigm in which the
reward increases linearly with the number of correct responses.

As noted in §1, the pure DD model is analytically tractable, yielding explicit, parameter-free
OPCs. It supports a normative decision theory that can explain sub-optimal experimental
data by allowing analytical derivation of one-parameter models for comparison with the
optimal strategy that maximizes reward rate. The current analysis suggests that robust
strategies against uncertainties in delays best explain the sub-optimal results in the present
data. Nevertheless, additional potential sources of nonoptimality identified in §2.1 should
also be investigated.
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Appendices: Proofs and mathematical details

A Reward rate and optimal performance

A.1 Reward rate
Lemma A.1

Let the random variable St denote the number of correct decisions in time t. As t → ∞, the
mean number of correct decisions per unit time 〈St〉/t approaches the RR defined by Eq. (4).
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Proof
Consider the DD model of Eq. (1), which is re-initialized immediately after crossing the
threshold. The resulting passage times define a sequence of points in time, and hence may be
regarded as a realization of a point process. Furthermore, since the first passage time is
independent of the previous passage times, the resulting point process can be described as a
renewal process (Cox, 1962), i.e., a point process in which intervals between the points are
the realizations of a random variable T whose pdf depends only on the time since the last
point (i.e., last passage time). Let Nt be the random variable indicating the number of
passages in time t. For a renewal process the asymptotic distribution of Nt for large t is
normal with mean 〈Nt〉 = t/〈T 〉 (Cox, 1962, Eq. (3.3.3)) (this relies on the asymptotic
normal distribution of the sum of the first r renewals for large r). So, for large t, t = 〈T〉 〈Nt〉.

Let p(corr) be the probability that a decision is correct. Then, for n decisions the mean
number of correct decisions is: 〈St|Nt = n〉 = p(corr) n; and the mean number of correct
decisions is:

(A.1)

Hence, asymptotically as t → ∞ we have

(A.2)

The proof is completed by noting that the decision times form a renewal process too, where
each decision interval equals the corresponding first passage time plus processing and delay
intervals. Substituting p(corr) = 1 − p(err) and 〈T〉 = 〈DT〉 + T0 + DRSI + Dpenp(err) in Eq.
(A.2) results in Eq. (4).

A.2 Families of OPCs for alternative objective functions RA and RRm

Employing Eqs. (3) and an analogue of (6) as in §2.2, the expression (8) for RA may be
maximized to yield a family of OPCs parameterized by q:

(A.3)

(A.4)

is the reciprocal of the OPC formula (7). In Lemma A.2 below we prove that  has a unique
minimum (and hence that the OPC has a unique peak) at p(err) ≈ 0.1741. It follows that the
mean normalized decision times given by Eq. (A.3) are non-negative real numbers provided
that the weight satisfies the following inequality:

(A.5)
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Numerically, we find  ≈ 5.224, implying that q ≤ 1.096. Moreover, differentiating the
expression in (A.3-A.4) with respect to p(err), we find that its critical points coincide with
the minimum of  for all q satisfying (A.5), implying that the the OPCs for RA all peak at
p(err) ≈ 0.1741, as for RR.

A similar computation for the objective function (9) for RRm leads to the following OPC
family:

(A.6)

whose mean normalized decision times are non-negative provided that q ≤ 1. Unlike the
OPCs for RA, the maxima of the family (A.6) move rightward with increasing q (Fig. 6).
Eqs. (A.3) and (A.6) both reduce to (7) for q = 0.

Lemma A.2
The function  of Eq. (A.4) has a unique minimum  ≈ 5.224 at ER ≈ 0.1741 and 
approaches +∞ as ER → 0 and as ER → 0.5.

Proof
The limits at ER = 0 and 0.5 are obtained directly for the second term in , and via
L’Hôpital’s rule for the term involving logarithms. Before computing the derivative to prove
that there is a unique minimum, it is convenient to change variables by defining

(A.7)

note that as p(err) rises from 0 to 0.5, y falls monotonically from +∞ to 1. We then have

(A.8)

Setting Eq. (A.8) equal to zero and rearranging, we find that critical points of  occur at the
roots of

(A.9)

but in fact the solution is unique, since the left hand side of (A.9) is strictly increasing from
−1 to ∞ and its right hand monotonically decreases from 2 to 1, as y goes from 1 to ∞. The
former claim is easy to check, and the latter follows from computation of the derivative of
[log(y)/(y − 1)]:

(A.10)

This expression is clearly negative for all y ≥ e, and the following series expansion shows
that it is in fact negative for all y > 1 and zero only at y = 1:
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(A.11)

see Abramowitz and Stegun, eds. (1972, Formula 4.1.25). Numerical solution of Eq. (A.9)
yields the estimates of the lemma.

