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Abstract

Simulations of future climate change impacts on water resources are subject to multiple and 

cascading uncertainties associated with different modeling and methodological choices. A key 

facet of this uncertainty is the coarse spatial resolution of GCM output compared to the finer-

resolution information needed by water managers. To address this issue, it is now common 

practice to apply spatial downscaling techniques, using either higher-resolution regional climate 

models or statistical approaches applied to GCM output to develop finer-resolution information for 

use in water resources impacts assessments. Downscaling, however, can also introduce its own 

uncertainties into water resources impacts assessments. This study uses watershed simulations in 

five U.S. basins to quantify the sources of variability in streamflow, nitrogen, phosphorus, and 

sediment loads associated with the underlying GCM compared to the choice of downscaling 

method (both statistically and dynamically downscaled GCM output). We also assess the specific, 

incremental effects of downscaling by comparing watershed simulations based on downscaled and 

non-downscaled GCM model output. Results show that the underlying GCM and the downscaling 

method each contribute to the variability of simulated watershed responses. The relative 

contribution of GCM and downscaling method to the variability of simulated responses varies by 

watershed and season of the year. Results illustrate the potential implications of one key 

methodological choice in conducting climate change impacts assessments for water – the selection 

of downscaled climate change information.
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1.0 Introduction

Scenario analysis using general circulation model (GCM) output to drive hydrologic models 

is a common approach for assessing the potential effects of climate change on water 

resources. These studies are complicated by two challenges: (1) the large uncertainties 

associated with GCM simulations of future climate change, particularly for precipitation 

(e.g., see Cox and Stephenson 2007, Raisanen 2006, Stainforth et al. 2007, Hawkins and 

Sutton 2011) and (2) the coarse spatial resolution of GCM output that does not incorporate 

local topographic effects compared to the finer-resolution information needed by water 

managers (e.g. Fowler et al. 2007). Progress has been made with the first challenge by 

adopting approaches such as use of an ensemble of model runs to capture the range of 

variability across multiple GCMs (e.g. Tebaldi and Knutti 2007). Exploring the full range of 

variability in this way can reveal system vulnerabilities and guide risk management (Wilby 

et al. 2012, Weaver et al. 2013).

To address the second challenge, it is common practice to apply spatial downscaling 

methods (DSMs), using either higher-resolution regional climate models (dynamical DSMs) 

or statistical approaches applied to GCM output. Dynamical DSMs use GCMs to drive 

nested regional-scale, numerical models at higher spatial resolution to simulate local 

conditions in greater detail (Elguindi and Grundstein 2013, Pryor et al. 2012, Mearns et al. 
2009, 2013). Statistical DSMs are based on relationships that interpolate large-scale GCM 

output to observations of historical weather and climate (Abatzoglou and Brown 2012, 

Burger et al. 2012, Wood et al. 2004, Maurer et al. 2009). Downscaling yields information at 

a finer spatial resolution more appropriate for watershed analysis. However, the process can 

also modify and/or compound the uncertainties associated with the choice of a particular 

underlying GCM. While downscaling can improve local-scale representation of topographic 

effects, this may have little meaning if the GCM misplaces key features, such as the location 

of the jet stream or storm tracks relative to the site of interest (Hall 2014). The choice of 

which projected future climates, and thus specific spatial and temporal details, are used in an 

assessment has a direct influence on results. It is important for practitioners to understand 

the potential implications of this methodological choice – the choice of a DSM – on 

assessment results.

Previous studies have assessed the sources of variability in simulations of hydrologic 

response to climate change. Chen et al. (2011a, 2011b) evaluated the sources of uncertainty 

in hydrologic projections for the Manicouagan 5 watershed in Quebec through 2100, 

examining the role of emission scenarios, GCM, statistical DSM, hydrologic model 

structure, and hydrologic model parameter sets. They found that choice of GCM is 

consistently a major contributor to variability across the outputs of different simulations; 

however, they found that choice of DSM, as well as the GCM initial conditions, could have a 

comparable or even larger contribution for some hydrologic endpoints. Extension of this 

analysis to include downscaling using four regional climate models (RCMs) found that 

results from statistical downscaling and RCMs had similar envelopes of uncertainty, 

although the RCM methods had a larger impact for some endpoints (Chen et al. 2013).
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Conversely, variability across simulations driven by different GCMs was more pronounced 

in runoff projections for major French drainage basins than among DSMs, including both 

statistical and dynamical downscaling with quantile bias correction (Boé et al. 2009). 

Similarly, Habets et al. (2013) found that GCM-related variability was the largest driver of 

the magnitude of climate impacts on hydrogeology in northern France. Mpelasoka and 

Chiew (2009) found greater variability in precipitation projections among multiple GCMs 

than among three statistical DSMs. Finally, in hydrologic simulations of the Alpine Rhine 

using statistical DSMs, the choice of GCM was the dominant contributor to inter-simulation 

variability in summer and fall, but the choice of DSM was of greater importance in winter 

and spring (Bosshard et al. 2013). These studies suggest the relative contributions of GCM 

vs. DSM to variability differs among locations, but direct comparison across sites is 

complicated by differences in methods. The studies discussed above focus on water quantity 

(e.g., streamflow) and do not consider water quality endpoints.

In this study, we use watershed model simulations in five U.S. watersheds to illustrate the 

effects of DSM on the variability of simulated streamflow and water quality (nitrogen, 

phosphorus, and suspended solids) responses to climate change. Watershed model 

simulations are driven by meteorological inputs representing mid-21st century climate 

developed from non-downscaled and downscaled GCM output. Our analysis addresses two 

questions: (1) What is the relative contribution of GCM, DSM, and interannual variation on 

simulated watershed responses? (2) How do simulated watershed responses change when 

driven by downscaled versus non-downscaled output from a single underlying, or “parent” 

GCM (hereafter referred to as the incremental effects of downscaling)?

