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ABSTRACT

This article examines the value of demand forecast updates in an assembly system where a single assembler
must order components from independent suppliers with different lead times. By staggering each ordering
time, the assembler can utilize the latest market information, as it is developed, to form a better forecast
over time. The updated forecast can subsequently be used to decide the following procurement decision.
The objective of this research is to understand the specific operating environment under which demand
forecast updates are most beneficial. Using a uniform demand adjustment model, we are able to derive
analytical results that allow us to quantify the impact of demand forecast updates. We show that forecast
updates can drastically improve profitability by reducing the mismatch cost caused by demand uncertainty.

1. Introduction

Market conditions can change rapidly, often without any warn-
ing. It is therefore critical for firms to continuously monitor
these conditions and update their demand forecasts, so that pro-
duction plans and inventory levels can be adjusted as needed.
With advances in information technology, firms can now more
readily than ever before collect the latest market information
from sources such as point-of-sales terminals as it is devel-
oped and use this information to update their demand forecasts.
These updated forecasts can subsequently be used to help man-
age operations more efficiently.

As firms continue to leverage better technologies over time,
they have also become increasingly reliant on a global supplier
network, chasing lower procurement costs. As supply chains
lengthen, procurement lead times for particular components
have also become longer. Consequently, it is not unusual for
procurement lead times to vary drastically from component to
component. To alleviate the problems associated with rapidly
changing market conditions and high obsolescence costs, firms
can take advantage of the differences in these procurement lead
times by staggering their own ordering times. Doing so allows
for an informational update between each ordering time, which
can be used to further improve on demand forecasts. The objec-
tive of our research is to evaluate the value of demand forecast
updates in this type of operating environment.

We use the following simplified version of a real-world prob-
lem to motivate our research. Consider an apparel assembler
who sells a sweater consisting of two major components, namely,
fabric and buttons. The fabric and buttons are sourced from two
different suppliers with differing lead times. Due to the higher
costs associated with producing fabric, an inexpensive overseas
fabric supplier was selected. In contrast, a local company with a
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shorter lead-time was chosen as the button supplier. As is com-
mon with many apparel assemblers, the actual time to manufac-
ture each sweater is negligible compared with the procurement
lead times.

To begin, the assembler will first place an order with the
fabric (long lead-time) supplier based on an initial estimate of
customer demand. After some time has elapsed, the assem-
bler places a second order with the button (short lead-time)
supplier. In between the first and second ordering times, the
assembler is able to collect additional demand information from
trade shows, market surveys, point-of-sales terminals, and other
sources of information. Using this additional demand informa-
tion, the assembler is able to produce an updated demand fore-
cast, before placing the second order.

One order each is allowed for the fabric supplier and the but-
ton supplier, as an emergency order to either will be highly dis-
ruptive to their respective production schedules. As such, once
an order has been placed with the fabric supplier, an upper
limit becomes set on the total number of sweaters that can
be produced, as each sweater requires exactly one unit each
from the fabric supplier and the button supplier. Consequently,
the assembler needs to carefully evaluate the tradeoff between
procuring too few units of fabric and thus limiting output and
procuring too many units, which leads to excess wastage.

As market research can be expensive, our objective is to
understand the value of demand forecast updates in the assem-
bly system described above. Under what operating condi-
tions would demand forecast updates be most beneficial? Our
research aims to answer this question and also provide useful
managerial insights regarding how the use of demand forecast
updates can benefit the assembler, as well as the component sup-
pliers, by reducing the adverse effects caused by market volatility.
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We first describe a general modeling framework and provide
some basic analytical results on the optimal procurement poli-
cies for the assembler under demand forecast updates. Then by
using a uniform demand adjustment model, we derive analytical
expressions for the optimal procurement decisions and the asso-
ciated expected optimal profits, both with and without demand
forecast updates. After that, we develop a metric to measure the
value of demand forecast updates and use the analytical results
to quantify the impact of demand forecast updates in reducing
the mismatch cost due to the underlying demand uncertainty for
the assembler as well as the two component suppliers. We end
by conducting an extensive set of numerical experiments under
both uniform and normal demand adjustments to produce use-
ful managerial insights to further understand the specific oper-
ating conditions under which demand forecast updates would
provide the most benefits.

We make the following important contributions to the
research literature. First, we derive closed-form analytical
expressions for the optimal ordering quantities and the associ-
ated expected profit functions of the assembler for a general uni-
form demand adjustment model. These analytical expressions
allow us to quantify the exact value of forecast updates, which
was not previously possible. Thomas et al. (2009) only provide
some limited analytical results for a very special case of our gen-
eral model. Second, we have developed a performance metric,
called mismatch cost reduction, which is useful for quantify-
ing the value of demand forecast updates. Finally, we are able to
combine our analytical results together with extensive numer-
ical results to provide several useful managerial insights for
understanding the specific operating environment under which
demand forecast updates would be most valuable.

The rest of the article is organized as follows. Section 2 pro-
vides a literature review of relevant research. Section 3 describes
the model formulation and provides some basic results under
a general demand adjustment model. In Section 4, we focus on
a model with uniform demand adjustments and derive analyt-
ical results on how demand forecast updates affect the order
quantities and the associated expected profits of the assembler
as well as the component suppliers. In Section 5, we conduct
an extensive set of numerical experiments to extend our anal-
ysis and then discuss managerial insights. We conclude our arti-
cle in Section 6. All mathematical proofs are provided in the
Appendix.

2. Literature review

Our article is concerned with using demand forecast updates
to coordinate component procurement decisions in assembly
systems under stochastic demands. The importance of demand
forecast updates in managing planning and inventory has been
well-recognized and widely studied in the research literature. In
this stream of research, it is assumed that firms can use sales
or market information in an earlier stage to update their prior
demand forecasts for improving their production or inventory
decisions at later stages. Examples of this line of research include
Bitran et al. (1986), Fisher and Raman (1996), Eppen and Iyer
(1997), Gurnani and Tang (1999), Weng and Parlar (1999), Cat-
tani and Hausman (2000), Choi et al. (2003, 2006), Sethi et al.
(2003), Yan et al. (2003), Miyaoka and Hausman (2004), and
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Huang et al. (2005). Our article focuses specifically on compo-
nent procurement decisions under an assembly structure.

There also exists a substantial body of research that studies
the joint component procurement decisions in assembly systems
under stochastic demands. Song and Zipkin (2003) provide a
comprehensive review on earlier research that study this stream
of research. More recent research that analyzes the structure of
the optimal joint component procurement decisions in assem-
bly systems under stochastic demands include Fu et al. (2006,
2009), Hsu et al. (2006, 2007), Fang et al. (2008), and Zhang
et al. (2008). However, most research papers in this stream do
not consider demand forecast updates in such decisions.

Two recent papers that investigate the impact of demand
forecast updates in managing complementary component pro-
curement in assembly systems are of particular relevance.
Thomas et al. (2009) study the contractual relationship between
an original equipment manufacturer and a contract assembler
who assembles a product with two complementary components
with different lead times. The original equipment manufacturer
can choose to share demand forecast updates with the contract
assembler. Their primary focus is to study whether it is benefi-
cial for the original equipment manufacturer to share demand
forecast updates and component overage risk with the contract
assembler. Similarly, Yang et al. (2011) analyze a decentralized
supply chain consisting of an assembler and two component
suppliers with different lead times. The assembler uses the lat-
est market information to update his demand forecast before
ordering the short lead-time component. Their primary focus
is to investigate what contractual mechanisms can coordinate a
decentralized supply chain under demand forecast updates.

We adopt the same modeling framework as the centralized
system in Thomas et al. (2009) and Yang et al. (2011), consisting
of one assembler and two component suppliers with different
procurement lead times. We are able to derive closed-form ana-
lytical expressions for the optimal order quantities and expected
profit of the manufacturer for a uniform demand adjustment
model, which extends the earlier result in Thomas et al. (2009),
where both uniform demand adjustments are assumed to be
identical. Our model is more general than theirs and allows
for more managerial insights. In addition, we develop a perfor-
mance metric for quantifying the exact value of demand forecast
updates and illustrate the specific operating environment under
which demand forecast updates would be most valuable.