B Robust performance

B.1 Extreme performance under uncertainties in delays
The worst (minimal) reward rate that may occur under the presumed uncertainty set Up(αp:
D̃, D̃tot) for the delays, is denoted by:

. According to Eq. (5), the RR is
minimized when the actual delays are the longest possible within the presumed uncertainty
set. Given the presumed uncertainty set of Eq. (10), the longest possible delays are D = D̃(1
+ αp) and Dtot = D̃tot(1 + αp), so:

(B.1)

We note that when there are no delays, the reward rate, denoted by RR0, is RR0(θ, η) ≡ [θ(1
− exp(−2ηθ))]−1.

Similarly, the best performance (maximum RR) that can be obtained is denoted as:

. According to Eq. (5), RR is
maximized when the actual delays are the shortest, i.e., when D = max(0, D̃(1 − α)) and Dtot
= max(0, D̃tot(1 − α)). For α ≤ 1, we have:

(B.2)

The case α ≥ 1 includes the favorable condition of zero delays, so RRMAX(αp ≥ 1 : θ,η, D̃,
D̃tot) = RR0(θ,η).

B.2 Maximin performance curves under uncertainties in delays
Here we prove Theorem 3.1. Specifically, we develop the maximin performance curves
(MMPC) given that the uncertainties in the delays are described by the presumed uncertainty
set of Eq. (10)) with the presumed level of uncertainty αp.

Proof of Theorem 3.1
The inner minimization in Eq. (11) specifies the worst reward rate that might be obtained
using the threshold θ, given the uncertainty set of Eq. (10) and the presumed level of
uncertainty αp. The worst (minimal) reward rate RRMIN, is derived in Appendix B.1, and
given by Eq. (B.1). The maximin threshold θMM should maximizes Eq. (B.1).
Differentiating the RRMIN (αp : θ,η, D̃, D̃tot) given by Eq. (B.1) with respect to θ and
setting this derivative to zero results in the following condition for the maximin threshold
θMM :

Zacksenhouse et al. Page 22

J Math Psychol. Author manuscript; available in PMC 2012 November 23.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(B.3)

It is straightforward to verify that when this condition holds, the second derivative is
negative, and hence condition Eq. (B.3) defines a unique maximum for the worst reward
rate, RRMIN.

Finally, substituting Eq. (3) in Eq. (B.3), and setting  result in the maximin
performance curve (MMPC) of Eq. (12)

B.3 Maximin Performance curves for uncertainties in noise variance
Here we consider uncertainties in the SNR that arise from uncertainties in the noise
variance. Thus, the uncertainty set for the SNR, specified by Eq. (13) is assumed to reflect
uncertainties in the noise variance, while the drift rate A in each experimental block is
assumed fixed and known. In this case, determining the threshold-to-drift ratio θ
unambiguously defines the threshold xth = Aθ for the DD process of Eq. (1).

Definition B.1
Maximin threshold-to-drift ratio under uncertainties in the SNR: The maximin threshold-to-
drift ratio θMM is the one that maximizes the worst RR under the presumed level of
uncertainty αp in the SNR, given the delays and nominal SNR:

(B.4)

Theorem B.1
Maximin threshold-to-drift ratio under uncertainties in SNR: Given the presumed
uncertainty set given by Eq. (13) with αp ≤ 1, the maximin threshold-to-drift θMM satisfies:

(B.5)

Proof
The inner minimization in Eq. (B.4) specifies the worst reward rate that may occur under the
presumed uncertainty set Up(αp, η̃) for the SNR, and is denoted by:

. According to Eq. (5), the minimization of
the RR with respect to η depends on the sign of Dtot − θ. We note that for the optimal
threshold, Eq. (6) implies that Dtot − θop > 0.

First, we consider thresholds that satisfy Dtot − θ > 0, for which RR is minimized at the
lowest SNR, i.e., ηL = max{0, (1 − αp)η̃}, so for αp ≤ 1:

(B.6)

The case αp ≥ 1 includes the worst condition of zero SNR. The resulting performance
RRMIN (αp ≥ 1 : θ, η̃, D, Dtot) = [D + Dtot]−1, corresponding to instant response at chance
level (i.e., with p(err) = 0.5 cf. Eq. (2)), is referred to as chance performance and denoted by
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RRchance ≡ [D + Dtot]−1. Chance performance can be achieved even under infinite
uncertainty, and is thus of no interest.