The first question allows us to explore overall sources of variation within the ensemble of 

simulated future changes in climate evaluated in these watersheds, while the second allows 

us to address three sub-questions: (a) Does the variability (i.e., range) of simulated 

watershed responses to climate change differ when driven by downscaled versus non-

downscaled GCM information? (b) Does using downscaled data lead to the identification of 

regional patterns of streamflow and water quality variability not found using non-

downscaled GCM output, e.g., small scale orographic effects? (c) Does the simulated 

watershed responses to climate change depend on the particular GCM and/or type of 

downscaling used?

Results illustrate the potential implications of one key methodological choice in conducting 

climate change impacts assessments for water – the selection of DSM. Other known sources 

of variability including watershed model structure and parameters (e.g., see Mendoza et al. 
2014), emissions scenarios, or other factors in the “uncertainty cascade” (e.g., see Wilby and 

Dessai 2010) are not evaluated. Our intent is to help bridge gaps between the climate and 

hydrologic modeling communities and improve the integration of modeling efforts across 

these communities (Lofgren and Gronewald 2013).

2.0 Methods

Our analysis is based on simulations of five large watersheds: the Minnesota River 

watershed, the Apalachicola-Chattahoochee-Flint River (ACF) watersheds, the Willamette 
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River watershed, the Salt River watershed, and the Susquehanna River watershed (Figure 1). 

All watershed simulations used in the analysis were conducted as part of a larger, previous 

modeling effort to assess streamflow and water quality sensitivity to climate change in 20 

U.S. watersheds (USEPA, 2013; Johnson et al. 2012). Except for the Salt River watershed, 

the study watersheds are comparable in size to the United State Geological Survey’s (USGS) 

Hydrologic Unit Code (HUC) 4-digit basins, ranging from 15,025 km2 (Salt) to 71,236 km2 

(Susquehanna), and were selected to represent different hydroclimatic and watershed 

conditions occurring throughout the nation (Table 1).

Watershed simulations were conducted using the Soil and Water Assessment Tool (SWAT – 

version 2005; Neitsch et al. 2005). The SWAT watershed model incorporates data for 

weather, soils, topography, vegetation, and land use and cover to estimate water and 

sediment movement, nutrient cycling, and other watershed processes in large, complex 

watersheds (Neitsch et al. 2005). Potential evapotranspiration (PET) was calculated 

internally in SWAT using the Penman-Monteith energy balance method (Allen et al. 2005). 

Land use and land cover was from the 2001 National Land Cover Database (NLCD) and 

held constant in all simulations to focus on the effects of climate change and DSM. In each 

of the five study watersheds, SWAT was used to simulate changes in total streamflow, total 

nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) loads in response to 

simulated mid-21st century climate change.

SWAT models for each study watershed were calibrated and validated at the scale of USGS 

8-digit HUCs. All models performed credibly for hydrology with total volume errors within 

20 percent and Nash-Sutcliffe coefficients of model fit efficiency for monthly streamflow 

ranging from 0.32 to 0.83. Confidence limits (95%) on mean monthly flows at downstream 

gages ranged from ±3% (Susquehanna) to ±15% (Salt). Water quality simulation focused on 

monthly loads and has much higher uncertainty due to limited availability of sampling data. 

In most cases, however, the pollutant load simulations from SWAT models generally appear 

to be in the fair to good range (median absolute error of 16.5% relative to loads estimated 

from sparse monitoring data). All analyses in this study are based on simulation results 

expressed as mid-21st century changes relative to historical baseline conditions. The setup, 

calibration, and validation of SWAT models in each of the five study watersheds is described 

in detail in the appendices to U.S. EPA (2013). Simulations use consistent methods, models 

and scenarios to facilitate comparison among study watersheds.

2.1 Simulated future climate change

All projected future climates are based on mid-21st century (2041–2070) climate model 

simulations using the four GCMs from Phase 3 of the Coupled Model Intercomparison 

Project (CMIP3) under the A2 emissions scenario (IPCC, 2007) covered by the regional 

downscaling efforts of the North American Regional Climate Change Assessment Program 

(NARCCAP; http://www.narccap.ucar.edu). The specific future climate information used to 

drive watershed simulations differs depending on if or how GCM output was downscaled. 

We consider three categories of climate change information based on these same underlying 

GCMs: non-downscaled GCMs, dynamically downscaled NARCCAP projects, and 

statistically downscaled Bias Corrected and Spatially Disaggregated (BCSD) (Maurer et al. 
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2009) projections (Table 2). These three categories of climate change information, while not 

comprehensive of all GCMs or DSMs, are representative of commonly applied ‘off the 

shelf’ datasets used in climate change impacts studies.

The NARCCAP information is dynamically downscaled using RCMs nested within parent 

GCM models to represent detailed sub-grid, regional processes, and is intended to provide 

greater detail at finer spatial resolution than the driving GCM. NARCCAP RCM output is 

spatially downscaled to a 50 × 50 km grid over North America (Mearns et al. 2009; Mearns 

et al. 2007). This downscaled output is archived for two 30-year time slices (1971–2000 and 

2041–2070) at a temporal frequency of three hours. All the NARCCAP simulations assume 

the IPCC’s A2 greenhouse gas storyline (IPCC 2007). We evaluated six NARCCAP 

GCM/RCM combinations (U.S. EPA, 2013).

