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ABSTRACT Background: Diagnosing epileptic seizures using electroencephalogram (EEG) in combination
with deep learning computational methods has receivedmuch attention in recent years. However, to date, deep
learning techniques in seizure detection have not been effectively harnessed due to sub-optimal classifier
design and improper representation of the time-domain signal. Methods: In this study, we focused on
designing and evaluating deep convolutional neural network-based classifiers for seizure detection. Signal-to-
image conversion methods are proposed to convert time-domain EEG signal to a time-frequency represented
image to prepare the input data for classification. We proposed and evaluated three classification methods
comprising of five classifiers to determine which is more accurate for seizure detection. Accuracy data were
then compared to previous studies of the same dataset. Results: We found our proposed model and signal-
to-image conversion method outperformed all previous studies in the most cases. The proposed FT-VGG16
classifier achieved the highest average classification accuracy of 99.21%. In addition, the Shapley Additive
exPlanations (SHAP) analysis approach was employed to uncover the feature frequencies in the EEG that
contribute most to improved classification accuracy. To the best of our knowledge, this is the first study
to compute the contribution of frequency components to target seizure classification; thus allowing the
identification of distinct seizure-related EEG frequency components compared to normal EEG measures.
Conclusion: Thus our developed deep convolutional neural network models are useful to detect seizures
and characteristic frequencies using EEG data collected from the patients and this model could be clinically
applicable for the automated seizures detection.

INDEX TERMS Epilepsy, seizure, EEG, deep learning, CWT, STFT.

I. INTRODUCTION
Epilepsy is a chronic neurological disorder that affects
approximately 50 million people worldwide, with around
2.4 million people newly diagnosed annually [1]. Electroen-
cephalogram (EEG) is a widely-used non-invasive technique
for the measurement of brain electrical activity and the diag-
nosis of epilepsy. The analysis and interpretation of EEG
data are usually made by manual visual inspection by neu-
rologists. However, visual examination of EEG traces is
time-consuming and puts a heavy burden on the treating
physician. These issues have inspired significant efforts in

the application of automated seizure detection techniques
to assist neurologists, speed up the diagnosis process and,
thereby, improve the accuracy. Additionally, studying the fre-
quency features in EEG seizure data is important to progress
our fundamental understanding of seizure EEG traces.

The application of machine learning towards automatic
seizure detection is reported in many studies. For example,
several shallow machine learning techniques, including neu-
ral systems and Support Vector Machine (SVM) methods
have been used for epilepsy classification [2]; however, there
remains a need to develop improved algorithms achieving
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higher classification accuracy, so that automated artificial
intelligent systems and tools can be developed for clinical
applications.

There is a considerable demand to extend the applications
of machine learning, especially the emerging domain of deep
learning, to the classification of EEG signals in automated
seizure detection. The application of deep learning for dis-
ease diagnosis are growing in general, and several studies
have been published, but with limited performance [3]–[5].
Recently, studies have been conducted on the specific classi-
fication problem using machine and deep learning techniques
to identify epileptic and non-epileptic EEG signals [6]–[14].
However, there remains significant room for improvement of
deep learning based methods for automated disease classifi-
cation.

A recent study on seizure detection used a 13-layer deep
1D CNN and the University of Bonn database, achieving
88.67% classification accuracy [9]. The CNN based model
has also been used in epileptic seizure detection using the
Freiburg and CHB-MIT databases, achieving high precision
outcomes of 96.7 percent and 97.5 percent, respectively [15].
In another study, a pyramidal 1-dimensional CNN model for
binary (seizure vs. non-seizure) classification using the Uni-
versity of Bonn database has been proposed [7]. Using a deep
CNNmodel on the TUHdatabase, a sensitivity of 30.83% and
specificity of 96.86% was achieved [16]. Besides CNN based
models, many studies used entropy-based features of EEG in
seizure detection [17]–[19]. SVM and multilayer perceptron
were also used in epileptic seizure detection [17], [20].

With the goal of improved results, some studies used spec-
tral images of the EEG signal with a CNN-based classifier.
Bi andWang [21] used spectral images of time domain signal
as input to a CNN model for disease diagnosis. One study
[22] used Fourier based time-frequency representation using
STFT for deep learning based seizure classification, and
with VGG16 achieved 79.71% accuracy. Raghu et al. [14]
proposed deep CNNs and spectrograms of EEG, with the
highest accuracy of 84.06% using Temple University Hospi-
tal database EEG recordings. Seizure and non-seizure EEG
activities have been classified using CNN and plot-EEG-
image input and achieved a true positive rate of 74.0% [23].
Image-based representation of EEG spectrograms was used
as input to a CNN based classifier for seizure detection [24].

From the studies mentioned above, it is evident that the
deep learningmodels are useful in image-based seizure detec-
tion applications. However, to our knowledge, effective deep
learning models using time-frequency image data of EEG for
seizure detection have not been conducted.