Finally, Miyaoka and Hausman (2008) also use a similar
modeling framework to analyze a supply chain consisting of a
supplier and a manufacturer. The supplier first builds capacity
based on original forecast information and the manufacturer
later decides on the ordering quantity after observing updated
demand information. These two decisions are thus equivalent to
the procurement decisions of the two components in our model.
However, their focus is on understanding the impact of updated
demand information on supply chain coordination under differ-
ent wholesale price purchasing arrangements in a decentralized
setting.

3. Model formulation

We consider an assembler whose product consists of two
complementary components with respective procurement lead
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times I; and l,. We assume that [, > I, and refer to component
1 as the long lead-time component and component 2 the short
lead-time component. Without loss of generality, we assume that
the assembly time for the product is negligible when compared
with the component procurement lead times.

We consider the following cost structure. Let p be the unit
price for the product and ¢; be the unit procurement cost for
component i, i = 1, 2. To simplify our exposition, we assume
that there is no salvage value for any excess component and there
is no penalty cost for product shortage. However, our analysis
can be easily extended to include a salvage value or shortage
penalty. As is standard in newsvendor models, adding these two
costs would simply have the effect of lowering the overage cost
or increasing the underage cost, respectively, which would not
change any of the basic insights of our article in any qualitative
manner. In addition, we let p > ¢; + ¢, such that it would be
profitable to assemble the product.

We assume that the assembler faces a one-time uncertain
demand at some future time T and needs to decide the order
quantity Q; for component i at time 7; = T — [;, i = 1, 2, with
T > I; > L. Attime 1y, the assembler orders the long lead-time
component 1 based on an initial best guess of customer demand.
We denote this distribution by F(x), which has a mean of u
and standard deviation of 0. Before ordering the short lead-time
component 2 at time 7, the assembler observes the latest mar-
ket signal a and updates his/her demand forecast. We denote the
updated forecast distribution by F(x|a).

To simplify potentially cumbersome notation, we develop
an alternate demand model for our analysis by making some
assumptions regarding F (x|a). First, we assume that F(x|a) has
amean of 4 + a and standard deviation of &, such that the mar-
ket signal a represents an adjustment to the initial mean p of
the original demand forecast. Also, we assume that a and & are
independent. This is reasonable since the signal a measures the
change in market conditions during the time period [1;, 7>], and
6 should only depend on the remaining amount of time from
7, until the start of the sales season T. Also, it is reasonable to
assume that & < o, as the forecast accuracy should improve the
closer we get to the end of the sales season. Under these assump-
tions, we can express the final demand at time T as

D= pu+ A+ A, (1)

where G;(.) represents the distribution functions of A;,i = 1, 2,
with F(x — u —ala) = Gy(x) and F(x — u) = Gy * Ga(x),
where Gy % G,(.) denotes the convolution of G; and G,. Then,
G;(x) has a mean of zero and standard deviation of 6}, i = 1, 2,
witho; =02 —6%2ando, =06 .

In our analysis we can use the demand model given in Equa-
tion (1) and work with distributions G; (.) and G,(.) instead of
the original demand forecast distributions of F(.) and F(.|a).
Using Equation (1), we can interpret u as the initial mean
demand forecast at time 7; and A; and A, as some (random)
demand adjustments during time periods [71, 2] and [12, T,
respectively. We shall use g;(.) to denote the density functions
of the random adjustment A;, i = 1, 2.

The sequence of events is as follows: (i) the assembler first
forms his/her initial demand forecast u at time 7; and orders
Q: units of the long lead-time component at time ty; (ii) the

assembler observes A; at time 7, and orders Q, units of the
short lead-time component 2; and (iii) final product demand D
is realized at time T and the final product is assembled. The opti-
mization problem for the assembler is to determine the optimal
order quantity for components 1 and 2 at ordering epochs 7; and
T, respectively, to maximize his/her expected profit, taking into
consideration the realization of demand adjustment A;.

3.1. Optimal procurement strategies under general
demand adjustments

We formulate the above assembler’s optimization problem as
a two-stage dynamic program and characterize the optimal
order quantities Q; and Q,. We follow the same approach as
in Miyaoka and Hausman (2008) and Thomas et al. (2009)
for the centralized system to derive the optimal order quanti-
ties. Specifically, let 771 (Q;) be the maximum expected profit of
the assembler when ordering Q; units of component 1 at time
7; and 7,(Q;|Qy; a1) be the expected profit of the assembler
when ordering Q, units of component 2 at time 7, given that
the assembler has ordered Q; units of component 1 at time 7
and observes the realized first demand adjustment value of a;.
Then,

o0

m(Q:]Qy; a1) = / pmin(Qy, Qa, i + a1 + a2)g>(az)da,

—0Q, )

and the standard dynamic programming recursion can be writ-
ten as

m1(Q1) = / 75 (Qu: a1)gi(ay)da; — Q. (3)
with
7 (Qisa) = f%aXﬂz(QﬂQl; ap).

We use standard backward induction to solve the above two-
stage dynamic program analytically and derive the optimal order
quantity Q; of component 1 at time 7.

We first determine the optimal order quantity Q, of compo-
nent 2 at time 7, given the ordering decision Q; at time 7; and
the realized adjustment value a; at time 7, by solving the opti-
mization problem maxg, 7, (Q2|Qy; a1), where 7, (Q;|Q1; a1) is
given in Equation (2). For unconstrained Q;, this optimization
problem reduces to the classic newsvendor model, and the opti-
mal order quantity is given by the well-known fractile solution;
that is,

@@ =pn+a +G,’ <p;62). (4)

Furthermore, it is clear from Equation (2) that the assembler
should never order more than Qf units of component 2, since
exactly one unit of each component is required for each unit of
the final product. It is well known from the classic newsvendor
model that the expected profit function 7, (Q,].) is concave in
Qy; thus it follows immediately that

Q(Qu; a1) = min[Qy, g5 (a1)]. )



In other words, the optimal order quantity of component 2 at
time 7, depends critically on the realized adjustment value ;.
Specifically, if a is below the threshold of

§=Ql—u—6‘;1<p;c2>, 6)

then the optimal order quantity of component 2 is below Q.
Otherwise, the optimal order quantity of component 2 is simply
equal to Q.

We next use the result from the second-stage problem to
derive the optimal order quantity of component 1 at time 7.
Using recursion (3), this first-stage problem can be formulated
as

H})aXﬂl(Ql) = f ﬂ;(Qll a)g (ap)da; — a1 Q

= / ﬂz(Q;(QU a)|Qy; ﬂl)gl(‘ll)dlh — Q.
(7)

where Q5 (Qy; ay) is given in Equation (5). We can establish the
following result.

Proposition 1. 71(Qy) in concave in Qy, and the optimal order
quantity Q} must satisfy the following first-order condition:

87T1(QT)=/OO {(P—Cz)
o (72)

30, - pGa(Q)
xgi(a))da; —¢; = 0. (8)

—M—ﬂl)}

Proposition 1 provides the condition that can be used to
characterize the optimal ordering quantity of the long lead-time
component for any general demand adjustment distribution. For
the remainder of this article, let 7* denote the corresponding
optimal expected profit; i.e., 7 = m; (Q7).

3.2. Impact of demand forecast updates

We can compare the optimal order quantities and the expected
profit of the assembler under the two cases with and without
demand forecast updates. Without demand forecast updates, the
optimal order quantities of components 1 and 2 are the same and
are given by the classic newsvendor model as

Q=Q=p+ Gl_lz (P—C;)—Cz) , 9)

where G, denotes the distribution function of (a; + a,). Let 7
denote the corresponding optimal expected profit with no fore-
cast updates. We can establish the following results.

Proposition 2.
(i) Qf > Qu; and

(ii)) m* > 7.