Concentrating on αp ≤ 1, we note that for either θ = 0 or θ = Dtot, the worst reward rate is
the chance level: RRMIN (αp ≤ 1 : θ = 0, η̃, D, Dtot) = RRMIN (αp ≤ 1 : θ + Dtot, η̃, D, Dtot)
= RRchance. Furthermore, at θ = 0, the derivative of RRMIN (αp ≤ 1 : θ, η̃, D, Dtot) with
respect to θ is positive, and hence there is at least a local maximum of Eq. (B.6) for
thresholds in the range 0 < θ < Dtot. Differentiating Eq. (B.6) with respect to θ, and setting
the derivative to zero, indicates that θMM must satisfy Eq. (B.5). It is straightforward to
verify that RRMIN (αp ≤ 1 : θMM, η̃, D, Dtot) is a maximum by evaluating the second
derivative at θMM that satisfies Eq. (B.5).

For large thresholds that satisfy Dtot − θ < 0, the RR is minimized at the highest SNR, i.e.,
ηH = (1 + αp)η̃, so:

(B.7)

Noting that the last term is always negative, and that since αp ≥ 0, the exponent is always
less than unit, i.e., (exp(−2η̃(1 + αp)θ) < 1), we conclude that RRMIN (αp:θ, η̃, D, Dtot) < [θ
+ D + (Dtot − θ)]−1 = RRchance. As argued above, sub-chance performance levels, i.e., RR <
RRchance, can be achieved even under infinite uncertainty, and are thus of no interest.

When the presumed level of uncertainty is zero, Eq. (B.5) or the maximin threshold-to-drift
ratio reduces to Eq. (6) for the optimum threshold.

Assuming that the nominal SNR is the actual SNR (η = η̃), the nominal MMPC for a
presumed level of uncertainty αp ≤ 1 in the SNR, can be derived by substituting Eq. (3) in
Eq. (B.5):

(B.8)

where χ ≡ 1 − αp. Under uncertainties in the SNR, the MMPCs are not scaled version of the
OPC (Eq. (7)), but reduce to it when the uncertainty vanishes (χ= 1).

If the SNR varies within the range consistent with the presumed level of uncertainty, i.e., η
∈ [η̃ (1 − αp), η̃(1 + αp)] for αp ≤ 1, the maximin performance bands are bounded below
(for η = η̃(1−αp)) by the OPC (Eq. (7)), and above (for η = η̃(1 + αp)) by Eq. (B.8) with

.

B.4 Maximin performance curves under uncertainties in drift rate
Here we consider uncertain drift rates. In this case, specifying the threshold-to-drift ratio θ ≡
|xth/A| does not specify the process threshold xth unambiguously, since the latter depends on
the uncertain drift rate. Instead we introduce the threshold-to-noise ratio ϑ ≡ |xth/σ|.
Assuming that the noise variance σ2 is fixed and known, determining the threshold-to-
variance ratio ϑ unambiguously defines the process threshold xth for the drift-diffusion
process of Eq. (1). Note that , so the quantities describing performance: p(err) and
〈DR〉 in Eq. (2) and RR in Eq. (5), can be expressed in terms of ϑ and η in place of θ and η.
In particular, the reward rate can be expressed as a function of η and ϑ:
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(B.9)

Definition B.2
Maximin threshold-to-noise ratio under uncertainties in SNR: The maximin threshold-to-
noise ratio ϑMM is the threshold that maximizes the worst RR under the presumed
uncertainty set Up(αp, η̃) for the SNR, given the level of uncertainty αp, the delays, D and
Dtot, and the nominal SNR, η̃:

(B.10)

Theorem B.2
Maximin threshold-to-noise ratio under uncertainties in SNR: Given the presumed
uncertainty set for the SNR given by Eq. (13), with a presumed level of uncertainty αp ≤ 1,
the maximin threshold-to-noise ϑMM satisfies:

(B.11)

Proof
For a fixed ϑ, the reward rate given by Eq. (B.9) is an increasing function of η, and hence its
minimum occurs at the lowest SNR consistent with the presumed uncertainty αp ≤ 1, i.e., ηL
= (1 − αp)η̃. The maximin threshold-to-noise variance, defined by Eq. (B.10), is obtained by
substituting the lowest SNR in Eq. (B.9), differentiating with respect to ϑ, and equating to
zero.

As in Appendix B.3, the case αp ≥ 1 includes the worst case of zero SNR, which results in
chance performance, which is of no further interest.

