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ABSTRACT

FPGA IMPLEMENTATION OF A CHOLESKY ALGORITHM FOR A SHARED-
MEMORY MULTIPROCESSOR ARCHITECTURE

by
Satchidanand G. Haridas

Solving a system of linear equations is a key problem in the field of engineering and

science. Matrix factorization is a key component of many methods used to solve such

equations. However, the factorization process is very time consuming, so these problems

have traditionally been targeted for parallel machines rather than sequential ones.

Nevertheless, commercially available supercomputers are expensive and only large

institutions have the resources to purchase them or use them. Hence, efforts are on to

develop more affordable alternatives. This thesis presents one such approach.

The work presented here is an implementation of a parallel version of the

Cholesky matrix factorization algorithm on a single-chip multiprocessor built on an

APEX2OK series FPGA developed by Altera. This multiprocessor system uses an

asymmetric, shared-memory MIMD architecture, built using a configurable processor

core called Nios, which was also developed by Altera. The whole system was developed

on Altera's SOPC Development Kit using the Quartus II development environment.

The Cholesky algorithm is based on an algorithm described in George, et al. [9].

The key features of this algorithm are that it is scalable and uses a "queue of tasks"

approach [9], which ensures dynamic load-balancing among the processing elements.

The implementation also assumes dense matrices in the input.

Timing, speedup and efficiency results based on experiments run on uniprocessor

and multiprocessor implementations are also presented.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Solving a linear system of equations of the form Ax = b is one of the fundamental

problems which one comes across in many engineering and scientific fields. Here, A is

the coefficient matrix. One approach to solve this problem is to use Cholesky

factorization. This method can be adapted quite easily to parallel architectures and has

been the focus of a lot of work in the area of parallel matrix factorization.

Supercomputers and off-the-shelf multiprocessor systems were usually the target of this

line of research [8-10, 13, 14]. Unfortunately, the high cost was the prohibitive factor in

making marketable products out of it. However, with recent advances in programmable

logic and high-capacity Field-Programmable Gate Arrays (FPGAs) which use advanced

VLSI technologies, computer engineers can create parallel systems within a single chip

and adapt the above programs for these embedded systems. This thesis presents an

implementation of an algorithm described in a paper by George, et al. [9] on Altera's

APEX EP20K series FPGA. The algorithm is a parallel implementation of Cholesky

factorization and uses shared-memory MIMD architecture.

1.2 Computer Solution of a System of Linear Equations

Consider a system of equations

1
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This system can be conveniently solved if methods of linear algebra are used. Assume

that the above system is represented in the form

where A is an n x n coefficient matrix, x is an n-dimensional vector containing the xi's,

that is the unknowns, and b is an n-dimensional vector containing the constants. One

comes across problems of this kind in many engineering and scientific fields. There are

many approaches to solve this problem, especially using computer-based techniques.

These are generally classified by their nature into two main categories — Direct and

Indirect. Among these, while the former include algorithms such as Gaussian Elimination,

Gauss-Jordan Elimination, and Cholesky Factorization that factorize the matrix A into a

product of a lower-triangular and an upper-triangular matrix, the indirect approach

includes methods like the Gauss-Seidel method and Newton-Raphson approach that try to

find the inverse of the matrix A, A-1 using iterative techniques. Both of these approaches

have been studied for solving a linear system of equations in a parallel environment [5-8,

10, 12, 14]. This work deals only with direct techniques. Among the direct factorization

methods mentioned above, each has its advantages and disadvantages and there may be

certain cases, depending on the characteristics of the matrices obtained, where a certain

method may be more suitable. Accuracy is a factor which usually limits the choices

available. The structure of the matrix is another factor. Sparse matrices, wherein the

percentage of non-zero elements is very small, are especially suitable for direct methods

such as Supernodal LU [6], Multifrontal [18, 19] and Cholesky [9, 12, 14]. For this work,

the Cholesky factorization method was chosen over LU decomposition. There were a

number of reasons for this as listed on the next page.
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■ Faster Execution

Only one factor needs to be calculated as the other factor is simply a transpose of

the first one. Thus, the number of operation counts for dense matrices, which are

the kind of matrices assumed for the present work is n 3/3 under Cholesky; this

corresponds to a 50% speedup compared to 2*n 3/3 required for traditional LU

decomposition.

■ Highly Adaptive to Parallel Architectures

Pivoting is not required in Cholesky factorization. This makes the algorithm

especially suitable for parallel architectures as it reduces inter-processor

communication. A lot of work [9, 14] has been devoted to parallelizing the

Cholesky factorization method.

■ Significantly Lower Memory Requirements

In the Cholesky algorithm, only the lower triangular matrix is used for

factorization, and the intermediate and final results (the Cholesky factor L) are

overwritten in the original matrix. Thus, only the lower triangular matrix can be

stored resulting in significant savings in terms of memory requirements.

For the case of sparse matrices, using suitable preconditioning techniques, the

execution time for Cholesky factorization can be reduced further than if the original

matrix had not been preconditioned. The preconditioning step can result in lesser memory

requirements as well. Sparse matrices and their factorization techniques, although they

have contributed significantly to the area of parallel factorization, are not the focus of this

work and hence will not be discussed further. Readers may refer to [7, 8, 10-14, 17-19]

for further information about the issues involved, especially in the preconditioning phase.
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In this implementation, only dense matrices are considered, although future work will

involve adapting the algorithm for sparse matrices as well. The next section introduces

the Cholesky factorization method and the scope for parallelism within it

1.3 Cholesky Factorization

Consider the linear system of equations 1.2 (rewritten here for reference),

where A is assumed to a symmetric and positive definite matrix of order n, and x and b

are n-element vectors. By positive definite, it is meant that A satisfies the condition,

Then to solve equation 1.3, that is to find the vector x, the first step is to factorize the

matrix A. Using the Cholesky algorithm to factorize A means that one needs to find the

factor L such that

where L is a lower triangular matrix. For A of the form in (1.4) above, the decomposition

(1.5) exists and is unique. A general form of the Cholesky algorithm is given in Figure.

1.1, where the row-order representation is assumed for stored matrices. In the above

algorithm, if one changes the order of the three for loops, one can get different variations

which give different behavior in terms of memory access patterns and the basic linear

algebraic operation performed in the innermost loop. Out of the six different variations

possible, only three are of interest. They are the row-oriented, column-oriented and sub-

matrix forms and are described on the next page.
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■ Row-oriented

L is calculated row by row, with the terms for each row being calculated using

terms on the preceding rows that have already been evaluated.