The BCSD information is statistically downscaled as described by Wood et al. (2004) and 

Maurer et al. (2007). This dataset provides temperature and precipitation on a 1/8-degree 

(approximately 14 × 10 km at 45 °N) horizontal grid. We evaluate four BCSD-derived future 

climates based on the same four underlying GCMs used by NARCCAP. For consistency 

with the NARCCAP scenarios, we use the 2050 CMIP3 BCSD scenarios for the A2 

emissions storyline.

Finally, non-downscaled future climate projections are based directly on GCM output. We 

evaluate four projected future climates based directly on the four parent GCM output used 

by NARCCAP and BCSD. (Note, however, that many of the CMIP3 GCMs ran multiple 

versions of the A2 simulation, differing only in initial conditions, to better capture the 

random internal variability of the climate system and to extract a more robust signal of the 

anthropogenic climate forcing. These multiple versions are called ‘ensemble members’, and 

the BCSD data we used derived from the HadCM3 and CCSM GCMs are from different 

ensemble members compared to the corresponding non-downscaled or NARCCAP data 

derived from the same GCM. By contrast, for CGCM3 and GFDL, the ensemble member 

used is identical across BCSD, NARCCAP, and non-downscaled GCM samples.)

The climate change information (e.g., from NARCCAP, BCSD, and non-downscaled GCM) 

used to drive SWAT watershed models in each study watershed was implemented as daily 

meteorological time series. In each case, daily time series were created using the “change 

factor” or “delta” method (e.g., see Anandhi et al. 2011). The change factor method 

combines information about relative change (between a historical period and future period, 

generally of a number of years or decades in length) in a particular climate variable of 

interest, such as temperature or precipitation, with one or more observed local time series of 

the same variable, to create a synthetic future input dataset for (in this case) the SWAT 

model.

Climate model outputs were bi-linearly interpolated to each of the NCDC weather stations 

used by the SWAT models (see Table 1 for the number of stations in each watershed). 

Monthly change statistics (change factors) for each of the 14 total sources of future climate 

information (from NARCCAP, BCSD, or the non-downscaled GCM output) at each weather 

station were then calculated as the difference between mid-21st century (2041–2070) and 
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simulated baseline (1970–2000) values. The monthly change factors were additive for 

temperature and multiplicative (in terms of percent change) for precipitation. These change 

factors were then used to adjust 30-years of hourly historical precipitation and surface air 

temperature observations. See U.S. EPA (2013) for additional detail about the approach 

used.

It is important to note that the different DSMs do not all provide the same meteorological 

variables. SWAT watershed simulations in this study estimate potential evapotranspiration 

(PET) using the Penman-Monteith energy balance method, which requires inputs for solar 

radiation, humidity, and wind. To provide a consistent basis for comparison, simulated future 

climate change in this study represents changes only in air temperature and precipitation; the 

only two variables commonly archived for each DSM. Other climate variables needed to 

compute PET by the energy balance method are left unperturbed in this study as supplied by 

SWAT’s weather generator representation of existing climate. Accordingly, information 

about potential future change represents the effects of changes in air temperature on PET, 

but does not account for changes in solar radiation, humidity, and wind. This de-linking of 

mass inputs (precipitation) and energy inputs other than average air temperature is a 

simplification, but reflects common practice in many climate impact studies (Milly and 

Dunne 2011). Note that results for SWAT simulations of these watersheds reported in U.S. 

EPA (2013) and Johnson et al. (2015) do make use of projected changes in these energy 

inputs where available.

2.2 Data Aggregation and Analysis

SWAT simulations in each study watershed resulted in 29–30 years of daily output for each 

future climate simulation evaluated. Daily output was first aggregated to time series of 

annual and seasonal averages. Aggregated values within each study watershed were then 

normalized by the mean and standard deviation of their baseline scenario (1971–2000). This 

converts each time series to a set of deviations from mean baseline conditions that share a 

common scale of projected change across watersheds. Our analysis focuses on projected 

changes in endpoint values. Changes were calculated by subtracting baseline deviations 

from future climate deviations. The endpoints we consider are total streamflow, total 

nitrogen load (TN), total phosphorus load (TP), and total suspended solids load (TSS). All 

analyses were evaluated, using mixed effects models with restricted maximum likelihood, at 

seasonal and annual intervals with the ‘lme4’ package in R (R Core Team, 2014; Bates et al. 
2014).

Mixed effects models (i.e. hierarchical or multilevel models) can be used when data are 

nested within groups or categories, such as the climate models in this study (Zuur et al. 
2009). These models contain both fixed and random effects, where the fixed effects evaluate 

overall, population-level relationships, and the random effects account for and produce 

estimates of heterogeneity among the groups or categories for the fixed effects. Like 

classical ANOVAs that can incorporate random effects, e.g., those used to analyze 

randomized block designs, the goal is not to evaluate differences between the groups but 

variability.
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2.2.1 Analysis of Sources of Hydrologic Variation within the Ensemble—
Mixed effect models were used to quantify the overall variability associated with parent 

GCM and DSM in the ensemble of 14 sets of simulated future climate for streamflow and 

water quality endpoints in each of the five study watersheds. In these models, we used the 

parent GCM (GCM, four groups; columns of Table 2) and DSM (three or four groups per 

parent GCM; cells of Table 2) as categorical random factors, with the DSM factor nested 

within the GCM factor. The mixed effects models produced estimates of the mean projected 

ensemble change (β0) and of three sources of variation: variation among parent GCMs 

(σGCM,), variation among DSMs within parent GCMs (σDSM|GCM), and the unaccounted for 

interannual variability within DSMs (σresidual). The approach is analogous to a traditional 

nested analysis of variance (ANOVA), except it produces estimates of variation for the two 

random factors instead of mean GCM and DSM estimates. These effects are illustrated in 

Figure 2. The three estimated standard deviations produced by these statistical models are 

useful because they allow us to visualize the distribution of projected changes across the full 

ensemble of simulations with respect to both the parent GCMs and DSMs.