Given η̃, the threshold-to-noise ratio is related to the threshold-to-drift ratio by .
Thus, the expression for θ in Eq. (3) can be used to express ϑMM, and consequently the
condition in Eq. (B.11), in terms of the two performance parameters, p(err) and 〈DT〉, and
the nominal SNR, η̃. Assuming that the actual SNR equals the nominal SNR (η = η̃), the
later can also be expressed in the terms of the performance parameters to derive the nominal
MMPC for a fixed level of presumed uncertainty αp ≤ 1 in the SNR:

(B.12)

where, as in Eq. (B.8), χ ≡ 1 − αp.

If the SNR varies within the range consistent with the presumed level of uncertainty, i.e., η
∈ [η̃(1 − αp), η̃(1 + αp)] for αp ≤ 1, the maximin performance bands are bounded by the

OPC (Eq. (7), obtained for η = η̃(1 − αp)) and by Eq. (B.12) with  (for η = η̃(1 +
agr;p)).
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B.5 Performance under uncertain and variable drift rate
Here we prove Theorem 3.2, which states that for a fixed threshold-to-noise ratio, the worst
performance with a sequence of possibly variable SNRs, within the presumed uncertainty set
defined by Eq. (14), is the same as that for a fixed SNR within the presumed uncertainty set
defined by Eq. (13), under the same level of presumed uncertainty αp.

Proof of Theorem 3.2
Consider a 2AFC task where the SNR at the ith trial is the ith element in an infinite sequence

 consistent with the presumed uncertainty set of Eq (14). Given the presumed level of
uncertainty αp the lowest SNR consistent with that uncertainty set is given by ηw = max(0,
(1 − α)η̃).

Let p(η: ϑ) be the probability of error in a 2AFC with a fixed SNR η using the threshold-to-
noise ratio ϑ. Noting that , it follows from Eq (2), that:

(B.13)

When the SNR varies from trial-to-trial according to a specific sequence  the
probability of error in a 2AFC experiment of fixed duration is a random variable Perr, which
depends on the number of trials in the experiment. Let P (n) denote the probability of having
n trials in the fixed duration of the experiment, the mean Perr (see Section A.4.3 of Bogacz et
al. (2006), and Gold and Shadlen (2002)) is:

(B.14)

Since p(η: ϑ) given in Eq. (B.13) is a decreasing function of η, the mean Perr can only
increase by replacing each ηi with ηw:

(B.15)

which is the probability of error with a fixed SNR ηw.

Similarly, let 〈DT(η: ϑ)〉 be the mean response time in a 2AFC with a fixed SNR η using
the threshold-to-noise ratio ϑ. Noting that , it follows from Eq (2), that:

(B.16)

which is a decreasing function of η (as proved in Lemma B.1 at the end of this Appendix).

The mean response time with the sequence of SNRs  is (Gold and Shadlen, 2002):

(B.17)
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Since 〈DT(ηi : ϑ)〉 given by Eq. (B.16) is a decreasing function of η, the mean response

time with a sequence of SNRs  can only increase by replacing each ηi with
ηw:

(B.18)

which is the mean response time with a fixed SNR ηw.

The RR, given by the ratio between the probability of correct response and the average time
between responses:

(B.19)

is a decreasing function of both  and . According to Eqs (B.15)
and (B.18), both of these terms are maximized simultaneously when the SNR is fixed at its
worst level, ηw. Hence, when the SNR may vary from trial-to-trial according to a sequence

 consistent with the presumed uncertainty set of Eq (14), the worst performance is
obtained when ηi = ηw. This performance is the same as the worst performance for a fixed
SNR within the presumed uncertainty set of Eq. (13), for the same level of uncertainty αp.

Lemma B.1

The function  is a decreasing function of η

Proof
The derivative of 〈DT(η| ϑ)〉 is given by:

(B.20)

Using a Taylor series to expand the exponent and noting that for n > 3, 2n < 2n, we may
conclude that 2y exp(y)+1 < exp(2y). Substituting  indicates that the above
derivative is negative, thereby completing the proof.

B.6 Robustness to uncertainties in delays
This section defines and derives the robustness of a 2AFC task for achieving the required
reward rate under uncertainties in the delays.

Definition B.3
Robustness of a 2AFC task to uncertainties in delays: Consider a 2AFC task with
uncertainties in the delays specified by an info-gap model. Given a threshold θ, the
robustness α̂ is the greatest level of uncertainty in the info-gap model U(α, D̃, D̃tot) for
which the required reward rate Rr ≤ RR(θ : η, D̃, D̃tot) can be guaranteed:
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(B.21)

The upper limit on the required reward rate, RR(θ: η, D̃, D ̃tot), is the nominal reward rate
that can be achieved using the threshold θ with the nominal delays, D̃ and D̃tot, and the
SNR, η, i.e., Eq. (5) with the nominal delays. The robustness for achieving a better than
nominal reward rate is zero.