■ Column-oriented

In this variation, the inner loop computes a matrix-vector product. Here, each

column is calculated using terms from previously computed columns.

■ Sub-matrix

The inner loops apply the current column as a rank-1 update to the partially-

reduced sub-matrix.

Figure 1.1 General form of the Cholesky algorithm.

The column-oriented variation was implemented for this work. This variation can

be better understood if the algorithm is re-written in the pseudo-code form shown in

Figure.1.2. In this figure, one can identify two distinct subtasks — referred to in literature

as cmod and cdiv — that need to be carried out during the course of a regular column-
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oriented Cholesky algorithm. A brief description of the behavior of these tasks and the

ordering relationship between them is discussed next. The same will be discussed in

further detail in Chapter 3. Firstly, for every column except the first one, a number of

cmod operations must be carried out which modify the target column using terms from

the preceding columns. Next, a cdiv operation is performed in which, first the diagonal

term is replaced by its square-root; next, all the terms below the diagonal element of the

target column are divided by the new diagonal term.

Figure 1.2 Subtasks in the column-oriented Cholesky algorithm.

There exists a clear ordering relation between these two subtasks. Firstly, for all

the columns except the first, the cdiv subtask can be carried out only after all the cmod

operations have been carried out on it. For the first column itself, as no preceding

columns exist, the cdiv task can be carried out directly. Moreover, only after the cdiv

operation is carried out on a particular column, can that column be used in a cmod

operation to modify succeeding columns. Depending upon the granularity of the

processors, one can assign either individual subtasks or a number of subtasks to a single
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processor. Thus, dividing these distinct subtasks among the available processors is one

way to parallelize the Cholesky algorithm. Another is to assign an entire column to a

single processor, whereby, all the subtasks required for that column are carried out by

that processor. This is the path taken in [9], and is also the one that has been implemented

here. Hence, all the cmod and cdiv subtasks associated with a column are carried out in

the same processor. A more detailed description of the division of tasks and our

implementation in general is provided in the Chapter 3.

The next section presents an introduction to Field-Programmable Gate Arrays

(FPGAs), which were used as a platform for implementing the multiprocessor system.

FPGAs have become very popular in recent times because of the development in areas

such as configurable computing, a field where FPGAs have become ubiquitous, and has

drawn considerable attention since the invention of these devices and hardware-software

co-design.

1.4 Field-Programmable Gate Arrays

FPGAs are general purpose programmable devices that can be configured appropriately

to implement the desired digital designs. The first FPGA devices were introduced by

Xilinx in 1985. Since then a number of major companies have entered this field,

including Altera, AT&T and Actel. This project made use of FPGAs and development

kits developed by Altera. Although the internal structure of these devices varies

depending upon the manufacturer, in general they are composed of arrays of configurable

elements known as Logic Elements (LEs) interleaved by routing channels for

interconnecting the LEs. A single LE is composed of memory elements known as Look-

Up Tables (LUTs) that function similar to the truth-table of a Boolean function, some
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storage elements such as flip-flops and some other associated logic such as carry logic for

adder circuits. FPGAs also consist of Embedded System Blocks (ESBs) which can be

configured by the user to serve as RAM or ROM memory blocks. In general, FPGAs are

more complex in terms of their internal structure compared to other programmable

devices, such as CPLDs and PLAs, and they offer much higher logic capacities. FPGAs

can be programmed by the user using development tools such as Altera's Quartus II, etc.

These tools accept the user's design as an input and produces as an output a bit-stream

which is used to configure the FPGA. The input design can be in the form of a system

description coded in a hardware description language such as VHDL or Verilog, or in a

graphical form containing symbols of the logical units comprising the system and the

interconnections between them.

When they were first introduced, FPGAs were slow devices. Hence, they could

not be used in real life applications. However, their ease of programmability and their

smaller design and development cycles made them handy devices for certain tasks,

especially as tools to explore novel computer architectures. Because of their shorter

development cycle, these devices were also used to test designs for feasibility and fault

tolerance before actual transfer into ASICs and fully-custom silicon chips. With the

incorporation of VLSI techniques into the making of FPGAs, the clock speed supported

by these devices is now high enough to satisfy the demand of many commercial

applications. Moreover, their capacity is large enough to often hold an entire processor.

This has led to their application to real-time systems, functioning as microcontrollers or

digital signal processors. Such systems are now referred to as System-on-a-Chip (SoC) as

all the necessary controller logic as well as any supporting interfaces can be configured
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into a single chip; SoCs are slowly making their way into the commercial arena. One

field that has been tremendously influenced by FPGAs is that of configurable computing,

which is briefly discussed next.

1.5 Configurable Computing

The field of configurable computing involves the use of programmable logic devices to

implement custom designed hardware logic to perform specific tasks. This field owes its

existence to the invention of FPGAs. The key component of a configurable computer is a

general-purpose processor which acts as a controller that takes in an input from the user,

processes it using user-provided software instructions and then, provides an output that

can perform meaningful tasks. For example, consider an application where the device is

used as a temperature controller, taking in room-temperature as an input and then, based

on the user-defined settings, provides output signals that control a thermostat. Earlier

these kinds of signal processing applications were implemented using ASICs. However,

the high cost and time of design and development limited its use. Only major players in

the field like Motorola and Texas Instruments (TI) could afford the time and money

involved with designing and manufacturing these devices. These factors limited their use

to certain fields such as networking and telecommunications. Moreover, these devices

were not flexible. If a client wanted to make a small change to the design, the whole

design and development cycle had to be repeated and a whole batch of chips would have

to be fabricated all over again, which made this process prohibitively expensive. With the

advent of FPGAs and recent developments in the field of configurable computing though,

users can now design applications and implement them at costs that are significantly
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lower. Moreover, the designer has the opportunity to control all aspects of the design and

development process and can change the design at any stage of the process without

incurring any significant costs. Additionally, with recent developments in the field,

design and development cycles have become much shorter and quicker. One of these key

developments is the appearance of third-party configurable modules known as

Intellectual Property (IP) cores that can be plugged right into a user design to save time.

IP cores are discussed in further detail ahead. Other developments that have influenced

this field include new software-based automation tools that speed up the design and

implementation of new ideas, faster and larger (in terms of capacity) FPGAs, and also

new design methodologies that simplify the design of new applications. Designers can

improve the quality of their products by incorporating some of these techniques into their

designs. Some of these are discussed next.