In addition to obtaining high classification accuracy, it is
often important to understand the features of the input data
that most contributed to the classification. A promising tech-
nique called SHAP (SHapley Additive exPlanation) [25] uses
shapley values to explain predictions by calculating feature
importance. By using SHAP we can understand the signif-
icant frequency features of the input time-frequency EEG
image to be tested. These features are distinct from the inputs

in other classes as each is assigned a value for a particular
prediction.

In this study we propose a time-domain-signal to
time-frequency-image conversion method using continuous
wavelet transform (CWT), to prepare the input data for the
deep learning model. We also propose three different classi-
fication methods in which a classifier consists of 4 convolu-
tional layers (method-1). Two adopted deep learning models,
VGG16 and ResNet50, are used in method-2 and method-3.
All the methods are tested with the CWT scalogram and
STFT spectrogram.We also used SHAP and a gradient-based
model explainer to find characteristic frequencies in EEG
seizures that are distinct from normal EEG, and are responsi-
ble for achieving the improved classification accuracy.

II. MATERIALS AND METHODS
A. DATA
We have used EEG data from the repository of the Bonn
University [26]. The full database consists of five sets (A–E)
in which each contains 100 single-channel EEG segments
with a duration of 23.6 seconds. The muscle activity and eye
movement artifacts were already removed from the collected
data on the basis of visual inspection. The EEG recording
was performed based on standardised electrode placement
techniques.

Set A contains surface EEG recordings collected from five
healthy subjects in the wakeful state with eyes open. Set B
contains EEG acquired during eyes closed from the same
subjects. The other datasets (C, D, and E) were collected
during the pre-surgical diagnostic work up of five seizure
patients. Set C contains EEG recordings that were recorded
from the hippocampal formation of opposite hemispheric
regions during seizure-free intervals. Set D comprises the
EEG signal collected from within the epileptic zone of the
brain of patients during seizure-free intervals. The last one
(set E) contains EEG recordings of patients during seizure
activity. The sampling rate of the EEG signal was 173.61 Hz
after 12-bit conversion using a 12-bit A/D converter.

B. PREPROCESSING
Although there are many 1D CNN models to classify
time-domain signals, 2D CNN models are still important in
the classification problems. Since time-domain EEG signals
can be transformed into 2D (RGB) images, we choose 2D
CNN for the present classification task. We segment the EEG
signals into pieces of 1.47 seconds length and then performed
signal-to-image conversion on each segment. We also con-
sidered the color (RGB) representation of the time-frequency
conversion of the EEG signal. The two widely used methods,
STFT and CWT were applied in this study.

1) STFT
The short-term Fourier transform (STFT) is one of the widely
used methods for the time-frequency analysis [27]. STFT
determines the frequency and phase of local sections of a
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segment of a signal. This segmentation is performed by using
a frame. Since the frame shifts over time, STFT functions
as a trade-off between a time-based and a frequency-based
representation. Thus, STFT is capable of showing frequencies
contained in the signal at the corresponding time points. The
short segments of signal are taken using a moving window
g (t), centered at u, and the Fourier transform is performed
on those segments. Most commonly, a Hamming window is
used for STFT. The STFT is defined for a long time segment
f (t) as:

Y (ω, u) = STFT {f (t)} =
∫
R
f (t) g (t − u) e−jωtdt (1)

The spectrogram (energy surface distribution of STFT) is
computed as:

E (ω, u) = |Y (ω, u) |2 (2)

We get different spectra at each corresponding time and the
totality of these spectra are the spectrogram.

2) CWT
Continuous wavelet transformation (CWT) is considered to
be efficient in the time-frequency analysis of the nonstation-
ary signal.

The CWT for a real signal x (t) ∈ L2(R) with translation
parameter τ ∈ R, scale parameter s > 0 and wavelet function
ψ (t)

CWTψx (s, τ ) =
∫
+∞

−∞

x (t)
1
√
s
ψ

(
t − τ
s

)
dt (3)

Here, τ , the time shift of the translation, can be interpreted
as the time instant around which the signal is analyzed.

With small s values, CWT provides detailed information
of the signal in the neighbourhood of the instant τ , that is the
high frequency content; whereas with large s CWT provides
lower frequency content in the neighbourhood of the time
instant.

A two-dimensional image, called a scalogram, is used
to represent the square of CWT, |CWTψx (s, τ )|2. Since, the
analyzed signal is a digital signal, a discrete approximation
of CWTψx (s, τ ) is computed [28]. A matrix, with rows and
columns representing different scales s and translation param-
eters τ , respectively, is used to visualize the approximated
scalogram. However, in time-frequency representation, fre-
quency is more conventional than scale. We converted scale
to frequency as f = 1

s .