Proposition 2(i) shows that the assembler should order a
higher quantity of the long lead-time component for the case
with forecast updates compared with the case with no updates.
We can explain this result as follows. As the order quantity of
the long lead-time component imposes an upper limit on the
maximum number of units that can be assembled, the assembler
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needs to provide an additional cushion in the event of a sub-
sequent positive demand adjustment A; when he/she orders
the long lead-time component. In addition, demand forecast
updates can help protect the assembler from the risk associ-
ated with a negative adjustment A, by allowing him/her to
reduce his/her order quantity for the short lead-time compo-
nent. As such, the assembler’s second order quantity is not
“locked in” as is the case with no forecast updates, thus lower-
ing the overall overstocking risk. These two factors allow the
assembler to be more aggressive when ordering the long lead-
time component. Proposition 2(ii) shows the intuitive result that
the assembler cannot be worse off by using demand forecast
updates.

4. Forecast updates under uniform demand
adjustments

To quantify the value of demand forecast updates, we derive
some analytical results for the case where both demand adjust-
ments, A; and A,, are assumed to be uniformly distributed. In
particular, we assume that A; and A, are independent and uni-
formly distributed on supports [—a;, a;] and [—ay, a,], respec-
tively. In addition, we set the initial forecast  to be larger than
(a + a,) to avoid a possibly negative demand. To simplify nota-
tion, let ¢ = ¢; + ¢, such that ¢ represents the combined unit
component costs.

Proposition 3. Under demand forecast updates, we have the fol-
lowing results:
(i) For p > 2c1 + ¢, the optimal order quantity of the long
lead-time component is given by

— (p—2 . a

poa if &<

n+(a@+ay) —522;,2
* 2
1= — _

— /8111(12% 1f 4 8 “1 < (PZPZ)
— 2, — . p—c
pra (1-2) -~ @2 if (21,;) o
(10)

the expected optimal order quantity of the short lead-time
component is given by

(p=20) £ ar < 20
:bL +a P l,f az - p
(p—20) 2 a (r—<)’
2 _ @ )
Hta )4 lfP<52§ 2pcy
E(Q;) =\ M —a (p—lcz)z
_LZZ(P—CZ)Z
a 4p?
— (p—a—20) (P CZ) é
+a2 P f 2pey 63

(11)
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and the optimal expected profit is given by

p(p—o) — a5
_alp a2
12 if @ = pl
u(p—c)— (a1 +a)a
— (p—2a—c)a
* _ g Pea 06
T = a »
4o [rg o a 20 _ @ o (o)
T3 2maz, % <%= 2
7 (p=oa
np—=o —a~—
@,? (p—a)? — (p—9)a o (p—c)?
Ty T @ if 2pc, <2
(12)

(ii) For p < 2c1 + ¢y, the optimal order quantity of the long
lead-time component is given by

M+a@;o #m<2@o
— (a1 +a2)
Q=] +famt? 0 oo per
wra (1-2%)
~,2 if e <o
(13)

the expected optimal order quantity of the short lead-time
component is given by

(p—20) ooy 2(p—0)
I"L + a P l,f az S P
— (a1 +a2)
— — (p—0) 2000 _ @ _ (p—a)’
, +y8ma f =5 <& = i-op
E(Qz) = _ e
W= G gy
azz (p—)” ©)?
a 4p?
— (p—ca—2c) (p— Cz) < a
T f 2-or < @
(14)
and the optimal expected profit is given by
u(p—c)
— (p—=o¢c @t p Iy 2(p—c)
B _uE gl
u(p—c)

—(@a1+a)(p—o

4(p—o) | (0= ¢ 2(p—0) a
7_[* — —+ 3 2(,1 ap B lf » < E;

We need to compare the results given in Proposition 3 with
the corresponding results under no forecast updates in order
to quantify the value of demand forecast updates. Under no
demand forecast updates, the assembler will simply order the
same amount of both components, and we use the notation é,'
and 7 to denote the optimal order quantities and the optimal
expected profit in this case. The optimal results, Q; and 77, can
be easily derived from the classic newsvendor problem, and are
given in Proposition 4.

Proposition 4. With no demand forecast updates, we have the fol-
lowing results:

(i) For p > 2(c1 + ¢2), the optimal order quantities of both
components are given by

(=20 a2
nta p lf a = P
- - u+ (ay +az)
Q=Q= — e
_/8(11&2* lf;<ifz
2 ) a
pt@m L <n
(16)
and the optimal expected profit is given by
_, =
M(p—c)—a(Ppc)c—%lp2 if & <%
| rp =0 = (@ ta)e
T =
+%5 /201 if% <f&<Z
(p—=0) @’ : a
pp—0—m ST i L <
17)

(ii) For p < 2 (c1 + c2), the optimal order quantities of both
components are given by

(p—20) roay Z(P [9)
W+ az : f <
— (a1 +az)
QU=Q=
P JERED o ne e
(p—2¢0) 111
u+a; ) if 2(p 3
(18)
and the optimal expected profit is given by
l/L(P_C) -3 (p—o)c c)c ,222% lf a < Z(p )
M@—O—mﬁwﬁ@—d
> _ 4(p—c) (p—o) .~ 2(p—c) a
iol pio0 roEs  pweas
P
= 2(p—o)
( ) =2 . —
R S e T
(19)

We next derive a measure to quantify the value of forecast

updates for the assembler. Instead of using the simple measure
(mr* — 1), which has the undesirable property of being sensi-

(p—c2)?
<
— 2(p—o)p
u(p—ro)
_g, p=oa _ @’ (p-a)’
17—, a  12p?
_ = (p=9o (p—)? a
a2 P f 2(p—o)p Ez

(15)

tive to the forecast mean, we develop a more appropriate met-
ric for measuring the benefit of forecast updates. First, note that



the expected profit of the assembler is simply equal to u(p — ¢)
when there is no demand uncertainty, i.e., A} = A, = 0. Due
to demand uncertainty, the assembler incurs an extra cost that
result from a mismatch between the demand and supply of the
two components. With no forecast updates, the expected profit
of the assembler is equal to 7 and thus the quantity m = u(p —
c) — 7 represents the expected mismatch cost due to demand
uncertainty with no forecast updates. With forecast updates, the
expected profit of the assembler is now equal to 7*, and the
quantity m* = u(p — ¢) — 7" then represents the expected mis-
match cost due to demand uncertainty with forecast updates.
Therefore, (m — m*) = (7* — &) represents the reduction in
expected mismatch cost for the assembler or, equivalently, the
increase in expected profit due to forecast updates. Further-
more, the ratio (m — m*) /m represents the fraction of the total
expected mismatch cost due to demand uncertainty that can be
reduced using forecast updates.

We shall use the above ratio, called mismatch cost reduc-
tion (MCR), as our key metric in quantifying the value of fore-
cast updates for the assembler. Note that MCR = (m — m*)/m
is independent of the initial forecast ; and has a value of
between zero and one. In particular, MCR = 0 implies that fore-
cast updates do not reduce any expected mismatch cost and thus
provides no value to the assembler. On the other hand, MCR = 1
implies that forecast updates can eliminate all expected mis-
match cost due to demand uncertainty, which represents the
maximum possible benefit for the assembler.

Using Propositions 3 and 4, we can derive the following
results that show how the value of mismatch cost reduction
changes with respect to different model parameters.

Proposition 5. B
(i) For p> 2¢c; + ¢;, MCR =01 o< 2

7
a (p—¢
(ii) Forp <20+, MCR=0ifZ < ZP(P L) . Furthermore,
ég (PC’ 5 decreases to 2;1 as p increases to 2¢y + .
(ii)) As % — oo, MCR = & (£55).

Proposition 5(i) and (ii) shows that the ratio £ must exceed
a certain threshold for forecast updates to be valuable and these
thresholds are given in the high profit margin case (i) and the
low profit margin case (ii). As the standard deviation of the uni-
form demand adjustment A; is proportional to a;, Proposition 5
implies that the amount of demand uncertainty that can be
resolved before ordering the long lead-time component rela-
tive to the remaining amount of uncertainty must exceed some
threshold for demand forecast updates to be valuable. Further-
more, these thresholds are decreasing in p. In other words, as the
product price (or profit margin) increases, the threshold for fore-
cast updates to be valuable is reduced. This implies that forecast
updates are more likely to be valuable for high-margin products.
It is clear that the thresholds are decreasing in ¢, with (¢; + ¢;)
being held constant. This implies that forecast updates are more
likely to be valuable when the unit cost of the long lead-time
component comprises a smaller portion of the total component
cost.