1.5.1 Development Environment

To develop designs for FPGAs with capacities in the range of several thousands of gates,

one needs to have at hand a design-entry and development environment which allows the

user to handle effectively the complexity of that design. Having the right set of tools can

result in significant reductions in development times and also in the size of the final

design. In fact, recent design automation tools allow the user total control of the design

process, from developing individual blocks right up to synthesizing the design and

putting it into the FPGAs. Most of these commercially available tools also provide a

graphical interface to aid the designer. These tools allow the user to place the designed

blocks into specific parts of the FPGAs in order to reduce latencies, etc. They also

provide simulation tools with timing analysis, etc., to test the design at every step of the
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development process. Many current development tools also support integrated hardware-

software co-design methodologies. Thus, the user can use the same tools to develop the

software as well as the hardware systems.

In the current project, Altera's Quartus II software and the associated SOPC

Builder tool were used to put together the various components using their easy to use

graphical user interface (GUI). This interface gave a high-level view of the entire design

and simplified the development process considerably.

1.5.2 Intellectual Property (IP) Cores

As mentioned above, IP cores are ready-to-use, ready-to-synthesize modules that can be

plugged into any design to speedup the development cycle. Using these cores, the

designer can skip or significantly reduce the otherwise steep learning curve that he or she

has to undergo before starting work on a new idea. Moreover, designers can create cores

out of their own designs to be used in future work. Recently, organizations are being

setup to standardize interfaces for IP cores, with a vision of making their use widespread.

With the advent of low cost development tools, new companies are coming up that

specialize in developing IP cores for specific markets, such as telecommunications,

networking, etc. Developers of networking and communication devices, then license and

use these cores in their design to speed up development cycles and reduce costs.

In the work presented here, 32-bit instances of a soft-processor core developed by

Altera called Nios were used. In addition, IP cores for DART, and on-chip memory were

also used. Using these IP cores significantly reduced development time for this project

once the architecture was designed.
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1.5.3 Hardware-Software Co-Design

Configurable computing has seen a paradigm shift from traditional design flows, which

consisted of clearly defined and demarcated hardware and software flows, towards a flow

that integrates the two. Previously, hardware and software were two distinct components

of any system and they were treated as such. Because of the complexity of previous

design processes, the development team would consist of two separate groups, a

hardware group and a software one. Interaction between these groups would be minimal.

Hardware, because of the higher development costs, would influence the critical design

decisions and normally would be developed first. Only after this, would the software

team develop the software to fit the designed hardware. This not only lengthened the

design cycle, but also made the system as a whole inefficient. Now with the reduced costs

of development and also the ease of implementing the developed designs, the two teams

can be integrated for even better performance. Applications are designed for the two

components to complement each other. Thus, the decisions made while designing the

software influences the hardware design and vice versa. This paradigm has been termed

in the literature as hardware-software co-design. It has resulted in a framework where the

limitations of the hardware process are offset by the software developed and vice versa.

Application implementation is now seen not just as a piece of hardware on which to run

some software, but instead as an integrated hardware-software system.



CHAPTER 2

HARDWARE IMPLEMENTATION

2.1 Architecture of the Shared-Memory Multiprocessor System

The multiprocessor system used to implement the parallel Cholesky algorithm contains

three or more instances of the 32-bit variant of Nios soft-processor core (discussed in the

next section) developed by Altera and also various other peripheral IP softcores such as

on-chip memory blocks (discussed ahead). This text uses the term "Nios-32" to denote

the 32-bit variant of Nios. The multiprocessor system described in this chapter

implements asymmetric, shared-memory architecture. Each processor in this system has

its own local memory where instructions and data can be stored. There is additional

memory that can be accessed globally and is used to store the initial matrix, the data

structures, as well as the final Cholesky factor L. A block diagram of this architecture is

shown in Figure 2.1 and is described next. Note that the following discussion assumes a

3-processor system.

Figure 2.1 Architecture of the 3-Nios system.

13
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As shown in Figure 2.1, although there are no direct connections between the three Nios-

32 processors, each can communicate with another through the intermediate memory

modules. Thus, if Nios 1 wants to communicate with Nios2, it can put the information in

either Local-mem2 or Global-mem. Note that in this architecture, while Nios1 has access

to the local memories of Nios2 and Nios3, the reverse is not true. Because of this

asymmetry, Nios I can be considered the master processor while Nios2 and Nios3 can be

considered the slave processors, although the terms 'master' and 'slave' are not used in

the regular sense here. Note that it is the slave processors which participate in the matrix

factorization. In this text, the slave processors are also referred to as processing elements.

The master-processor, Nios1 also has certain other privileges not available to the other

two processors, such as the following:

■ It has a DART connection for interaction with the Host computer.

■ It can write into the program memory of Nios2 and Nios3, thus letting the user

change dynamically, the code being executed by them at run-time.

■ In the current configuration, it runs a monitor program called GERMS, provided by

Altera, which accepts commands from the Host machine. This allows the user to

interact with the system at runtime. The timing program used for measuring the

sequential and parallel runtimes is also executed by this processor.

In this system, the global memory is used to store data that all three processors

have to access. In the case of the Cholesky program, the task-queue and other global

variables were stored here. The connections between the various components in the

system were made using the Avalon™ Bus System which is discussed in detail in a later.
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2.2 Nios Configurable Processor IP Cores

The system described above was implemented using instances of Altera's Nios™ 2.0

soft-processor core. Altera defines Nios as a "pipelined general-purpose RISC

microprocessor" [2]. Nios is configurable so that its features can be selected by the user

from a variety of available options depending upon memory requirements and logic

requirements, such as floating point support, support for hardware interrupts, etc. Nios

also supports custom instructions. These are instructions that can be added by the user to

a design to perform specific tasks that may not already be supported by Nios. These

instructions, which are implemented as hardware blocks designed using a hardware

description language such as VHDL or Verilog, are added to Nios using Altera's SOPC

(System-on-a-Programmable Chip) Builder development environment. This option offers

significant improvements in terms of timing, efficiency, etc. In the current project, a

pipelined single precision floating-point square root unit with an initial latency of twenty-

seven, was added as a custom instruction to serve as a substitute for the software coded

one. This resulted in a compiled source code with a smaller memory footprint, as well as

improved timing results than the one that would have been achieved if a software

simulated square root unit was used. For the rest of the floating-point operations, regular

software libraries were used. The configuration of a Nios processor can be modified using

the SOPC Builder environment. The specific configuration chosen for the processors in

the system described here is listed in Appendix A.
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2.3 Inter-Connections Using the Avalon™ Bus System

The interconnections in the system were made using the Avalon™ bus system, provided

by Altera with the SOPC-Builder™. This system was used to connect processors and

peripherals together. It creates point-to-point connections between the master (in this case

the Nios-32 processors) and the slave (in our case the memory modules). Thus, as no bus

contention occurs, there is no need for external bus arbitration. In the case where a

particular slave component - say a memory component - is connected to more than one

masters, the Avalon bus system uses slave-side arbitration, which is automatically

enabled by the SOPC Builder software whenever the situation arises. This means that an

arbitration unit (as shown in the Figure 2.2) is automatically added on the slave side.