C. CONVOLUTIONAL NEURAL NETWORKS (CNN)
In general, artificial neural networks (ANN) consist of three
layers, namely, input, hidden, and output layers. It is consid-
ered as an information processing paradigm that is inspired
by the complex network structure of the biological nervous
system in the human brain. An ANN is composed of a collec-
tion of connected elements called nodes or artificial neurons.
Those artificial neurons integrate the input signals coming
from other nodes in the preceding layer, and transfer them to

neurons in the next layer. The receiving neuron produces its
output by summing the weighted signals from all neurons to
which it is connected in the preceding layer. In the network,
the first is the input layer and the last is considered as the
output layer.

This study employs an enhanced and newly developed
neural network, known as Convolutional Neural Network
(CNN). Basic CNN consists of four types of layers, namely,
convolutional, activation, pooling, and fully-connected lay-
ers. The convolutional, activation and pooling layer aims to
learn feature representations of the inputs, whereas the fourth
is a fully connected layer that performs the classification. The
non-linear activation layer following the convolutional layers
is responsible for capturing more complex properties of the
input signal.

Convolution layer consists of several convolution kernels.
Each kernel is responsible for computing distinct feature
maps. Each neuron of the layer is only connected to a small
local area of the preceding layer, which resembles the recep-
tive field in the human visual system. Each layer l hasM num-
ber of feature maps, each of size

(
Mx ,My

)
. The high-level

features are extracted by sliding a kernel of size
(
Kx ,Ky

)
over

the valid region of the input data. The skipping factors Sx
and Sy, also called stride size, define how many pixels the
filter/kernel skips in x and y direction between subsequent
convolutions. The size of the calculated feature map is then
defined as:

M l
x =

M l−1
x − K l

x

S lx + 1
+ 1 (4)

M l
y =

M l−1
y − K l

y

S ly + 1
+ 1 (5)

where l defines the layer in the network and each feature
map in layer l is associated with at most M l−1 maps in layer
l−1. The kernel is shared by all spatial locations of the input
to produce the feature map. The advantage of such kernel
sharing is that it can reduce the model complexity and makes
network training easier.

The different kernels produce complete feature maps. The
k-th feature map at (i, j) location of the l-th layer, hli,j,k ,
is calculated as:

hli,j,k = W l
k
T
X li,j + b

l
k (6)

where X li,j is input value centered at location (i, j) of the l-th
layer, and W l

k and b
k
l are the weight vector and bias term of

the k-th filter of the l-th layer, respectively.
Detection of nonlinear features of the input, which are

desirable for multi-layer networks, is achieved through the
use of the activation function. The nonlinear activation func-
tion, denoted by a (.) produces the activation value ali,j,k of
the convolutional feature hi,j,kl as–

ali,j,k = a
(
hli,j,k

)
(7)

Pooling layers are used to reduce the volume of the fea-
ture map by aggregating small rectangular subsets of values.
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Two types of pooling, namely, Max and Average, are applied
to replace the input values with the maximum or the average
value, respectively. The output of the pooling function p (.)
for each feature map ali,j,k is:

gli,j,k = p
(
alm,n,k

)
, ∀(m, n) ∈ Ri,j (8)

where Rij is a local neighbourhood around location (i, j).
Classification networks on top of the convolutional/pooling

layers typically contain a set of sequential fully connected
layers, and consist of nodes with various activation functions.
Fully connected layers are typically used as the last few
layers of the model. The output of the last pooling layer
is flattened and fed to the feed-forward neural network for
classification of the inputs. Just following the fully connected
layers, a classifier is used to calculate the probability of each
instance belonging to each class. The last layer is designed to
have as many outputs as labels. The output layer is softmax
activated. For a given input sample X , the softmax function
predicts the probability for the cth class as:

OW ,b(X) = P(y = c|X;W , b) =
expX

TWc∑C
c=1 expX

TWc
(9)

where c is the current class being evaluated, C is all classes,
X is the input vector, andW represents network weights.

1) ResNet50
We have also used Residual Neural Network (ResNet) to
compare the classification results. ResNet was first intro-
duced at the 2015 ILSVRC competition by He et al. [29].
Resnet has a short connection structure that is used to prevent
the problem of gradient vanishing by bypassing the input
information directly to the output. ResNet is a network-in-
network (NIN) architecture that consists of stacking many
residual modules. These residual units are used to build deep
ResNet50 architecture. The residual units consist of convo-
lution, pooling, and layers. ResNet50 uses global average
pooling instead of fully connected layers. We adopted and
customized the ResNet50 [29] deep CNN architecture by
removing the fully connected and output layers and adding
two fully connected layers; a dropout layer, and an output
layer for two classes. We used the same dense layer network
after the convolutional layers as in the 4L-CNN.