The robustness depends on the structure of the info-gap model. Given the specific info-gap
model of Eq. (15), the robustness against uncertainties in the delays can be derived as
specified in the next Theorem.

Theorem B.3
Robustness of a 2AFC task to uncertainties in the delays: Consider a 2AFC task with
uncertainties in the delays specified by the info-gap model of Eq. (15). Given the nominal
delays, D̃ and D̃tot, and the SNR, η, the robustness for achieving the required performance
Rr with the threshold θ is given by:

(B.22)

Proof
The internal minimization in Eq. (B.21) is derived in Appendix B.1 for the presumed level
of uncertainty, i.e., for α = αp, and expressed in Eq. (B.1). For a general level of uncertainty
α, Eq. (B.1) implies that the internal inequality in Eq. (B.21) can be expressed as:

(B.23)

The robustness α̂ is the level of uncertainty α for which equality holds, and thus given by
Eq. (B.22).

Eqs. (5) and (B.22) imply that the robustness for achieving the nominal performance is zero,
i.e., α̂(Rr = RR(θ: η, D̃, D̃tot), θ : η, D ̃, D̃tot) = 0. In particular, the optimal nominal
performance RR(θop : η, D̃, D̃tot) (i.e., Eq. (4) for the optimal threshold under nominal
delays) has zero robustness. Only lower reward rates Rr < RR(θ: η, D̃, D̃tot) ≤ RR(θop : η,
D̃, D̃tot), can be attained robustly. Robustness to uncertainties requires relinquishing
performance.

B.7 Robust satisficing under uncertainties in delays
This section specifies the robust-satisficing strategy and derives the resulting performance
curves under uncertainties in the delays.

Eq. (B.21) implies that sub-optimal reward rates have positive robustness to uncertainties in
the delays. The robust-satisficing strategy seeks the threshold θRS that provides maximum
robustness for required reward rates that are sub-optimal, as defined below:
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Definition B.4
Robust-satisficing threshold under uncertainties in the delays: Consider a 2AFC task with
SNR, η, and nominal delays, D̃ and D̃tot. Given the required sub-optimal performance, Rr,
the robust-satisficing threshold, θRS, maximizes the robustness for achieving Rr under
uncertainties in delays:

(B.24)

Robust-satisficing under uncertainties in the delays imposes a strict condition on the
threshold θRS as stated in the next Theorem.

Theorem B.4
Robust-satisficing threshold under uncertainties in the delays: Consider a 2AFC task with
uncertainties in the delays specified by the info-gap model of Eq. (15). Given the nominal
delays, D̃ and D̃tot, the SNR, η, and the sub-optimal required reward rate Rr < RRop(η: D̃,
D̃tot), the robust satisficing threshold θRS satisfies:

(B.25)

Proof
For a fixed level of required performance Rr, consider the interval of threshold values for
which the nominal reward rate is higher than required, i.e., threshold values for which Rr <
RR(θ, η : D̃, D̃tot). This is a single (connected) interval since RR as a function of the
threshold has a single global maximum, as noted following Eq. (6). Within this interval the
robustness is positive and given by the second term in Eq. B.22. The boundaries of the
interval are defined by Rr = RR(θ, η : D̃, D ̃tot) - at which the robustness is zero; or by θ = 0
at the lower boundary. In the later case, the derivative of the robustness with respect to the
threshold at θ = 0 is positive. Since the robustness within the interval is higher than at the
boundaries, there must be at least one maximum within this interval. The derivative of the
right term in Eq. B.22 with respect to θ can be expressed as

(B.26)

(B.27)

Hence, extrema of α̂(Rr,θ : η, D ̃, D̃tot) as a function of θ satisfy g(θ, η : Rr, D̃, D̃tot) = 0. It is
straightforward to verify that when the latter equality holds, the second derivative of the
robustness is negative. Thus g(θ, η: Rr, D ̃, D̃tot) = 0 defines a unique maximum and,
according to Eq. (B.27), the robust-satisficing threshold that satisfies this equality must obey
Eq. (B.25).

Substituting Eq. (3) in Eq. (B.25), specifies the robust-satisficing performance curve (RSPC)
that describes the tradeoff between speed (〈DT〉/D ̃tot) and accuracy (1−p(err)) that must hold
in order to robust-satisfice the required performance Rr:
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(B.28)

Note that this expression does not reduce to a scaled OPC (7) even when the actual delays
equal the nominal values (D = D̃ and Dtot = D ̃tot), or when there is no penalty delay (D̃tot =
D̃). The RSPCs have a different shape.