Figure 2.2 Slave-side arbitration in the Avalon bus system.

The Avalon bus system uses a weighted round-robin scheduling policy whenever

arbitration is needed. The SOPC Builder uses equal weights as default values which can

be changed by the user. The concept of the Avalon bus system significantly simplifies the

hardware as well as the software programming on the part of the user. The user does not

have to program an arbitration policy explicitly.
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At power-on, the three processors start executing from the first location of their

program memory. Thus, while Nios 1 executes the GERMS monitor program, Nios2 and

Nios3 execute their respective pieces of the parallel Cholesky program. The parallel

Cholesky program picks up a task from the queue stored in the global memory and

modifies the original matrix, which is also stored in the global memory. This matrix

decomposition occurs in place, which means that at the end of execution the Cholesky

factor L is found in the place of the original matrix. The program execution ends when

there are no more tasks in the queue.

2.4 The SOPC Development Board

The above 3-processor architecture was implemented on the Altera's SOPC Development

Board. The SOPC board has been produced for quick prototyping and development. The

main component of this board is the APEX EP20K1500E FPGA which has the capacity

to hold 1,500,000 ASIC-equivalent gates. It comes in a 652-pin package, has 51,840 logic

elements (LEs) and 442,368 RAM bits [3]. Other important features of this board, in

addition to the APEX chip, include:

■ Support for six clocks, which includes a BNC connector that can be attached to an

external oscillator. The largest on-board clock frequency is 66 MHz. The setup

described in this chapter used the on-board 33 MHz clock.

■ Numerous off-chip memory devices such as 64-Mbytes of DRAM, 4-Mbytes of

Flash memory, as well as 256-Kbytes of EPROM memory. The work described

here only made use of on-chip memory resources.

■ Various interfaces such as IEEE Std. 1394a (Firewire), RS-232 serial, USB, as
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well as 10/100 Ethernet will full- and half-duplex communications. The setup

used for this work (listed in the next section) used the RS-232 serial port for

transferring user code to the various processors, as well as transferring the data

matrix from the host PC to the on-chip global-memory. At the end of the

factorization process, the Cholesky factor L was transferred from the global

memory back to the host PC using the same serial port.

■ JTAG interface for configuring the FPGA.

Note that the above information was taken from the Altera's SOPC Development

Board User Guide [3] and interested readers can refer to it for further information on this

development kit.

2.5 System Setup

The synthesized parallel system which was configured onto the APEX device had the

following components:

1. Three Nios-32 processors (standard configuration chosen for each of them).

2. Four on-chip 10 KByte RAM modules (three local and one global).

3. One 4 Kbyte on-chip RAM module containing the GERMS boot monitor.

4. 33.33 MHz system clock.

5. A serial port (115,200 baud and N82).

6. A timer with initial period of 1 msec.

The above components were all individually added and configured using the

SOPC Builder tool. The configuration chosen for each of these individual components is
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listed in Appendix A. The system was synthesized using Altera's Quartus II, which is an

integrated environment for logic design and synthesis. Quartus II 2.0 was used for the

work described in this thesis. Upon synthesis, the system occupied 23% of the logic

elements, which amounts to 12,003 LEs, and 92% of the embedded system blocks (ESBs),

which amounts to 409,600 RAM bits. Only four pins of the APEX device needed to be

used. They were one for the 33.33 MHz clocks, one for the global reset and two for the

RS-232 interfaces. The SOPC development kit was used for all experiments.

The next chapter presents a detailed description of the parallel Cholesky

application, the software that was developed to run on the hardware system described in

this chapter.



CHAPTER 3

SOFTWARE IMPLEMENTATION

3.1 The Parallel Cholesky Factorization Algorithm

The central concept of the algorithm described in George, et al. [9] and adapted in the

current work is a task queue which contains tasks to be performed by each processing

element in the system. The tasks can be divided by rows, columns, or sub-matrices,

although the column based division can achieve a higher degree of efficiency [9]. This

work focuses on the column variation. In the original implementation, which the authors

implemented on a Denelcor HEP multiprocessor, each processor picks up a task Tcol(j),

1<=j<= n, from a global task-queue, where the tasks are ordered on the basis of increasing

column numbers. Thus, Tcol(1) appears before task Tcol(2) in the task-queue task, which

in turn appears before Tcol(3), and so on. Thus, the last task in the queue, and thus the

last task to be performed, is Tcol(n), where n is the order of the matrix. The order of tasks

in the queue is important and at the end of completion of Tcol(j), column j is the jth

column for the Cholesky factor L of the original matrix. A high-level structure of the

program in terms of the above tasks would be as shown in Figure 3.1.

Cholesky( ) {

For j = 1 to n

Begin

Pick up task Tcol(j) from task-queue

End

}

Figure 3.1 Top level routine for the parallel Cholesky program.

20
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Each task Tcol(j) is composed of a number of column modification operations. These

operations are of two types:

1. A column j is modified by using data from all the preceding columns k =1 to k =

j-1. For a given value of k, this can be denoted by cmod(j, k) and its pseudo-code

is shown in Figure 3.2 below.

2. The elements of column j are divided by the square-root of the diagonal element

on the same column. This can be denoted by cdiv(j).

Figure 3.2 Pseudo-code for the cmod routine.

Again, there is a fixed order for these operations. A cdiv operation can only be

carried out on column j only after the column j elements have been modified by data from

all the preceding columns using cmod operations. Moreover, a cmod operation on a

particular column can use a preceding column only when the later is ready, that is, after

the cmod and cdiv operations on that column have already been performed. To indicate

the status of the particular column, that is to indicate whether it can be used in cmod

operations on succeeding columns, George, et al. [9] mention the use of an array,

ready[.] . This data structure has been used in the implementation presented here as well.
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Tcol( j) {

For k = 1 to j-1

Begin

Wait until flag ready[k] has been set

Perform cmod(j,k) operation

End

Perform cdiv(j) operation

Set flag ready[j]

}

Figure 3.3 Subtasks in the Tcol routine.