2) VGG16
The Visual Geometry Group (VGG) network architecture
was initially proposed by Simonyan and Zisserman [30]
in 2014 for the ImageNet Challenge competition. The
adopted classification model based on VGG16 consists
of 16 convolutional layers, one averaging pooling layer, two
dense layers, one dropout layer, and the output layer.

The VGG16 architecture consists of five blocks of convo-
lutional layers and some fully-connected layers. To retain the
same spatial dimension of the feature maps between layers, a
3× 3 kernel, stride size 1, and padding of 1 is used in the con-
volutional layers. The spatial dimension of the feature maps

is reduced by using a rectified linear unit (ReLU) activation
function just after the convolutional layer, and by performing
a max-pooling operation after the end of each block. A max
pooling layer with a 2 × 2 kernel and stride size of 2 is used
to make the spatial dimension of the activation map half the
previous layer.

D. PROPOSED METHODOLOGY
We propose three methods of EEG seizure classifica-
tion based on adopted CNN models. In the first method,
Method-1 (4L-CNN), we train a CNN-based model from
scratch. In Method-2 (transfer learning only or TL),
we freeze the pre-trained deep CNN from training and
train only top dense layers using the output features of
the pre-trained networks. Method-3 (Fine-tuning or FT)
involves two steps; first fine-tuning the top dense layers
is performed using the output features of the pre-trained
networks, then the deep bottom layers (deep CNN model)
are fine-tuned by initializing the pre-trained weights on
ImageNet.

1) METHOD-1 (4L-CNN): TRAINING A SHALLOW MODEL
FROM SCRATCH
Method-1 involves training a CNN-based shallow model for
seizure classification from scratch, shown in Fig. 1. The
simple four convolutional layers CNN (4L-CNN) consists
of 4 convolutional layers, two fully connected layers,
a dropout layer, and an output layer for classification of
seizure or non-seizure. After four sequential convolutional
layers, four fully connected layers are used to build a
dense layer network. The first fully connected layer con-
sists of 256 ReLU activated nodes, and receives the flat-
tened output of the convolutional part of the network. The
second fully connected layer is also ReLU activated and
contains 512 neurons receiving a 256 dimensional vec-
tor from the output of the previous layer. The third fully
connected layer consisting of 512 nodes, is a dropout
layer with 50% drop out. Overfitting is avoided by using
dropout, which randomly ignores some neurons in train-
ing. Finally, the output of the dropout layer is fed into a
softmax activated output that assigns a probability for each
class.

2) METHOD-2 (TL): TRAINING THE TOP DENSE LAYERS
ONLY OF THE ADOPTED NETWORK
In Method-2 (TL), the transfer learning technique is used
to load the weights of the model. The time-frequency
images of the EEG are provided as input to the pre-trained
modified deep CNN model to get the output features.
These output features, obtained from the last layer of
the deep CNN model before the FC layer, are then used
to train only the fully connected layers. The architec-
ture of the fully connected layers is the same as the
top FC layer described in Method-1 (4L-CNN). In this
method, shown in Fig. 1, VGG16 and ResNets are
loaded.
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FIGURE 1. The proposed methods for seizure classification. 4L-CNN in Method-1 is a shallow classifier built with four convolutional
layers. In Method-2 and Method-3, VGG16 and ResNet50 are adopted to classify seizures from normal EEG. In Method-2, a transfer
learning technique is used to load the weights of the convolutional part of the network, and features are extracted from the
spectrogram/scalogram input; then the extracted features are fed into fine-tuned dense layers. In Method-3, both the convolutional
and dense layers are fine-tuned.

3) METHOD-3 (FINE-TUNING OR FT): FINE-TUNING THE
ADOPTED NETWORKS IN TWO STEPS
In Method-3 (Fine-tuning or FT), the convolutional lay-
ers of the loaded deep CNN model (VGG16 or ResNet50)
(shown in Fig. 1) are fine-tuned together with the top-level
FC layers. Because of differences between images in Ima-
geNet and the time-frequency represented images of the
EEG, we have fine-tuned all layers with the intention of
increasing accuracy. Fine-tuning is an advanced practice
of transfer learning. This method is implemented in a few
steps. First, build the top layers of the network using a
deep CNN model, and load the pre-trained weights of the

model on ImageNet. Second, freeze the convolutional and
other layers up to the first FC layer and train only the last
few FC layers using the extracted features from the deep
CNN; just like the model training in Method 2. Lastly,
we freeze the FC layers and train only the deep CNN
model.

