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Abstract—Pre-trained Vision-Language Models (VLMs), like
CLIP, exhibit strong generalization ability to downstream tasks
but struggle in few-shot scenarios. Existing prompting techniques
primarily focus on global text and image representations, yet
overlooking multi-modal attribute characteristics. This limitation
hinders the model’s ability to perceive fine-grained visual details
and restricts its generalization ability to a broader range of
unseen classes. To address this issue, we propose a Multi-modal
Attribute Prompting method (MAP) by jointly exploring textual
attribute prompting, visual attribute prompting, and attribute-
level alignment. The proposed MAP enjoys several merits. First,
we introduce learnable visual attribute prompts enhanced by
textual attribute semantics to adaptively capture visual attributes
for images from unknown categories, boosting fine-grained visual
perception capabilities for CLIP. Second, the proposed attribute-
level alignment complements the global alignment to enhance
the robustness of cross-modal alignment for open-vocabulary
objects. To our knowledge, this is the first work to establish
cross-modal attribute-level alignment for CLIP-based few-shot
adaptation. Extensive experimental results on 11 datasets demon-
strate that our method performs favorably against state-of-the-art
approaches.

Index Terms—Few-shot classification, Prompt learning, Vision-
language model, Attribute.

I. INTRODUCTION

PRE-TRAINED Vision-Language Models (VLMs), such as
CLIP [1] and ALIGN [2], have demonstrated promising

generalization power and transferability on a wide range of
downstream tasks [3]–[9], including image classification [1],
object detection [10], [11] and 3D understanding [12]–[14].
Through contrastive training on a large-scale dataset of image-
text pairs, CLIP achieves a global alignment between images
and textual descriptions by learning a joint embedding space.
The robust cross-modal alignment empowers the CLIP model
with the open-vocabulary visual recognition capability. In
CLIP, class-specific weights for open vocabulary classification
can be constructed by plugging the class name in a predefined
prompt template like ‘A photo of a [CLASS].’ Despite its
impressive generalization capability, it remains challenging to
adapt CLIP to downstream tasks in few-shot scenarios. Due

†Corresponding author.
Xin Liu, Jiamin Wu, Wenfei Yang, and Tianzhu Zhang are with the School

of Information Science and Technology, University of Science and Tech-
nology of China, Hefei 230027, China (e-mail: xinliu99@mail.ustc.edu.cn;
jiaminwu@mail.ustc.edu.cn; yangwf@ustc.edu.cn; tzzhang@ustc.edu.cn).

Xu Zhou is with the Sangfor Technologies Inc., Shenzhen 518000, China
(e-mail: zhouxu@sangfor.com.cn).

Copyright © 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

The definitive version of this paper can be found
at: 10.1109/TCSVT.2024.3424566

to the large number of parameters in CLIP and the limited
number of samples in few-shot task settings, naive fine-tuning
of the entire model would likely lead to overfitting, resulting
in performance degradation [15], [16].

To enhance the few-shot adaptation capability of CLIP,
prompting techniques [17]–[23], such as CoOp [16] and Co-
CoOp [18] have been proposed. These techniques replace hard
template context with learnable context in combination with
the class name to construct the text prompt. The classification
result can be obtained by calculating the similarity between the
global image feature and the encoded text prompt. However, as
shown in Figure 1 (a), these prompting methods rely solely on
class names and may struggle to fully encapsulate categorical
semantics when new unseen classes emerge, causing an issue
of ‘lexical weak tie’ where the class name has a tenuous
link with its literal semantics. Consider ‘Rocky Road’ as
an example, which textually resembles ‘rock’ and ‘road’ but
refers to a dessert in reality. When introduced as a new class,
the classification weight generated by the model may diverge
from its true semantics, potentially causing misclassification.
To address this issue, recent works [24]–[26], as shown in
Figure 1 (b), introduce textual attribute descriptions obtained
from Large Language Models [27]–[29]. These textual at-
tribute descriptions are appended to the class name to construct
text attribute prompts enriched with more semantics. The final
classification result is determined by matching scores between
the global image feature and the outputs of text attribute
prompts across categories.

Despite the performance improvements demonstrated by
prior methods, two crucial aspects have been overlooked.
(1) Visual Attribute Modeling. Previous methods rely on
a single global image feature for classification (see Figure
1 (a) and (b)). However, global image features may fall
short in capturing fine-grained visual attribute information
crucial for distinguishing visually similar classes in few-
shot scenarios. As shown in Figure 2, the Moon Orchid and
Japanese Anemone exhibit quite similar overall appearances,
making it challenging to differentiate between them relying
solely on global features. However, distinguishing them be-
comes much easier by relying on their distinct leaf shapes
and reproductive structures. (2) Attribute-Level Alignment.
The open-vocabulary visual recognition ability of the CLIP
model stems from its global alignment between global image
features and textual descriptions. However, when adapted to
unseen tasks, the global alignment may lack robustness against
disruptions from complex image backgrounds and irrelevant
image details, hampering the image recognition ability. While
previous methods have attempted to model class-specific tex-
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Fig. 1: (a) Conventional prompting methods use hand-crafted or learnable context in combination with the class name to
construct the text prompt. (b) Recent methods introduce attribute descriptions to create text attribute prompts containing more
semantic content. (c) Our method jointly explores multi-modal attributes and attribute-level alignment, enhancing fine-grained
visual perception and achieving attribute-level alignment between images and text categories.