A pseudo-code for the task Tcol(j), in terms of the cmod and cdiv operations, is

shown in Figure 3.3. As seen from the above pseudo-code, in each task Tcol(j), a number

of cmod operations are performed on a column at the end of which a cdiv operation is

executed. The scheduling is better illustrated in Figure 3.4 on the next page.

Figure 3.4 illustrates how each task is further divided into the above defined cmod

and cdiv subtasks, taking the specific example of a matrix of order n = 5. From the

ordering shown in the figure, one can observe the scope for parallelism in this algorithm.

Consider a scenario for two processors, P 1 and P2, where each processor handles a single

task Tcol(j). Without loss of generality, it can be assumed that processor P1 picks up and

starts working on task Tcol(1) which contains only a single subtask cdiv(1). During this

time, processor P2, which is currently idle, will pick up Tcol(2) from the queue. Tcol(2)

consists of subtasks cmod(2,1) and cdiv(2), which need to be carried out in that order. For

subtask cmod(2,1) to be performed, column 1 needs to be ready first. Hence, P2 will be

idle while P 1 finishes its work on column 1. Once this is done, P2 will resume execution.



23

In the meantime, P1 can now pickup Tcol(3) from the queue. While P2 is still working on

column 2, P1 can at least complete subtask cmod(3,1) as column 1 is complete. Once

column 2 is ready, P 1 can perform the rest of the task, Tcol(3). During this time P2, which

is now idle will pick up Tcol(4) from the queue and, until Tcol(3) is fully completed, will

perform sub-tasks cmod(4,1) and cmod(4,2). This process will continue until no more

tasks remain to be performed, which in this case happens once P 1 picks up the remaining

task Tcol(5). The authors of the original paper [9] term this as "self-scheduling" which

does away with any explicit load balancing on the part of the programmer.

Figure 3.4 Task and subtasks for a matrix of order n = 5.
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3.2 Analysis of the Parallel Cholesky Algorithm

One major advantage of this algorithm, as can be seen from the above discussion, is that

load balancing is embedded in it. Because each processor picks up a new task as soon as

it is done with an old one, no processor sits idle unless there are no more tasks to be

carried out. Nevertheless, note that this approach does not imply that each processor is

Figure 3.5 Processor scheduling diagram for a matrix of order n = 5.
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busy throughout the program's execution. As discussed above, during the execution of a

particular task there exists a certain interval during which the processor is waiting for a

preceding column to be ready. That is, for the ready flag of the preceding column to be

set. However, this idle time, which in [9] is called the busy-wait time (shown in Figure

3.5), is of a lesser order than the total execution time for the entire program. Another

advantage of this algorithm is that as a particular column is modified by a single task that

is run on the same processor, there is no need for external synchronization. This

algorithm is well suited to MIMD architectures as the granularity level is quite large. One

requirement is that the task queue should be visible to all the processors, and, hence, the

shared-memory must be global to all the processors and large enough to hold the entire

queue.

The complexity of the algorithm is calculated next, for which the following three

assumptions are made:

1. Matrices are dense, and

2. Multiplication, division and finding the square-root are equivalent floating-point

operations. That is, it assumed that they require the same amount of time.

3. Moreover, the time taken for addition/subtraction operations is neglected as it is

small compared to the time required for the operations listed above.

Then, to calculate each column j of the Cholesky factor L, one needs:

Thus the total number of operations to completely factorize a matrix of order n is



This complexity is the same for the parallel implementation of the Cholesky

algorithm as well. Again, note that the derivation above does not take into account the

time required for addition and subtraction operations, which normally require one clock

cycle to complete. In terms of exact number of floating-point operations, the Cholesky

factorization requires n3/2 operations, which are half as many as that required in the

traditional LU decomposition algorithm.
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3.3 The Parallel Cholesky Program Design

As the parallel system used for this application was built using components that are

normally used only for uniprocessor designs, support for parallelism, such as a

parallelizing compiler, was not available. Hence, to parallelize the application, explicit

memory references were used in the code for each processing element to access

structures in global memory. As each of the processors came with a C compiler, C-styled

pointers were used to make the various data structures globally accessible. Thus, during

the time of designing the memory architecture, a base address and the size for the global

memory were decided upon and fixed using Altera's SOPC Builder development

environment. The rest of the system was built around this memory block. Then, the

addresses of the various globally accessible flags and arrays were fixed within this global

block again using pointers. This is shown in Figure 3.6.

Figure 3.6 Declaration of global variables in the source code.
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Table 3.1 Global Variables in the Parallel Cholesky Program

Variable Name Data Type Description

base integer pointer
Base address. All other addresses are defined in

terms of this address.

flag integer

A flag used to signal the event that the data

matrix has been stored into the global memory

so that the processors can begin the

factorization.

semaphore integer

Used as a flag for protecting the critical section

in the program (corresponds to picking up a

unique task from the queue).

task_id integer

This variable stores the number of columns still

left to be worked upon. The current value of

this variable also acts as the task-id for a

processor. The processor then performs the

cmod and cdiv operations on the column with

the current value of this variable. Once the

processor has obtained this value, it increments

the value of this variable by one. The

factorization is complete when the value of this

variable is equal to that of the order of the

matrix.
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Table 3.1 Global Variables in the Parallel Cholesky Program (Continued)

Variable Name Data Type Description

order integer
Stores the order of the matrix to be compared

with the value in the variable task id.

ready integer array

The length of this array is equal to the order of

the matrix. When the values in a particular

column are ready to be used by other columns,

the value in that particular element of the array

is set to a non-zero value. As long as the value

in a particular element of this array is zero, that

column cannot be used to modify other

columns.

processor integer array

The length of this array is equal to the order of

the matrix. This array stores the ID of the

processor that worked on the columns. Thus, if

the second element contains the value '2',

column 2 was modified by processor 2.

A float array
Contains the data matrix and the Cholesky

factor matrix.

3.4 Application Execution Cycle

When the reset switch is pressed on the development board, all the processors that are

going to take part in the actual matrix factorization start executing code from the starting

address in their respective program memory. This starting address can be specified by the
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user while configuring the system using SOPC Builder. Each processor then waits until

the input matrix is loaded into memory. For this, each processor keeps polling the flag

variable (whose value is initialized to zero) to check if it is set. This variable is set only

after the input matrix is loaded into the global matrix. This matrix is loaded using a

program that is executed by the master processor, which is also connected to the DART.