Throughout this paper wewill refer to the CNN-based shal-
lowmodel in method-1 as 4L-CNN, the VGG16-based model
in Method-2 as TL-VGG16, the ResNet50-based classifier
in Method-2 as TL-ResNet50, the VGG16-based model in
Method-3 as FT-VGG16, and the ResNet50-based model in
Method-3 as FT-ResNet50.
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E. FEATURE IMPORTANCE CALCULATION USING SHAP
The evaluation metric in terms of accuracy, sensitivity, and
specificity, does not always give us a complete picture of how
the classification decision was made. When a classification
model is tested, we sometimes are interested in an explanation
as to why the output is made; that is, which input features
are mostly responsible for this decision making. In addition,
knowing more about the classification can help us to learn
more about the data. Although explaining the outputs of deep
learning models is often challenging, the SHapley Additive
exPlanations (SHAP) [25] tool can help us interpret the out-
puts in terms of feature importance. SHAP provides a way to
estimate the contribution of each feature to the output of the
model.

The integrated gradients method calculates the importance
score of a feature value i as:

φIGi (f , x, x ′) =
(
xi − x ′i

)
×

∫ 1

α=0

δf
(
x ′ + α

(
x − x ′

))
δxi

dα

(10)

where x ′ is some arbitrary baseline input, x is the present
input, f is the model function.

From the equation 10 we see that it accumulates gradi-
ents on images interpolated between the present image and
the baseline image. However, calculating feature importance
using gradients suffers from thresholding. A novel feature
attribution method, called Expected Gradients [31] is used to
calculate the SHAP values. Gradient SHAP is also known as
the Expected gradient is an upgradation of integrated gradi-
ents [32] which explains the difference between the model’s
prediction with an arbitrarily chosen reference input (baseline
input), and it’s current prediction. Expected gradient methods
avoid using arbitrary reference inputs. An underlying training
data distribution is used to calculate the reference input.

III. EXPERIMENTAL SETUPS AND RESULTS
This section focuses on the experimental setup and presenta-
tion of the results. First, we describe the experimental setup
namely, the system configuration and the implementation
details.

A. EXPERIMENTAL SETUP
Herein we use a Windows gaming computer with Intel(R)
Core (TM) i7-7700HQ (2.80 GHz, 2808 Mhz, 4 Cores
and 8 Logical processors) CPU, 16 GB RAM, an NVIDIA
GeForce GTX 1060 6GB Graphical Processing Unit (GPU),
and CUDA 9.0 for GPU acceleration running on a Windows
10 64-bit system. Matlab (R2018a) and Python programming
languages were used to conduct the experiments.

EEG segmentation and time-frequency representation
were performed usingMatlab. Themodel training and testing,
and model decision explanation were performed using the
Keras [33] library.

To combat overfitting, we adopted two strategies. The
first is data augmentation, and the second is a dropout. The
simplest and most popular method of minimizing overfitting

TABLE 1. Different cases studied in this work.

on image data is to enlarge the dataset using label-preserving
transformations artificially [34]. Data augmentation produces
transformed images from the original images with very sim-
ple computation, and augmented images do not need to be
stored on disk. In this study, we augmented the images by
translations to reduce test errors. Another strategy we fol-
low to combat the overfitting problem is the dropout tech-
nique [35]. Dropout sets the probability 0.5 to each hidden
neuron to produce zero output. In this way, the neurons that
are ‘‘dropped out’’ do not contribute to the forward and
backward pass during the training. We use dropout in the
layer just before the output layer. We used the Root Mean
Square Propagation optimizer (RMSprop) [36] with a batch
size of 10 samples and learning rate 0.00001. We rescaled the
images to 224× 224 dimensions and each input has 3 (RGB)
channels.

In this study, all five groups of the EEG datasets (A, B,
C, D, E) have been used. In all the proposed methods, the
first step is to obtain the time-frequency (t-f) represented
images from the EEG signal using both signal-to-image con-
version techniques, STFT and CWT. Fig. 2 shows the STFT
spectrogram and CWT scalogram from a segment of EEG
signals. Once the production of the t-f images is completed,
they are split into training, validation, and test sets. We have
1600 t-f images for each dataset. The training dataset contains
80% of total images, the testing dataset contains 10% of
total images and validation datasets contain 10% of the total
images. The same training, validation, and test sets are used in
all the proposed methods for training, validation, and testing
the classifiers. All the experimental cases studied are shown
in Table 1 and they deal with binary classification. A total
of fifteen binary cases are tested in order to classify seizures
from normal EEG. We compared results in terms of accu-
racy, sensitivity, and specificity obtained from the proposed
methods.