Proposition 5(iii) further provides the maximum possible
value of mismatch cost reduction due to forecast updates when
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most of the demand uncertainty can be resolved before order-
ing the short lead-time component. This maximum possible
value depends on the relative cost of the short lead-time com-
ponent compared with the total component costs. For the trivial
case ¢; = 0, we have MCR = 0, i.e., there is no value in fore-
cast updating if the short lead-time component has zero cost,
as the update is used to adjust the procurement quantity of this
lead-time component based on the latest market signal. Suppose
instead that ¢; > 0. As (p — ¢)/(p — ¢) increases to 1 as p —
oo or ¢; — 0, Proposition 5(iii) shows that forecast updates are
especially valuable for high-margin products or when the unit
cost of the long lead-time component comprises a smaller por-
tion of the total component cost.

5. Managerial insights

In this section, we use both our analytical results and exten-
sive numerical experiments to provide important managerial
insights for understanding how demand forecast updates can
impact the assembler and the two component suppliers. Apply-
ing the results in Propositions 3 and 4, we conduct a compre-
hensive set of numerical experiments under uniform demand
adjustments to generate these insights. After that, we conduct
another set of numerical experiments for the case where the
demand adjustments are normally distributed to confirm the
robustness of our findings.

5.1. Impact on the assembler

We conduct a comprehensive set of numerical experiments
to understand how different model parameters may affect the
mismatch cost reduction (MCR) with forecast updates. In our
numerical experiments, we set @ = 100, ¢; + ¢; = 100, and
ot + o7 = 100, where 0; = % is the standard deviation of the
uniform demand adjustment A;. Therefore, ¢; represents the
proportion of unit cost of component 1 relative to the combined
component cost (¢; + ¢;) and 012 represents the proportion of
combined variance (012 + 022) that can be resolved with forecast
updates. We vary the values of ¢; from 0 to 100, o from 0 to
100, and p from 100 to 1000. To further support the qualitative
insights observed under uniform demand adjustments, we also
conduct the same set of numerical experiments using normal
demand adjustments with the same values of i, o1, and o05.

We first illustrate how each individual model parameter (p,
012, and ;) affects the mismatch cost reduction. In particular,
Figs. 1 to 3 illustrate the individual impact of the three model
parameters on MCR under both uniform and normal demand
adjustments. For these figures, we set ¢; = ¢; = 50, 02 = 07 =
50, and p = 200 as our base case, and then vary the value of each
parameter from their base value.

Based on our numerical experiments, we can summarize our
key observations as follows:

Observation 1.
(i) MCR increases as p increases, but the marginal increase
in MCR decreases as p increases.
(ii) MCR becomes positive when o} exceeds some threshold,
and MCR increases as o increases.

(iii) MCR decreases to zero as the ratio increases to one.

c+c
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Observation 1(i) demonstrates the important result that the
MCR is higher for products with a higher price (and thus higher
profit margin). This result is rather interesting. First, it is intu-
itive that the total mismatched cost with no forecast updates,
m, increases as p increases. Thus, Observation 1(i) implies that
(m — m*) must also increase as p increases. This suggests that
the increase in expected mismatch cost with forecast updates
is less than that with no forecast updates as p increases, which
might not be surprising. However, it is surprising that the ratio
MCR = =" 3150 increases as pincreases, which suggests that

m
forecast updates can reduce a larger portion of the total expected

MCR

35% T

5%

15% <+

Rgure Eilmpact of 62 on MCR.

500 600 700 800 900

o L

mismatch cost even though this total expected mismatched cost
is higher as p increases. Therefore, Observation 1(i) provides the
important insight that forecast updates are especially valuable
for products with high profit margins.

Observation 1(ii) shows that forecast updates are especially
valuable when most of the demand uncertainty can be resolved
by forecast updates. We can explain this result as follows. A
higher value of o helps to reduce the expected mismatch cost
under forecast updates as the assembler can resolve a higher
portion of the demand uncertainty before ordering the short
lead-time component, whereas a higher value of o2 would have

—— Normal Adjustments
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Figure [Elmpact of ¢, on MCR.

little impact on the expected mismatch cost with no forecast
updates when the total variance o + o remains constant. Con-
sequently, MCR increases as o} increases with a fixed value of
012 + (722.

Finally, note that the expected mismatch cost with no fore-
cast updates remains the same as ¢; changes when the value
of ¢ =c¢; + ¢, is fixed. Therefore, Observation 1(iii) simply
implies that as the ratio of Cli@ increases, the expected mis-
match cost under forecast updates increases, which is intuitive.
Thus, Observation 1(iii) supports the intuitive result that as the
unit cost of the long lead-time component is high relative to that
of the short lead-time component, there is not much value in
forecast updates, as the potential savings in adjusting the order
quantity of the short lead-time component based on forecast
updates become negligible.

We can conclude from our numerical results that forecast
updates would be most valuable when (i) products have high
profit margins; (ii) a high proportion of demand uncertainty can
be resolved by forecast updates; and (iii) the unit cost of the short
lead-time component is higher than that of the long lead-time

IIE TRANSACTIONS (&) 1205

component. Furthermore, Proposition 5 provides strong analyt-
ical support to this conclusion under uniform demand adjust-
ments.

We next illustrate the joint impact of the three model parame-
ters (¢1, 01, and p) on MCR in Figs. 4 to 6 for the uniform adjust-
ments case. Figure 4 shows the joint impact of ¢; and o2 on MCR
at p = 200 and p = 400. Notice that the value of MCR goes up
sharply in both curves at small values of ¢; and high values of o',
which indicates that the joint impact of ¢; and o, is significantly
higher than the sum of the two individual impacts, especially
at small values of ¢; and high values of o} for which the value
of forecast updates is high, as demonstrated in Observation 1(i)
and (iii). This suggests a strong interaction effect between these
two parameters.

Figure 5 illustrates the joint impact of p and o} on MCR at
c1 = 30 and ¢; = 70. At different levels of p, the value of MCR
appears to increase rather steadily as o5 increases. Figure 6 illus-
trates the joint impact of p and ¢; on MCR at of = 30 and
o} = 70. Similarly, the value of MCR appears to decrease rather
steadily as ¢; increases at different levels of p. Thus, these two

(a)
Figure [ loint impact of ¢ and o (a) p = 200 and (b) p = 400.
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(a)

Figure [loint impact of pand 02 (a) ¢, = 30 and (b) ¢, = 70.

figures do not suggest a strong interaction effect between p and
o} or between pand c;.

Overall, our numerical results show that there is a strong
interaction effect between ¢; and o, which suggests that the
value of forecast updates is especially pronounced when the
unit cost of the short lead-time component is high relative to
that of the long lead-time component, and at the same time, a
high degree of demand uncertainty can be resolved with fore-
cast updates. We now summarize this key observation.

Observation 2. The joint impact of ¢; and o7 on MCR is signif-
icantly higher than the sum of the two individual effects, espe-
cially at small values of ¢; and high values of o7

Furthermore, it is important to note that the value of fore-
cast updates for the assembler can be substantial at low values
of ¢; and high values of o2. The rationale behind the large MCR
value is due to the fact that long lead-time components with a
low cost allows the assembler to gamble on a higher order quan-
tity of this component, which sets the upper ordering ceiling for
the short lead-time component. In addition, the fact that most
of the demand uncertainty can be resolved by forecast updates
allows the assembler to accurately adjust the order quantity of
the short lead-time component. These two factors combined
allow the assembler to capture a potentially higher demand if
demand adjustment g, is positive. On the other hand, if demand
adjustment g, is negative, the assembler can accordingly reduce
the order quantity of the short lead-time component, and the
adverse effect is less serious as these short lead-time components
are the expensive ones.