Leaves with serrated edges

Yellow stamens

Thick, oval-shaped leaves 

Tube-like structure(a) (b)

Fig. 2: (a) Moon Orchid and (b) Japanese Anemone exhibit
strikingly similar overall appearances. Visual attributes play a
crucial role in distinguishing between them, such as the central
yellow stamens of Japanese Anemone.

tual attributes, as depicted in Figure 1 (b), they still focus
on alignment with the global image features and fall short in
addressing disruptions present in images. To address this issue,
in addition to the global alignment, establishing attribute-
level alignment is imperative, i.e., alignment between fine-
grained visual and textual attribute features (see Figure 1 (c)).
This alignment empowers the model to selectively emphasize
the distinctive visual attribute features described in the textual
attributes, thereby enhancing the ability to handle disruptions
in images.

Inspired by the above insights, we propose Multi-modal
Attribute Prompting (MAP) by jointly exploring textual
attribute prompting, visual attribute prompting, and attribute-
level alignment to enhance the adaptability of CLIP in down-
stream few-shot tasks. For textual attribute prompting, we
generate class-specific textual descriptions using a pre-trained
large language model. Subsequently, these textual descriptions
are utilized to create multiple textual attribute prompts, each
encompassing context words, the class name, and an attribute
description. It’s challenging to directly capture appropriate dis-

criminative visual attributes in an unknown test image without
prior information. Hence, for visual attribute prompting,
first, we use learnable initial visual attribute prompts to aggre-
gate regional features by interacting with image tokens. Then,
we utilize the specially designed Adaptive Visual Attribute
Enhancement (AVAE) module, in which the initial visual
attribute prompts are enhanced by adaptively selected textual
attribute prompts. Through interaction with both image tokens
and textual attribute prompts, visual attribute prompts can
adaptively capture visual attribute features in an unseen image.
Finally, we reformulate the attribute-level alignment between
visual attribute prompts and textual attribute prompts as an
Optimal Transport problem [30] and use the Sinkhorn algo-
rithm [31] to solve it. The ultimate classification result is de-
termined by both the global matching score and the attribute-
level matching score. This integration of additional attribute
alignment, alongside global alignment, achieves multi-level
robust alignment between images and text categories.

Our main contributions can be summarized as follows:

• We propose Multi-modal Attribute Prompting, which
jointly explores textual attribute prompting, visual at-
tribute prompting, and attribute-level alignment between
images and text categories. To our knowledge, this is
the first work to model visual attributes and establish
attribute-level alignment between images and text cate-
gories for adapting the pre-trained CLIP model to down-
stream few-shot tasks.

• Extensive experimental results on 11 benchmark datasets
demonstrate that our method performs favorably against
state-of-the-art approaches.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MAY 2024 3

II. RELATED WORKS

In this section, we introduce several lines of research in
pre-trained vision-language models and prompt learning.

A. Vision-Language Models.

In recent years, pre-trained vision-language models [3],
[4], [32]–[36] have shown exceptional performance in diverse
downstream tasks. Among them, CLIP [1] stands out as a rep-
resentative approach. By training its vision and text encoders
to map both modalities closely in a shared embedding space,
CLIP establishes a comprehensive global alignment between
images and their corresponding textual descriptions, enabling
open-vocabulary classification tasks. The classification result
can be obtained by computing the similarity scores of the
global image feature with class names encoded by the text
encoder. However, as classification relies solely on the global
matching score, the accuracy may be affected by disruptions
in images, such as complex backgrounds, especially in few-
shot settings [37]–[43], where only a few training samples are
available. To improve the robustness of cross-modal alignment,
we achieve multi-level alignment for CLIP by introducing ad-
ditional attribute-level alignment between dynamically learned
textual and visual attribute features. In this manner, our method
enhances the fine-grained perception capability with the pre-
trained global knowledge preserved.

B. Prompt Learning.

Prompt learning is initially introduced in the field of natural
language processing (NLP) [44]–[48]. With language mod-
els frozen, prompt learning methods effectively facilitate the
adaptation of pre-trained language models to downstream few-
shot tasks by involving additional hand-crafted or learnable
prompt tokens. Prompt learning has recently been employed
to enhance the adaptation of the CLIP model to downstream
few-shot tasks, where limited training samples are available.
CoOp [16] constructs prompts by concatenating learnable
continuous vectors and class name tokens. CoCoOp [18]
extends CoOp by further learning a lightweight neural net-
work to generate an input-conditional vector for each image,
tackling the poor generalizability to broader unseen classes
in CoOp [16]. ProDA [21] optimizes a set of prompts by
learning the distribution of prompts. Instead of focusing on
text-modal prompts, VPT [49] introduces learnable vectors to
the Vision Transformer [50] to refine image features within the
frozen vision encoder. DAPT [19], RPO [22], and MaPLe [23]
improve the generalization ability of VLMs via multimodal
prompting. PromptSRC [20] introduces regularization loss to
prompt learning. These methods rely solely on class names for
text prompt construction and may struggle to fully encapsulate
categorical semantics.

C. Textual Attribute Prompts.

To enrich the semantic description for different classes, re-
cent works [24]–[26], instead of relying solely on class names,
have shifted towards the utilization of attribute descriptions to
construct textual attribute prompts for each class. This shift is

facilitated by the development of pre-trained large language
models (LLMs) like the GPT family [27], [28]. Attribute
descriptions can be easily obtained by querying the LLM with
suitable question templates. However, these methods focus on
attributes in text space only, neglecting the modeling of visual
attributes, leading to limited visual perception capabilities of
the model and misalignment between global visual and local
textual features. In contrast, we jointly model visual and
textual attribute features and establish attribute-level alignment
between images and text categories.