The RSPCs depend on the ratio D̃/D̃tot, so for comparison with experimental data, this ratio
must be determined or related to the actual ratio D/Dtot. When no penalty delay is used, Dpen
= 0, and the ratio is one. The corresponding RSPCs are specified by Eq. (B.28) with D̃/D̃tot
= 1:

We note that the constraint on the required performance Rr < RRop(η : D̃, D̃tot) implies that
the RSPCs lie above the OPC. However, it is possible to extend Eqs. (B.25) and (B.28)
below the OPC, as briefly outlined here. While better than optimal reward rates cannot be
guaranteed, they may nevertheless occur under favorable conditions, which are made
increasingly possible as the level of uncertainty increases. The minimum level of uncertainty
which makes it possible to get a desired reward rate is defined as the opportuneness, and the
opportunity facilitating strategy selects the threshold with minimum opportuneness for the
desired reward rate. The resulting performance curves follow the above equations below the
OPC. Since this region is only marginally important for the current paper (the RSPCs in Fig.
6 are mostly above the OPC) the opportunity facilitating strategy is not developed further in
this paper, (but see Ben-Haim (2006) and Zacksenhouse et al. (2009) for more details).

C The likelihood ratio test and the influence of subgroup sizes
Here we provide further details on the reliability of the statistics used in §4. We first address
the assumption that the data are normally distributed. For each subgroup of subjects and
each p(err) bin, we tested the distribution of normalized decision times for Gaussianity using
the Jarque-Bera Judge et al. (1988) and Lilliefors Conover (1980) tests, obtaining the
following numbers of significantly non-Gaussian p(err) bins for both tests, at a significance
level of 0.05. Among the top 30% and 30–60% groups: 3 bins in each group; among the 60–
90% group: 2 bins; among the bottom 10% group no significantly non-Gaussian bins were
found. When the 30–60% and 60–90% groups are combined into a single group as in §4, the
number of significantly non-Gaussian p(err) bins rises to 6, probably due to the fact that
some subjects in this large group employ different decision strategies, a point that we
address further below. (There are 250 data points in this middle group, compared with 125
in the top 30% and 42 in the bottom 10% groups, cf. Table 2.)

When comparing two nested models, i.e., a complex model and a simple model to which the
complex one can be reduced, the likelihood ratio test can be used to determine whether the
data is significantly less likely under the simple rather than the complex model. This is the
case when comparing the MMPC with uncertainty in D with the OPC for RR, to which the
former reduces by fixing α = 0. The likelihood ratio test shows that the MMPC with
uncertainties in D provides a significantly better description of the data for the top 30% of
subjects (p < 0.01), and for both the other groups (p ≈ 0). Except for the OPC for RR, all the
other PCs are based on non-nested models with a single free parameter each. The
corresponding likelihood ratio between the MMPC with uncertainties in D and each of these
models (first four rows Table 4) provides a reasonable criterion for assessing whether the
former explains the data better. A more rigorous comparison using the Bayesian approach
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would require additional assumptions on prior probabilities of the parameters q and α: see,
e.g. MacKay (2003).

As noted in §4, in fitting performance curves to data from subgroups of subjects divided
according to total rewards accrued, we implicitly assume that all members of each given
subgroup employ a common decision strategy. Here we probe the validity of this assumption
by considering six additional ways of splitting the data. We first fitted all performance
curves to the data from each subject separately and computed the average likelihood ratio
for each pair of curves, as a product of likelihood ratios for the 80 individuals, obtaining the
entries in the first column of Table C.1. This split avoids the assumption of a common
strategy, but the ratios are unreliable because individual subject data are very noisy and
some bins contain as few as 3 data points, leading to overfitting. This is reflected in the fact
that the entries of column 1 differ substantially from those of the other columns in Table C.
1.

Table C.1

Likelihood ratios of the data given MMPC with uncertainty in D and given other
performance curves (rows), for different splits of subjects into groups (columns). The higher
the likelihood ratio, the less likely is it that the data could be generated by the corresponding
model, in comparison to the MMPC for D. See Table 1 for abbreviations.