5.2. Impact on supplier of the long lead-time component

The quantity (Q} — Q) represents the change in order quan-
tity for the long lead-time components due to forecast updates.
Proposition 2 shows that the order quantity for the long lead-
time components is always higher under forecast updates, which
implies that this component supplier will always benefit due
to forecast updates. Our numerical results further show that
this extra order amount (Qj — Q;) increases as the value of
c1 decreases, which implies that forecast updates are especially
valuable to this supplier with a low unit cost. However, our
numerical results show that this extra order amount is not nec-
essarily monotone for other model parameters.

5.3. Impact on supplier of the short lead-time component

The quantity [E(Q}) — éz] represents the change in expected
order quantity for the short lead-time components due to fore-
cast updates, which can be used to measure the benefit to this
supplier. Our numerical results show that the change in expected
order quantity for the short lead-time components due to fore-
cast updates can be either positive or negative, depending on
the specific model parameters. For example, Fig. 7 provides
a numerical illustration for the case where [E(Q}) — Q] is
negative. In this figure, ¢; = ¢; = 50, 0 + 0 = 100 with the
value of o} varying from 0 to 100, and the two curves corre-
spond to the two cases where p = 250 or p = 500. On the other
hand, Fig. 8 provides a numerical illustration for the case where
[E(Q}) — (jz] is positive. In this figure, p = 150, 012 + 022 =
100, with a value of o7 from zero to 100, and the two curves cor-
respond to the two cases where (cy, ¢;) = (20, 80) or (¢, c;) =

MCR
012

(a)
Rgure Elloint impact of pand ¢: (a) o = 30 and (b) o = 70.
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(50, 50). Overall, we provide the following observations based
on our numerical experiments.

Observation 3.

(i) [EQ}) — (:\52] <0 when (i) a large amount of the
demand uncertainty can be resolved using forecast
updates; and (ii) profit margin is high.

(i) [E(Q}) — éz] > 0 when (i) a large amount of the
demand uncertainty can be resolved using forecast
updates, and (ii) the profit margin is low; and (iii) the
unit component cost ¢; is low relative to ¢,.

Observation 3 suggests that forecast updates can benefit or
hurt the expected profit of the short lead-time supplier, depend-
ing on the specific model parameters. First, forecast updates

E(03)-0,

20 4+

10 71

00 -
o 0 40

Figure (£ 1A numerical case where E(Q) is higher than éz

would result in a lower expected order quantity of the short lead-
time components when a large amount of the demand uncer-
tainty can be resolved using forecast updates and the product
margin is high. We can explain this result in Observation 3(i)
as follows. With no forecast updates, the assembler will order
the same amount of components 1 and 2, resulting in a high
value of Q, due to a high profit margin using the newsven-
dor analysis. With forecast updates, the assembler can observe
the first demand adjustment a; before ordering component 2,
which would most likely result in a lower expected order quan-
tity E(Q3) than QZ.

On the other hand, the assembler would choose a low quan-
tity of Q; and Q, for a product with a low profit margin with
no forecast updates. With forecast updates, the assembler would
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observe the first demand adjustment before ordering compo-
nent 2, which would most likely result in a higher expected
order quantity E(Q3) than Qz. However, since Qj sets an upper
bound for Q}, E(Q;) > Qz only if Q7 is large, which requires
that the unit component cost ¢, is low relative to c,. This explains
Observation 3(ii).

We can use the results in Propositions 3 and 4 to provide ana-
lytical support for the insights provided in Observation 2. First,
observe that when a, /a, is small, it follows from Propositions 3
and 4 that

Q= E@) = p+a, B2

p

This implies that when a large amount of demand uncertainty
remains unsolved with forecast updates, it would not affect the
expected order quantity of the short lead-time components. In
other words, forecast updates have no significant impact on this
supplier.

When 4, /a, is sufficiently large, it follows from Equations
(11) and (14) that with forecast updates

by B &= @pma-)
2 (p-w) o P
which implies that
2
EQ) =p—a—1— (20)
(p—c)

asa, — 0. Also, when a, /4, is sufficiently large, it follows from
Equations (16) and (18) that with no forecast updates,

(p=20) (21)

Q=pn+a
Suppose that p > 2¢. We have Q>u>E (Q3) by compar-
ing Equation (20) and Equation (21). This shows that when the
profit margin is high, the expected order amount of the short
lead-time components with forecast updates is always lower
than that with no forecast updates. In other words, forecast
updates would hurt this supplier when the product has a high
profit margin.
Suppose that p < 2¢. In this case, it follows from Equations
(20) and (21) that (32 < E(Q3%) only when

_ 2
2c—p) - o

P (p-a)

or equivalently,

2
f(e) = @c=p) —(C_CZ> > 0.
p p—c

For fixed ¢, it is straightforward to show that f(0) = —(p —
)?/p<0, f(c)= Q2c—p)/p>0,and f(c,) is increasing in
¢,. This implies that f(c;) > 0 when the value of ¢, is high rel-
ative to ¢;. This shows that éz < E(Q3) only when p < 2cand
¢, is high relative to c;. In other words, forecast updates would
only be beneficial to this supplier when the product margin is
low and the unit cost of the short lead-time component is high
relative to that of the long lead-time component.

6. Conclusions

We analyze the value of demand forecast updates for reducing
the expected mismatch cost due to demand uncertainty in an
assembly system that requires two complementary components
with different procurement lead times. Using a uniform demand
adjustment model, we derive closed-form analytical expressions
for the optimal order quantities of the two components and the
expected profit of the assembler. We use these analytical results
together with comprehensive numerical experiments to gener-
ate managerial insights on how forecast updates can provide
substantial value to the assembler and the component suppliers.
These results help to further our understanding of the specific
operating conditions under which the value of forecast updates
would be most beneficial to the assembler and the component
suppliers.

Specifically, we show that demand forecast updates would be
most valuable to the assembler when (i) the unit cost of the
short lead-time component is higher than that of the long lead-
time component; (ii) a large proportion of demand uncertainty
can be resolved by forecast updates; and (iii) the product has
a high profit margin. Furthermore, our results suggest that the
joint impact of the relative component costs and the relative
amount of demand uncertainty that can be resolved by fore-
cast updates can be significantly higher than the sum of these
two individual effects. Therefore, demand forecast updates are
especially valuable to the assembler when the unit cost of the
short lead-time component is high relative to that of the long
lead-time component and the amount of demand uncertainty
that can be resolved by forecast updates is large relative to the
remaining demand uncertainty. Under this type of operating
environment, forecast updates can greatly reduce the mismatch
cost due to demand uncertainty for the assembler. As market
research is generally expensive, our insights can assist managers
in determining when the benefits of demand forecast updating
outweigh the high costs of conducting market research. Finally,
our results also illustrate how forecast updates can affect the
two component suppliers. Although the long lead-time com-
ponent supplier will always benefit from a higher order quan-
tity from the assembler due to forecast updates, we have found
the surprising result that forecast updates can either benefit
or hurt the short lead-time supplier, depending on the model
parameters.