D. Visual Attributes.

Visual attributes refer to intuitive properties of objects,
encompassing low-level semantics (e.g., color, texture, and
shape) and high-level semantics (e.g., head, body, and tail of
objects) [51]. Utilizing visual attributes has led to significant
progress in various vision tasks, including image search [52],
image recognition [53], and scene understanding [54]. Some
previous works on learning attributes [52], [55], [56] usually
require extensive manual attribute annotations, which are
labor-intensive. Dealing with this issue, a recent work [57]
developed an encoder-decoder network to unsupervisedly dis-
till high-level attribute-specific vectors without requiring at-
tribute annotations. VAPNet [58] achieves semantic details by
utilizing local image patches to distill visual attributes from
these discovered semantics. Different from these methods,
our approach uniquely leverages visual prompts to model
visual attributes. By incorporating visual attribute prompts
as learnable tokens within Vision Transformers, our method
captures and aggregates relevant image features effectively.

III. METHODOLOGY

In this section, we first provide a concise overview of
CLIP [1]. Then, we present a comprehensive introduction to
our proposed multi-modal attribute prompting, as illustrated in
Figure 3, including textual attribute prompting, visual attribute
prompting, and attribute-level alignment. The main symbols
and instructions are shown in Table I.

A. Review of CLIP

The Contrastive Language-Image Pre-training (CLIP)
model [1] is a well-known vision-language model trained on
large-scale image-text pairs. CLIP consists of two primary
components: an image encoder ϕ(·) for converting input
images into visual embeddings and a text encoder θ(·) for
encoding textual information. During pre-training, CLIP trains
encoders using a contrastive loss objective [59], with the
purpose of achieving a global alignment between images and
textual descriptions. The CLIP model can be easily applied to
downstream tasks.

Given a set V of C class names, the text prompts {ti}Ci=1

are formulated as manually designed templates, such as ‘A
photo of a [CLASS].’ The classification vectors {wi}Ci=1 are
derived by passing text prompts {ti}Ci=1 to the text encoder:
wi = θ(ti). Given an image x and its label y, the global image
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TABLE I
MAIN SYMBOLS AND INSTRUCTIONS

Symbol Instruction

ϕ(·) the image encoder

θ(·) the text encoder

V set of class names

C the number of class names

x the input image

y the ground-truth label

f the global image feature

pnk the n-th textual attribute prompt of k-th class

gnk encoded n-th textual attribute prompt of k-th class

Gk encoded textual attribute prompts of the k-th class

lj the j-th ViT layer

Ej image tokens output from j-th ViT layer

sj [CLS] token output from j-th ViT layer

Uj visual attribute prompts output from j-th ViT layer

F visual attribute prompts output from ViT

T ∗ the optimal transportation plan

Γ adaptive visual attribute enhancement module

ψ(·, ·) similarity function

M the number of visual attribute prompts

N the number of textual attribute prompts

L the number of transformer layers in ViT

Q, K, V queries, keys, and values in the attention layer

WQ,WK , WV linear projections of the attention layer

1N N-dimensional all-one vector

p,q discrete distributions

µ,ν discrete probability vectors

feature f is extracted by the image encoder: f = ϕ(x). The
classification probability is formulated as

P (y = i|x) = exp (cos (wi, f) /τ)∑C
j=1 exp (cos (wj , f) /τ)

, (1)

where τ is a temperature parameter and cos(·, ·) denotes the
cosine similarity.

B. Textual Attribute Prompting

To address the potential ‘lexical weak tie’ issue of relying
solely on class names for text prompt construction, we create
multiple textual attribute prompts for each class, which helps
enrich the semantic content in text prompts.

Attribute Descriptions. Consistent with previous meth-
ods [24]–[26], we obtain category attribute descriptions by
querying a Large Language Model (LLM) using a predefined
question template: ‘What are useful visual features for dis-
tinguishing a [CLASS] in an image?’ In response, the LLM
provides discriminative attribute descriptions for the queried
class. We select N descriptions for each class from the query
results.

Textual Attribute Prompt Construction. We formulate N
textual attribute prompts for each class by combining attribute
description sentences with a standardized prompt template. For
instance, for the k-th class, with the template ‘A photo of
a [CLASS]’ we construct a textual attribute prompt: pnk={A
photo of a class (k), tnk}, where class (k) denotes the class
name corresponding to the k-th class, and tnk denotes the
n-th attribute description for the k-th class. To enhance the
adaptability of textual attribute prompts, we replace the hand-
crafted context, i.e., ‘A photo of a’ with several learnable
context vectors. Following CoOp [16], we use four learnable
class-agnostic context vectors, concatenated with the class
name and attribute description to construct the textual attribute
prompt. These vectors are optimized during training to better
adapt to downstream tasks, providing a more flexible context.

By feeding the textual attribute prompts into the text encoder
θ, we can obtain encoded textual attribute prompts:

Gk = {gnk |Nn=1}, gnk = θ(pnk ), (2)

where Gk is the textual attribute prompt set for the k-class.

C. Visual Attribute Prompting

To improve fine-grained visual perception, we model vi-
sual attributes with visual attribute prompts. However, it is
challenging to directly learn discriminative visual attributes
for an unknown image without prior information. Therefore,
we design an adaptive visual attribute enhancement module
to adaptively establish visual attribute prompts under the
guidance of textual attribute information.