Performance curve Individual 20 groups 10 groups 5 groups 4 groups 2 groups

MMPC for SNR > 1013 > 1010 > 109 > 1010 > 1010 > 108

RSPC for D 1.96 42.00 29.26 8.28 7.86 9.61

OPC for RRm 471.54 > 105 > 105 522.09 316.03 59.16

OPC for RA > 106 482.05 70.52 3.33 8.82 3.96

OPC for RR > 1059 > 1033 > 1029 > 1026 > 1024 > 1020

This analysis was repeated five times to produce the remaining columns of Table C.1, by
successively dividing the subjects (sorted by total rewards accrued) into 20, 10, 5, 4, and 2
groups, with equal numbers in each group (4, 8, 16, 20, and 40 respectively). Although the
precise values of the ratios depend on the number of groups, the relative ranking remains
almost completely consistent. All ratios in Table C.1 exceed 1, implying that the data are
most likely under MMPC with uncertainty in D in all cases. The next best fits are provided
by RSPC with uncertainty in D and OPC for RA, their order depending on the split.
Somewhat further behind comes OPC for RRm, trailed by MMPC with uncertainty in SNR,
and finally the parameter-free OPC for RR.

D Comparison of pure and extended DD models for experiment 1
As explained in Bogacz et al. (2009) only the first of the two experiments described in this
paper yielded sufficient data for fits to the extended DD model to be feasible. Comparison of
extended DD parameters obtained by such data fits, averaged over the 20 subjects, to fits of
the same data to the pure DD process reveals the following. (We identify the source of the
parameters by the parenthetical notes ext. and pure respectively.)

Mean values of the threshold-to-drift ratios θ (ext.) are approximately half θ (pure), mean
values of SNR η (ext.) are approximately triple η (pure), while mean values of the
nondecision time T0 (ext.) are very close to T0 (pure). In all cases the extended and pure
parameter values are strongly correlated across subjects (θ: r = 0.61, p = 0.004, η: r = 0.92, p
< 10−5 and T0: r = 0.67, p = 0.001 (Bogacz et al., 2009, Fig. 4)), and the resulting optimal
threshold-to-drift ratios are also strongly correlated (r = 0.71, p < 10−5). This leads to the
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fact that overall correlations between subjects’ thresholds and the optimal thresholds
obtained from the pure and extended DD fits do not substantially differ (r1 = 0.44 (p < 10−5)
for pure, and r1 = 0.62 (p < 10−5) for extended.) Moreover, comparisons of the mean
thresholds (averaged over these 20 subjects) with the optimal thresholds computed
analytically for the pure, and numerically for the extended DD processes, for all four delay
conditions, reveal very similar patterns. See Bogacz et al. (2009, Fig. 5).

We believe that this is because the substantial variances in SNR and threshold-to-drift ratio
for the extended DD model are compensated by higher noise variance σ2 in the pure DD fits
(i.e., all the sources of variance are lumped in a lower SNR η(pure)). To further gauge the
effects of drift and initial condition variance we compared mean decision times and error
rates for the extended DD fits with the corresponding quantities evaluated for a pure DD
process with η and θ equal to the mean values of the extended DD parameters. We found
that 〈DT〉s for the two processes were very similar (r = 0.94, p < 10−5), but that p(err)s were
significantly lower for the pure DD process (paired t-test p < 10−5), presumably due to the
unrealistically high SNRs that result when the other sources of variance are removed from
the extended DD model.
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Fig. 1.
(a) Optimal performance curve of Eq. (7) relating mean normalized decision time to error-
rate under varying task conditions. Triangles and circles mark the performance under the
specified task conditions. Moving leftwards, the resulting RRs increase with SNR from 0.51
to 0.60, 0.84 and 0.97 for Dtot = 1, and from 0.26 to 0.33, 0.45 and 0.49 for Dtot = 2.
Diamonds mark suboptimal performance points resulting from thresholds 25% above and
below the optimal threshold for SNR=1 and Dtot = 2; both yield ≈ 1.3% degradation in the
RR. (b) Thick curve shows the optimal performance curve of Eq. (7), and histograms show
data collected from 80 human subjects, sorted according to total rewards accrued over
multiple blocks of trials. Refer to the text for experimental conditions. White bars: all
subjects; lightest bars: lowest 10% excluded; medium bars: lowest 50% excluded; darkest
bars: lowest 70% excluded. Vertical line segments indicate standard errors. From Holmes et
al. (2005, Fig. 1).
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Fig. 2.
Maximin performance curves (MMPCs) and performance bands for two presumed levels of
uncertainty αp = 0.2, 0.4 in delays. Nominal MMPCs for Dtot = D̃tot (dashed), and extreme
MMPCs for Dtot = D̃tot(1 − αp) (dash-dotted) and for Dtot = D̃tot(1 + αp) (solid) are shown;
the latter coincide with the OPC for all αp (cf. Eq. (12) with γ = (1 + αp)−1 and Eq. (7)).
Performance bands consistent with the presumed level of uncertainty are bounded by the
extreme MMPC and the OPC.
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Fig. 3.
MMPCs for two presumed levels αp = 0.3, 0.6 of uncertainties in SNR arising from
uncertain noise variance. Nominal MMPC for η = η̃ (dashed), and extreme MMPC for η = η̃
(1 + αp) (dash-dotted) and for η = η̃ (1 − αp) (solid); the latter coincide with the OPC for all
αp. Performance bands for SNR within the range consistent with the presumed uncertainty
are bounded by the extreme MMPC and the OPC.
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Fig. 4.
MMPCs for two presumed levels αp = 0.45, 0.9 of uncertainty in SNR arising from
uncertain drift rate. Nominal MMPC for η = η̃ (dashed), and extreme MMPCs for η = η̃ (1 +
αp) (dash-dotted) and for η = η̃ (1 − αp) (solid); the latter coincides with the OPC for all αp.
Performance bands for SNR within the range consistent with the presumed uncertainty are
bounded by the extreme MMPC and the OPC.
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Fig. 5.
Robust satisficing performance curves (RSPCs, dashed) for uncertainties in delays given