Once the flag variable is set, all the slave processors resume their respective execution.

The processors stop execution when there are no more tasks left in the task queue. For the

setup used in this work, this is the case when the value of the variable task id is equal to

the value of the variable order. Given a matrix, in order to factorize it, the following

steps need to be performed to get the final result, which is the Cholesky factor L.

1. Assuming the programs for the actual processing elements are already in place,

the system is reset using the reset switch on the development board. This causes

the processors that are involved in the factorization to start executing code in their

respective program memories. This causes each of those processing elements to

wait for the input matrix to be uploaded into the global memory. This, as

described above, is indicated by the flag variable.

2. The input matrix is uploaded into the global memory using the master processor.

The matrix is embedded in a program uploaded into the program memory of the

master processor using the serial port. The processor starts executing the program

immediately upon uploading. This program also initializes the other variables and

arrays for the actual factorization. Once the input matrix is in place, the program

will also set the flag variable to a non-zero value. For the setup described in this

thesis, which consisting of two processing elements P 1 and P2, a value other than
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2 or 3 causes the system to run in parallel and this means that both the processors

that factorize the matrix will run in parallel. If the value of flag is 2, only

processor P2 will factorize the matrix. If flag is 3, only processor P1 will take part

in the factorization. This approach enables one to calculate the serial and the

parallel runtimes with relative ease, and, hence, get the speedup and efficiency

values for the various test matrices.

3. The program which uploads the input matrix in the global memory will continue

to run during the factorization process. It is also used to get timing results. When

the final column of the Cholesky factor is in place, the program will print the

timing results on the screen and exit. The program outputs the timing results in

terms of number of clock cycles required for the factorization. This multiplied by

the clock frequency represents the actual runtime of the factorization. If need be,

this program can also be used to download the Cholesky factor onto the host PC.

The source code for the parallel Cholesky implementation as well as the matrix loading

programs are provided in the Appendix B. The next chapter provides experimental results

and analysis for the developed system.



CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Timing, Speedup and Efficiency Results

The results of the experiments carried out on the two-processor system using matrices of

various orders are summarized in Table 4.1 on the next page. For n = 48, the BCSSTKO1

test matrix (a sparse matrix containing 224 non-zero terms), which was obtained from the

Harwell-Boeing matrix set available at the Matrix Market [20] was used. The rest of the

matrices were generated in MATLAB using the gallery function, passing `minij' as a

parameter, which generates SPD matrices with terms A[i, j] = min(i, j). Thus, they were

dense matrices with a simple structure. Their Cholesky factor L has all ones for the lower

triangular matrix, and, hence, their results could be verified easily. Note that the parallel

Cholesky program does not offer specific support for sparse systems and all the matrices

were treated as dense, although only the lower triangular part was stored in each case.

As one can see from Table 4.1, the speedups as well as the efficiency in general

increase as the order of the matrix increases. Note that, except for the case p = 1, where p

is the number of processors that take part in the factorization, the speedup and efficiency

will always be less than the ideal values (p for the speedup and 100% for the efficiency),

because of factors such as inter-processor communication, idling of certain processors

while waiting for other calculations to complete or because of contention for resources

such as bus, memory, etc. In the parallel Cholesky program, the processors are idle

during the busy-wait period (discussed in Chapter 3), and in the end when processors are

idle because there are no more tasks in the queue. During the busy-wait time the

32
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Table 4.1 Speedup and Efficiency for p = 2

Order of

Matrix ( n )

Sequential

Runtime (ms)

p = 2

Parallel

Runtime (ms)

Speedup Efficiency

(%)

5 8.56 6.33 1.352 67.6

10 64.56 37.21 1.735 86.75

15 211.64 112.49 1.881 94.05

20 493.46 264.54 1.865 93.25

25 953.72 495.45 1.925 96.25

30 1.636 * 103 839.60 1.948 97.4

35 2.584 * 103 1.308 * 10 3 1.976 98.8

40 3.842 * 10 3 1.945 * 10 3 1.975 98.75

45 5.453 * 103 2.758 * 10 3 1.977 98.85

48 6.343 * 10 3 3.175 * 103 1.99 99.9

processors are waiting for the calculations on the preceding columns to be completed so

that the terms on these columns can be used for further calculations. This time influences

the speedup and efficiency obtained. However, because this time is of a lesser order than

the runtime of the factorization process, as the order of the input matrix increases the

busy-wait time becomes negligible compared to the total sequential runtime of the

Cholesky factorization. Thus, the speedup and efficiency values approach their ideal

values. This is seen in Table 4.1 and graphically represented in Figure 4.1 for matrix of

order n = 48, where the efficiency is as high as 99.9%.
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Figure 4.1 (a) Speedup and (b) efficiency for p = 2.

Table 4.2 Comparison of Speedup and Efficiency for p = 2 and p = 3

Order of

Matrix ( n)

p = 2 P = 3

Speedup Efficiency Speedup Efficiency

5 1.352 67.6 1.67 55.7

10 1.735 86.75 2.325 77.49

15 1.881 94.05 2.435 81.18

20 1.865 93.25 2.664 88.79

25 1.925 96.25 2.640 88.0

30 1.948 97.4 2.845 94.84

35 1.976 98.8 2.857 95.23

40 1.975 98.75 2.945 98.17

45 1.977 98.85 2.937 97.91

48 1.99 99.9 2.754 91.80
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Speedup and efficiency results for a 4-Nios system were also obtained, out of which three

processors performed the factorization (p = 3), while the fourth was the master processor.

These results are provided in Table 4.2 above. Results obtained for the p = 3 were then

compared with those obtained for p = 2. These results are presented graphically in Figure

4.2 below.

Figure 4.2 Comparison of (a) speedup and (b) efficiency for p = 2 and p = 3.

One can observe from the graphs in Figure 4.2 that while the speedups for p = 3

are much higher than that for p = 2, the latter performs much better in terms of efficiency.