2.2.2 Analysis of Incremental Effects of Downscaling GCM Output on 
Hydrologic Simulations—Analyses were also conducted to assess how simulated 

watershed responses change within the overall ensemble of simulations, when driven by 

downscaled versus non-downscaled GCM output (hereafter referred to as the incremental 

effects of downscaling). First, we used a mixed effect model with two fixed, binary, 

categorical variables to compare non-downscaled GCMs (controls) to downscaled means: 

BCSD, yes (1) or no (0); and NARCCAP, yes (1) or no (0). To measure the variability in 

these effects, we allowed the relationship between non-downscaled GCMs and downscaled 

means to vary randomly across parent GCMs (four groups; columns of Table 2). Because the 

“NARCCAP” variable in this statistical model does not distinguish between the two RCMs 

associated with CGCM3 and GFDL (e.g., both CGCM3-CRCM and CGCM3-RCM3 would 

have the same covariate values), we evaluated each mixed effects models four times, once 

with each unique combination of CGCM3 and GFDL GCMs and RCMs (Table 2) and then 

reported average parameter estimates and p-values derived from those averages.

Each statistical model produced estimates of the mean projected change among the group of 

non-downscaled GCM data (β0) and the difference between that and the mean projected 

change in the group of BCSD and NARCCAP data (βΔBC and βΔNR). These differences are 

illustrated in Figure 3a. These models also produce estimates of four sources of variation 

(standard deviations): variation among non-downscaled GCMs(σGCM), variation in the 

effect of downscaling with BCSD among parent GCMs(σΔBC), variation in the effect of 

downscaling with different NARCCAP projections among parent GCMs(σΔNR), and the 

unaccounted for interannual variation (σresidual). This approach is analogous to a traditional 

analysis of covariance (ANCOVA) with two covariates and four groups (the parent GCMs), 

except it produces estimates of variation among the groups for the fixed parameters (β0, 

βΔBC, and βΔNR), instead of four intercepts associated with individual non-downscaled 

GCMs and eight projected changes associated with individual BCSD and NARCCAP 

projections.
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To visualize these random effects consider Figure 3b and 3c. Figure 3b shows differences 

between individual NARCCAP projections and their associated non-downscaled GCM 

projections (dashed red lines), compared to the overall group difference (thick black line). 

Figure 3c shows how those differences are represented in the model. Orange arrows show 

how each non-downscaled GCM projection compares to the overall group. The mixed 

effects model estimates the variability associated with those differences (σGCM), while a 

traditional ANCOVA would estimate the magnitude of each difference separately. Blue 

arrows show how the difference between each NARCCAP projection and their associated 

non-downscaled GCM projection compares to the overall group difference (thin black lines 

have been added to highlight this comparison).

The mixed effects model estimates the variability in these downscaling effects (σΔBC and 

σΔNR), while a traditional ANCOVA would estimate the magnitude of each effect separately. 

Of these sources of variation, we are interested in the variability in the BCSD and 

NARCCAP effect (σΔBC and σΔNR). When significant, BCSD or NARCCAP fixed effects 

(βΔBC and βΔNR) indicate that the application of downscaling consistently found regional 

patterns not found in the non-downscaled GCM output, resulting in directional shifts in 

simulated streamflow or water quality responses. Significant BCSD or NARCCAP random 

effects (σΔBC or σΔBC) indicate that the magnitude or direction of the BCSD or NARCCAP 

effect depends on the parent GCM and downscaling model: the larger the value of σΔBC or 

σΔNR, the larger the discrepancy between the overall BCSD or NARCCAP effect and 

individual model combinations.

We then used three simple mixed effects models to estimate variability of watershed 

simulations using BCSD and NARCCAP downscaled climate to compare against the 

variability among non-downscaled GCMs. This differs from the previous analysis in that it 

allows us to visualize the variability among the three categories of climate simulations 

separately. In these statistical models, either the non-downscaled GCM, BCSD, or 

NARCCAP (four groups per category; rows of Table 2) was used as a categorical random 

effect. Here also we evaluated each mixed effects models four times, once with each unique 

combination of CGCM3 and GFDL GCMs and RCMs (Table 2).

These statistical models produced estimates of the mean projected change for each group of 

projections, the non-downscaled GCM, BCSD, or NARCCAP projections and of two 

sources of variation: variation among DSMs (σGCM, σBCSD, or σNARCCAP) and the 

unaccounted for inter-annual variation within the DSMs, (σresidual). This approach is 

analogous to a traditional one-way ANOVA, except that it produces estimates of variation 

instead of mean non-downscaled GCM, BCSD, or NARCCAP responses. Figure 3d can be 

used to compare these random effects to the previous model. Orange arrows again show how 

each non-downscaled GCM projection compares to the overall group of non-downscaled 

GCMs. Both models produce a valid estimate of σGCM, but for consistent comparisons we 

report the version estimated here. Green arrows, however, show how each NARCCAP 

projection compares to the overall group of NARCCAPs rather than showing how individual 

downscaling effects differ from the overall effect. Of these two sources of variation, we are 

interested in the variability among DSMs for each group (σGCM, σBCSD, or σNARCCAP). 

Taking all parts of Figure 3 together, the group of NARCCAP scenarios estimates a larger 
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hydrologic response to climate change than the non-downscaled GCMs, but the variability in 

the NARCCAP effect also leads to larger variability among the NARCCAP scenarios.