three normalized required performance levels . Here the nominal delay ratio
D̃/D̃tot = 1 is assumed, corresponding to the case of zero penalty delay. The OPC (solid)
bounds the RSPCs below, but extensions of RSPCs under the OPC are also relevant (cf.
dash-dotted line for q = 0.5) and see Appendix B.7).
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Fig. 6.
Comparisons of performance curves with mean normalized decision times from
experimental blocks with Dpen = 0 for three groups of subjects sorted by total rewards
acquired. Error bars show standard error of mean normalized decision times. Note the
difference in scale of the vertical axes in upper and lower panels. Here and throughout this
section, maximinSNR refers to the MMPC due to uncertainty in noise variance.
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Table 1

List of abbreviations.

Abbreviation Meaning

2AFC 2 alternative forced choice

COBRA Competition between reward and accuracy

DD Drift-diffusion

DT Decision time

MMPC Maximin performance curve

OPC Optimal performance curve

RA Reward accuracy rate

RR Reward rate

RRm Modified reward rate

RSI Response-to-stimulus interval

RSPC Robust-satisficing performance curve

RT Reaction time

SAT Speed-accuracy tradeoff

SNR Signal-to-noise ratio

SPRT Sequential probability ratio test
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Table 2

Numbers of experimental conditions falling into each error rate bin for the three panels of Fig. 6.

Error rate range Top 30% Middle 60% Bottom 10%

0 – 5% 37 82 9

5 – 10% 17 32 7

10 – 15% 12 12 3

15 – 20% 12 23 6

20 – 25% 19 35 2

25 – 30% 15 39 5

30 – 35% 7 13 4

35 – 40% 1 6 2

40 – 45% 1 5 2

45 – 50% 4 3 2
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Table 3

Values of performance curve parameters (q or α) estimated using the maximum likelihood method from the
data from the three groups of subjects sorted by total earning. For the MMPC with uncertainty in SNR and
bottom 10%, the higher the value of α the higher the likelihood of the data. See Table 1 for abbreviations.

Performance curve Top 30% Middle 60% Bottom 10%

MMPC for D 0.22 1.02 5.84

MMPC for SNR 0.19 0.54 ∞

RSPC for D 0.72 1.85 8.57

OPC for RRm 0.14 0.49 0.98

OPC for RA 0.15 0.55 1.096
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Table 4

Likelihood ratios of the data given the MMPC with uncertainty in D compared to other performance curves
(rows), for different groups of subjects (columns). The last column is the product of the first three and thus
expresses likelihood ratios for all data. The higher the likelihood ratio, the less likely is it that the data could
be generated by the corresponding model, in comparison to the MMPC with uncertainty in D. To account for
the fact that all curves have one free parameter except the OPC, the bottom row includes in brackets the ratio
of the likelihood of the data given the two curves divided by exp(1), as suggested by Akaike (1981): see
Appendix C. See Table 1 for abbreviations.

Performance curve Top 30% Middle 60% Bottom 10% Product

MMPC for SNR 1.13 > 108 308.38 > 1010

RSPC for D 1.99 4.04 1.72 13.82

OPC for RRm 1.28 38.79 208.47 > 104

OPC for RA 1.11 8.11 4.83 43.48

OPC for RR 47.34 [17.42] > 1021 > 106 > 1028
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