Learnable Visual Attribute Prompts. We model visual
attributes by introducing M visual attribute prompts U =
{ui}Mi=1, where each attribute prompt ui is a randomly ini-
tialized learnable vector with the dimension of dv . {ui}Mi=1

are inserted into the first Vision Transformer (ViT) layer and
are then propagated into deeper layers. For the j-th ViT layer
lj , visual attribute prompts Uj−1 output from the (j-1)-th
ViT layer are concatenated with image tokens Ej−1 and the
learnable classification token sj−1 ([CLS]), forming the input
sequence of the current layer. Formally,

[sj , Uj , Ej ] = lj([sj−1, Uj−1, Ej−1]), j = 1, 2, ..., L, (3)

where [·, ·] indicates the concatenation along the sequence
length dimension. In early layers of ViT, the visual at-
tribute prompts progressively aggregate image regional fea-
tures through interaction with image tokens facilitated by
the attention mechanism. Learnable visual attribute prompts
compute similarity with image tokens and aggregate infor-
mation accordingly. Similar to the [CLS] token in models
like BERT [60] and ViT [50], visual prompts can read and
aggregate visual information from image tokens [22]. Previous
research [61], [62] indicates that ViTs will attend to local
information in early layers. This property, together with the
attention mechanism, helps aggregate image regional features.

Adaptive Visual Attribute Enhancement Module. AVAE,
represented as Γ, is designed to dynamically refine visual
attribute prompts with textual attribute guidance for arbitrary
images from unseen classes. As the category of the test
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Fig. 3: The architecture of our method: MAP leverages textual attribute descriptions to construct textual attribute prompts and
incorporates learnable visual attribute prompts for capturing visual attributes. In the Adaptive Visual Attribute Enhancement
module, initial visual attribute prompts are enhanced by textual attribute prompts via the attribute-aware cross-attention layer.
The Multi-modal Attribute Alignment module calculates the similarity score between visual attributes and textual attributes
with the optimal transport.

image is unknown, we select possibly related textual attribute
prompts from the most similar classes. Specifically, we first
compute the similarities between the global image feature, i.e.,
the classification token s, and textual category embeddings
represented by the mean of textual attribute prompts. Based
on these similarities, we select the most similar λ categories as
the candidate classes and gather their textual attribute prompts
as G′ = {gj |λNj=1}. Subsequently, the textual attribute prompts
G′ are employed as the semantic guidance to enhance visual
attribute prompts at the l-th ViT layer:

{ũ(l)i }Mi=1 = Γ({ui(l)}Mi=1,G
′), (4)

where Γ takes the initial visual attribute prompts {ui(l)}Mi=1

generated from l-th layer as the input, and refine them con-
ditioned on textual attribute prompts G′. Then the enhanced
visual attribute prompt ũ(l)i is inserted into the (l+1)-th layer
for progressive attribute learning.

To better inject the semantic clues of selected textual
prompts into visual attribute prompts, we design an attribute-
aware cross-attention layer in Γ. Here, the visual attribute
prompt tokens {ui(l)}Mi=1 function as queries Q. Simultane-
ously, the textual attribute prompt features G′ of candidate
classes are utilized as keys K and values V . The enhanced
visual attribute prompt ũ(l)i is formulated as

α̃ij =
exp(αij)∑λN

j′=1 exp(αij′)
, αij =

u
(l)
i WQ · (gjWK)T√

dK
, (5)

ũ
(l)
i = u

(l)
i +

λN∑
j=1

α̃ij(gjWV ), i = 1, 2, · · · , λN, (6)

where WQ,WK and WV are linear projections of the atten-
tion layer. Attention scores α̃ij indicate the correspondence
between visual and textual attribute prompts, emphasizing
relevant image-specific semantic attribute patterns for en-
hancing the visual attribute prompts. After the text-guided
enhancement, the refined visual attribute prompts {ũ(l)i }Mi=1

are propagated into the remaining vision encoder layers and
continue to capture visual attributes through interaction with
image tokens.

D. Attribute-Level Alignment

To achieve precise alignment between visual attribute
prompts {ui(L)}Mi=1 and textual attribute prompts Gk =
{gnk |Nn=1}, we formulate the attribute-level matching task as
an Optimal Transport (OT) problem [30]. For simplicity, we
refer to {ui(L)}Mi=1 as F = {fm|Mm=1} hereafter. Optimal
Transport (OT) [30] is a powerful tool to measure the distance
between two distributions. Given two sets of feature points
F = {fm|Mm=1} and Gk = {gnk |Nn=1}, their distributions can
be formulated as p =

∑M
m=1 µmδfm , q =

∑N
n=1 νnδgn

k
, δfm

is a Dirac delta function centered at a specific point fm in
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the embedding space. Here, µ ∈ RM , ν ∈ RN are two
discrete distribution vectors. We define the cost matrix between
F = {fm|Mm=1} and Gk = {gnk |Nn=1} as C ∈ RM×N , where
Cm,n = 1 − ⟨fm, gnk ⟩ is the transport cost from fm to gnk .
The transport cost between p and q is ⟨T,C⟩, where T is
the transport plan, and Tm,n is the probability or “flow” of
transporting from fm to gnk . The goal of OT is to transport p
to q at the smallest cost with the optimal transport plan T∗:

T∗ = argmin
T∈Π(p,q)