3.0 Results and Discussion

Simulated changes in streamflow and water quality endpoints in response to the 14 different 

projected future climates in each of the five study watersheds are shown in Figure 4. The 

values shown are ratios of future (2041–2070) to baseline (1971–2000) annual average 

values at the downstream outlet of each study watershed. Symbols represent watershed 

responses to climate change based on non-downscaled GCM, NARCCAP, and BCSD data. 

Projected average changes in air temperature, precipitation, actual evapotranspiration (AET), 

and potential evapotranspiration (PET) for each climate future are also shown for 

comparison. Figure 4 illustrates a wide range in simulated water quality endpoints when 

different categories of future climate change information are used to drive SWAT. The range 

of water quality responses is generally wider (on a percentage basis) than the range in 

driving climate variables, and in most cases spans unity (indicating disagreement about the 

sign of future change). This reflects the cascading effects of variability in climate drivers 

when coupled with watershed modeling to assess watershed responses. In addition, Figure 4 

shows the important role of water limitation in certain regions and seasons of the year, as 

revealed by the difference in future change between actual and potential evapotranspiration.

3.1 Sources of Variation within the Ensemble

Analysis of simulation results in the five study watersheds show that parent GCM, and 

DSMs within each parent GCM, can each be a significant source of variability in the overall 

ensemble of projected streamflow and water quality responses to climate change. The 

relative contribution of GCM and DSM to the variability of simulated streamflow and water 

quality endpoints, however, varies by watershed, season of the year, and streamflow and 

water quality endpoint (Figure 5). Interannual variability in simulated streamflow and water 

quality that cannot be attributed to GCM and DSM also varies among watersheds, season, 

and endpoint. Parameter estimates for all models are presented in Table S1.

Results show differences in the hydrologic and water quality response to climate change 

among the five study watersheds. This is expected due to differences in watershed 

physiographic, hydroclimatic, land use and other factors. Hydroclimatic conditions vary 

from the arid southwest (Salt) to the humid Pacific Northwest (Willamette) and Southeast 

(ACF) and represent both continental and maritime mid-latitude climates. For example, in 

ACF and Minnesota the estimated variability among parent GCMs was most often smaller 

than the variability of DSMs within the parent GCMs (Figure 5). In ACF the variability 

among parent GCMs was smaller than the variability among DSMs within parent GCMs in 

all models considered, while in Minnesota this was true in 80% of the models considered. In 

contrast, variability among parent GCMs in Willamette was greater than the variability 

among DSMs within parent GCMs in 75% of the models, suggesting that either large or 

small differences exist between parent GCMs or DSMs, respectively. Much of the variability 

we observe across regions may depend on simulated precipitation and spring warming, as 

the timing and spatial distribution of precipitation has been shown to vary widely across 

Nover et al. Page 9

Earth Interact. Author manuscript; available in PMC 2018 July 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



climate models, which in topographically complex watersheds, or those that are influenced 

by small-scale meteorology, can result in very different flow patterns (Rasmussen et al., 
2012).

Differences in the relative contribution of GCM and DSM among study watersheds can be 

illustrated by comparing results for the ACF and Willamette basins (Figure 6), which have 

different hydroclimatic and watershed attributes. For Willamette, GCMs tend to be more 

important than DSMs in determining variability for streamflow and water quality endpoints, 

while the reverse is true for ACF. Contributing to this difference, Willamette is strongly 

influenced by the large-scale flow (e.g., the North Pacific storm track) year round, 

particularly in the cold season, over which the choice of GCM would be expected to play a 

larger role. By contrast, temperature and precipitation in ACF strongly depend on smaller-

scale meteorology (e.g., local convection) that DSMs (particularly dynamical downscaling) 

would be more likely to resolve. In addition, the Willamette is closer to the inflow boundary 

of the RCM domains, so it is likely more strongly influenced by the driving GCM solution, 

whereas regional climate simulated at ACF experiences more modification as the 

meteorological flow traverses the RCM domains.

These results are consistent with Wang et al. (2009), who compared the performance of six 

RCMs over the Intermountain Region of the Western U.S. to data from the North American 

Regional Reanalysis (NARR) dataset and demonstrated that the different RCMs are largely 

consistent in the Cascade Range (OR, WA) where the dominant upper level flow first 

encounters land. The differences among RCMs reported by Wang et al., and the difference 

from NARR, are greatest on the windward side of the Rocky Mountains in Colorado and 

remain large into Arizona (location of the Salt watershed).

Simulations within each of the five study watersheds also show differences in the relative 

contributions of GCM and DSM in different seasons of the year. In our ensemble of 

projected future climates, variability among parent GCMs was smaller than the variation 

among DSMs within parent GCMs most often in autumn and winter (Figure 5). The 

variability among parent GCMs was always smaller than among DSMs in winter, while in 

autumn it was smaller in 65% of the models considered. The converse was true in spring, 

where variability among parent GCMs was larger than among DSMs in 65% of the models. 

Projected changes that used downscaled results tended to deviate from non-downscaled 

results most in winter (discussed below, Figures 7–11). Bosshard et al. (2013) also found 

that DSM contribution to variance was larger during winter months. Apart from these 

patterns in the larger data set, each watershed had their own unique characteristics driven by 

its hydroclimatic setting (Figure 5). For example, variability in projected changes tended to 

be highest in spring for Willamette, summer for Salt, autumn for ACF and Susquehanna, and 

winter for Minnesota. Specifically, Willamette has relatively high mountains where spring 

snowmelt is important. The Salt is affected by summer monsoons, and ACF has highly 

variable tropical storms in late summer and fall. Winter has the highest variability in 

Minnesota, likely in part because scenarios resolve winter temperatures and the difference 

between precipitation as rain or snow differently.
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Simulations show less pronounced differences in the relative contributions of GCM and 

DSM for different streamflow and water quality endpoints. The variability of streamflow and 

water quality endpoints is most pronounced for the Minnesota and Salt Rivers (Figures 4, 5). 