An important future research topic is to generalize our
results to multiple component suppliers with different lead
times. Although it is straightforward to extend our modeling
framework to more than two component suppliers, the prob-
lem becomes analytically intractable and computationally chal-
lenging. Nevertheless, additional research results in this direc-
tion could prove to be illuminating.
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Appendix

Proof of Proposition 1. From Equations (2) and (5), we can split
the integral in 771 (Q, ) given in Equation (7) based on the critical
threshold ¢ defined in Equation (6) as

m(Qi) = /oo {/Z pmin(Qr, u + ar + az)g2(az)da; — Cle}
qul (a))da
+ /; {/: pmin(qs(a1), 1+ ay + a2)g (a2)da,
— g (a)} gi(a)day — Q

o0 Qi —p—a
= / {(P —)Q — P/ Gz(az)dﬂz}gl(ﬂl)dal
IS —c0

¢ —
e (757

G
—P/ Gi(ax)day ¢ g1 (ar)da; — Q.
—o0

Applying the Leibnitz integration rule, we can differentiate
1(Q) given above to obtain:

971 (Q1)

=/ {(P—Cz)—PGz(Ql—M—al)}gl(al)dal
Q) ¢

Q—pn—¢
an {(P—Cz)Ql P/ Gz(ﬂz)dﬂz)}gl(f)

3{ —c
8Q {(P—Cz)[l/«‘l‘{-FGz (%)]
G2
_P/ Gy(az)day { 1(¢) — ¢

= / {(P— ) — pG(Qr —pu — al)}gl(al)dal — (1,
¢
(A1)

where the last equality follows from the definition that ¢ =
Qi — 1 — Gy ((p — c2)/p)- Applying the Leibnitz integration
rule again to Equation (A1), we can obtain:

527'[1 Q)

o =/§ {~p2:(Q = = an} g1 (@)da

(P — ) — pGa(Qr —

/ P (Q —

w—0}g@)

- a1)g1 (ay)da, < 0.
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Therefore, we prove that 7, (Q, ) is concave in Qy, which implies
that the optimal order quantity Qf must satisty the first-order
condition 971 (Q1)/9Q; = 0.

Proof of Proposition 2.
(i) For Q; =0, we have G,(Q; —u —a;) =0 and ¢ =
—p— Gy ((p— ¢2)/p). It follows from Equation (A1)
that

01 (Q1)
0Q:

(o]
= / (p—c)g(ada; — ¢
—p (_I(P_%)

a

= (p—c)g(a)da; —cy=p—c;—c; >0,

=

where the second equality follows from the assumption
that 0 > a; + a, to avoid negative demand. For Q; —
00, we have G,(Q; — w — a;) = 1 and ¢ — oo, which
implies that

01 (Q1)
0Q;

Also, we show that 97, (Q;)/0Q; is decreasing in Q
in Proposition 2. Since a7, (Q7})/9Q; = 0, it suffices to
show that 971 (Q;)/9Q; > 0, that is,

- d
p/I —hG (p cz) {[1—;L—a1g2(a2) az}

X1 (a)da; — ¢ — ¢

G <é1 —pn—Gy! (p;q)) . (A2)

Using Equation (9), we have

P/ :/ gz(az)daz}gl (ay)day = c1 + ¢,.
—KH—a

(A3)

oo
=/ —ogi(a)day —c — —¢ < 0.
¢

am1(Q)
0Q,

Combining Equations (A2) and (A3), we obtain:

=G <Ql —pu—Gy' <Q>)
p
Ql —H— G
—P/ {/ gz(az)dﬂz}
1——ay

x g (ar)da;

> G (Ql —u—G,' (B))
p
Ql (o G pCZ {
—Pf / . gz(ﬂz)daz
G{l(sz)

31 (Q1)
Q)

xgi(ay)da;
=G (Ql I Gz_l (P_CZ))
P
Ql n= G pfz _
0 e ()
Xgl(ﬂl)dﬂl

(oo (75

—0Gy <é1 —n—Gy' (P— CZ))
p

=0.

This proves that Q} > (31.

(ii) This result is clear as the optimal value could only
decrease when we simply add a constraint on the deci-
sion variables to the same optimization problem. il

Proof of Proposition 3. As a; is uniformly distributed on sup-
port [—a;, a;] such that g;(x) = 1/2a; and G;(x) = (a; + x) /2a;
for x € [—a;, a;], the optimal order quantity for the short lead-
time component for the problem with unconstrained Q; given
by Equation (4) is equal to

X — - (PG
qz(a1)=u+a1+[—az+2az( : )}

(p—2¢2)
E—

=put+a+a (A4)

Also, the maximum expected profit function 7, (Q;) given by
Equation (3) can be expressed as

1 a, a ]
= /_EZ /—al [pmm(u +a+a, Qi q5(ar))

(A5)

T (Q1) =
—c; min(Qy, 45 (al))]daldﬂz — Q.

Proposition 1 shows that 77, (Q;) is concave in Q. Therefore, any
feasible value of Q; satisfying the first-order condition 77{(Q;) =
0 is an optimal solution that maximizes the expected profit. We
next analyze the function 71 (Q ) for different ranges of Q; based
on the underlying values of the model parameters and derive a
number of sufficient conditions for any feasible Q; that satisfies
the first-order condition.

For Q; > u+a; + a2 ((p — 2c2)/p), it follows from Equa-
tion (A4) that Q; > g3 (ay) forall a; € [—ay, a;], and so

/ f I:pmm(u+a1+az g (ar))
da1a; J 5,

—Czq; (ay ):|d611dﬂz - Q.

m(Q) =

Then, 7{(Q;) = —c;, which implies that 7,(Q,) is strictly
decreasing in Q; for Q; > p +a; + 52@. Thus, Qf < u +

a +62%. As the final demand D is given by Equation

(1), we have D € [u — a1 — a», u + a; + a»]. Thus, it suffices
to analyze the profit function 7, (Q;) for u —a; —a, < Qp <
w+a; +EZ(P_7PZC2). We divide our analysis into two possible
cases:
(a) —a; + 52% <a; —ay
(b) _al +52% > al — az.

These two cases correspond to the conditions: % >

PT’ respectively.

p—a
P

or

a
=<
az

Case (a): —a; + azw <4 — ay.
We perform our analysis for three possible ranges for Q;:

@u—-a—m<Q <pu—a+a (PPZCZ)



In this case, Q; < g5(a;) for all a; € [—ay, a;]. Therefore,

Q5 = Q7 the profit function (A5) can be expressed as
@ =" ["" lpwtar-co -2
T = — a1) — Q) — —
1(Q 2 Jooia, P 1 pAY 24,
a
X /7 [llz —(Q—pn— ﬂl)]daz}dal
1 Qi —u+ay P
Tﬁl - {P(M+‘11)—C2Q1—2752
az
Xf [az—(Ql —M—fll)]dﬂz}dal —aQu,
1—p—ay
and
Q) = ——— {8a1a2c1 + 8aidzc; + pla’ — 2a;(3a
8a1a2

+u— Q1)+ (@ —pn+ Ql)z]}-
It is straightforward to show that:

(-0

z1=pu— (ay+a) + _ [8aia, (A6)
is the only possible feasible root in the range [t — a; — a,, u —
a, + ax((p — 2¢2)/ p)] that can satisfy the first-order condition

77(Q1) = 0. Clearly, u — a; — a, < z;. Therefore, z; is feasible

if
Zi=pu— @ +a)+ |8aa (P;C)

_ (P — 2C2)

Su—arta

or equivalently,

= )2
@ (p—c) .
a ~ 2p(p—o)

We thus have the following sufficient optimality condition:

Condition 1: Qj = Q} =z if

p—c <E< (p—c)?

p T @ 2p(p—oc)

@) p—a+ a2 <Q < p+a —a
In this case, it follows from Equation (A4) that Q; > g5 (a,) if

andonlyif¢ = Q) — u — a2 ((p — 2¢2)/p) > ay. Therefore, the
profit function (A5) can be expressed as

1 [@
m(Q1) = TEI {P(M-f—al)—Cle
¢
N Ez[a—(Q —,u,—a)]+da da
2 ). 2 1 1 2 (day
¢ —2

5, {P(,U«+111)—C2 [Ezu+ﬂ+ali|
ar J-g,

—é/ [az—azw] daz}dﬂl —aQu,
2a; a, =22 p
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and
1

7(Q)) = ﬂ{ —2aic1p+ (¢ — p)[dzc — p(u+a; — Q1>]}.
1

Then,
_ 2¢; _ 0
n=p+a|l- —ay—,
p—a p
satisfies the first-order condition, and z; is feasible if

(p—2c)

(A7)

n—ay+a < =<p+a —a.