⟨T,C⟩,

s.t. T1N = µ,TT1M = ν,
(7)

where
∏
(p, q) is the joint distribution with marginals µ and ν,

and ⟨·, ·⟩ denotes the Frobenius inner product. To accelerate
the solving process, we use the Sinkhorn algorithm, which
introduces the entropic regularization term to the transport
cost to encourage smoother solutions: min

T
⟨T,C⟩ − γh(T),

γ is a constant hyperparameter controlling the intensity of
regularization term. Instead of solving the constrained op-
timization directly, the Sinkhorn algorithm [31] employs an
iterative procedure:

T∗ = diag(U(t))Adiag(V (t)),

A = exp(−C/γ)
(8)

where in the t-th iteration, U(t) = µ/(AV (t − 1)), V (t) =
ν/ATU(t)), with the initiation V (0) = 1. With Equation (8),
we can obtain T∗ to serve as the alignment matrix, and then
define the final similarity score between the visual attribute
prompts F and textual attribute prompts Gk as:

ψ(F ,Gk) =

M∑
m=1

N∑
n=1

⟨fm, gnk ⟩T∗
m,n, (9)

where ψ(·, ·) denotes the similarity function.

E. Training Objectives
Based on the attribute-level alignment, we can classify the

image x with fine-grained visual attributes:

Pa(y = i|x) = exp(ψ ((F ,Gi) /τ))∑C
j=1 exp(ψ(F ,Gj/τ))

. (10)

Furthermore, relying on the global alignment in CLIP, the
prediction probability is computed as

Pg(y = i|x) = exp(cos ((f , gi) /τ))∑C
j=1 exp(cos(f , gj/τ))

, (11)

where f is the global feature of the image x, i.e., the class
token sL, and gi is the textual categorical embedding of the
i-th class, i.e., the mean value of textual prompts in Gi. The
final prediction probability is

P (y = i|x) = Pg(y = i|x) + βPa(y = i|x), (12)

which incorporates both global-level prediction scores and
additional attribute-level matching scores, achieving multi-
level robust alignment between images and categorical texts.
Naturally, the classification loss is formulated as:

Lcls = − 1

B

B∑
i=1

log(P (y = yi|xi)), (13)

where B is the batch size of image-text pairs, and yi denotes
the ground-truth label of the input image xi.

IV. EXPERIMENTS

In this section, we begin by introducing the benchmark set-
tings and implementation details, followed by a comprehensive
presentation of the experimental results.

All the models used are based on the open-source CLIP [1]
model. We evaluate the adaptation and generalization capa-
bility of MAP in four distinct settings following previous
methdos [16], [18].

Base-to-novel generalization. Datasets are split into base
and novel classes. The model is trained on the training dataset,
which is constructed by randomly selecting 16 images per
class from base classes. Then the model is evaluated on
both base and novel classes. The evaluation encompasses 11
image recognition datasets, including Food101 (Foo) [64],
DTD [65], ImageNet (Img) [66], Caltech101 (Cal) [67], Eu-
roSAT (Eur) [68], StanfordCars (Car) [69], FGVCAircraft
(FGV) [70], Flowers102 (Flo) [71], OxfordPets (Pet) [72],
UCF101 (UCF) [72], and SUN397 (SUN) [73].

Few-shot image classification. To evaluate the learning
capacity under extremely limited supervision, we assess the
model’s performance across varying shot scenarios, namely,
1, 2, 4, 8, and 16 shots. Similar to the base-to-novel general-
ization setting, we employ the same 11 datasets.

Domain generalization. To assess the robustness under
domain shifts, we train the model using the source dataset
ImageNet and subsequently evaluate its performance on out-
of-distribution target datasets, namely ImageNet-R (-R) [74],
ImageNet-A (-A) [75], ImageNetV2 (V2) [76], and ImageNet-
Sketch (-S) [77].

Cross-dataset evaluation. In the cross-dataset transfer set-
ting, we train the models on the source dataset ImageNet
and directly evaluate them on target datasets. Specifically,
the target datasets include Food101, DTD, Caltech101, Eu-
roSAT, StanfordCars, FGVCAircraft, Flowers102, OxfordPets,
UCF101, and SUN397.

Implementation Details. In all the experiments, we use the
pre-trained CLIP [1] with ViT-B/16 image encoder backbone
as the base model. We use the GPT-3.5 as the large language
model. For MAP, we set the number of textual attribute
prompts N to 4, and the number of visual attribute prompts M
to 4. The AVAE module is inserted into the 7th transformer
layer in the Vision Transformer (ViT). The default value of
λ is set as 10. β is set as 1. We train the model using the
SGD optimizer with a learning rate of 0.002. For the base-to-
novel generalization setting, the model is trained for 20 epochs
with a batch size of 16. For few-shot image classification, the
maximum epoch is set to 200 for 16/8 shots, 100 for 4/2 shots,
and 50 for 1 shot (except for ImageNet, where the maximum
epoch is fixed to 50).

A. Base-to-Novel Generalization

To demonstrate generalization to label-shift, where labels
are divided into base and novel classes for each dataset, we
train the model on training datasets constructed by randomly
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TABLE II
COMPARISON WITH CLIP, COOP AND COCOOP IN THE BASE-TO-NOVEL GENERALIZATION SETTING. THE RESULTS

DEMONSTRATE THE STRONG GENERALIZABILITY TO NOVEL CLASSES OF OUR MAP. HM: HARMONIC MEAN TO
HIGHLIGHT THE GENERALIZATION TRADE-OFF [63]. THE BEST RESULTS IN EACH COLUMN ARE SHOWN IN BOLD FONT.