The relationship between GCM and DSM effects across endpoints was relatively consistent, 

but inter-annual variation that could not be attributed to each source varied widely by metric. 

Unaccounted for interannual variation in streamflow was larger than the other two effects in 

only 32% of the models, but this value increases to 68%, 80%, and 96% in TSS, TN and TP 

models. These results illustrate the greater variability in projected changes in water quality 

metrics, especially TN and TP, due to multiple interacting factors affecting pollutant sources, 

fate and transport, such as changes in precipitation intensity and seasonal timing relative to 

plant growth cycles.

3.2 Incremental Effects of Downscaling GCM Output on Hydrologic Simulations

The incremental effects of downscaling were evaluated by comparing SWAT simulations in 

the five study watersheds when driven by downscaled versus non-downscaled climate 

change information from the same parent GCM. By “incremental effects”, we mean the 

quantified impacts, on simulated hydrologic endpoints, of using dynamical or statistical 

downscaling to modify the output from a given GCM. This is distinct from the overall 

variability among GCMs and/or DSMs, as presented in the previous section.

Figures 7 -11 show results for each streamflow and water quality endpoint by season of the 

year. The significance of fixed and random BCSD and NARCCAP effects are also shown in 

Figures 7–11. Parameter estimates for all of the effects models are presented in Table S2 and 

S3. Results show significant variability in the effects of downscaling among watersheds, 

seasons of the year, and to a lesser extent with the different streamflow and water quality 

endpoints. In some cases (e.g., watersheds/seasons), watershed simulations driven by 

downscaled (BCSD, NARCCAP) versus non-downscaled (GCM) climate change 

information deviate in a consistent direction, suggesting that downscaling is capturing some 

common underlying process in the watershed, e.g., orographic effects or lake snow, that the 

GCMs are not. In other cases, however, simulations using NARCCAP versus BCSD deviate 

from the GCM in ways that are not consistent with each other, including the sign of the 

projected change (e.g., recall Figure 4 and see discussion in Johnson et al., 2012).

Simulations within individual study watersheds tend to show greater incremental effects of 

downscaling when driven by climate change information from NARCCAP RCMs (i.e. 

significance and size of the fixed BCSD and NARCCAP effects, 16% vs. 26% overall, 

Figures 7–11). In many cases the variability among BCSD and NARCCAP scenarios was 

similar, but random NARCCAP effects were significant more often (64% vs. 96% overall). 

In other words, for the ensemble of projected future climates in this study, NARCCAP 

RCMs were on the whole more likely to find consistent regional patterns that differed from 

non-downscaled GCMs, but individually these differences were more variable. This result 

could occur because, unlike with statistical downscaling, RCMs are able to alter the 

atmospheric circulation and convective environment in the parent GCM.

Simulations across the five study watersheds show significant variability in the incremental 

effects of downscaling in these different hydroclimatic and physiographic locations. For 
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example, looking across all streamflow and water quality endpoints and seasons of the year, 

watershed simulations driven with downscaled climate change information (i.e., NARCCAP 

and BCSD) differed from simulations using non-downscaled GCMs most often in the Salt 

watershed. In the Salt, simulations using BCSD differed significantly from the non-

downscaled GCM runs in 20% of the simulations, while those based on NARCCAP differed 

significantly in 60% of the simulations (Figures 7–11). With the exception of the summer 

season, which had highly variable changes in streamflow (Figures 5, 10), the use of climate 

change information from BCSD in the Salt resulted in relatively higher streamflow and 

loads, while the use of NARCCAP data resulted in relatively lower streamflow and loads. 

This is contrasts with the ACF and Willamette watersheds, where in the former, simulations 

driven with BCSD differed significantly from the non-downscaled GCMs in 30% of the 

cases (and simulations with NARCCAP did not differ), while in the latter, simulations driven 

by NARCCAP differed significantly in 20% of the cases (and simulations with BCSD did 

not differ). Across all five study watersheds, however, random NARCCAP effects were 

significant more often than random BCSD effects (Figures 7–11).

Lastly, Figures 7–11 illustrate variability in the incremental effects of downscaling when 

considering different streamflow and water quality endpoints, and seasonal differences in 

endpoint values throughout the year. While the effects of downscaling were relatively 

consistent among the different endpoints, results are more variable across seasonal endpoint 

values. For example, considering annual average streamflow, simulations driven by 

downscaled climate change information from BCSD and NARCCAP differed significantly 

from those using non-downscaled GCMs in 5% and 35% of models, respectively (Figure 7). 

A similar pattern of significant fixed effects occurs in the autumn and summer seasons, 

where BCSD and NARCCAP effects differed from non-downscaled GCMs in 5% and 25% 

of models in autumn, and 0% and 35% of models in summer, respectively (Figures 10 and 

11). In the spring and winter seasons, however, BCSD and NARCCAP effects differed in 

20% and 0% of models in spring, and in 50% and 30% of models in winter, respectively. In 

other words, BCSD effects were most significant in spring and especially winter (20% and 

50% of models, respectively), while NARCCAP effects were significant in roughly equal 

proportions (25–35% of models) for all periods except spring.

3.3 Assumptions and Research Needs

This study describes a particular set of watershed simulations to illustrate how driving a 

watershed model with different approaches to downscaling climate change information can 

influence simulation results. All results are conditional on the methods, models, and climate 

change information evaluated in the underlying simulations. Several caveats should be 

noted. First, to provide a consistent basis for comparison, all simulations of watershed 

response to climate change assume future changes only in air temperature and precipitation. 