This could happen because for the case p = 3, the contention for memory resources will

be higher. Hence, the amount of time, a processor may have to wait to get some

information is more than that for p = 2. Moreover, the total amount of time the processors

are idle because of busy-wait for the case p = 3 is also more than that for p = 2. All these

factors influence the efficiency of the parallel system. But, in general, one observes

significant speedups for the factorization process as the number of participating

processors (p) increases.
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One important observation that was made during the course of the experiments

was that between two different runs of the parallel Cholesky application on the same

matrix, the parallel runtimes would change. The reason for this was that sometimes one

processor would start to pick-up tasks much later than the others. In a normal run of the

application, if there are p processors in the system, each should pick up only one out of

the first p columns for processing. For example, one case is where the first processor

picks the first column; the second processor picks the second column and so on. However,

in some runs of the experiment, it was found that the first few consecutive columns were

all picked up and processed by the same processor. This in effect meant that, during this

time, the parallel system was not making use of the other processors in the system, which

as a result remained idle. The number of these columns changed between runs and in

each case once all the processors did participate in the factorization, the application

functioned normally and all the remaining columns were picked up one by one by

different processors. This effect was partly responsible for the lower-than-expected

speedup values obtained for some test matrices. The reason for this delayed start of some

of the processors is not known. This effect will be investigated in future experiments.

4.2 Other Relevant Observations

For the sake of curiosity, in the 3-Nios case (p = 2) a comparison was also made between

the sequential times on each of the two processors P i and P2 that were involved in the

factorization process. For this the same Cholesky program was executed on both the

processors, each time only one of them factorizing the entire matrix. These results are

provided below in Table 4.2 on the next page.
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Table 4.3 Comparison of Sequential Runtimes for Cholesky Factorization on Pi and P2

Order of Matrix

( n )

Runtime for P1

(ms)

Runtime for P2

(ms)

Speedup

(P1/P2)

5 8.86 8.52 1.04

10 67.16 64.41 1.04

15 220.19 211.64 1.04

20 513.44 493.46 1.04

25 992.40 953.72 1.04

As one can see from Table 4.2, the runtimes for the sequential version of

Cholesky factorization on Pi are slower than those on P2. P2 is consistently faster than P1

by about 4%. This is the case despite the fact that a common 33.33 MHz clock was used

for both the processors. A number of reasons could account for the above difference:

1. The clock distribution lines are not of uniform dimensions for the two processors.

In the current project, placement and routing (P&R) was automatically carried out

by the Quartus II software itself. Hence, there may be a difference in the length of

the clock distribution lines from the source to the above processors. This can

result in clock skew, which may account for the observed delay.

2. It is also possible that the global memory is closer to P2 than P 1 . Thus, the

physical distances are not the same. This could again result in the observed delays.

[22] discuses the effects of locality in single-chip multiprocessors and report

performance improvements obtained by controlling it. In future work, advanced



38

features provided by the development software will be used to tightly control

these issues.

Please note that no experiments were performed to determine the actual reason for the

delay. But these experiments will be part of future work.



CHAPTER 5

CONCLUSIONS

Summarizing this thesis, it can now be said that with the FPGA devices that are now

available in the market, single-chip multiprocessors are very much a realizable alternative

to develop for parallel applications. Although the timing results that have been obtained

are not exceptional, they are due to using a slow FPGA device that was introduced more

than a year ago. Moreover, the system used a clock with a frequency of just 33.33 MHz.

Under these constraints, it is felt that the performance of the system did meet acceptable

standards. Still there is plenty of scope for improvements. One of the planned

improvements includes using more recent FPGAs. Some of these FPGAs support speeds

in excess of 400 MHz. This approach should significantly improve the execution time of

the parallel Cholesky application.

It is also hoped that the work presented in this thesis will offer ideas for further

research in this direction. Already, the field of reconfigurable computing is making great

strides. This field takes advantage of modifying the configuration of FPGAs at runtime

without first having to power-off the device to develop applications with dynamically

changing logic blocks and hardware architectures to make better use of the available

FPGA resources. In view of these developments, single-chip multiprocessors hold that

much more potential as they can utilize the advantages offered by reconfigurable

computing to offset any inherent drawbacks.
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APPENDIX A

SYSTEM CONFIGURATION

The parallel system used for the parallel Cholesky application was built using the SOPC

Builder tool provided by Altera and came along with the Quartus II development

environment. SOPC Builder provides a graphical user interface using which, one can

build a system from scratch by adding one or more instances of the Nios processor cores

and connecting them to other peripheral IP cores such as memory modules, UART, etc.

All of the IP cores that are added to the system are configured using the same tool. Table

A.1 (below) provides a summary of various components in our system and the

interconnections using a grid format. SOPC Builder uses a similar grid interface.

Table A.1 Summary of the Multiprocessor System

Nios1

(Controller)

Nios2

(PE)

Nios3

(PE)

local_ram1 1 - -

local_ram2 1 1 -

local_ram3 1 - 1

global_ram3 1 2 2

boot ram 1 - -

UART 1 - -

Timer 1 - -

40
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For peripherals connected to more than one processor, the number in the corresponding

cell indicates the values used for the weighted-round-robin scheduling algorithm used for

the slave-side arbitration by the Avalon bus system. Note that while Nios1 was connected

to all the peripherals, the same was not true of the other two processors. The details of the

configuration chosen for each of them are listed next. Note that the details we provide are

those chosen from the options provided by the SOPC Builder tool.

I.	 PROCESSORS

1. Nios1

• Address/Data Bus Width: 32

• Register file size: 128

• Multiplier: MUL (3 cycles for 16 X 16→32 bit

multiplication)

• Writable WVALID: No

• Pipeline Optimization: More Stalls/Fewer LEs

• Decoder Logic: LEs

• Support RLC/RRC: No

• Support Interrupts and Traps: Yes

• Catch Spurious Interrupts: Yes

• Call C++ Constructors: Yes

• Use the CWP Manager: Yes

• Use Fast Multiply: Yes

• Hardware Breakpoint Support: No

• Custom Instructions: None

2. Nios2

• Address/Data Bus Width: 	 32

• Register file size:	 128
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• Multiplier:	 MUL (3 cycles for 16 X 16 --> 32 bit

multiplication)

• Writable WVALID:	 No

• Pipeline Optimization: 	 More Stalls/Fewer LEs

• Decoder Logic:	 LEs

• Support RLC/RRC:	 No

• Support Interrupts and Traps: 	 Yes

• Catch Spurious Interrupts:	 Yes

• Call C++ Constructors:	 Yes

• Use the CWP Manager:	 Yes

• Use Fast Multiply:	 Yes

• Hardware Breakpoint Support: 	 No

• Custom Instructions:	 Double-Precision Pipelined FP

Square-root Unit

3. Nios3

• Address/Data Bus Width:	 32

• Register file size: 	 128

• Multiplier:	 MUL (3 cycles for 16 X 16 ---> 32 bit

multiplication)