We can easily show that u —a; +a,((p—2c)/p) <z is
equivalent to

_ 2 a
-y o
2p(p—c) ~ @
and z; < u + a; — a, is equivalent to
Y
(p—c) Py
2pcl T a

Also, in this case,

1 [Q-n—a
E[Q}] = — *(ay)da
[Qz] 2, /—El ‘]2( day
1o
—_— QTdﬂl
2(11 Q —p—a, ‘P—;Cz)
— (p-2c)
I _(p—2c
= _— [M+al+azu]dal
2(11 = P
1 (%
+— szal
2a, Zz—#—az%
_ & @’ (p—c)?
v R -y
(p—c) ap  4p
—c — 2c
ta, (p 1 2) .
We have the following sufficient optimality condition:
Condition 2: Qf = z; and
c @ (p—o)? (p—c1—26)
EQ)=p—a - - = +a;
: (p—c) @ 4p
if
p—62<E (p—c)? <Eand(P—Cz)2551

p T @ 2p(p—c) T @ 2pcy @

@)puta—a=Q =p+a +52@_
Similar to case (a2), we have Q; > g3 (a;) ifand only if ¢ =
Q1 — u—ay((p —2c2)/p) = ay. Therefore,

1 [a
1 (Q1) = 2751/ {P(M +a) —Q
¢

_T; /1—u—a1 [az —(Q—p-— ﬂl)]daz}dal
d -2
b {P(IJ«"'“I)_CZI:EZM"'M"'“I}
ay —a, p
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az

_L/
a, |- (-2
2a2 aszZ)

I:(lz — EZLPZCZ)] ddz}ddl

—aQ,
and
1 _ _ o
ﬂ{ (Ql) = @{4a22c§ +p[—8a1a2c1 + P(,U« +a; +a; — Ql)z]

—daep(n +a; +a, — Q1)}-

It is straightforward to show that

_ _ 2c __C
z3=p+ (ay +az) _a272 - /801612*1
p p

is the only possible feasible root in the range [t + a1 — a2, 1t +
a; + a>((p — 2¢2)/p)] that can satisfy the first-order condition.
Clearly,z3 < u +a; + a>((p — 2¢2)/ p). Therefore, z3 is feasible
if u + a; — a, < z3, or equivalently,

(A8)

a _(p—o)’
a = 2pa
Also,
1 Q—pu—a, (p—2c)
E[Q] = — >(ay)da
[Qz] 2, -/—El ‘]2( 1day
I
e QTd(/‘ll
201 Qi —p—a, (P—;fﬁ
= (p=2)
1 BTHTAE T _ —2c
= — |:H+a1+az(1)2):|da1
2(11 — p
1 [e
zzda,

251 Z3—i—0, (P*ﬁtz)
_ (p—20)
=p+a S
Thus, we have the following sufficient optimality condition:

Condition 3: Qf = zy and E(Q}) = u + @ (5%) if

p—a
p

1 (P—Cz)2

<
- - ZPC 1

5\‘&\

Case (b) —El +azw > 51 — az.

Again, we consider three possible ranges for Q;:

b)pu—a—a, <Q <u+a —a.

In this case, the profit function (A5) is the same as that in case
(al). Therefore, z; as defined in Equation (A6) also satisfies the
first-order condition in this case and is feasible if u — a; — a, <
z1 < u+a; — ay. Clearly, u — a; — a, < z;. Thus, z, is feasible
@ < % We have the

if z; < u+a; — ay, or equivalently,
following sufficient optimality condition:

Condition 4: Qf = Q = z; if
2(p—o) < @ < (P_Cz).
p a2 p

G p+ar—a = Q =p—ar+a((p—2¢)/p).

In this case, Q; < g5(a) for all a; € [—ay, a;]. Therefore,
Q; = Qj. Also,

1 @
7T1(Q1)=7f {P(M+a1)—C2Q1

2a1 J 4,
—24/ [ﬂz—(Ql—M—ﬂl)]dﬂz}dal—ClQl»
az 1—H—a
and
1
T(Q) = TEZ{—ZEZQ —2a6; + p(+ay — Ql)}~

Then,

-2
Z4=M+527(p )
p

(A9)
satisfies the above first-order condition, and zy is feasible if 1 4
ar—ay <z < U —a —I—Ezw. We can easily show that
W+ a; —ay < zy is equivalent to

1 _2(p—o)

=

2 p

andzy < pu —a + 52% is equivalent to

‘S\

Sl

@2

ay p
We have the following sufficient optimality condition:
Condition 5: Qf = Q5 = z4 if

Lopme @ 29,

2 P a p
(b3) u—ay +52% SQ=pu+a +52%-
In this case, the profit function (A5) is the same as that in case

(a3). Therefore, z; as defined in (A8) also satisfies the first-order
condition in this case, and is feasible if

(p—2c2)
p

Q

51 2C1
nd — < —.

az P

N

Sn<putata

_ (p—2c)
w—a +a R
1+ »

Clearly,

_ —2c
Z3SH+41+02LPZ)'

Thus, z; is feasible if

__(p—2
w—a+ azu <z
p
or equivalently,
2,

p

We have the following sufficient optimality condition:

I

Condition 6: Q; =z and E(Q}) = p + @ (L) if 2 < & <
p—o

p

To prove part (i), assume that p > 2¢; + ¢,. Suppose that

2¢
57

p

I



The assumption p > 2¢; + ¢, implies that

E<7Z(‘D_C) and&<7p_cz.

p p p p
Therefore, Condition 5 holds, and Q} = z4. Suppose that

200 @ —0)?
2 _a_(p-a)

p az 2pC1
If
o _p-o
a, P
then Condition 6 holds, and Qf = z3. On the other hand, if
@ > p —o )
ap p

then Condition 3 holds, and Qf = z3. In either case, we have
Q} = z3. Finally, suppose that

1 (p— ©)?

- 2pc1 ’

S\‘m

The assumption p > 2¢; + ¢, implies that

(p—c)? - (p—c)? (p—c2)? - (p—c2)
2pc; — 2p(p—rc) 2pe; P

Therefore, Condition 2 holds, and Q} = z,.

We can substitute the optimal order quantity into the profit
function in each case to obtain the corresponding optimal
expected profits. The derivation is straightforward, and so we
omit the details here. This proves part (i).

To prove part (ii), now assume that p < 2¢; + ¢,. Suppose
that

Sl

L 2(p— C)-
2P
The assumption p < 2¢; + ¢, implies that
2(p=9) < Eand 2(p=0) < P—Cz.
p p p p

Therefore, Condition 5 holds, and Q} = z,. Suppose that

S|

20-9 _a _ (p-a)
p a  2p(p—c)
If
a_p-e
ﬁz_ p ’

then Condition 4 holds, and Qf = z;. On the other hand, if

a — G
= >p7,

a) p
then Condition 1 holds, and Qf = z;. In either case, we have
Q7 = z;. Finally, suppose that
= 2
a_ (p-o)

a ~2p(p—c)’
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The assumption p < 2¢; + ¢, implies that

(p—c2)?
2p(p—c)

(p— 2)? - p—a
2p(p—o) p

Therefore, Condition 2 holds, and Q] = z,.

Again, we can substitute the optimal order quantity into the
profit function in each case to obtain the corresponding optimal
expected profits. This completes the proof.

- (p— Cz)z'
ZPCI

Proof of Proposition 4. With no demand forecast updates, the
optimal order quantities of both components are the same and
given by (9), corresponding to the classic newsvendor prob-
lem. The maximum expected profit function 7;(Q;) can be
expressed as

ar+ay
m1(Q)) = / ~ pmin(u + x, Qugi4+2(x)dx — cQq,

—a—a

(A10)

where g142(x) represents the density function of x = a; + a,.
It is well known from the classic newsvendor problem that
the profit function given in Equation (A10) is concave in Q.
Therefore, any feasible value of Q; satisfying the first-order con-
dition 7{(Q;) = 0 is an optimal solution that maximizes the
expected profit. We follow the same approach as in the proof
of Proposition 3 to derive a number of sufficient conditions for
any feasible Q; that satisfies the first-order condition based on
the underlying values of the model parameters. We divide our
analysis into two possible cases: (a) a;/a, > 1 or (b) a;/a, < 1.