We intentionally do not consider the implications of representing changes in other 

meteorological variables such as humidity, radiation and wind speed that are necessary to 

calculate PET using an energy balance approach (e.g., see Milly and Dunne 2011). 

Representation of these additional meteorological variables can have a significant influence 

on watershed simulation results. Sensitivity studies in the five study watersheds suggest 

inclusion of projected changes in dewpoint resulted in a reduction in estimated annual PET 
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of about 11% across all the meteorological stations, implying an underestimation of soil 

moisture and streamflow when change in dewpoint is not used (see USEPA 2013). The 

importance of accounting for dewpoint for properly simulating hydrology under future 

climate change was also noted by Pierce et al. (2013).

In addition, all meteorological inputs used to drive the watershed models were created using 

the change-factor method applied to historical time series. Use of change factors to translate 

climate change information to site-specific information to drive watershed models is, in 

itself, a simple additional step of statistical downscaling from the gridded DSM output to 

point gauge locations. Chen et al. (2013) have shown that different approaches for 

translating regional climate projections to site-specific inputs for hydrologic models can 

impact watershed simulations. In this study, we do not consider the implications of using 

different types of change factors (e.g., scaling versus quantile mapping), nor do we compare 

the change factor application to approaches that use the climate model-simulated sequences 

of precipitation events.

Finally, it must be noted that simulations of potential climate change impacts are subject to 

multiple and cascading uncertainties associated with different watershed model 

characteristics and methodological choices. In this study we address only one source – the 

effects of downscaling climate change information used to drive watershed models – and do 

not address other uncertainties affecting watershed simulations. The analysis is nevertheless 

illuminating and shows promise for providing systematic, quantitative uncertainty 

characterization in the study of watershed responses to climate change.

Future research addressing the above and related methodological questions would be 

valuable. In addition, application of this type of statistical analysis to additional study areas, 

increasing the sampling across diverse hydroclimatic regimes, would be helpful for eliciting 

clearer patterns in the relative importance of GCM and DSM by watershed characteristics. 

Increasing the size of the GCM ensemble, and therefore range of future climates, considered 

might similarly produce insights into more systematic patterns of response in watershed 

simulations to GCM versus DSM forcing. Finally, while the kind of “ensemble of 

opportunity” approach to pairing of GCMs and DSMs we have used here allows for the 

leveraging of a large volume of existing projection data, it makes it difficult to separate 

variability in hydrologic endpoints due simply to the increased resolution from that due to 

factors such as RCM model formulation or the particular statistical downscaling algorithm 

used. It would therefore be worthwhile to repeat this type of analysis in the context of “big 

brother” or “perfect model” approaches (e.g., see Denis et al. 2002), where a high-resolution 

climate simulation is degraded to coarser resolution to create a synthetic analogue of both 

the GCM and “downscaled” data from the same underlying model run.

4.0 Summary and conclusions

Assessments of climate change impacts on water resources are complicated by the scale, 

complexity and inherent uncertainty of the problem. This study illustrates one poorly 

understood but important facet of this complexity; the potential effects of DSM (including 

the choice to use downscaling at all) on simulations of hydrologic and water quality 
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changes. Our results show that both the parent GCM and how downscaling is done can 

contribute to the variability of projected watershed responses. Moreover, sources of 

variability differ among watersheds, season of the year, and for different streamflow and 

water quality endpoints governed by different watershed and hydroclimatic processes. The 

differences among GCMs can be the major source of variability in some cases, while if and 

how the data are downscaled can be a major factor in others. Our results also provide a 

detailed illustration of how downscaling GCM output can alter simulations of watershed 

processes as compared to simulations based on non-downscaled GCMs. Water resources 

practitioners should be aware that while models are a useful and necessary part of 

management planning, there is significant uncertainty in projections associated with both 

GCM choice and DSM choice. Given the uncertainties, managers should seek to examine a 

wide range of plausible futures, identify potential vulnerabilities, and focus on solutions that 

are robust across a range of plausible futures rather than a single most likely future.

Statistical downscaling has power in its ability to reproduce local-scale deviations from areal 

average results, such as finer-scale orographic effects, and can adjust for some inherent 

spatial biases in GCMs, but it assumes historical spatial relationships between GCM output 

and local climate will remain unchanged over time. Statistical downscaling is also less 

computationally intensive and thus more conducive to running larger ensembles of 

scenarios. Dynamical downscaling with RCMs is a physics-based approach that attempts to 

account for changes in the relationship between global and local climate, but requires a high 

level of effort and is not yet proven to yield more credible results. There is no consensus on 

a “best” downscaling approach for use in assessment of climate change impacts on water 

resources. Statistical and dynamical methods each have advantages and disadvantages, and 

there are a wide variety of specific methods within each category. In choosing information 

sources for potential future climate change, one should consider the study goals and specific 

questions being asked, level of confidence required for information to be actionable, time 

and resources available, and other relevant questions that determine the decision context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Location of the five study watersheds.
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Figure 2. 
Illustration of model terms (sources of uncertainty) used in our analysis. The model 

estimates one fixed effect, the mean ensemble projected change (β0). The variation among 

parent GCMs (orange arrows) is estimated with σGCM; the variation among DSMs within 

parent GCMs (blue arrows) is estimated with σDSM|GCM; and the residual, or unaccounted 

for inter-annual variation within DSMs (green arrows) is estimated with σresidual.
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Figure 3. 
Illustration of the “incremental effects” of downscaling GCM data in our analysis. (a) The 

model estimates three fixed effects, the mean projected change in the group of non-

downscaled GCM scenarios (β0), and the difference between that and the mean projected 

change in the group of BCSD and NARCCAP scenarios (thick black arrows, βΔBC and 

βΔNR). (b) As an example, three NARCCAP scenarios (red dashed arrows) are used to 

illustrate two sources of variability in this model. (c) Here the variation among non-

downscaled GCMs (orange arrows) is estimated with σGCM and the variation in the 

NARCCAP effect among parent GCMs (blue arrows) is estimated with σΔNR. The thin 

parallel black lines are placed to show the difference in slope between the three scenarios 

and the overall NARCCAP effect. (d) The variability among the three NARCCAP scenarios 

(green arrows) is estimated with σNARCCAP and compared to the variability among non-

downscaled GCMs (σGCM).