(A) AVERAGE RESULTS

Method Base Novel HM

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66

CoCoOp 80.47 71.69 75.83
Ours 83.66 75.76 79.36

(D) DTD

Method Base Novel HM

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24

CoCoOp 77.01 56.00 64.85
Ours 82.63 66.23 73.53

(G) OXFORDPETS

Method Base Novel HM

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47

CoCoOp 95.20 97.69 96.43
Ours 95.43 96.90 96.16

(J) FOOD101

Method Base Novel HM

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19

CoCoOp 90.70 91.29 90.99
Ours 90.30 89.30 89.80

(B) IMAGENET

Method Base Novel HM

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92

CoCoOp 75.98 70.43 73.10
Ours 76.60 70.60 73.48

(E) EUROSAT

Method Base Novel HM

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69

CoCoOp 87.49 60.04 71.21
Ours 92.13 76.10 83.33

(H) STANFORDCARS

Method Base Novel HM

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13

CoCoOp 70.49 73.59 72.01
Ours 76.70 73.73 75.18

(K) FGVCAIRCRAFT

Method Base Novel HM

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75

CoCoOp 33.41 23.71 27.74
Ours 41.63 36.43 38.84

(C) CALTECH101

Method Base Novel HM

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73

CoCoOp 97.96 93.81 95.84
Ours 98.30 93.80 96.00

(F) UCF101

Method Base Novel HM

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46

CoCoOp 82.33 73.45 77.64
Ours 86.67 78.77 82.52

(I) FLOWERS102

Method Base Novel HM

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06

CoCoOp 94.87 71.75 81.71
Ours 97.57 75.23 84.95

(L) SUN397

Method Base Novel HM

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51

CoCoOp 79.74 76.86 78.27
Ours 82.33 76.30 79.20

TABLE III
COMPARING MAP AGAINST MORE METHODS ON THE

AVERAGE ACCURACY OVER 11 DATASETS.

Method Base Novel HM

CLIP [1] 69.34 74.22 71.70
CoOp [16] 82.69 63.22 71.66

CoCoOp [18] 80.47 71.69 75.83
ProDA [21] 81.56 72.30 76.65
RPO [22] 81.13 75.00 77.78

VDT-Adapter [26] 82.48 74.51 78.09
MaPLe [23] 82.28 75.14 78.55

MAP 83.66 75.76 79.36

selecting 16 images per class from base classes. The model is
trained using this few-shot sampled data for 3 random seeds,
and the results are averaged. We evaluate accuracy on test data
corresponding to both the base and novel classes and use their

harmonic mean [63] as the final evaluation metric.
Compared to CoOp, MAP exhibits higher harmonic mean

accuracy across all datasets. As shown in Table II, MAP, on
average, increases novel accuracy by 12.54% and base accu-
racy by 0.97%. This demonstrates that MAP not only enhances
the model’s generalization to novel classes but also achieves
better alignment between visual and textual modalities within
base classes.

Compared to CoCoOp, MAP demonstrates superior general-
ization to novel classes, achieving an impressive average gain
of up to 4.07%. When considering both base and novel classes,
MAP outperforms CoCoOp with an absolute average gain of
3.53%. Among the 11 datasets, MAP exhibits higher accuracy
than CoCoOp in 10 base datasets and 7 novel datasets.

We present the average accuracy results across 11 datasets
for MAP compared with several other methods in Table III.
MAP outperforms other methods by a significant margin,
demonstrating our superior performance over other methods.
It’s worth noting that VDT-Adapter [26], which leverages
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Fig. 4: Main results of few-shot image classification on 11 datasets. MAP consistently outperforms other CLIP adaptation
methods across all datasets, demonstrating the strong few-shot adaptability of MAP.

textual attributes obtained from GPT-4 to formulate prompts,
improves the novel accuracy compared to CoOp. However,
it neglects modeling visual attributes and fails to leverage the
role of attributes fully. MAP outperforms VDT-Adapter 1.18%
in base classes and 1.25% in novel classes.

B. Few-Shot Image Classification

To evaluate few-shot learning ability, we adopt the few-
shot evaluation protocol from CLIP [1], utilizing 1, 2, 4, 8,
and 16 shots per class for training and deploying models
in full test sets. Figure 4 summarizes the performance of
MAP in few-shot learning on 11 datasets. Each plot compares
MAP with CoOp and CoOp+VPT. CoOp+VPT refers to the

combination of CoOp and VPT, i.e., the integration of both
learnable text prompts and learnable visual prompts [49]
into the CLIP model simultaneously. In terms of the overall
performance (Figure 4, top-left), compared to CoOp, the
combination of CoOp and VPT shows some improvement,
though not significant. However, in the 1-shot setting, the
performance of the combination is even worse than CoOp
alone. This suggests that simply introducing more learnable
parameters in the vision encoder brings limited performance
improvement in the extreme few-shot setting. However, MAP
consistently delivers significant performance improvements,
even in scenarios with very few training samples (e.g., 1-shot),
showcasing the effectiveness of our visual attribute prompts
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Fig. 5: The average few-shot image classification results of
more methods across 11 datasets.

enhanced by textual guidance. Furthermore, on certain datasets
(Caltech101, Flowers102, DTD, SUN397, and OxfordPets),
CoOp+VPT does not outperform CoOp alone, whereas MAP
consistently achieves superior performance across all bench-
mark datasets, demonstrating the generalizability of MAP
across diverse datasets.