B. RESULTS
First, we evaluated the performance of the proposed signal-to-
image conversionmethods for seizure classification. In Fig. 3,
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FIGURE 2. Prepraring spectrogram and scalogram for a 1.47 seconds EEG
segment. The frame is moving without overlapping to get a new
spectrogram and scalogram image.

the classification accuracy for all the cases obtained from
the proposed methods are presented. The distinguishing abil-
ity of the epileptic and normal EEG is well represented in
CWT scalogram, showing better results than the STFT spec-
trogram. For Method-1, 7 cases (B_E, C_E, AC_E, BC_E,
CD_E, BCD_E, and ABCD_E) showed better results for
CWT scalogram than STFT spectrogram, 5 cases (A_E,
AB_E, AD_E, BD_E, and ABD_E) showed equal classifica-
tion accuracy, and only 3 cases (D_E, ABC_E, and ACD_E)
STFT spectrogram performed better than CWT scalogram
(shown in Fig. 3a). In Fig. 3b, the classification accuracy of
Method-2 using the CWT scalogram and STFT spectrogram
is shown. We have computed the classification accuracy for
the two proposed models, TL-VGG16 and TL-ResNet50, and
obtained the highest results of all the cases for the CWT scalo-
gram. It is observed from Fig. 3c that the classification accu-
racy in Method-3 is higher for the CWT scalogram for most
of the cases. The FT-ResNet50 classifier proposed inMethod-
3 obtains highest results for CWT scalogram than STFT
spectrogram for 9 cases (A_E, B_E, C_E, AC_E, CD_E,
ABC_E, ABD_E, ACD_E, and BCD_E) out of 15 cases
and equal accuracy for 4 cases (AB_E, AD_E, BC_E, and
ABCD_E). The FT-VGG16 in Method-3, shows the highest
accuracy for CWT scalogram compared to the STFT spec-
trogram for 10 cases (A_E, B_E, C_E, D_E, AB_E, AC_E,
BC_E, CD_E, ABC_E, and ABCD_E) and equal accuracy
for both signal-to-image conversion techniques for 2 cases
(AD_E and ABD_E).

Given the CWT scalogram method performed better than
STFT spectrogram in classification, we thus considered the
experiments which use only CWT scalogram as input. Fig. 4
shows the classification accuracy of the classifiers of all the
proposed methods using CWT scalogram. The FT-VGG16
classifier proposed in Method-3 classified seizure EEG with
the highest accuracy in most cases (A_E, B_E, C_E, D_E,
AD_E, BC_E, ABC_E, ABD_E, and ABCD_E) compared
to FT-ResNet50 in Method-3 and classifiers in other Meth-
ods. In some cases (AB_E, AC_E, BD_E, CD_E, and
ACD_E), FT-VGG16 and FT-ResNet50 classifiers proposed
in Method-3 show identical results in terms of classification

FIGURE 3. Comparison of classfication accuracy obtained from the
proposed methods using both STFT scalogram and CWT scalogram
for 15 binary cases. a) The results obtained from the 4L-CNN classifier in
Method-1 using both STFT spectrogram and CWT scalogram. b) The
classification accuracy obtained from the classifers TF-VGG16 and
TF-ResNet50 in Method-2 using using both STFT spectrogram and CWT
scalogram. c) The classification accuracy for seizure and non-seizure EEG
classification using FT-VGG16 and FT-ResNet50 models in Method-3 and
spectral images.

accuracy. Overall the FT-VGG16 classifier using CWT scalo-
gram performs the best among all the proposed classifiers.

In Fig. 5, the average classification accuracy, sensitiv-
ity, and specificity for all the classifiers using the CWT
scalogram are presented. This shows that the performance
of Method-3 is very promising compared to other methods.
The proposed FT-VGG16 classifier in Method-3 achieves the
highest average classification accuracy (99.21%) with the
highest average sensitivity (99.04%). The average specificity
obtained by FT-VGG16 classifier in Method-3 is slightly
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FIGURE 4. Bubble plot showing the overall classification accuracy (%) obtained from all five classifiers in the
proposed methods using CWT scalogram. Results show the FT-CGG16 with CWT scalogram perform the best than
all the other classifiers.

FIGURE 5. Bar graphs of the average classification performances
over 15 cases of all the methods using CWT scalogram.

lower, 99.38%, than the average specificity obtained from
FT-ResNet50 classifier in Method-3 that is 99.42%. The
average performance of FT-VGG16 classifier in Method-3 is
very promising as compared to the FT-ResNet50 classifier.
In Table 2, we have shown the classification performance
in terms of accuracy, sensitivity, and specificity using our
proposed FT-VGG16 classifier and CWT scalogram. The FT-
VGG16 obtained the highest classification accuracy of 100%
for the classification cases B_E, AB_E, BC_E, ABC_E,
and ABCD_E, the highest sensitivity of 100% for the A_E,
B_E, AB_E, BC_E, ABC_E, and ABCD_E cases, and the
highest specificity of 100% for the classification cases,
namely B_E, C_E, AB_E, AC_E, BC_E, CD_E, ABC_E,
and ABCD_E. The classification performances using the
proposed CWT scalogram and FT-VGG16 of Method-3 for

other cases are also noteworthy. The classification accu-
racy of 99.38%, 99.69%, 98.44%, 99.38%, 98.13%, 98.44%,
99.38%, 98.46%, 98.46%, and 98.46% for the cases of A_E,
C_E, D_E, AC_E, AD_E, BD_E, CD_E, ABD_E, ACD_E,
and BCD_E, respectively, are achieved using the proposed
FT-VGG16 classifier and CWT scalogram.