Case (a): a1/a; > 1. In this case, it can be easily shown that
the density function g4, (x) is given by

a +a+x _ _

% if x € [—a; —az, —a; + a,]
4(11(12

g1+2(x) =41 — if x € [—a; +ay, a1 — a;]

2(}11

a+a—x _

% if x € [a) —a, a; + a5]
4a,a;

We analyze 711 (Q, ) for three possible ranges for Q.

@) p—a—a <Q < pu—a +a.

In this range for Qy, the first-order condition 77{ (Q;) = 0 can
be expressed as

/Ql a1—1-52-|-3Cdx_}7—6
L 4aa, p ’

L—a,—ady

It is then straightforward to show that

a=u—@+@HJ%@@;o (A11)

satisfies the first-order condition 7'(z;) = 0. Also, z; < & —
a + a, is equivalent to

a p

— < .
a ~ 2(p—o

We thus have the following sufficient optimality condition:



1214 J.CAOANDK.C. SO

Condition 1: Q, = , if

1< 2 =< L
a ~2(p—o
(@2)p—ar+a <Q <pu+a —a.

In this range for Q;, the first-order condition can be
expressed as

j—a+ay a +a +x Q 1 —c
/ %dx +f —dx = P 5
—F1—Ts 4a,a, p—a,+a, 201 p
and
- _(p—20)
Z=pn+ alpi (A12)

satisfies the first-order condition. Also, u —a; +a, < 2, is
equivalent to

b, P
o 2Ap-0

and z, < u + a; — a, is equivalent to

‘Q\

1>£_
2 — 2c

N

We have the following sufficient optimality condition:
Condition 2: Q, = 2, if

a a a
flzl,,—lzip , and —- ﬂ.
a a ~ 2(p—o) a ~ 2c

@) p+a —a, =Q = pu+a+a.

In this range for Q;, the first-order condition can be
expressed as

/”_a‘+a2 a,+a+ xd + /’H'a‘_az 1 J
——————ax —ax
I '

—a-a,  4aa —a+a, 201
Q = =
ay+a; —x p—c
+ / ———dx = .
pra—a, 4ddaaz p

It is straightforward to show that:

~ — _ __ C

satisfies the first-order condition. Also, u +a; —a, < z3 is
equivalent to

(A13)

‘S\

1<£.
) — 2c

N

We have the following sufficient optimality condition:

Condition 3: Q; = z; if

<P
2 2¢

E

1<

Q

Case (b): a;/a; < 1.1n this case, the density function g; 4, (x)
is given by

ﬁj + 52 +x . _ _ _
———— ifxe[—a —a,a — a]
4&1&2
1 . -
Si2(x) = = if x € [ay —a, —a1 +ay] .
2&2
a+a; —x _
22T ifxe [+ a4 @)
4@1&2

Again, we analyze 7, (Q, ) for three possible ranges for Q.

b)pu—a—a <=Q = pu+a —a.

In this range for Qy, the first-order condition is the same as
that in case (al). Therefore, z; as defined in Equation (A11) sat-
isfies the first-order condition. Also, z; < + a; — a, is equiv-
alent to

2(p—o) _ a

p @
We have the following sufficient optimality condition:
Condition 4: Q, =  if
2(p—o)
p

b)) pu+a—a<Q pu—a+a.
In this range for Q, the first-order condition can be
expressed as

Ql

1

< <1.

S|

KO8 g 4G, +x Q 1 —c
/ %dx + / —dx = p ,
P 4a,a; b —a, 241 p

and

3 (p—20)

Zy=p+ (A14)

satisfies the first-order condition. Also, u +a; —a, <z is
equivalent to

N

1 2(p—o)
2 p

and g < 0 — a, + a, is equivalent to

\
IA

’

Ql

2c

< —.

p

We have the following sufficient optimality condition:

SIE)

Condition 5: Q, = z, if

a
_- S 17
az

2(p—oc)

El 2c
and — < —.

=

aj - p

b3 u—ar+a,<Q <pu+a +a.

In this range for Q, the first-order condition can be
expressed as

I

MO g 4+ a, + x
fdx
=T —Fs 4aa,
p—aita Q = =
a,+a; —x p—c
+/ —dx + / — dx =
wtam—a, 202 p—m+a, da1ax p



It can be shown that z; as defined in Equation (A13) satisfies the
above first-order condition. Also, u —a; + a, < z; is equiva-
lent to

2
p

We have the following sufficient optimality condition:

=

5!| 8!

Condition 6: Q; = 2, if

2¢ El
— < =<1

To prove part (i), assume that p > 2(¢; + ¢;) = 2c. Suppose
that

The assumption p > 2¢ implies that

Eﬁlandgg‘o_c.
p

Therefore, Condition 5 holds, and él = z,. Suppose that
5 _
= < 2 < ﬁ
p a2

If a,/a, < 1, then Condition 6 holds, and (31 = Z3. On the other

hand, if a,/a, > 1, t~hen Condition 3 holds, and él =2z. In
either case, we have Q; = z;. Finally, suppose that

AL P
ap 2
The assumption p > 2¢ implies that:

P p

2c T 2(p—o)

P > 1land
2c

Therefore, Condition 2 holds, and Q; = 2.
To prove part (ii), assume that p < 2c. Suppose that

@ _ 2(p — c)'
a, p
The assumption p < 2c implies that:
2(p— 2(p — 2
(P=0) < land ) <—C.
p p

Therefore, Condition 5 holds, and él = Zz,. Suppose that
2 (p— _
p a; 2(p—c)
If a;/a, < 1, then Condition 4 holds, and Ql = z;. On the other

hand, if @,/a, > 1, then Condition 1 holds, and Ql =2z.In
either case, we have Q; = Z;. Finally, suppose that

L T
a ~ 2(p—o)
The assumption p < 2c implies that:
p p p

> land > —,
2(p—-c) 2(p—c) 2
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Therefore, Condition 2 holds, and él =2,
We can then substitute the optimal order quantities into the
profit functions to obtain the corresponding optimal expected

profits. The derivation is straightforward, and so we omit the
details here. ]

Proof of Proposition 5.
(i) Suppose that p > 2¢; + ¢; and

o 2a
ap p
Proposition 3(i) shows that:
. _(p—cc a’p
b —C)—ap—————— — ——.
n(p—c) —az » % 12

Note that p > 2¢; + ¢, isequivalentto¢; < p — cand so
L2 _2p-0
p p
It then follows from Proposition 4 that 7 = 7*, and thus
MCR = 0.
(ii) Suppose that p < 2c; + ¢,. This implies that p < 2(c; +
¢2), and so r* is given by Proposition 3(ii) and 77 is given
by Proposition 4(ii). For

K]

2=
a, p
we have
e (p=oc @’ p
nf=n=pup—-c)—a - 512
Note that (p — ¢;)? < p?, and so
(p—c) _ _p
20p—0ap ~ 2(p—0)
Thus, for
2p—0) _ @ _ (P—Cz)z’
p a ~ 2(p—op
we have

7t =g =p(p—c)—(a+a)(p—c)

2229 fop 5,09
3 »

and thus MCR = 0.
Assume that p < 2¢; + ¢;, and let

_(p—a)
fp) = -0
Then,
Fp) = 2p(p—0)2(p— ) — (p— 2)*2(2p— )

4p*(p— o)?
_2(p—a)l2p(p—c) — (p—c2)(2p—0)]
a 4p*(p—¢)?
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2(p—c)[ple; = c1) — ca(e1 + )]

4p2(p _ C)Z
2(p—c2)[(2c1 + ¢2) (2 — ¢1) — caler + )]

- 4P2(P _ C)z

_2(p—e)[-2¢]]

- 4P2(P _ C)z
Thus, f(p) is decreasing in p for p < 2¢; + ¢,. Itis clear
that

2C1

fQe+c¢)= 7

(iii) As a,/a; — oo, we have a, — 0, and it follows from
Propositions 3 and 4 that

m* — EIM and m — (P C)C.
p—a
Then,
MCR = f’;l _Nm* N ; _CP—lcz -1— C1P
m < (p—c)c

_a(r=c
_C p—c '

This completes the proof. ]