In Figure 5, we present the performance results of additional
methods for few-shot image classification. Tip-adapter-F [78],
the fine-tuned version of Tip-adapter, requires fine-tuning on
the few-shot training data to update the adapter. The results
show that Tip-adapter-F consistently achieves better perfor-
mance than Tip-adapter and Linear probe CLIP. MaPLe [23]
achieves performance comparable to Tip-adapter-F overall.
Notably, MAP consistently outperforms both MaPLe [23]
and Tip-adapter-F [78] in few-shot image classification across
various shot settings, highlighting the effectiveness of our
proposed approach.

C. Domain Generalization

To evaluate the model’s robustness under domain shifts,
we initially train the model using the source dataset, Im-
ageNet [66]. Subsequently, we evaluate its performance on
target out-of-distribution datasets, namely ImageNetV2 [76],
ImageNet-Sketch [77], ImageNet-A [75] and ImageNet-
R [74]. The overall results are summarized in Table IV. From
the experimental results, the fully fine-tuned CLIP model
shows poorer performance compared to the zero-shot CLIP
on the ImageNet dataset and variants of ImageNet. This
demonstrates that naive fine-tuning of the entire CLIP model
may cause overfitting on the training set, leading to perfor-
mance degradation. MAP achieves remarkable performance
on unseen data compared to zero-shot CLIP [1], linear probe
CLIP, CoOp [16] and CoCoOp [18]. Compared to MaPLe,
MAP shows slightly lower performance on ImageNet-Sketch
but outperforms MaPLe [23] on other target datasets (Ima-
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Fig. 6: The absolute accuracy improvements provided by using
AVAE compared to scenarios without AVAE.

geNetV2, ImageNet-A, and ImageNet-R). This underscores
the robustness of MAP to domain shifts.

D. Cross-Dataset Evaluation

To demonstrate the model’s capacity for generalization
beyond a single dataset, we conduct training on ImageNet [66]
and subsequently evaluate its performance on the other 10
datasets. When transferring to other datasets, textual attribute
prompts are constructed using class attribute descriptions of
the target dataset classes, which are also collected from the
LLM. The learned parameters can be directly transferred,
allowing effective inference despite category differences be-
tween the source and target datasets. Table V presents a
comprehensive overview of the performance comparison be-
tween MAP and previous methodologies on the cross-dataset
evaluation benchmark. On the source dataset, MAP achieves
the highest score, underscoring its effectiveness in the source
domain. When compared with CoOp [16], CoCoOp [18], and
MaPLe [23], MAP demonstrates a superior capacity for gen-
eralization across diverse datasets. Specifically, it outperforms
these methodologies in 7 out of 10, 6 out of 10, and 6 out
of 10 datasets, respectively. This suggests that MAP exhibits
robustness to varied data distributions.

E. Ablation Study

In this section, we perform ablation studies to demonstrate
the effectiveness of each design of the proposed method.

Effectiveness of Attribute Prompts. We denote Textual
Attribute Prompts as TAP and Visual Attribute Prompts as
VAP. We remove TAP and VAP from MAP as our baseline.
The results in Table VI are analyzed as follows: (1) Compared
to the baseline, utilizing TAP powered by the LLM effectively
improves the novel accuracy, achieving an accuracy gain
of 1.43%, which demonstrates textual attributes enrich the
semantics for novel classes. (2) The incorporation of VAP
shows a distinct performance boost on both base (+1.6%) and
novel classes (+2.11%). This proves that VAP contributes to
enhancing fine-grained visual perception ability by capturing
visual attributes.
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TABLE IV
DOMAIN GENERALIZATION EVALUATION. METHODS ARE TRAINED ON THE SOURCE DATASET IMAGENET AND

EVALUATED ON DATASETS WITH DOMAIN SHIFTS, INCLUDING IMAGENETV2, IMAGENET-S, IMAGENET-A, AND
IMAGENET-R.

Source Target

ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R Avg.

CLIP [1] 66.73 60.83 46.15 47.77 73.96 57.18
Fully Fine-Tuned CLIP 61.65 52.70 26.10 17.55 50.15 36.63
Linear probe CLIP [1] 67.42 57.19 35.97 36.19 60.10 47.36
CoOp [16] 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp [18] 71.02 64.07 48.75 50.63 76.18 59.91
MaPLe [23] 70.72 64.07 49.15 50.90 76.98 60.27
MAP 71.60 64.47 49.07 51.07 77.37 60.49

TABLE V
CROSS-DATASET EVALUATION. MODELS ARE TRAINED ON IMAGENET AND EVALUATED ON TARGET DATASETS. MAP

ACHIEVES OVERALL FAVORABLE PERFORMANCE.

Source Target

ImageNet Cal Pet Car Flo Foo Air SUN DTD Eur UCF

CoOp [16] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55
CoCoOp [18] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21
MaPLe [23] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69

MAP 71.60 93.93 90.80 63.00 68.40 86.07 24.87 68.10 51.87 42.63 68.73

（a) Moon Orchid

（b) Japanese Anemone

(c) Egyptian Mau

(d) Abyssinian

Fig. 7: The visualization of visual attribute prompts. Guided by textual attribute semantics, visual attribute prompts focus on
distinctive visual details, such as the different leaf shapes of the Moon Orchid and Japanese Anemone, the spotted coat of the
Egyptian Mau, and the large ears of the Abyssinian.
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Fig. 9: The impact of the number of visual attribute prompts
in the base-to-novel generalization setting.