Fig. 6 shows the important features of the scalogram in
terms of SHAP values which are considered to be the sig-
nificant frequency components in the seizure EEG that play
key roles in classification decision making. We considered
four cases, namely A_E, B_E, C_E, and D_E for identifying
important frequency features in the seizure EEG. Frequency
components within 40Hz to 60Hz range in seizure EEG were
important for being distinct to normal (eyes open) EEG. The
SHAP values were high in the input scalogram of seizure
EEG for the frequencies ranged from 30Hz to 40Hz, for the
case B_E. For the case C_E, frequency components within
the 30Hz to 60Hz range in the seizure scalogram were scored
the highest. The SHAP values were distributed in the seizure
EEG scalogram in two spectrum ranges, from 10Hz to 25Hz
and 40Hz to 60Hz, for the D_E case. This indicates that these
two ranges of frequency components were significant for the
seizure scalogram, to be distinguishable from the EEG of
dataset D.

IV. DISCUSSION
Electroencephalography (EEG) is used to capture the electri-
cal activity of the brain. We wanted to compare the applica-
bility of two widely used time-frequency representations of
EEG signal, STFT and CWT, in a deep learning model for
EEG classification purposes. For time-frequency representa-
tions of the EEG we have obtained time-frequency images,
spectrograms for STFT, and scalograms for CWT. We clas-
sified seizure and non-seizure EEG signals in this study
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FIGURE 6. The SHAP value shows the important frequency features in the input scalogram of seizure EEG. The seizure EEG is shown on the left,
followed by the corresponding CWT scalogram. The SHAP value plotted (red) in the corresponding grayscale image of the CWT scalogram show the
important frequency features of the scalogram that increased the classifier’s prediction for each case.

TABLE 2. Classification measures of the proposed FT-VGG16 classifier in
Method-3 using CWT scalogram.

and demonstrate that classification using CWT-based scalo-
gram outperformed the STFT-based spectrogram in almost all
cases.

The poorer performance of the STFT spectrogram limits its
applicability in EEG epilepsy classification. The lower per-
formance of STFT can be characterized by its fixed frequency
resolution and determined by the fixed length of the analysis
window. The fixed width of the window function gives rise to
a fixed frequency resolution. The STFT fails to capture some
critical time-frequency information in spectrograms due to
the poorer time-frequency resolution which provides poor
input images for the deep learning model. However, in CWT,
the window length or dilation parameter is dependent on
the frequency component being measured which produces
better time-frequency resolution. Thus, we propose the CWT
scalogram input and the FT-VGG16 classifier in Method-
3 for the EEG epilepsy classification tasks. For the EEG
classification of seizures in all cases, the average classifi-
cation accuracy we report is 99.21% using the FT-VGG16
model and CWT scalogram images; compared with 98.94%
for the STFT spectrogram approach. Additionally, evaluating
the two proposed classifiers in Method-3, we observed that
the adopted fine-tuned VGG16-based classifier (FT-VGG16)
achieved higher classification accuracy than FT-ResNet50.

Results comparison between the proposed FT-VGG16
model in Method-3 in the present study, and existing

studies [2], [6]–[8], [10], [11], [37], [38] is shown in Table 3.
The results reported in the existing studies used for compari-
son are published within the last ten years and we compared
with only those studies that obtained at least 95% classifica-
tion accuracy. In the existing literature, many of the current
studies have considered only a few experimental cases (A_E,
B_E, C_E, D_E, and ABCD_E etc.). In contrast, we have
considered 15 independent experimental cases to validate our
approach.

Case A_E shows the classification accuracy of 99.38%
obtained from the proposed FT-VGG16 approach; the highest
result with perfect accuracy of 100% is achieved in [7], [8]
using Deep Pyramidal 1D-CNN, and ESD-LSTM, respec-
tively. For this A_E case, methods using extreme learning
machine (ELM) [10] and SVM [2] achieved a classifica-
tion accuracy of 96.50% and 97.25% respectively, which are
lower than the classification accuracy gained by our proposed
FT-VGG16.

For case B_E this study achieved a perfect classification
accuracy of 100% using FT-VGG16 and CWT, which is the
highest compared with other studies with a classification
accuracy of 99.25% using ANN and LNDP [37], 99.80%
using Deep Pyramidal 1D-CNN [7], 99.50% using CNN and
CWT [38], and 99.11% using 1D-CNN [6].