Nover et al. Page 20

Earth Interact. Author manuscript; available in PMC 2018 July 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 4: 
Simulated future changes in climate, streamflow, and water quality endpoints in the five 

study watersheds. Except for temperature, points are the ratio of future (mid-twenty first 

century) to baseline mean annual values for non-downscaled GCM (○), BCSD (Δ), and 

NARCCAP (+) scenarios. Absolute difference is shown for temperature.
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Figure 5: 
Variability of simulated streamflow and water quality endpoints contributed by GCM, DSM, 

and inter-annual variability of climate change scenarios. Measures of variation among parent 

GCMs (σGCM, orange), among DSMs within parent GCMs, (σDSM GCM, blue), and 

unaccounted for inter-annual variation (σresidual, green) in standardized projected changes in 

streamflow and water quality endpoints in each of the five study watersheds.
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Figure 6. 
Comparison of GCM and DSM variance components for ACF (○) and Willamette (Δ). 

Values show the proportion of variability among the scenarios attributed to the parent GCM: 

σGCM / σGCM + σDSM GCM .
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Figure 7: 
The effects of downscaling on simulated annual streamflow and water quality endpoints in 

the five study watersheds. Boxes show projected mean annual changes in hydrology that 

used non-downscaled GCM, BCSD, and NARCCAP data. Arrows show the magnitude of 

change between non-downscaled and downscaled groups ( and βΔNR), and dashed vertical 

lines show how variable that change can be across model combinations (±σΔBC or ±σΔNR). 

Solid vertical lines show variability in mean response among scenarios that used non-
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downscaled GCM and downscaled data (±σGCM,   ± σBCSD, or ±σNARCCAP). Red boxes and 

dashed lines represent significant (P < 0.05) fixed and random BCSD and NARCCAP 

effects. All values are standardized projected changes.
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Figure 8: 
Same as Figure 7, except for winter streamflow and water quality endpoints.
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Figure 9: 
Same as Figure 7, except for spring streamflow and water quality endpoints.
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Figure 10: 
Same as Figure 7, except for summer streamflow and water quality endpoints.
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Figure 11: 
Same as Figure 7, except for autumn streamflow and water quality endpoints.
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Table 1.

Summary attributes of the five study watersheds.

Study Watershed Total Area (km2)

Elevation 
Range

(m above 
mean sea 

level)

Urban/
Residential

(%)
Agriculture

(%)
Forest

(%) Average Precipitation (cm/yr) Average Temperature (oC)

# of 
Meteorological 

Stations 
(Temperature/
Precipitation)

ACF 49,943 0 – 1,325 9.3 21.6 47.9 138 17.46 23/37

Salt 15,025 585 – 3,477 0.6 0.02 61.1 56 12.92 8/10

Minnesota 44,002 208 – 650 6.6 78.0 2.9 72 6.61 32/42

Susquehanna 71,236 0 – 957 7.4 27.0 61.1 105 9.03 27/60

Willamette 29,032 0 – 3,185 7.2 20.7 56.2 148 10.66 29/38
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Table 2.

GCMs and downscaling methods (DSMs) used to create climate change scenarios.

Parent GCM

CGCM3 HADCM3 GFDL CCSM

Downscaling Method

None (non-downscaled) None (non-downscaled) None (non-downscaled) None (non-downscaled)

Statistical (BCSD) Statistical (BCSD) Statistical (BCSD) Statistical (BCSD)

CRCM (NARCCAP) HRM3 (NARCCAP) GFDLhires (NARCCAP) WRFG (NARCCAP)

RCM3 (NARCCAP) RCM3 (NARCCAP)

Note: Downscaling methods are non-downscaled GCM, statistical downscaling [Bias Corrected and Spatially Disaggregated archive (BCSD)], or 
RCM used for dynamical downscaling (NARCCAP). Model abbreviations are as follows: CGCM3, Third Generation Coupled Global Climate 
Model (http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=4A642EDE-1); HadCM3, Hadley Centre Coupled Model, version 3 (http://
www-pcmdi.llnl.gov/ipcc/model_documentation/HadCM3.htm); GFDL, Geophysical Fluid Dynamics Laboratory GCM (http://www-
pcmdi.llnl.gov/ipcc/model_documentation/GFDL-cm2.htm); CCSM, Community Climate System Model (http://www-pcmdi.llnl.gov/ipcc/
model_documentation/CCSM3.htm); CRCM, Canadian Regional Climate Model (http://www.ec.gc.ca/ccmac-cccma/default.asp?
lang=En&n=4A642EDE-1); RCM3, Regional Climate Model, version 3 (http://users.ictp.it/~pubregcm/RegCM3/); HRM3, Hadley Regional Model 
3 (http://precis.metoffice.com/); WRFG, Weather Research and Forecasting Model, using the Grell convection scheme (http://www.wrf-model.org/
index.php); GFDL hi res, Geophysical Fluid Dynamics Laboratory 50-km global atmospheric time slice (http://www-pcmdi.llnl.gov/ipcc/
model_documentation/GFDLcm2.htm).
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