Effectiveness of Adaptive Visual Attribute Enhance-
ment. To verify the accuracy improvement when using AVAE,
we conduct few-shot image classification experiments on
6 datasets (Flowers102, DTD, UCF101, OxfordPets, Cal-
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Fig. 10: The impact of the number of textual attribute prompts
per class in the base-to-novel generalization setting.

TABLE VI
ABLATION RESULTS.

Method Base Novel HM
Baseline 82.20 72.22 76.41

+TAP(LLM) 82.06 73.65 77.36
+TAP+VAP (MAP) 83.66 75.76 79.36

TABLE VII
COMPLEXITY RESULTS.

CoCoOp MaPLe MAP
parameters 0.04M 3.56M 0.74M
GFLOPs 83.83 55.23 84.80
test time 56.70s 9.58s 9.79s

TABLE VIII
THE IMPACT OF USING DIFFERENT LLMS.

Method Base Novel HM
Qwen-1.8B-Chat 97.47 73.23 83.63

GPT-3.5 97.57 75.23 84.95
Qwen1.5-72B-Chat 97.77 75.30 85.08

tech101, Food101). As shown in Figure 6, the employment
of AVAE brings remarkable performance gains. Furthermore,
we investigate the impact of placing AVAE into different
ViT layers. As observed from Figure 8, placing AVAE in
the middle layers (Layer 6-8) attains superior performance.
When applying AVAE in the shallow or deep layers, the perfor-
mance deteriorates obviously compared to the middle layers.
Therefore, the AVAE module should be placed in the middle
layers. Initial visual attribute prompts can aggregate visual
regional features in shallow layers and continue to capture
visual attributes in the remaining layers after enhancement by
AVAE.

Analysis of Number of Visual Attribute Prompts. Figure
9 illustrates the averaged harmonic mean accuracy of using
varying numbers of visual prompts over 10 datasets in the
base-to-novel generalization setting. When the number is as
small as 1, the performance gain is quite limited. The accu-
racy increases with more visual attribute prompts, as more
visual attribute characteristics can be captured. However, the
accuracy decreases slightly when the number is beyond 4, as
an excessive amount of visual attribute prompts may contain
redundancy and noises.

Analysis of Number of Textual Attribute Prompts. Fig-

ure 10 illustrates the averaged harmonic accuracy of using
different numbers of textual attribute prompts. According to
the experimental results, the introduction of textual attribute
prompts indeed improves the performance, demonstrating
the effectiveness of textual attribute prompts. The accuracy
improves with the incorporation of more textual attribute
prompts, as this introduces more descriptive information.
However, when the number of textual attribute prompts ex-
ceeds four, the performance decreases. This may be attributed
to the fact that additional prompts introduce more redundancy.
The initial prompts are usually the most relevant and effective,
while later ones may include less useful or intuitive descrip-
tions. Increased complexity and less discriminative attributes
like size or height can also burden the model, resulting in
reduced performance. Overall, the accuracy changes relatively
smoothly with different prompt numbers.

Impact of Different LLMs. We conduct experiments using
other large language models (LLMs), specifically Qwen-1.8B-
Chat and Qwen-1.5-72B-Chat [79], and examine performance
variations on the Flowers102 dataset. The results in Table VIII
show that Qwen-1.5-72B-Chat achieves performance compara-
ble to GPT-3.5. However, when using Qwen-1.8B-Chat, there
is a significant performance drop compared to using GPT-3.5
and Qwen-1.5-72B-Chat. This decline may be attributed to
the fact that the outputs from Qwen-1.8B-Chat are sometimes
inconsistent, noisy, and occasionally lack meaningful infor-
mation. These findings suggest that selecting a large language
model capable of generating consistent and clear outputs is
crucial for maintaining performance.

Analysis of Complexity. We compare different prompting
methods about the number of parameters, the GFLOPs, and
the test time in Table VII. MaPLe [23] and MAP enjoy faster
inference speeds than CoCoOp [18]. Compared with MaPLe,
MAP is more parameter-efficient (0.74M vs 3.56M). The
computation cost (GFLOPs) of MAP is higher, but considering
the performance improvement, it is acceptable.

Visualization of Visual Attribute Prompts. We visualize
visual attribute prompts output by the Vision Transformer in
Figure 7. It can be observed that different visual attribute
prompts focus on various aspects of the image and highlight
distinctive visual details. This visualization demonstrates the
capacity of visual attribute prompts to augment the model’s
fine-grained visual perception ability.

V. LIMITATION AND FUTURE WORK

We use text attributes directly from GPT without manual
filtering. Text attributes may contain noise that may hinder
accurate classification, such as attributes with high uncertainty,
like colors of toad lilies (white, purple, pink, or yellow). On
Flowers102 [71], we manually filter improper attributes, result-
ing in an improvement of 0.37% in HM. Filtering improper
ones has the potential to improve results. We’ll design an
automatic filter plan in the future.

VI. CONCLUSION

In this paper, we propose a Multi-modal Attribute Prompt-
ing method to adapt pre-trained Vision-Language models for
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downstream few-shot tasks. Our method involves modeling
visual attributes to enhance the visual fine-grained perception
ability. We establish attribute-level alignment, complementing
the global alignment to achieve multi-level robust alignment
between images and text categories. Extensive experimental
results demonstrate the effectiveness.
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