For the case C_E, the classification accuracy obtained from
our proposed FT-VGG16 classifier is 99.69% which is the
maximum compared to previous studies [2], [6], [7], [37],
[38] with the reported accuracy of 96.00%, 99.10%, 99.10%,
98.50%, and 98.02%, respectively. It is shown that for the
case D_E, compared to the maximum result obtained in other
studies [7] using deep pyramidal 1D-CNN and [37] using
ANN and 1D-LGP, however the present study achieved the
highest classification accuracy including in comparision to
the results obtained using CNN and CWT [38]), and using
1D-CNN [6].

In case AB_E, this study achieved the classification accu-
racy of 100% with FT-VGG16 which is the best obtained
for this data set. For the same case, the current results also
reported using 1D-CNN [7], and using 1D-CNN [6] with
accuracies 99.80% and 99.38% respectively.

For experimental case AC_E, we have obtained 99.38%
classification accuracy. We have not found many studies that
conducted an experiment for this case; however, recently,
Zhao et al. [6] reported classification accuracy of 99.03% for
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TABLE 3. Comparison of classification accuracy obtained by our proposed approach (Method 3: VGG16) compared to the classification accuracy obtained
by the different existing studies.

the same case AC_E which is 0.35% less than the classifi-
cation accuracy obtained with the proposed FT-VGG16 and
CWT. In case AD_E, the results obtained from the proposed
FT-VGG16 classifier in Method-3 is 98.13% which is 0.37%
less than obtained in [6].

For the seizure recognition cases BC_E, BD_E, and CD_E,
the FT-VGG16 obtained the best performances with the
accuracy of 100%, 98.44%, and 99.38% respectively, than

the conventional methods. In the literature, there are very
few studies that address classification problems associated
with ABC_E, ABD_E, ACD_E, and BCD_E cases classi-
fication problems. The proposed FT-VGG16 also achieved
good classification performances for those types of cases.
Finally, the proposed FT-VGG16 achieved 100% accuracy
for the ABCD_E case. Shallow machine learning model
including SVM was also used to classify epilepsy by

VOLUME 9, 2021 2000112



MD. Rashed-Al-Mahfuz et al.: Deep CNN Method to Detect Seizures and Characteristic Frequencies Using EEG Data

using the same dataset and DWT based fuzzy approximate
entropy, and we obtained classification accuracy greater
than 95% [39]. SMV and weighted-permutation Entropy
approach in [2] achieved an average epilepsy detection accu-
racy of 91.62 for six different cases. Another study [40] also
used weighted-permutation Entropy and obtained classifica-
tion accuracy 91.65% and 93.75% for linear and non-linear
SVM, respectively. Although for all the cases the proposed
FT-VGG16 did not achieve the highest accuracy compared to
the existing studies, we can consider it useful as it showed
good classification accuracy for most of the cases.

To the best of our knowledge, this is the first study that
analysed the important and responsible frequency compo-
nents in seizure EEG for classification by explaining the
gradients of the deep learning model. The SHAP values
obtained from the FT-VGG16 model showed that mainly
the higher frequency components in EEG seizures are sig-
nificant to the classifier’s correct prediction. The proposed
deep learning model can be deployed in real-world clinical
practices in automatic epileptic seizure detection as it showed
very high classification accuracy. Both clouds based and
the stand-alone diagnostic system could be developed using
the proposed model. The characteristics frequency in EEG
found using SHAP could be useful to the clinicians to better
interpretation and understanding of epilepsy in EEG.

V. CONCLUSION
First, the proposedmethods presented in this paper accurately
classify EEG epilepsy. From the five EEG datasets (A, B, C,
D, and E), a total of 15 cases of binary classification have been
tested. The time-domain EEG signals have been converted
to time-frequency images with the aim to detect the seizure
(ictal) from the normal, inter-ictal EEGs accurately. Two dif-
ferent types of signal-to-image conversion techniques, STFT
and CWT, have been applied, and they show the differences
in classifier performance. The CWT scalogram has been
chosen as the better time-frequency representation of the
EEG signal for this seizure classification problem as it shows
better performances than the STFT spectrogram. Among the
five classifiers in three proposed methods, the FT-VGG16 in
Method-3 with CWT scalogram provides better classification
results, with an average accuracy of 99.21%, the sensitivity of
99.04%, and specificity of 99.38% of 15 cases. The proposed
FT-VGG16 with CWT is compared with the existing meth-
ods. For most of the cases, the proposed FT-VGG16 shows
the highest accuracy compared with conventional methods
in the existing literature. Additionally, frequency bands that
contribute most to predictive accuracy in seizure EEG using
the FT-VGG16 classifier have been identified. The higher
frequencies in seizure EEG are more significant for the clas-
sifier to correctly predict the seizure EEG from normal and
inter-ictal EEG. To the best of our knowledge, this is the first
study of its kind study using CWT based time-frequency rep-
resentation of EEG and a very deep CNN model for seizure
detection, as well as identifying characteristic frequencies
that enable accurate automated EEG seizure prediction.
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