• Writable WVALID:	 No

• Pipeline Optimization: 	 More Stalls/Fewer LEs

• Decoder Logic:	 LEs

• Support RLC/RRC: 	 No

• Support Interrupts and Traps: 	 Yes

• Catch Spurious Interrupts:	 Yes

• Call C++ Constructors:	 Yes

• Use the CWP Manager:	 Yes

• Use Fast Multiply:	 Yes

• Hardware Breakpoint Support: 	 No
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• Custom Instructions: 	 Double-Precision Pipelined FP

Square-root Unit

II. PERIPHERALS

	

1.	 local_ram1

• Size:	 10 Kbytes

• Contents:	 Monitor program

	2.	 local_ram2

• Size:	 10 Kbytes

• Contents:	 Parallel Cholesky program

	3.	 local_ram3

• Size:	 10 Kbytes

• Contents:	 Parallel Cholesky program

	4.	 global_ram

• Size:	 10 Kbytes

• Contents:	 Input matrix and global variables

	5.	 boot_ram

• Size:	 4 Kbytes

• Contents:	 GERMS monitor program

6.	 DART

• Baud Rate (bps):	 115200

• Clock Frequency: 	 33.33 MHz

• Parity: 	 None

• Data Bits:	 8



44

• Stop Bits:	 2

• Include CTS/RTS:	 No

• Include end-of-packet registers: 	 No

7.	 clk_timer

• Initial Period:	 1 msec

• Preset Configuration:	 Fully featured (v1.0 compatible)

• Writeable Period:	 Yes

• Readable Snapshot:	 Yes

• Start/Stop Control Bits:	 Yes

• Output Signals:	 None



APPENDIX B

SOURCE CODE

This appendix lists the source code for the parallel Cholesky program as well as the

matrix loading program.

B.1 Parallel Cholesky Program

/* nios.h contains the memory map for the entire system */
#include "nios.h"

/* Cholesky function */

void cholesky( );

/* Supporting functions */

void Tcol(int);

void cdiv(int);

void cmod(int, int);

int D2_to_D1(int, int);

II GLOBAL DATA 10000 — 103FF

I************************************************** ***************************/

int n;

volatile int *base = (int *) 0x10000;

volatile int *flag = (int *) 0x10000;

volatile int *semaphore;

volatile int *task id;

volatile int *order;

volatile int *ready;

volatile int *processor;

volatile float *A;
/******** ************************************* *******************************/

45
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main( ){

int i, j = 1;

/* wait until the input matrix is loaded into global memory

while (*flag == 0) {

}

/****************************************************************************/

/* 	 GLOBAL VARIABLES MEMORY MAP 	 */

/****************************************************************************/

semaphore =

task id =

order =

n =

ready =

processor =

A =

base + 1;

base + 2;

base + 3;

*order;

base + 4;

ready + n;

(float *) (processor + n);
/****************************************************************************/

cholesky( );

while(1) {

}

}

1****************************************************************** **********/

/* 	 DEFINITION OF CHOLESKY FUCTION 	 */

/****************************************************************************/

void cholesky( ){

int i, j, k;

while (*task_id != n) {

while (*semaphore != 0) {

}
// critical section

{
*semaphore = 1;
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j = *task_id;

*task id = *task id + 1;

processor[j] = processor[j] + 1;

*semaphore = 0;

}
Tcol(j);

}
}

/...................................**..****./

/* 	 DEFINITION OF SUPPORTING FUNCTIONS 	 */

void Tcol(int j) {
int i, k;
for (k = 0; k <= j-1; k = k+1) {

while (ready[k] != 7) {

; //do nothing
}

cmod(j,k);

}
cdiv(j);

ready[j] = 7;

while(ready[j] != 7) {

}

}

void cmod(int k, int i) {
int j;

for (j = k; j < n; j = j+1) {

A[D2_to_D1(j, k)] = A[D2_to_D1(j, k)] - A[D2_to_D1(j,i)]*A[D2_to_D1(k, i)];

}
}

void cdiv(int i) {
int j;

A[D2_to_D1 (i, i)] = nm_sqrt1(A[D2_to_D1(i, i)]);
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for (j = i+1; j < n; j = j+1) {

A[D2_to_D1(j, i)] = A[D2_to_D1(j, i)]/A[D2_to_D1(i, i)];

}

}

int D2_to_D1(int row_no, int col_no) {

int tmp = 0;

tmp = row_no*n + col_no;

return tmp;

}

B.2 Matrix Loader Program

/* nios.h contains the memory map for the entire system */

#include "nios.h"

// GLOBAL DATA 10000 — 103FF
/*****************************************************************************/

int n = 3;

volatile int *base = (int *) 0x10000;

volatile int *flag = (int *) 0x10000;

volatile int *semaphore;

volatile int *task id;

volatile int *order;

volatile int *ready;

volatile int *processor;

volatile float *A;
/****************************************************************************/

main()){

int i = 0, j = 1;

/****************************************************************************/

/* 	 GLOBAL VARIABLES MEMORY MAP 	 */

/****************************************************************************/

flag 	 = 	 base;

semaphore 	 = 	 base + 1;



task id =

order =

ready =

processor =

A =

base + 2;

base + 3;

base + 4;

ready + n;

(float *) (processor + n);
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/****************************************************************** **********1

/********************************* *******************************************1

/* 	 INITIALISATION 	 */

/****************************************************************************/

*task id = 0;

*semaphore = 0;

*order = n;

for (i = 0; i < n; i = i+1)(

ready[i] = 0;

processor[i] = 0;

}
i = 0;

/****************************************************************************/

/* 	 LOADING THE INPUT MATRIX 	 *I

/****************************************************************************/

A[i] 	 =

A[1+1] 	 =

A[i+3] 	 =

A[i+6] 	 =

A[i+10] =

4.0;

1.0;

2.0;

0.5;

2.0;

A[i+2] 	 = 0.5;

A[i+4] = 0.0;

A[i+7] = 0.0;

A[i+11] = 0.0;

A[i+5] = 3.0;

A[i+8] = 0.0;

A[i+12] = 0.0;

A[i+9] = 5.0/8.0;

A[i+13] = 0.0; A[i+14] = 16.0;

/****************************************************************************/

/* Set flag to indicate that the matrix has been loaded */

*flag = 1;

}
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